annotate org/test-creature.org @ 148:511112c44b16

muscles are tested and work!
author Robert McIntyre <rlm@mit.edu>
date Fri, 03 Feb 2012 01:04:42 -0700
parents 72801a20b8e5
children 1e6beed24cec
rev   line source
rlm@73 1 #+title: First attempt at a creature!
rlm@73 2 #+author: Robert McIntyre
rlm@73 3 #+email: rlm@mit.edu
rlm@73 4 #+description:
rlm@73 5 #+keywords: simulation, jMonkeyEngine3, clojure
rlm@73 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@73 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@73 8
rlm@129 9
rlm@129 10
rlm@129 11 * Brainstorming different sensors and effectors.
rlm@129 12
rlm@129 13 Every sense that we have should have an effector that changes what
rlm@129 14 that sense (or others who have that sense) experiences.
rlm@129 15
rlm@129 16 ** Classic Senses
rlm@129 17 | Sense | Effector |
rlm@129 18 |------------------------------+---------------------------------|
rlm@129 19 | Vision | Variable Coloration |
rlm@129 20 | Hearing | Speech |
rlm@129 21 | Proprioception | Movement |
rlm@129 22 | Smell/Taste (Chemoreception) | Pheremones |
rlm@129 23 | Touch | Movement / Controllable Texture |
rlm@129 24 | Acceleration | Movement |
rlm@129 25 | Balance (sense gravity) | Movement |
rlm@129 26 | | |
rlm@129 27
rlm@129 28 - New Senses/Effectors
rlm@129 29 - Levitation
rlm@129 30 - Telekenesis
rlm@139 31 - control of gravity within a certain radius
rlm@139 32 - speed up/slow time
rlm@139 33 - object creation/destruction
rlm@129 34
rlm@129 35 - Symbol Sense
rlm@129 36 Where objects in the world can be queried for description /
rlm@129 37 symbols.
rlm@129 38
rlm@129 39 - Symbol Marking
rlm@129 40 The ability to mark objects in the world with your own descriptions
rlm@129 41 and symbols.
rlm@129 42
rlm@129 43 - Vision
rlm@129 44 Distinguish the polarization of light
rlm@129 45 Color
rlm@129 46 Movement
rlm@129 47
rlm@129 48 * project ideas
rlm@129 49 - HACKER for writing muscle-control programs : Presented with
rlm@129 50 low-level muscle control/ sense API, generate higher level programs
rlm@129 51 for accomplishing various stated goals. Example goals might be
rlm@129 52 "extend all your fingers" or "move your hand into the area with
rlm@129 53 blue light" or "decrease the angle of this joint". It would be
rlm@129 54 like Sussman's HACKER, except it would operate with much more data
rlm@129 55 in a more realistic world. Start off with "calestanthics" to
rlm@129 56 develop subrouitines over the motor control API. This would be the
rlm@129 57 "spinal chord" of a more intelligent creature. The low level
rlm@129 58 programming code might be a turning machine that could develop
rlm@129 59 programs to iterate over a "tape" where each entry in the tape
rlm@129 60 could control recruitment of the fibers in a muscle.
rlm@129 61 - Make a virtual computer in the virtual world which with which the
rlm@129 62 creature interacts using its fingers to press keys on a virtual
rlm@129 63 keyboard. The creature can access the internet, watch videos, take
rlm@129 64 over the world, anything it wants.
rlm@129 65 - Make virtual insturments like pianos, drumbs, etc that it learns to
rlm@129 66 play.
rlm@129 67 - make a joint that figures out what type of joint it is (range of
rlm@129 68 motion)
rlm@129 69
rlm@129 70
rlm@129 71
rlm@129 72
rlm@129 73
rlm@129 74 * goals
rlm@125 75
rlm@125 76 ** have to get done before winston
rlm@126 77 - [ ] write an explination for why greyscale bitmaps for senses is
rlm@126 78 appropiate -- 1/2 day
rlm@126 79 - [ ] muscle control -- day
rlm@146 80 - [X] proprioception sensor map in the style of the other senses -- day
rlm@125 81 - [ ] refactor integration code to distribute to each of the senses
rlm@126 82 -- day
rlm@147 83 - [ ] create video showing all the senses for Winston -- 2 days
rlm@147 84 - [ ] send package to friends for critiques -- 2 days
rlm@126 85 - [ ] write summary of project for Winston \
rlm@126 86 - [ ] project proposals for Winston \
rlm@126 87 - [ ] additional senses to be implemented for Winston | -- 2 days
rlm@126 88 - [ ] send Winston package /
rlm@125 89
rlm@125 90 ** would be cool to get done before winston
rlm@126 91 - [X] enable greyscale bitmaps for touch -- 2 hours
rlm@126 92 - [X] use sawfish to auto-tile sense windows -- 6 hours
rlm@126 93 - [X] sawfish keybinding to automatically delete all sense windows
rlm@126 94 - [ ] directly change the UV-pixels to show sensor activation -- 2
rlm@126 95 days
rlm@126 96 - [ ] proof of concept C sense manipulation -- 2 days
rlm@126 97 - [ ] proof of concept GPU sense manipulation -- week
rlm@126 98 - [ ] fourier view of sound -- 2 or 3 days
rlm@146 99 - [ ] dancing music listener -- 1 day, depends on fourier
rlm@125 100
rlm@125 101 ** don't have to get done before winston
rlm@126 102 - [ ] write tests for integration -- 3 days
rlm@126 103 - [ ] usertime/gametime clock HUD display -- day
rlm@126 104 - [ ] find papers for each of the senses justifying my own
rlm@126 105 representation -- week
rlm@126 106 - [ ] show sensor maps in HUD display? -- 4 days
rlm@126 107 - [ ] show sensor maps in AWT display? -- 2 days
rlm@124 108
rlm@99 109
rlm@73 110 * Intro
rlm@73 111 So far, I've made the following senses --
rlm@73 112 - Vision
rlm@73 113 - Hearing
rlm@73 114 - Touch
rlm@73 115 - Proprioception
rlm@73 116
rlm@73 117 And one effector:
rlm@73 118 - Movement
rlm@73 119
rlm@73 120 However, the code so far has only enabled these senses, but has not
rlm@73 121 actually implemented them. For example, there is still a lot of work
rlm@73 122 to be done for vision. I need to be able to create an /eyeball/ in
rlm@73 123 simulation that can be moved around and see the world from different
rlm@73 124 angles. I also need to determine weather to use log-polar or cartesian
rlm@73 125 for the visual input, and I need to determine how/wether to
rlm@73 126 disceritise the visual input.
rlm@73 127
rlm@73 128 I also want to be able to visualize both the sensors and the
rlm@104 129 effectors in pretty pictures. This semi-retarted creature will be my
rlm@73 130 first attempt at bringing everything together.
rlm@73 131
rlm@73 132 * The creature's body
rlm@73 133
rlm@73 134 Still going to do an eve-like body in blender, but due to problems
rlm@104 135 importing the joints, etc into jMonkeyEngine3, I'm going to do all
rlm@73 136 the connecting here in clojure code, using the names of the individual
rlm@73 137 components and trial and error. Later, I'll maybe make some sort of
rlm@73 138 creature-building modifications to blender that support whatever
rlm@73 139 discreitized senses I'm going to make.
rlm@73 140
rlm@73 141 #+name: body-1
rlm@73 142 #+begin_src clojure
rlm@73 143 (ns cortex.silly
rlm@73 144 "let's play!"
rlm@73 145 {:author "Robert McIntyre"})
rlm@73 146
rlm@73 147 ;; TODO remove this!
rlm@73 148 (require 'cortex.import)
rlm@73 149 (cortex.import/mega-import-jme3)
rlm@73 150 (use '(cortex world util body hearing touch vision))
rlm@73 151
rlm@73 152 (rlm.rlm-commands/help)
rlm@99 153 (import java.awt.image.BufferedImage)
rlm@99 154 (import javax.swing.JPanel)
rlm@99 155 (import javax.swing.SwingUtilities)
rlm@99 156 (import java.awt.Dimension)
rlm@99 157 (import javax.swing.JFrame)
rlm@99 158 (import java.awt.Dimension)
rlm@106 159 (import com.aurellem.capture.RatchetTimer)
rlm@99 160 (declare joint-create)
rlm@108 161 (use 'clojure.contrib.def)
rlm@73 162
rlm@100 163 (defn points->image
rlm@100 164 "Take a sparse collection of points and visuliaze it as a
rlm@100 165 BufferedImage."
rlm@102 166
rlm@102 167 ;; TODO maybe parallelize this since it's easy
rlm@102 168
rlm@100 169 [points]
rlm@106 170 (if (empty? points)
rlm@106 171 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
rlm@106 172 (let [xs (vec (map first points))
rlm@106 173 ys (vec (map second points))
rlm@106 174 x0 (apply min xs)
rlm@106 175 y0 (apply min ys)
rlm@106 176 width (- (apply max xs) x0)
rlm@106 177 height (- (apply max ys) y0)
rlm@106 178 image (BufferedImage. (inc width) (inc height)
rlm@119 179 BufferedImage/TYPE_INT_RGB)]
rlm@118 180 (dorun
rlm@118 181 (for [x (range (.getWidth image))
rlm@118 182 y (range (.getHeight image))]
rlm@119 183 (.setRGB image x y 0xFF0000)))
rlm@106 184 (dorun
rlm@106 185 (for [index (range (count points))]
rlm@106 186 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
rlm@106 187
rlm@106 188 image)))
rlm@100 189
rlm@101 190 (defn average [coll]
rlm@101 191 (/ (reduce + coll) (count coll)))
rlm@101 192
rlm@101 193 (defn collapse-1d
rlm@101 194 "One dimensional analogue of collapse"
rlm@101 195 [center line]
rlm@101 196 (let [length (count line)
rlm@101 197 num-above (count (filter (partial < center) line))
rlm@101 198 num-below (- length num-above)]
rlm@101 199 (range (- center num-below)
rlm@115 200 (+ center num-above))))
rlm@99 201
rlm@99 202 (defn collapse
rlm@99 203 "Take a set of pairs of integers and collapse them into a
rlm@99 204 contigous bitmap."
rlm@99 205 [points]
rlm@108 206 (if (empty? points) []
rlm@108 207 (let
rlm@108 208 [num-points (count points)
rlm@108 209 center (vector
rlm@108 210 (int (average (map first points)))
rlm@108 211 (int (average (map first points))))
rlm@108 212 flattened
rlm@108 213 (reduce
rlm@108 214 concat
rlm@108 215 (map
rlm@108 216 (fn [column]
rlm@108 217 (map vector
rlm@108 218 (map first column)
rlm@108 219 (collapse-1d (second center)
rlm@108 220 (map second column))))
rlm@108 221 (partition-by first (sort-by first points))))
rlm@108 222 squeezed
rlm@108 223 (reduce
rlm@108 224 concat
rlm@108 225 (map
rlm@108 226 (fn [row]
rlm@108 227 (map vector
rlm@108 228 (collapse-1d (first center)
rlm@108 229 (map first row))
rlm@108 230 (map second row)))
rlm@108 231 (partition-by second (sort-by second flattened))))
rlm@108 232 relocate
rlm@108 233 (let [min-x (apply min (map first squeezed))
rlm@108 234 min-y (apply min (map second squeezed))]
rlm@108 235 (map (fn [[x y]]
rlm@108 236 [(- x min-x)
rlm@108 237 (- y min-y)])
rlm@108 238 squeezed))]
rlm@115 239 relocate)))
rlm@83 240
rlm@83 241 (defn load-bullet []
rlm@84 242 (let [sim (world (Node.) {} no-op no-op)]
rlm@102 243 (doto sim
rlm@102 244 (.enqueue
rlm@102 245 (fn []
rlm@102 246 (.stop sim)))
rlm@102 247 (.start))))
rlm@83 248
rlm@73 249 (defn load-blender-model
rlm@73 250 "Load a .blend file using an asset folder relative path."
rlm@73 251 [^String model]
rlm@73 252 (.loadModel
rlm@73 253 (doto (asset-manager)
rlm@73 254 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@73 255 model))
rlm@73 256
rlm@74 257 (defn meta-data [blender-node key]
rlm@74 258 (if-let [data (.getUserData blender-node "properties")]
rlm@74 259 (.findValue data key)
rlm@74 260 nil))
rlm@73 261
rlm@78 262 (defn blender-to-jme
rlm@78 263 "Convert from Blender coordinates to JME coordinates"
rlm@78 264 [#^Vector3f in]
rlm@78 265 (Vector3f. (.getX in)
rlm@78 266 (.getZ in)
rlm@78 267 (- (.getY in))))
rlm@74 268
rlm@79 269
rlm@133 270
rlm@133 271
rlm@133 272
rlm@87 273 (defn world-to-local
rlm@87 274 "Convert the world coordinates into coordinates relative to the
rlm@87 275 object (i.e. local coordinates), taking into account the rotation
rlm@87 276 of object."
rlm@87 277 [#^Spatial object world-coordinate]
rlm@87 278 (let [out (Vector3f.)]
rlm@88 279 (.worldToLocal object world-coordinate out) out))
rlm@87 280
rlm@96 281 (defn local-to-world
rlm@96 282 "Convert the local coordinates into coordinates into world relative
rlm@96 283 coordinates"
rlm@96 284 [#^Spatial object local-coordinate]
rlm@96 285 (let [world-coordinate (Vector3f.)]
rlm@96 286 (.localToWorld object local-coordinate world-coordinate)
rlm@96 287 world-coordinate))
rlm@96 288
rlm@87 289 (defmulti joint-dispatch
rlm@87 290 "Translate blender pseudo-joints into real JME joints."
rlm@88 291 (fn [constraints & _]
rlm@87 292 (:type constraints)))
rlm@87 293
rlm@87 294 (defmethod joint-dispatch :point
rlm@87 295 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 296 (println-repl "creating POINT2POINT joint")
rlm@130 297 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@130 298 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@130 299
rlm@130 300 ;; should be able to do this:
rlm@130 301 (comment
rlm@130 302 (Point2PointJoint.
rlm@130 303 control-a
rlm@130 304 control-b
rlm@130 305 pivot-a
rlm@130 306 pivot-b))
rlm@130 307
rlm@130 308 ;; but instead we must do this:
rlm@130 309 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@130 310 (doto
rlm@130 311 (SixDofJoint.
rlm@130 312 control-a
rlm@130 313 control-b
rlm@130 314 pivot-a
rlm@130 315 pivot-b
rlm@130 316 false)
rlm@130 317 (.setLinearLowerLimit Vector3f/ZERO)
rlm@130 318 (.setLinearUpperLimit Vector3f/ZERO)
rlm@130 319 ;;(.setAngularLowerLimit (Vector3f. 1 1 1))
rlm@130 320 ;;(.setAngularUpperLimit (Vector3f. 0 0 0))
rlm@130 321
rlm@130 322 ))
rlm@130 323
rlm@87 324
rlm@87 325 (defmethod joint-dispatch :hinge
rlm@87 326 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 327 (println-repl "creating HINGE joint")
rlm@87 328 (let [axis
rlm@87 329 (if-let
rlm@87 330 [axis (:axis constraints)]
rlm@87 331 axis
rlm@87 332 Vector3f/UNIT_X)
rlm@87 333 [limit-1 limit-2] (:limit constraints)
rlm@87 334 hinge-axis
rlm@87 335 (.mult
rlm@87 336 rotation
rlm@87 337 (blender-to-jme axis))]
rlm@87 338 (doto
rlm@87 339 (HingeJoint.
rlm@87 340 control-a
rlm@87 341 control-b
rlm@87 342 pivot-a
rlm@87 343 pivot-b
rlm@87 344 hinge-axis
rlm@87 345 hinge-axis)
rlm@87 346 (.setLimit limit-1 limit-2))))
rlm@87 347
rlm@87 348 (defmethod joint-dispatch :cone
rlm@87 349 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 350 (let [limit-xz (:limit-xz constraints)
rlm@87 351 limit-xy (:limit-xy constraints)
rlm@87 352 twist (:twist constraints)]
rlm@87 353
rlm@87 354 (println-repl "creating CONE joint")
rlm@87 355 (println-repl rotation)
rlm@87 356 (println-repl
rlm@87 357 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@87 358 (println-repl
rlm@87 359 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@87 360 (println-repl
rlm@87 361 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@87 362 (doto
rlm@87 363 (ConeJoint.
rlm@87 364 control-a
rlm@87 365 control-b
rlm@87 366 pivot-a
rlm@87 367 pivot-b
rlm@87 368 rotation
rlm@87 369 rotation)
rlm@87 370 (.setLimit (float limit-xz)
rlm@87 371 (float limit-xy)
rlm@87 372 (float twist)))))
rlm@87 373
rlm@88 374 (defn connect
rlm@87 375 "here are some examples:
rlm@87 376 {:type :point}
rlm@87 377 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@87 378 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@87 379
rlm@89 380 {:type :cone :limit-xz 0]
rlm@89 381 :limit-xy 0]
rlm@89 382 :twist 0]} (use XZY rotation mode in blender!)"
rlm@87 383 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@87 384 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@87 385 control-b (.getControl obj-b RigidBodyControl)
rlm@87 386 joint-center (.getWorldTranslation joint)
rlm@87 387 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@87 388 pivot-a (world-to-local obj-a joint-center)
rlm@87 389 pivot-b (world-to-local obj-b joint-center)]
rlm@89 390
rlm@87 391 (if-let [constraints
rlm@87 392 (map-vals
rlm@87 393 eval
rlm@87 394 (read-string
rlm@87 395 (meta-data joint "joint")))]
rlm@89 396 ;; A side-effect of creating a joint registers
rlm@89 397 ;; it with both physics objects which in turn
rlm@89 398 ;; will register the joint with the physics system
rlm@89 399 ;; when the simulation is started.
rlm@87 400 (do
rlm@87 401 (println-repl "creating joint between"
rlm@87 402 (.getName obj-a) "and" (.getName obj-b))
rlm@87 403 (joint-dispatch constraints
rlm@87 404 control-a control-b
rlm@87 405 pivot-a pivot-b
rlm@87 406 joint-rotation))
rlm@87 407 (println-repl "could not find joint meta-data!"))))
rlm@87 408
rlm@130 409
rlm@130 410
rlm@130 411
rlm@78 412 (defn assemble-creature [#^Node pieces joints]
rlm@78 413 (dorun
rlm@78 414 (map
rlm@78 415 (fn [geom]
rlm@78 416 (let [physics-control
rlm@78 417 (RigidBodyControl.
rlm@78 418 (HullCollisionShape.
rlm@78 419 (.getMesh geom))
rlm@78 420 (if-let [mass (meta-data geom "mass")]
rlm@78 421 (do
rlm@78 422 (println-repl
rlm@78 423 "setting" (.getName geom) "mass to" (float mass))
rlm@78 424 (float mass))
rlm@78 425 (float 1)))]
rlm@78 426
rlm@78 427 (.addControl geom physics-control)))
rlm@78 428 (filter #(isa? (class %) Geometry )
rlm@78 429 (node-seq pieces))))
rlm@78 430 (dorun
rlm@78 431 (map
rlm@78 432 (fn [joint]
rlm@133 433 (let [[obj-a obj-b] (joint-targets pieces joint)]
rlm@88 434 (connect obj-a obj-b joint)))
rlm@78 435 joints))
rlm@78 436 pieces)
rlm@74 437
rlm@116 438 (declare blender-creature)
rlm@74 439
rlm@78 440 (def hand "Models/creature1/one.blend")
rlm@74 441
rlm@78 442 (def worm "Models/creature1/try-again.blend")
rlm@78 443
rlm@90 444 (def touch "Models/creature1/touch.blend")
rlm@90 445
rlm@90 446 (defn worm-model [] (load-blender-model worm))
rlm@90 447
rlm@80 448 (defn x-ray [#^ColorRGBA color]
rlm@80 449 (doto (Material. (asset-manager)
rlm@80 450 "Common/MatDefs/Misc/Unshaded.j3md")
rlm@80 451 (.setColor "Color" color)
rlm@80 452 (-> (.getAdditionalRenderState)
rlm@80 453 (.setDepthTest false))))
rlm@80 454
rlm@91 455 (defn colorful []
rlm@91 456 (.getChild (worm-model) "worm-21"))
rlm@90 457
rlm@90 458 (import jme3tools.converters.ImageToAwt)
rlm@90 459
rlm@90 460 (import ij.ImagePlus)
rlm@90 461
rlm@108 462 ;; Every Mesh has many triangles, each with its own index.
rlm@108 463 ;; Every vertex has its own index as well.
rlm@90 464
rlm@108 465 (defn tactile-sensor-image
rlm@110 466 "Return the touch-sensor distribution image in BufferedImage format,
rlm@110 467 or nil if it does not exist."
rlm@91 468 [#^Geometry obj]
rlm@110 469 (if-let [image-path (meta-data obj "touch")]
rlm@110 470 (ImageToAwt/convert
rlm@110 471 (.getImage
rlm@110 472 (.loadTexture
rlm@110 473 (asset-manager)
rlm@110 474 image-path))
rlm@110 475 false false 0)))
rlm@110 476
rlm@91 477 (import ij.process.ImageProcessor)
rlm@91 478 (import java.awt.image.BufferedImage)
rlm@91 479
rlm@92 480 (def white -1)
rlm@94 481
rlm@91 482 (defn filter-pixels
rlm@108 483 "List the coordinates of all pixels matching pred, within the bounds
rlm@108 484 provided. Bounds -> [x0 y0 width height]"
rlm@92 485 {:author "Dylan Holmes"}
rlm@108 486 ([pred #^BufferedImage image]
rlm@108 487 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
rlm@108 488 ([pred #^BufferedImage image [x0 y0 width height]]
rlm@108 489 ((fn accumulate [x y matches]
rlm@108 490 (cond
rlm@108 491 (>= y (+ height y0)) matches
rlm@108 492 (>= x (+ width x0)) (recur 0 (inc y) matches)
rlm@108 493 (pred (.getRGB image x y))
rlm@108 494 (recur (inc x) y (conj matches [x y]))
rlm@108 495 :else (recur (inc x) y matches)))
rlm@108 496 x0 y0 [])))
rlm@91 497
rlm@91 498 (defn white-coordinates
rlm@108 499 "Coordinates of all the white pixels in a subset of the image."
rlm@112 500 ([#^BufferedImage image bounds]
rlm@112 501 (filter-pixels #(= % white) image bounds))
rlm@112 502 ([#^BufferedImage image]
rlm@112 503 (filter-pixels #(= % white) image)))
rlm@108 504
rlm@108 505 (defn triangle
rlm@112 506 "Get the triangle specified by triangle-index from the mesh within
rlm@112 507 bounds."
rlm@108 508 [#^Mesh mesh triangle-index]
rlm@108 509 (let [scratch (Triangle.)]
rlm@108 510 (.getTriangle mesh triangle-index scratch)
rlm@108 511 scratch))
rlm@108 512
rlm@108 513 (defn triangle-vertex-indices
rlm@108 514 "Get the triangle vertex indices of a given triangle from a given
rlm@108 515 mesh."
rlm@108 516 [#^Mesh mesh triangle-index]
rlm@108 517 (let [indices (int-array 3)]
rlm@108 518 (.getTriangle mesh triangle-index indices)
rlm@108 519 (vec indices)))
rlm@108 520
rlm@108 521 (defn vertex-UV-coord
rlm@108 522 "Get the uv-coordinates of the vertex named by vertex-index"
rlm@108 523 [#^Mesh mesh vertex-index]
rlm@108 524 (let [UV-buffer
rlm@108 525 (.getData
rlm@108 526 (.getBuffer
rlm@108 527 mesh
rlm@108 528 VertexBuffer$Type/TexCoord))]
rlm@108 529 [(.get UV-buffer (* vertex-index 2))
rlm@108 530 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
rlm@108 531
rlm@108 532 (defn triangle-UV-coord
rlm@108 533 "Get the uv-cooridnates of the triangle's verticies."
rlm@108 534 [#^Mesh mesh width height triangle-index]
rlm@108 535 (map (fn [[u v]] (vector (* width u) (* height v)))
rlm@108 536 (map (partial vertex-UV-coord mesh)
rlm@108 537 (triangle-vertex-indices mesh triangle-index))))
rlm@91 538
rlm@102 539 (defn same-side?
rlm@102 540 "Given the points p1 and p2 and the reference point ref, is point p
rlm@102 541 on the same side of the line that goes through p1 and p2 as ref is?"
rlm@102 542 [p1 p2 ref p]
rlm@91 543 (<=
rlm@91 544 0
rlm@91 545 (.dot
rlm@91 546 (.cross (.subtract p2 p1) (.subtract p p1))
rlm@91 547 (.cross (.subtract p2 p1) (.subtract ref p1)))))
rlm@91 548
rlm@108 549 (defn triangle-seq [#^Triangle tri]
rlm@108 550 [(.get1 tri) (.get2 tri) (.get3 tri)])
rlm@108 551
rlm@108 552 (defn vector3f-seq [#^Vector3f v]
rlm@108 553 [(.getX v) (.getY v) (.getZ v)])
rlm@108 554
rlm@108 555 (defn inside-triangle?
rlm@108 556 "Is the point inside the triangle?"
rlm@108 557 {:author "Dylan Holmes"}
rlm@108 558 [#^Triangle tri #^Vector3f p]
rlm@108 559 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
rlm@108 560 (and
rlm@108 561 (same-side? vert-1 vert-2 vert-3 p)
rlm@108 562 (same-side? vert-2 vert-3 vert-1 p)
rlm@108 563 (same-side? vert-3 vert-1 vert-2 p))))
rlm@108 564
rlm@94 565 (defn triangle->matrix4f
rlm@108 566 "Converts the triangle into a 4x4 matrix: The first three columns
rlm@108 567 contain the vertices of the triangle; the last contains the unit
rlm@108 568 normal of the triangle. The bottom row is filled with 1s."
rlm@94 569 [#^Triangle t]
rlm@94 570 (let [mat (Matrix4f.)
rlm@94 571 [vert-1 vert-2 vert-3]
rlm@94 572 ((comp vec map) #(.get t %) (range 3))
rlm@94 573 unit-normal (do (.calculateNormal t)(.getNormal t))
rlm@94 574 vertices [vert-1 vert-2 vert-3 unit-normal]]
rlm@94 575 (dorun
rlm@94 576 (for [row (range 4) col (range 3)]
rlm@94 577 (do
rlm@94 578 (.set mat col row (.get (vertices row)col))
rlm@94 579 (.set mat 3 row 1))))
rlm@94 580 mat))
rlm@94 581
rlm@94 582 (defn triangle-transformation
rlm@94 583 "Returns the affine transformation that converts each vertex in the
rlm@94 584 first triangle into the corresponding vertex in the second
rlm@94 585 triangle."
rlm@94 586 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 587 (.mult
rlm@94 588 (triangle->matrix4f tri-2)
rlm@94 589 (.invert (triangle->matrix4f tri-1))))
rlm@94 590
rlm@108 591 (defn point->vector2f [[u v]]
rlm@108 592 (Vector2f. u v))
rlm@94 593
rlm@94 594 (defn vector2f->vector3f [v]
rlm@94 595 (Vector3f. (.getX v) (.getY v) 0))
rlm@94 596
rlm@94 597 (defn map-triangle [f #^Triangle tri]
rlm@94 598 (Triangle.
rlm@94 599 (f 0 (.get1 tri))
rlm@94 600 (f 1 (.get2 tri))
rlm@94 601 (f 2 (.get3 tri))))
rlm@94 602
rlm@108 603 (defn points->triangle
rlm@108 604 "Convert a list of points into a triangle."
rlm@108 605 [points]
rlm@108 606 (apply #(Triangle. %1 %2 %3)
rlm@108 607 (map (fn [point]
rlm@108 608 (let [point (vec point)]
rlm@108 609 (Vector3f. (get point 0 0)
rlm@108 610 (get point 1 0)
rlm@108 611 (get point 2 0))))
rlm@108 612 (take 3 points))))
rlm@94 613
rlm@108 614 (defn convex-bounds
rlm@128 615 ;;dylan
rlm@128 616 "Returns the smallest square containing the given
rlm@128 617 vertices, as a vector of integers [left top width height]."
rlm@128 618 ;; "Dimensions of the smallest integer bounding square of the list of
rlm@128 619 ;; 2D verticies in the form: [x y width height]."
rlm@108 620 [uv-verts]
rlm@108 621 (let [xs (map first uv-verts)
rlm@108 622 ys (map second uv-verts)
rlm@108 623 x0 (Math/floor (apply min xs))
rlm@108 624 y0 (Math/floor (apply min ys))
rlm@108 625 x1 (Math/ceil (apply max xs))
rlm@108 626 y1 (Math/ceil (apply max ys))]
rlm@108 627 [x0 y0 (- x1 x0) (- y1 y0)]))
rlm@93 628
rlm@106 629 (defn sensors-in-triangle
rlm@128 630 ;;dylan
rlm@128 631 "Locate the touch sensors in the triangle, returning a map of their UV and geometry-relative coordinates."
rlm@128 632 ;;"Find the locations of the touch sensors within a triangle in both
rlm@128 633 ;; UV and gemoetry relative coordinates."
rlm@107 634 [image mesh tri-index]
rlm@107 635 (let [width (.getWidth image)
rlm@108 636 height (.getHeight image)
rlm@108 637 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
rlm@108 638 bounds (convex-bounds UV-vertex-coords)
rlm@108 639
rlm@108 640 cutout-triangle (points->triangle UV-vertex-coords)
rlm@108 641 UV-sensor-coords
rlm@108 642 (filter (comp (partial inside-triangle? cutout-triangle)
rlm@108 643 (fn [[u v]] (Vector3f. u v 0)))
rlm@108 644 (white-coordinates image bounds))
rlm@108 645 UV->geometry (triangle-transformation
rlm@108 646 cutout-triangle
rlm@108 647 (triangle mesh tri-index))
rlm@108 648 geometry-sensor-coords
rlm@108 649 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
rlm@108 650 UV-sensor-coords)]
rlm@108 651 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
rlm@107 652
rlm@108 653 (defn-memo locate-feelers
rlm@94 654 "Search the geometry's tactile UV image for touch sensors, returning
rlm@94 655 their positions in geometry-relative coordinates."
rlm@94 656 [#^Geometry geo]
rlm@108 657 (let [mesh (.getMesh geo)
rlm@108 658 num-triangles (.getTriangleCount mesh)]
rlm@108 659 (if-let [image (tactile-sensor-image geo)]
rlm@108 660 (map
rlm@108 661 (partial sensors-in-triangle image mesh)
rlm@108 662 (range num-triangles))
rlm@108 663 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
rlm@102 664
rlm@102 665 (use 'clojure.contrib.def)
rlm@102 666
rlm@102 667 (defn-memo touch-topology [#^Gemoetry geo]
rlm@108 668 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
rlm@108 669
rlm@108 670 (defn-memo feeler-coordinates [#^Geometry geo]
rlm@108 671 (vec (map :geometry (locate-feelers geo))))
rlm@102 672
rlm@97 673 (defn enable-touch [#^Geometry geo]
rlm@108 674 (let [feeler-coords (feeler-coordinates geo)
rlm@96 675 tris (triangles geo)
rlm@109 676 limit 0.1
rlm@109 677 ;;results (CollisionResults.)
rlm@109 678 ]
rlm@111 679 (if (empty? (touch-topology geo))
rlm@111 680 nil
rlm@111 681 (fn [node]
rlm@111 682 (let [sensor-origins
rlm@111 683 (map
rlm@111 684 #(map (partial local-to-world geo) %)
rlm@111 685 feeler-coords)
rlm@111 686 triangle-normals
rlm@111 687 (map (partial get-ray-direction geo)
rlm@111 688 tris)
rlm@111 689 rays
rlm@111 690 (flatten
rlm@111 691 (map (fn [origins norm]
rlm@111 692 (map #(doto (Ray. % norm)
rlm@97 693 (.setLimit limit)) origins))
rlm@111 694 sensor-origins triangle-normals))]
rlm@111 695 (vector
rlm@111 696 (touch-topology geo)
rlm@111 697 (vec
rlm@111 698 (for [ray rays]
rlm@111 699 (do
rlm@111 700 (let [results (CollisionResults.)]
rlm@111 701 (.collideWith node ray results)
rlm@111 702 (let [touch-objects
rlm@126 703 (filter #(not (= geo (.getGeometry %)))
rlm@126 704 results)]
rlm@126 705 (- 255
rlm@126 706 (if (empty? touch-objects) 255
rlm@126 707 (rem
rlm@126 708 (int
rlm@126 709 (* 255 (/ (.getDistance
rlm@126 710 (first touch-objects)) limit)))
rlm@126 711 256))))))))))))))
rlm@126 712
rlm@111 713
rlm@111 714 (defn touch [#^Node pieces]
rlm@111 715 (filter (comp not nil?)
rlm@111 716 (map enable-touch
rlm@111 717 (filter #(isa? (class %) Geometry)
rlm@111 718 (node-seq pieces)))))
rlm@94 719
rlm@109 720
rlm@111 721 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
rlm@111 722 ;; http://en.wikipedia.org/wiki/Retina
rlm@109 723
rlm@111 724 (defn test-eye []
rlm@117 725 (.getChild
rlm@117 726 (.getChild (worm-model) "eyes")
rlm@117 727 "eye"))
rlm@111 728
rlm@111 729
rlm@111 730 (defn retina-sensor-image
rlm@111 731 "Return a map of pixel selection functions to BufferedImages
rlm@111 732 describing the distribution of light-sensitive components on this
rlm@111 733 geometry's surface. Each function creates an integer from the rgb
rlm@111 734 values found in the pixel. :red, :green, :blue, :gray are already
rlm@111 735 defined as extracting the red green blue and average components
rlm@111 736 respectively."
rlm@117 737 [#^Spatial eye]
rlm@111 738 (if-let [eye-map (meta-data eye "eye")]
rlm@111 739 (map-vals
rlm@111 740 #(ImageToAwt/convert
rlm@111 741 (.getImage (.loadTexture (asset-manager) %))
rlm@111 742 false false 0)
rlm@120 743 (eval (read-string eye-map)))))
rlm@111 744
rlm@117 745 (defn eye-dimensions
rlm@117 746 "returns the width and height specified in the metadata of the eye"
rlm@117 747 [#^Spatial eye]
rlm@117 748 (let [dimensions
rlm@117 749 (map #(vector (.getWidth %) (.getHeight %))
rlm@117 750 (vals (retina-sensor-image eye)))]
rlm@117 751 [(apply max (map first dimensions))
rlm@117 752 (apply max (map second dimensions))]))
rlm@117 753
rlm@116 754 (defn creature-eyes
rlm@128 755 ;;dylan
rlm@128 756 "Return the children of the creature's \"eyes\" node."
rlm@128 757 ;;"The eye nodes which are children of the \"eyes\" node in the
rlm@128 758 ;;creature."
rlm@116 759 [#^Node creature]
rlm@116 760 (if-let [eye-node (.getChild creature "eyes")]
rlm@116 761 (seq (.getChildren eye-node))
rlm@116 762 (do (println-repl "could not find eyes node") [])))
rlm@111 763
rlm@123 764 ;; Here's how vision will work.
rlm@112 765
rlm@123 766 ;; Make the continuation in scene-processor take FrameBuffer,
rlm@123 767 ;; byte-buffer, BufferedImage already sized to the correct
rlm@123 768 ;; dimensions. the continuation will decide wether to "mix" them
rlm@123 769 ;; into the BufferedImage, lazily ignore them, or mix them halfway
rlm@123 770 ;; and call c/graphics card routines.
rlm@112 771
rlm@123 772 ;; (vision creature) will take an optional :skip argument which will
rlm@123 773 ;; inform the continuations in scene processor to skip the given
rlm@123 774 ;; number of cycles; 0 means that no cycles will be skipped.
rlm@112 775
rlm@123 776 ;; (vision creature) will return [init-functions sensor-functions].
rlm@123 777 ;; The init-functions are each single-arg functions that take the
rlm@123 778 ;; world and register the cameras and must each be called before the
rlm@123 779 ;; corresponding sensor-functions. Each init-function returns the
rlm@123 780 ;; viewport for that eye which can be manipulated, saved, etc. Each
rlm@123 781 ;; sensor-function is a thunk and will return data in the same
rlm@123 782 ;; format as the tactile-sensor functions; the structure is
rlm@123 783 ;; [topology, sensor-data]. Internally, these sensor-functions
rlm@123 784 ;; maintain a reference to sensor-data which is periodically updated
rlm@123 785 ;; by the continuation function established by its init-function.
rlm@123 786 ;; They can be queried every cycle, but their information may not
rlm@123 787 ;; necessairly be different every cycle.
rlm@112 788
rlm@123 789 ;; Each eye in the creature in blender will work the same way as
rlm@123 790 ;; joints -- a zero dimensional object with no geometry whose local
rlm@123 791 ;; coordinate system determines the orientation of the resulting
rlm@123 792 ;; eye. All eyes will have a parent named "eyes" just as all joints
rlm@123 793 ;; have a parent named "joints". The resulting camera will be a
rlm@123 794 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
rlm@123 795 ;; the eye marker. The eye marker will contain the metadata for the
rlm@123 796 ;; eye, and will be moved by it's bound geometry. The dimensions of
rlm@123 797 ;; the eye's camera are equal to the dimensions of the eye's "UV"
rlm@123 798 ;; map.
rlm@116 799
rlm@123 800
rlm@123 801 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@123 802
rlm@123 803 ;; Ears work the same way as vision.
rlm@123 804
rlm@123 805 ;; (hearing creature) will return [init-functions
rlm@123 806 ;; sensor-functions]. The init functions each take the world and
rlm@123 807 ;; register a SoundProcessor that does foureier transforms on the
rlm@123 808 ;; incommong sound data, making it available to each sensor function.
rlm@123 809
rlm@123 810 (defn creature-ears
rlm@128 811 "Return the children of the creature's \"ears\" node."
rlm@128 812 ;;dylan
rlm@128 813 ;;"The ear nodes which are children of the \"ears\" node in the
rlm@128 814 ;;creature."
rlm@123 815 [#^Node creature]
rlm@123 816 (if-let [ear-node (.getChild creature "ears")]
rlm@123 817 (seq (.getChildren ear-node))
rlm@123 818 (do (println-repl "could not find ears node") [])))
rlm@123 819
rlm@123 820 (defn closest-node
rlm@128 821 "Return the object in creature which is closest to the given node."
rlm@128 822 ;;dylan"The closest object in creature to the given node."
rlm@116 823 [#^Node creature #^Node eye]
rlm@116 824 (loop [radius (float 0.01)]
rlm@116 825 (let [results (CollisionResults.)]
rlm@116 826 (.collideWith
rlm@116 827 creature
rlm@116 828 (BoundingBox. (.getWorldTranslation eye)
rlm@116 829 radius radius radius)
rlm@116 830 results)
rlm@116 831 (if-let [target (first results)]
rlm@116 832 (.getGeometry target)
rlm@116 833 (recur (float (* 2 radius)))))))
rlm@116 834
rlm@128 835 ;;dylan (defn follow-sense, adjoin-sense, attach-stimuli,
rlm@128 836 ;;anchor-qualia, augment-organ, with-organ
rlm@123 837 (defn bind-sense
rlm@123 838 "Bind the sense to the Spatial such that it will maintain its
rlm@117 839 current position relative to the Spatial no matter how the spatial
rlm@123 840 moves. 'sense can be either a Camera or Listener object."
rlm@123 841 [#^Spatial obj sense]
rlm@123 842 (let [sense-offset (.subtract (.getLocation sense)
rlm@123 843 (.getWorldTranslation obj))
rlm@123 844 initial-sense-rotation (Quaternion. (.getRotation sense))
rlm@117 845 base-anti-rotation (.inverse (.getWorldRotation obj))]
rlm@117 846 (.addControl
rlm@117 847 obj
rlm@117 848 (proxy [AbstractControl] []
rlm@117 849 (controlUpdate [tpf]
rlm@117 850 (let [total-rotation
rlm@117 851 (.mult base-anti-rotation (.getWorldRotation obj))]
rlm@123 852 (.setLocation sense
rlm@117 853 (.add
rlm@123 854 (.mult total-rotation sense-offset)
rlm@117 855 (.getWorldTranslation obj)))
rlm@123 856 (.setRotation sense
rlm@123 857 (.mult total-rotation initial-sense-rotation))))
rlm@117 858 (controlRender [_ _])))))
rlm@117 859
rlm@117 860
rlm@123 861 (defn update-listener-velocity
rlm@123 862 "Update the listener's velocity every update loop."
rlm@123 863 [#^Spatial obj #^Listener lis]
rlm@123 864 (let [old-position (atom (.getLocation lis))]
rlm@123 865 (.addControl
rlm@123 866 obj
rlm@123 867 (proxy [AbstractControl] []
rlm@123 868 (controlUpdate [tpf]
rlm@123 869 (let [new-position (.getLocation lis)]
rlm@123 870 (.setVelocity
rlm@123 871 lis
rlm@123 872 (.mult (.subtract new-position @old-position)
rlm@123 873 (float (/ tpf))))
rlm@123 874 (reset! old-position new-position)))
rlm@123 875 (controlRender [_ _])))))
rlm@123 876
rlm@123 877 (import com.aurellem.capture.audio.AudioSendRenderer)
rlm@123 878
rlm@123 879 (defn attach-ear
rlm@123 880 [#^Application world #^Node creature #^Spatial ear continuation]
rlm@123 881 (let [target (closest-node creature ear)
rlm@123 882 lis (Listener.)
rlm@123 883 audio-renderer (.getAudioRenderer world)
rlm@123 884 sp (sound-processor continuation)]
rlm@123 885 (.setLocation lis (.getWorldTranslation ear))
rlm@123 886 (.setRotation lis (.getWorldRotation ear))
rlm@123 887 (bind-sense target lis)
rlm@123 888 (update-listener-velocity target lis)
rlm@123 889 (.addListener audio-renderer lis)
rlm@123 890 (.registerSoundProcessor audio-renderer lis sp)))
rlm@123 891
rlm@123 892 (defn enable-hearing
rlm@123 893 [#^Node creature #^Spatial ear]
rlm@123 894 (let [hearing-data (atom [])]
rlm@123 895 [(fn [world]
rlm@123 896 (attach-ear world creature ear
rlm@123 897 (fn [data]
rlm@123 898 (reset! hearing-data (vec data)))))
rlm@123 899 [(fn []
rlm@123 900 (let [data @hearing-data
rlm@123 901 topology
rlm@123 902 (vec (map #(vector % 0) (range 0 (count data))))
rlm@123 903 scaled-data
rlm@123 904 (vec
rlm@123 905 (map
rlm@123 906 #(rem (int (* 255 (/ (+ 1 %) 2))) 256)
rlm@123 907 data))]
rlm@123 908 [topology scaled-data]))
rlm@123 909 ]]))
rlm@123 910
rlm@123 911 (defn hearing
rlm@123 912 [#^Node creature]
rlm@123 913 (reduce
rlm@123 914 (fn [[init-a senses-a]
rlm@123 915 [init-b senses-b]]
rlm@123 916 [(conj init-a init-b)
rlm@123 917 (into senses-a senses-b)])
rlm@123 918 [[][]]
rlm@123 919 (for [ear (creature-ears creature)]
rlm@123 920 (enable-hearing creature ear))))
rlm@123 921
rlm@118 922 (defn attach-eye
rlm@118 923 "Attach a Camera to the appropiate area and return the Camera."
rlm@118 924 [#^Node creature #^Spatial eye]
rlm@123 925 (let [target (closest-node creature eye)
rlm@118 926 [cam-width cam-height] (eye-dimensions eye)
rlm@118 927 cam (Camera. cam-width cam-height)]
rlm@118 928 (.setLocation cam (.getWorldTranslation eye))
rlm@118 929 (.setRotation cam (.getWorldRotation eye))
rlm@119 930 (.setFrustumPerspective
rlm@119 931 cam 45 (/ (.getWidth cam) (.getHeight cam))
rlm@119 932 1 1000)
rlm@123 933 (bind-sense target cam)
rlm@118 934 cam))
rlm@118 935
rlm@118 936 (def presets
rlm@121 937 {:all 0xFFFFFF
rlm@119 938 :red 0xFF0000
rlm@119 939 :blue 0x0000FF
rlm@119 940 :green 0x00FF00})
rlm@119 941
rlm@118 942 (defn enable-vision
rlm@118 943 "return [init-function sensor-functions] for a particular eye"
rlm@118 944 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
rlm@118 945 (let [retinal-map (retina-sensor-image eye)
rlm@123 946 camera (attach-eye creature eye)
rlm@123 947 vision-image
rlm@123 948 (atom
rlm@123 949 (BufferedImage. (.getWidth camera)
rlm@123 950 (.getHeight camera)
rlm@123 951 BufferedImage/TYPE_BYTE_BINARY))]
rlm@123 952 [(fn [world]
rlm@123 953 (add-eye
rlm@123 954 world camera
rlm@123 955 (let [counter (atom 0)]
rlm@123 956 (fn [r fb bb bi]
rlm@123 957 (if (zero? (rem (swap! counter inc) (inc skip)))
rlm@123 958 (reset! vision-image (BufferedImage! r fb bb bi)))))))
rlm@123 959 (vec
rlm@123 960 (map
rlm@123 961 (fn [[key image]]
rlm@123 962 (let [whites (white-coordinates image)
rlm@123 963 topology (vec (collapse whites))
rlm@123 964 mask (presets key)]
rlm@123 965 (fn []
rlm@123 966 (vector
rlm@123 967 topology
rlm@123 968 (vec
rlm@123 969 (for [[x y] whites]
rlm@123 970 (bit-and
rlm@123 971 mask (.getRGB @vision-image x y))))))))
rlm@123 972 retinal-map))]))
rlm@118 973
rlm@116 974 (defn vision
rlm@121 975 [#^Node creature & {skip :skip :or {skip 0}}]
rlm@121 976 (reduce
rlm@121 977 (fn [[init-a senses-a]
rlm@121 978 [init-b senses-b]]
rlm@121 979 [(conj init-a init-b)
rlm@121 980 (into senses-a senses-b)])
rlm@121 981 [[][]]
rlm@121 982 (for [eye (creature-eyes creature)]
rlm@121 983 (enable-vision creature eye))))
rlm@128 984
rlm@128 985
rlm@128 986
rlm@128 987
rlm@128 988
rlm@128 989 ;; lower level --- nodes
rlm@128 990 ;; closest-node "parse/compile-x" -> makes organ, which is spatial, fn pair
rlm@128 991
rlm@128 992 ;; higher level -- organs
rlm@128 993 ;;
rlm@128 994
rlm@128 995 ;; higher level --- sense/effector
rlm@128 996 ;; these are the functions that provide world i/o, chinese-room style
rlm@128 997
rlm@128 998
rlm@134 999
rlm@116 1000
rlm@116 1001 (defn blender-creature
rlm@116 1002 "Return a creature with all joints in place."
rlm@116 1003 [blender-path]
rlm@116 1004 (let [model (load-blender-model blender-path)
rlm@134 1005 joints (creature-joints model)]
rlm@134 1006 (assemble-creature model joints)))
rlm@116 1007
rlm@126 1008 (defn gray-scale [num]
rlm@126 1009 (+ num
rlm@126 1010 (bit-shift-left num 8)
rlm@126 1011 (bit-shift-left num 16)))
rlm@126 1012
rlm@130 1013 (defn debug-touch-window
rlm@103 1014 "creates function that offers a debug view of sensor data"
rlm@103 1015 []
rlm@103 1016 (let [vi (view-image)]
rlm@103 1017 (fn
rlm@103 1018 [[coords sensor-data]]
rlm@103 1019 (let [image (points->image coords)]
rlm@103 1020 (dorun
rlm@103 1021 (for [i (range (count coords))]
rlm@103 1022 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@126 1023 (gray-scale (sensor-data i)))))
rlm@126 1024
rlm@126 1025
rlm@103 1026 (vi image)))))
rlm@103 1027
rlm@118 1028 (defn debug-vision-window
rlm@118 1029 "creates function that offers a debug view of sensor data"
rlm@118 1030 []
rlm@118 1031 (let [vi (view-image)]
rlm@118 1032 (fn
rlm@118 1033 [[coords sensor-data]]
rlm@118 1034 (let [image (points->image coords)]
rlm@118 1035 (dorun
rlm@118 1036 (for [i (range (count coords))]
rlm@118 1037 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@118 1038 (sensor-data i))))
rlm@118 1039 (vi image)))))
rlm@118 1040
rlm@123 1041 (defn debug-hearing-window
rlm@123 1042 "view audio data"
rlm@123 1043 [height]
rlm@123 1044 (let [vi (view-image)]
rlm@123 1045 (fn [[coords sensor-data]]
rlm@123 1046 (let [image (BufferedImage. (count coords) height
rlm@123 1047 BufferedImage/TYPE_INT_RGB)]
rlm@123 1048 (dorun
rlm@123 1049 (for [x (range (count coords))]
rlm@123 1050 (dorun
rlm@123 1051 (for [y (range height)]
rlm@123 1052 (let [raw-sensor (sensor-data x)]
rlm@126 1053 (.setRGB image x y (gray-scale raw-sensor)))))))
rlm@126 1054
rlm@123 1055 (vi image)))))
rlm@123 1056
rlm@123 1057
rlm@123 1058
rlm@106 1059 ;;(defn test-touch [world creature]
rlm@83 1060
rlm@78 1061
rlm@123 1062
rlm@123 1063
rlm@130 1064 ;; here's how motor-control/ proprioception will work: Each muscle is
rlm@130 1065 ;; defined by a 1-D array of numbers (the "motor pool") each of which
rlm@130 1066 ;; represent muscle fibers. A muscle also has a scalar :strength
rlm@130 1067 ;; factor which determines how strong the muscle as a whole is.
rlm@130 1068 ;; The effector function for a muscle takes a number < (count
rlm@130 1069 ;; motor-pool) and that number is said to "activate" all the muscle
rlm@130 1070 ;; fibers whose index is lower than the number. Each fiber will apply
rlm@130 1071 ;; force in proportion to its value in the array. Lower values cause
rlm@130 1072 ;; less force. The lower values can be put at the "beginning" of the
rlm@130 1073 ;; 1-D array to simulate the layout of actual human muscles, which are
rlm@130 1074 ;; capable of more percise movements when exerting less force.
rlm@129 1075
rlm@130 1076 ;; I don't know how to encode proprioception, so for now, just return
rlm@130 1077 ;; a function for each joint that returns a triplet of floats which
rlm@130 1078 ;; represent relative roll, pitch, and yaw. Write display code for
rlm@130 1079 ;; this though.
rlm@130 1080
rlm@147 1081 (defn muscle-fiber-values
rlm@147 1082 "get motor pool strengths"
rlm@130 1083 [#^BufferedImage image]
rlm@147 1084 (vec
rlm@147 1085 (let [width (.getWidth image)]
rlm@147 1086 (for [x (range width)]
rlm@147 1087 (- 255
rlm@147 1088 (bit-and
rlm@147 1089 0x0000FF
rlm@147 1090 (.getRGB image x 0)))))))
rlm@147 1091
rlm@147 1092
rlm@147 1093 (defn creature-muscles
rlm@147 1094 "Return the children of the creature's \"muscles\" node."
rlm@147 1095 [#^Node creature]
rlm@147 1096 (if-let [muscle-node (.getChild creature "muscles")]
rlm@147 1097 (seq (.getChildren muscle-node))
rlm@147 1098 (do (println-repl "could not find muscles node") [])))
rlm@147 1099
rlm@147 1100 (defn single-muscle [#^Node parts #^Node muscle]
rlm@147 1101 (let [target (closest-node parts muscle)
rlm@147 1102 axis
rlm@147 1103 (.mult (.getWorldRotation muscle) Vector3f/UNIT_Y)
rlm@147 1104 strength (meta-data muscle "strength")
rlm@147 1105 image-name (read-string (meta-data muscle "muscle"))
rlm@147 1106 image
rlm@147 1107 (ImageToAwt/convert
rlm@147 1108 (.getImage (.loadTexture (asset-manager) image-name))
rlm@147 1109 false false 0)
rlm@147 1110 fibers (muscle-fiber-values image)
rlm@147 1111 fiber-integral (reductions + fibers)
rlm@147 1112 force-index (vec
rlm@147 1113 (map
rlm@147 1114 #(float (* strength (/ % (last
rlm@147 1115 fiber-integral))))
rlm@147 1116 fiber-integral))
rlm@147 1117 control (.getControl target RigidBodyControl)]
rlm@147 1118 (fn [n]
rlm@147 1119 (let [pool-index (min n (count fibers))]
rlm@148 1120 (.applyTorque control (.mult axis (force-index n)))))))
rlm@147 1121
rlm@147 1122
rlm@147 1123 (defn enable-muscles
rlm@147 1124 "Must be called on a creature after RigidBodyControls have been
rlm@147 1125 created."
rlm@147 1126 [#^Node creature]
rlm@147 1127 (let [muscles (creature-muscles creature)]
rlm@147 1128 (for [muscle muscles]
rlm@147 1129 (single-muscle creature muscle))))
rlm@130 1130
rlm@106 1131 (defn test-creature [thing]
rlm@106 1132 (let [x-axis
rlm@106 1133 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
rlm@106 1134 y-axis
rlm@106 1135 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
rlm@106 1136 z-axis
rlm@106 1137 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
rlm@106 1138 creature (blender-creature thing)
rlm@106 1139 touch-nerves (touch creature)
rlm@130 1140 touch-debug-windows (map (fn [_] (debug-touch-window)) touch-nerves)
rlm@121 1141 [init-vision-fns vision-data] (vision creature)
rlm@121 1142 vision-debug (map (fn [_] (debug-vision-window)) vision-data)
rlm@118 1143 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
rlm@123 1144 [init-hearing-fns hearing-senses] (hearing creature)
rlm@123 1145 hearing-windows (map (fn [_] (debug-hearing-window 50))
rlm@123 1146 hearing-senses)
rlm@124 1147 bell (AudioNode. (asset-manager)
rlm@128 1148 "Sounds/pure.wav" false)
rlm@130 1149 prop (proprioception creature)
rlm@135 1150 prop-debug (proprioception-debug-window)
rlm@148 1151
rlm@148 1152 muscle-fns (enable-muscles creature)
rlm@123 1153 ;; dream
rlm@123 1154
rlm@106 1155 ]
rlm@143 1156
rlm@143 1157
rlm@143 1158 (apply
rlm@143 1159 world
rlm@143 1160 (with-movement
rlm@143 1161 (.getChild creature "worm-21")
rlm@143 1162 ["key-r" "key-t"
rlm@143 1163 "key-f" "key-g"
rlm@143 1164 "key-v" "key-b"]
rlm@143 1165 [10 10 10 10 1 1]
rlm@143 1166 [(nodify [creature
rlm@143 1167 (box 10 2 10 :position (Vector3f. 0 -9 0)
rlm@143 1168 :color ColorRGBA/Gray :mass 0)
rlm@143 1169 x-axis y-axis z-axis
rlm@143 1170 me
rlm@143 1171 ])
rlm@143 1172 (merge standard-debug-controls
rlm@143 1173 {"key-return"
rlm@143 1174 (fn [_ value]
rlm@143 1175 (if value
rlm@143 1176 (do
rlm@143 1177 (println-repl "play-sound")
rlm@148 1178 (.play bell))))
rlm@148 1179 "key-h"
rlm@148 1180 (fn [_ value]
rlm@148 1181 (if value
rlm@148 1182 (do
rlm@148 1183 (println-repl "muscle activating!")
rlm@148 1184 ((first muscle-fns) 199))))
rlm@148 1185
rlm@148 1186 })
rlm@143 1187 (fn [world]
rlm@143 1188 (light-up-everything world)
rlm@143 1189 (enable-debug world)
rlm@143 1190 (dorun (map #(% world) init-vision-fns))
rlm@143 1191 (dorun (map #(% world) init-hearing-fns))
rlm@143 1192
rlm@143 1193 (add-eye world
rlm@143 1194 (attach-eye creature (test-eye))
rlm@143 1195 (comp (view-image) BufferedImage!))
rlm@143 1196
rlm@143 1197 (add-eye world (.getCamera world) no-op)
rlm@145 1198 ;;(set-gravity world (Vector3f. 0 0 0))
rlm@143 1199 ;;(com.aurellem.capture.Capture/captureVideo
rlm@143 1200 ;; world (file-str "/home/r/proj/ai-videos/hand"))
rlm@143 1201 ;;(.setTimer world (RatchetTimer. 60))
rlm@143 1202 (speed-up world)
rlm@148 1203 (set-gravity world (Vector3f. 0 0 0))
rlm@143 1204 )
rlm@143 1205 (fn [world tpf]
rlm@143 1206 ;;(dorun
rlm@143 1207 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
rlm@143 1208
rlm@143 1209 (prop-debug (prop))
rlm@143 1210
rlm@143 1211 (dorun
rlm@143 1212 (map #(%1 (%2 (.getRootNode world)))
rlm@143 1213 touch-debug-windows touch-nerves))
rlm@143 1214
rlm@143 1215 (dorun
rlm@143 1216 (map #(%1 (%2))
rlm@143 1217 vision-debug vision-data))
rlm@143 1218 (dorun
rlm@143 1219 (map #(%1 (%2)) hearing-windows hearing-senses))
rlm@143 1220
rlm@143 1221
rlm@143 1222 ;;(println-repl (vision-data))
rlm@143 1223 (.setLocalTranslation me (.getLocation (.getCamera world)))
rlm@143 1224
rlm@143 1225
rlm@143 1226 )]
rlm@106 1227 ;;(let [timer (atom 0)]
rlm@106 1228 ;; (fn [_ _]
rlm@106 1229 ;; (swap! timer inc)
rlm@106 1230 ;; (if (= (rem @timer 60) 0)
rlm@106 1231 ;; (println-repl (float (/ @timer 60))))))
rlm@143 1232 ))))
rlm@83 1233
rlm@109 1234
rlm@109 1235
rlm@109 1236
rlm@109 1237
rlm@109 1238
rlm@109 1239
rlm@109 1240
rlm@109 1241
rlm@109 1242 ;;; experiments in collisions
rlm@109 1243
rlm@109 1244
rlm@109 1245
rlm@109 1246 (defn collision-test []
rlm@110 1247 (let [b-radius 1
rlm@110 1248 b-position (Vector3f. 0 0 0)
rlm@109 1249 obj-b (box 1 1 1 :color ColorRGBA/Blue
rlm@109 1250 :position b-position
rlm@110 1251 :mass 0)
rlm@110 1252 node (nodify [obj-b])
rlm@110 1253 bounds-b
rlm@110 1254 (doto (Picture.)
rlm@110 1255 (.setHeight 50)
rlm@110 1256 (.setWidth 50)
rlm@110 1257 (.setImage (asset-manager)
rlm@110 1258 "Models/creature1/hand.png"
rlm@110 1259 false
rlm@110 1260 ))
rlm@110 1261
rlm@110 1262 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
rlm@110 1263
rlm@110 1264 collisions
rlm@110 1265 (let [cr (CollisionResults.)]
rlm@110 1266 (.collideWith node bounds-b cr)
rlm@110 1267 (println (map #(.getContactPoint %) cr))
rlm@110 1268 cr)
rlm@110 1269
rlm@110 1270 ;;collision-points
rlm@110 1271 ;;(map #(sphere 0.1 :position (.getContactPoint %))
rlm@110 1272 ;; collisions)
rlm@110 1273
rlm@110 1274 ;;node (nodify (conj collision-points obj-b))
rlm@110 1275
rlm@109 1276 sim
rlm@109 1277 (world node
rlm@110 1278 {"key-space"
rlm@130 1279 (fn [_ value]
rlm@110 1280 (if value
rlm@110 1281 (let [cr (CollisionResults.)]
rlm@110 1282 (.collideWith node bounds-b cr)
rlm@110 1283 (println-repl (map #(.getContactPoint %) cr))
rlm@110 1284 cr)))}
rlm@109 1285 no-op
rlm@109 1286 no-op)
rlm@109 1287
rlm@109 1288 ]
rlm@110 1289 sim
rlm@109 1290
rlm@109 1291 ))
rlm@109 1292
rlm@116 1293
rlm@116 1294 ;; the camera will stay in its initial position/rotation with relation
rlm@116 1295 ;; to the spatial.
rlm@116 1296
rlm@116 1297
rlm@117 1298 (defn follow-test
rlm@117 1299 "show a camera that stays in the same relative position to a blue cube."
rlm@117 1300 []
rlm@116 1301 (let [camera-pos (Vector3f. 0 30 0)
rlm@116 1302 rock (box 1 1 1 :color ColorRGBA/Blue
rlm@116 1303 :position (Vector3f. 0 10 0)
rlm@116 1304 :mass 30
rlm@116 1305 )
rlm@118 1306 rot (.getWorldRotation rock)
rlm@116 1307
rlm@116 1308 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
rlm@116 1309 :position (Vector3f. 0 -3 0))]
rlm@116 1310
rlm@116 1311 (world
rlm@116 1312 (nodify [rock table])
rlm@116 1313 standard-debug-controls
rlm@116 1314 (fn [world]
rlm@116 1315 (let
rlm@116 1316 [cam (doto (.clone (.getCamera world))
rlm@116 1317 (.setLocation camera-pos)
rlm@116 1318 (.lookAt Vector3f/ZERO
rlm@116 1319 Vector3f/UNIT_X))]
rlm@123 1320 (bind-sense rock cam)
rlm@116 1321
rlm@116 1322 (.setTimer world (RatchetTimer. 60))
rlm@116 1323 (add-eye world cam (comp (view-image) BufferedImage!))
rlm@116 1324 (add-eye world (.getCamera world) no-op))
rlm@116 1325 )
rlm@118 1326 (fn [_ _] (println-repl rot)))))
rlm@116 1327
rlm@118 1328
rlm@123 1329
rlm@87 1330 #+end_src
rlm@83 1331
rlm@87 1332 #+results: body-1
rlm@133 1333 : #'cortex.silly/follow-test
rlm@78 1334
rlm@78 1335
rlm@78 1336 * COMMENT purgatory
rlm@78 1337 #+begin_src clojure
rlm@77 1338 (defn bullet-trans []
rlm@77 1339 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
rlm@77 1340 :position (Vector3f. -10 5 0))
rlm@77 1341 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1342 :position (Vector3f. -10 -5 0)
rlm@77 1343 :mass 0)
rlm@77 1344 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1345 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1346 swivel
rlm@77 1347 (.toRotationMatrix
rlm@77 1348 (doto (Quaternion.)
rlm@77 1349 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1350 Vector3f/UNIT_X)))]
rlm@77 1351 (doto
rlm@77 1352 (ConeJoint.
rlm@77 1353 control-a control-b
rlm@77 1354 (Vector3f. 0 5 0)
rlm@77 1355 (Vector3f. 0 -5 0)
rlm@77 1356 swivel swivel)
rlm@77 1357 (.setLimit (* 0.6 (/ Math/PI 4))
rlm@77 1358 (/ Math/PI 4)
rlm@77 1359 (* Math/PI 0.8)))
rlm@77 1360 (world (nodify
rlm@77 1361 [obj-a obj-b])
rlm@77 1362 standard-debug-controls
rlm@77 1363 enable-debug
rlm@77 1364 no-op)))
rlm@74 1365
rlm@74 1366
rlm@77 1367 (defn bullet-trans* []
rlm@77 1368 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
rlm@77 1369 :position (Vector3f. 5 0 0)
rlm@77 1370 :mass 90)
rlm@77 1371 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1372 :position (Vector3f. -5 0 0)
rlm@77 1373 :mass 0)
rlm@77 1374 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1375 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1376 move-up? (atom nil)
rlm@77 1377 move-down? (atom nil)
rlm@77 1378 move-left? (atom nil)
rlm@77 1379 move-right? (atom nil)
rlm@77 1380 roll-left? (atom nil)
rlm@77 1381 roll-right? (atom nil)
rlm@77 1382 force 100
rlm@77 1383 swivel
rlm@77 1384 (.toRotationMatrix
rlm@77 1385 (doto (Quaternion.)
rlm@77 1386 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1387 Vector3f/UNIT_X)))
rlm@77 1388 x-move
rlm@77 1389 (doto (Matrix3f.)
rlm@77 1390 (.fromStartEndVectors Vector3f/UNIT_X
rlm@77 1391 (.normalize (Vector3f. 1 1 0))))
rlm@77 1392
rlm@77 1393 timer (atom 0)]
rlm@77 1394 (doto
rlm@77 1395 (ConeJoint.
rlm@77 1396 control-a control-b
rlm@77 1397 (Vector3f. -8 0 0)
rlm@77 1398 (Vector3f. 2 0 0)
rlm@77 1399 ;;swivel swivel
rlm@77 1400 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
rlm@77 1401 x-move Matrix3f/IDENTITY
rlm@77 1402 )
rlm@77 1403 (.setCollisionBetweenLinkedBodys false)
rlm@77 1404 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
rlm@77 1405 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
rlm@77 1406 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
rlm@77 1407 (world (nodify
rlm@77 1408 [obj-a obj-b])
rlm@77 1409 (merge standard-debug-controls
rlm@77 1410 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@77 1411 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@77 1412 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@77 1413 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@77 1414 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@77 1415 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@77 1416
rlm@77 1417 (fn [world]
rlm@77 1418 (enable-debug world)
rlm@77 1419 (set-gravity world Vector3f/ZERO)
rlm@77 1420 )
rlm@77 1421
rlm@77 1422 (fn [world _]
rlm@77 1423
rlm@77 1424 (if @move-up?
rlm@77 1425 (.applyForce control-a
rlm@77 1426 (Vector3f. force 0 0)
rlm@77 1427 (Vector3f. 0 0 0)))
rlm@77 1428 (if @move-down?
rlm@77 1429 (.applyForce control-a
rlm@77 1430 (Vector3f. (- force) 0 0)
rlm@77 1431 (Vector3f. 0 0 0)))
rlm@77 1432 (if @move-left?
rlm@77 1433 (.applyForce control-a
rlm@77 1434 (Vector3f. 0 force 0)
rlm@77 1435 (Vector3f. 0 0 0)))
rlm@77 1436 (if @move-right?
rlm@77 1437 (.applyForce control-a
rlm@77 1438 (Vector3f. 0 (- force) 0)
rlm@77 1439 (Vector3f. 0 0 0)))
rlm@77 1440
rlm@77 1441 (if @roll-left?
rlm@77 1442 (.applyForce control-a
rlm@77 1443 (Vector3f. 0 0 force)
rlm@77 1444 (Vector3f. 0 0 0)))
rlm@77 1445 (if @roll-right?
rlm@77 1446 (.applyForce control-a
rlm@77 1447 (Vector3f. 0 0 (- force))
rlm@77 1448 (Vector3f. 0 0 0)))
rlm@77 1449
rlm@77 1450 (if (zero? (rem (swap! timer inc) 100))
rlm@77 1451 (.attachChild
rlm@77 1452 (.getRootNode world)
rlm@77 1453 (sphere 0.05 :color ColorRGBA/Yellow
rlm@77 1454 :physical? false :position
rlm@77 1455 (.getWorldTranslation obj-a)))))
rlm@77 1456 )
rlm@77 1457 ))
rlm@77 1458
rlm@94 1459 (defn transform-trianglesdsd
rlm@94 1460 "Transform that converts each vertex in the first triangle
rlm@94 1461 into the corresponding vertex in the second triangle."
rlm@94 1462 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 1463 (let [in [(.get1 tri-1)
rlm@94 1464 (.get2 tri-1)
rlm@94 1465 (.get3 tri-1)]
rlm@94 1466 out [(.get1 tri-2)
rlm@94 1467 (.get2 tri-2)
rlm@94 1468 (.get3 tri-2)]]
rlm@94 1469 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
rlm@94 1470 in* [(.mult translate (in 0))
rlm@94 1471 (.mult translate (in 1))
rlm@94 1472 (.mult translate (in 2))]
rlm@94 1473 final-translation
rlm@94 1474 (doto (Matrix4f.)
rlm@94 1475 (.setTranslation (out 1)))
rlm@94 1476
rlm@94 1477 rotate-1
rlm@94 1478 (doto (Matrix3f.)
rlm@94 1479 (.fromStartEndVectors
rlm@94 1480 (.normalize
rlm@94 1481 (.subtract
rlm@94 1482 (in* 1) (in* 0)))
rlm@94 1483 (.normalize
rlm@94 1484 (.subtract
rlm@94 1485 (out 1) (out 0)))))
rlm@94 1486 in** [(.mult rotate-1 (in* 0))
rlm@94 1487 (.mult rotate-1 (in* 1))
rlm@94 1488 (.mult rotate-1 (in* 2))]
rlm@94 1489 scale-factor-1
rlm@94 1490 (.mult
rlm@94 1491 (.normalize
rlm@94 1492 (.subtract
rlm@94 1493 (out 1)
rlm@94 1494 (out 0)))
rlm@94 1495 (/ (.length
rlm@94 1496 (.subtract (out 1)
rlm@94 1497 (out 0)))
rlm@94 1498 (.length
rlm@94 1499 (.subtract (in** 1)
rlm@94 1500 (in** 0)))))
rlm@94 1501 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
rlm@94 1502 in*** [(.mult scale-1 (in** 0))
rlm@94 1503 (.mult scale-1 (in** 1))
rlm@94 1504 (.mult scale-1 (in** 2))]
rlm@94 1505
rlm@94 1506
rlm@94 1507
rlm@94 1508
rlm@94 1509
rlm@94 1510 ]
rlm@94 1511
rlm@94 1512 (dorun (map println in))
rlm@94 1513 (println)
rlm@94 1514 (dorun (map println in*))
rlm@94 1515 (println)
rlm@94 1516 (dorun (map println in**))
rlm@94 1517 (println)
rlm@94 1518 (dorun (map println in***))
rlm@94 1519 (println)
rlm@94 1520
rlm@99 1521 ))))
rlm@94 1522
rlm@94 1523
rlm@106 1524 (defn world-setup [joint]
rlm@106 1525 (let [joint-position (Vector3f. 0 0 0)
rlm@106 1526 joint-rotation
rlm@106 1527 (.toRotationMatrix
rlm@106 1528 (.mult
rlm@106 1529 (doto (Quaternion.)
rlm@106 1530 (.fromAngleAxis
rlm@106 1531 (* 1 (/ Math/PI 4))
rlm@106 1532 (Vector3f. -1 0 0)))
rlm@106 1533 (doto (Quaternion.)
rlm@106 1534 (.fromAngleAxis
rlm@106 1535 (* 1 (/ Math/PI 2))
rlm@106 1536 (Vector3f. 0 0 1)))))
rlm@106 1537 top-position (.mult joint-rotation (Vector3f. 8 0 0))
rlm@106 1538
rlm@106 1539 origin (doto
rlm@106 1540 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
rlm@106 1541 :position top-position))
rlm@106 1542 top (doto
rlm@106 1543 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
rlm@106 1544 :position top-position)
rlm@106 1545
rlm@106 1546 (.addControl
rlm@106 1547 (RigidBodyControl.
rlm@106 1548 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
rlm@106 1549 bottom (doto
rlm@106 1550 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
rlm@106 1551 :position (Vector3f. 0 0 0))
rlm@106 1552 (.addControl
rlm@106 1553 (RigidBodyControl.
rlm@106 1554 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
rlm@106 1555 table (box 10 2 10 :position (Vector3f. 0 -20 0)
rlm@106 1556 :color ColorRGBA/Gray :mass 0)
rlm@106 1557 a (.getControl top RigidBodyControl)
rlm@106 1558 b (.getControl bottom RigidBodyControl)]
rlm@106 1559
rlm@106 1560 (cond
rlm@106 1561 (= joint :cone)
rlm@106 1562
rlm@106 1563 (doto (ConeJoint.
rlm@106 1564 a b
rlm@106 1565 (world-to-local top joint-position)
rlm@106 1566 (world-to-local bottom joint-position)
rlm@106 1567 joint-rotation
rlm@106 1568 joint-rotation
rlm@106 1569 )
rlm@106 1570
rlm@106 1571
rlm@106 1572 (.setLimit (* (/ 10) Math/PI)
rlm@106 1573 (* (/ 4) Math/PI)
rlm@106 1574 0)))
rlm@106 1575 [origin top bottom table]))
rlm@106 1576
rlm@106 1577 (defn test-joint [joint]
rlm@106 1578 (let [[origin top bottom floor] (world-setup joint)
rlm@106 1579 control (.getControl top RigidBodyControl)
rlm@106 1580 move-up? (atom false)
rlm@106 1581 move-down? (atom false)
rlm@106 1582 move-left? (atom false)
rlm@106 1583 move-right? (atom false)
rlm@106 1584 roll-left? (atom false)
rlm@106 1585 roll-right? (atom false)
rlm@106 1586 timer (atom 0)]
rlm@106 1587
rlm@106 1588 (world
rlm@106 1589 (nodify [top bottom floor origin])
rlm@106 1590 (merge standard-debug-controls
rlm@106 1591 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@106 1592 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@106 1593 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@106 1594 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@106 1595 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@106 1596 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@106 1597
rlm@106 1598 (fn [world]
rlm@106 1599 (light-up-everything world)
rlm@106 1600 (enable-debug world)
rlm@106 1601 (set-gravity world (Vector3f. 0 0 0))
rlm@106 1602 )
rlm@106 1603
rlm@106 1604 (fn [world _]
rlm@106 1605 (if (zero? (rem (swap! timer inc) 100))
rlm@106 1606 (do
rlm@106 1607 ;; (println-repl @timer)
rlm@106 1608 (.attachChild (.getRootNode world)
rlm@106 1609 (sphere 0.05 :color ColorRGBA/Yellow
rlm@106 1610 :position (.getWorldTranslation top)
rlm@106 1611 :physical? false))
rlm@106 1612 (.attachChild (.getRootNode world)
rlm@106 1613 (sphere 0.05 :color ColorRGBA/LightGray
rlm@106 1614 :position (.getWorldTranslation bottom)
rlm@106 1615 :physical? false))))
rlm@106 1616
rlm@106 1617 (if @move-up?
rlm@106 1618 (.applyTorque control
rlm@106 1619 (.mult (.getPhysicsRotation control)
rlm@106 1620 (Vector3f. 0 0 10))))
rlm@106 1621 (if @move-down?
rlm@106 1622 (.applyTorque control
rlm@106 1623 (.mult (.getPhysicsRotation control)
rlm@106 1624 (Vector3f. 0 0 -10))))
rlm@106 1625 (if @move-left?
rlm@106 1626 (.applyTorque control
rlm@106 1627 (.mult (.getPhysicsRotation control)
rlm@106 1628 (Vector3f. 0 10 0))))
rlm@106 1629 (if @move-right?
rlm@106 1630 (.applyTorque control
rlm@106 1631 (.mult (.getPhysicsRotation control)
rlm@106 1632 (Vector3f. 0 -10 0))))
rlm@106 1633 (if @roll-left?
rlm@106 1634 (.applyTorque control
rlm@106 1635 (.mult (.getPhysicsRotation control)
rlm@106 1636 (Vector3f. -1 0 0))))
rlm@106 1637 (if @roll-right?
rlm@106 1638 (.applyTorque control
rlm@106 1639 (.mult (.getPhysicsRotation control)
rlm@106 1640 (Vector3f. 1 0 0))))))))
rlm@106 1641
rlm@99 1642
rlm@99 1643
rlm@107 1644 (defprotocol Frame
rlm@107 1645 (frame [this]))
rlm@107 1646
rlm@107 1647 (extend-type BufferedImage
rlm@107 1648 Frame
rlm@107 1649 (frame [image]
rlm@107 1650 (merge
rlm@107 1651 (apply
rlm@107 1652 hash-map
rlm@107 1653 (interleave
rlm@107 1654 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1655 (vector x y)))
rlm@107 1656 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1657 (let [data (.getRGB image x y)]
rlm@107 1658 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
rlm@107 1659 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
rlm@107 1660 :b (bit-and 0x0000ff data)))))))
rlm@107 1661 {:width (.getWidth image) :height (.getHeight image)})))
rlm@107 1662
rlm@107 1663
rlm@107 1664 (extend-type ImagePlus
rlm@107 1665 Frame
rlm@107 1666 (frame [image+]
rlm@107 1667 (frame (.getBufferedImage image+))))
rlm@107 1668
rlm@107 1669
rlm@99 1670 #+end_src
rlm@99 1671
rlm@99 1672
rlm@99 1673 * COMMENT generate source
rlm@99 1674 #+begin_src clojure :tangle ../src/cortex/silly.clj
rlm@99 1675 <<body-1>>
rlm@99 1676 #+end_src
rlm@99 1677
rlm@99 1678
rlm@94 1679
rlm@94 1680