annotate org/test-creature.org @ 146:68226790d1fa

going to start work on muscles
author Robert McIntyre <rlm@mit.edu>
date Thu, 02 Feb 2012 13:22:14 -0700
parents 7a49b81ca1bf
children 72801a20b8e5
rev   line source
rlm@73 1 #+title: First attempt at a creature!
rlm@73 2 #+author: Robert McIntyre
rlm@73 3 #+email: rlm@mit.edu
rlm@73 4 #+description:
rlm@73 5 #+keywords: simulation, jMonkeyEngine3, clojure
rlm@73 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@73 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@73 8
rlm@129 9
rlm@129 10
rlm@129 11 * Brainstorming different sensors and effectors.
rlm@129 12
rlm@129 13 Every sense that we have should have an effector that changes what
rlm@129 14 that sense (or others who have that sense) experiences.
rlm@129 15
rlm@129 16 ** Classic Senses
rlm@129 17 | Sense | Effector |
rlm@129 18 |------------------------------+---------------------------------|
rlm@129 19 | Vision | Variable Coloration |
rlm@129 20 | Hearing | Speech |
rlm@129 21 | Proprioception | Movement |
rlm@129 22 | Smell/Taste (Chemoreception) | Pheremones |
rlm@129 23 | Touch | Movement / Controllable Texture |
rlm@129 24 | Acceleration | Movement |
rlm@129 25 | Balance (sense gravity) | Movement |
rlm@129 26 | | |
rlm@129 27
rlm@129 28 - New Senses/Effectors
rlm@129 29 - Levitation
rlm@129 30 - Telekenesis
rlm@139 31 - control of gravity within a certain radius
rlm@139 32 - speed up/slow time
rlm@139 33 - object creation/destruction
rlm@129 34
rlm@129 35 - Symbol Sense
rlm@129 36 Where objects in the world can be queried for description /
rlm@129 37 symbols.
rlm@129 38
rlm@129 39 - Symbol Marking
rlm@129 40 The ability to mark objects in the world with your own descriptions
rlm@129 41 and symbols.
rlm@129 42
rlm@129 43 - Vision
rlm@129 44 Distinguish the polarization of light
rlm@129 45 Color
rlm@129 46 Movement
rlm@129 47
rlm@129 48 * project ideas
rlm@129 49 - HACKER for writing muscle-control programs : Presented with
rlm@129 50 low-level muscle control/ sense API, generate higher level programs
rlm@129 51 for accomplishing various stated goals. Example goals might be
rlm@129 52 "extend all your fingers" or "move your hand into the area with
rlm@129 53 blue light" or "decrease the angle of this joint". It would be
rlm@129 54 like Sussman's HACKER, except it would operate with much more data
rlm@129 55 in a more realistic world. Start off with "calestanthics" to
rlm@129 56 develop subrouitines over the motor control API. This would be the
rlm@129 57 "spinal chord" of a more intelligent creature. The low level
rlm@129 58 programming code might be a turning machine that could develop
rlm@129 59 programs to iterate over a "tape" where each entry in the tape
rlm@129 60 could control recruitment of the fibers in a muscle.
rlm@129 61 - Make a virtual computer in the virtual world which with which the
rlm@129 62 creature interacts using its fingers to press keys on a virtual
rlm@129 63 keyboard. The creature can access the internet, watch videos, take
rlm@129 64 over the world, anything it wants.
rlm@129 65 - Make virtual insturments like pianos, drumbs, etc that it learns to
rlm@129 66 play.
rlm@129 67 - make a joint that figures out what type of joint it is (range of
rlm@129 68 motion)
rlm@129 69
rlm@129 70
rlm@129 71
rlm@129 72
rlm@129 73
rlm@129 74 * goals
rlm@125 75
rlm@125 76 ** have to get done before winston
rlm@126 77 - [ ] write an explination for why greyscale bitmaps for senses is
rlm@126 78 appropiate -- 1/2 day
rlm@126 79 - [ ] muscle control -- day
rlm@146 80 - [X] proprioception sensor map in the style of the other senses -- day
rlm@125 81 - [ ] refactor integration code to distribute to each of the senses
rlm@126 82 -- day
rlm@126 83 - [ ] create video showing all the senses for Winston -- 2 days
rlm@126 84 - [ ] write summary of project for Winston \
rlm@126 85 - [ ] project proposals for Winston \
rlm@126 86 - [ ] additional senses to be implemented for Winston | -- 2 days
rlm@126 87 - [ ] send Winston package /
rlm@125 88
rlm@125 89 ** would be cool to get done before winston
rlm@126 90 - [X] enable greyscale bitmaps for touch -- 2 hours
rlm@126 91 - [X] use sawfish to auto-tile sense windows -- 6 hours
rlm@126 92 - [X] sawfish keybinding to automatically delete all sense windows
rlm@126 93 - [ ] directly change the UV-pixels to show sensor activation -- 2
rlm@126 94 days
rlm@126 95 - [ ] proof of concept C sense manipulation -- 2 days
rlm@126 96 - [ ] proof of concept GPU sense manipulation -- week
rlm@126 97 - [ ] fourier view of sound -- 2 or 3 days
rlm@146 98 - [ ] dancing music listener -- 1 day, depends on fourier
rlm@125 99
rlm@125 100 ** don't have to get done before winston
rlm@126 101 - [ ] write tests for integration -- 3 days
rlm@126 102 - [ ] usertime/gametime clock HUD display -- day
rlm@126 103 - [ ] find papers for each of the senses justifying my own
rlm@126 104 representation -- week
rlm@126 105 - [ ] show sensor maps in HUD display? -- 4 days
rlm@126 106 - [ ] show sensor maps in AWT display? -- 2 days
rlm@124 107
rlm@99 108
rlm@73 109 * Intro
rlm@73 110 So far, I've made the following senses --
rlm@73 111 - Vision
rlm@73 112 - Hearing
rlm@73 113 - Touch
rlm@73 114 - Proprioception
rlm@73 115
rlm@73 116 And one effector:
rlm@73 117 - Movement
rlm@73 118
rlm@73 119 However, the code so far has only enabled these senses, but has not
rlm@73 120 actually implemented them. For example, there is still a lot of work
rlm@73 121 to be done for vision. I need to be able to create an /eyeball/ in
rlm@73 122 simulation that can be moved around and see the world from different
rlm@73 123 angles. I also need to determine weather to use log-polar or cartesian
rlm@73 124 for the visual input, and I need to determine how/wether to
rlm@73 125 disceritise the visual input.
rlm@73 126
rlm@73 127 I also want to be able to visualize both the sensors and the
rlm@104 128 effectors in pretty pictures. This semi-retarted creature will be my
rlm@73 129 first attempt at bringing everything together.
rlm@73 130
rlm@73 131 * The creature's body
rlm@73 132
rlm@73 133 Still going to do an eve-like body in blender, but due to problems
rlm@104 134 importing the joints, etc into jMonkeyEngine3, I'm going to do all
rlm@73 135 the connecting here in clojure code, using the names of the individual
rlm@73 136 components and trial and error. Later, I'll maybe make some sort of
rlm@73 137 creature-building modifications to blender that support whatever
rlm@73 138 discreitized senses I'm going to make.
rlm@73 139
rlm@73 140 #+name: body-1
rlm@73 141 #+begin_src clojure
rlm@73 142 (ns cortex.silly
rlm@73 143 "let's play!"
rlm@73 144 {:author "Robert McIntyre"})
rlm@73 145
rlm@73 146 ;; TODO remove this!
rlm@73 147 (require 'cortex.import)
rlm@73 148 (cortex.import/mega-import-jme3)
rlm@73 149 (use '(cortex world util body hearing touch vision))
rlm@73 150
rlm@73 151 (rlm.rlm-commands/help)
rlm@99 152 (import java.awt.image.BufferedImage)
rlm@99 153 (import javax.swing.JPanel)
rlm@99 154 (import javax.swing.SwingUtilities)
rlm@99 155 (import java.awt.Dimension)
rlm@99 156 (import javax.swing.JFrame)
rlm@99 157 (import java.awt.Dimension)
rlm@106 158 (import com.aurellem.capture.RatchetTimer)
rlm@99 159 (declare joint-create)
rlm@108 160 (use 'clojure.contrib.def)
rlm@73 161
rlm@100 162 (defn points->image
rlm@100 163 "Take a sparse collection of points and visuliaze it as a
rlm@100 164 BufferedImage."
rlm@102 165
rlm@102 166 ;; TODO maybe parallelize this since it's easy
rlm@102 167
rlm@100 168 [points]
rlm@106 169 (if (empty? points)
rlm@106 170 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
rlm@106 171 (let [xs (vec (map first points))
rlm@106 172 ys (vec (map second points))
rlm@106 173 x0 (apply min xs)
rlm@106 174 y0 (apply min ys)
rlm@106 175 width (- (apply max xs) x0)
rlm@106 176 height (- (apply max ys) y0)
rlm@106 177 image (BufferedImage. (inc width) (inc height)
rlm@119 178 BufferedImage/TYPE_INT_RGB)]
rlm@118 179 (dorun
rlm@118 180 (for [x (range (.getWidth image))
rlm@118 181 y (range (.getHeight image))]
rlm@119 182 (.setRGB image x y 0xFF0000)))
rlm@106 183 (dorun
rlm@106 184 (for [index (range (count points))]
rlm@106 185 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
rlm@106 186
rlm@106 187 image)))
rlm@100 188
rlm@101 189 (defn average [coll]
rlm@101 190 (/ (reduce + coll) (count coll)))
rlm@101 191
rlm@101 192 (defn collapse-1d
rlm@101 193 "One dimensional analogue of collapse"
rlm@101 194 [center line]
rlm@101 195 (let [length (count line)
rlm@101 196 num-above (count (filter (partial < center) line))
rlm@101 197 num-below (- length num-above)]
rlm@101 198 (range (- center num-below)
rlm@115 199 (+ center num-above))))
rlm@99 200
rlm@99 201 (defn collapse
rlm@99 202 "Take a set of pairs of integers and collapse them into a
rlm@99 203 contigous bitmap."
rlm@99 204 [points]
rlm@108 205 (if (empty? points) []
rlm@108 206 (let
rlm@108 207 [num-points (count points)
rlm@108 208 center (vector
rlm@108 209 (int (average (map first points)))
rlm@108 210 (int (average (map first points))))
rlm@108 211 flattened
rlm@108 212 (reduce
rlm@108 213 concat
rlm@108 214 (map
rlm@108 215 (fn [column]
rlm@108 216 (map vector
rlm@108 217 (map first column)
rlm@108 218 (collapse-1d (second center)
rlm@108 219 (map second column))))
rlm@108 220 (partition-by first (sort-by first points))))
rlm@108 221 squeezed
rlm@108 222 (reduce
rlm@108 223 concat
rlm@108 224 (map
rlm@108 225 (fn [row]
rlm@108 226 (map vector
rlm@108 227 (collapse-1d (first center)
rlm@108 228 (map first row))
rlm@108 229 (map second row)))
rlm@108 230 (partition-by second (sort-by second flattened))))
rlm@108 231 relocate
rlm@108 232 (let [min-x (apply min (map first squeezed))
rlm@108 233 min-y (apply min (map second squeezed))]
rlm@108 234 (map (fn [[x y]]
rlm@108 235 [(- x min-x)
rlm@108 236 (- y min-y)])
rlm@108 237 squeezed))]
rlm@115 238 relocate)))
rlm@83 239
rlm@83 240 (defn load-bullet []
rlm@84 241 (let [sim (world (Node.) {} no-op no-op)]
rlm@102 242 (doto sim
rlm@102 243 (.enqueue
rlm@102 244 (fn []
rlm@102 245 (.stop sim)))
rlm@102 246 (.start))))
rlm@83 247
rlm@73 248 (defn load-blender-model
rlm@73 249 "Load a .blend file using an asset folder relative path."
rlm@73 250 [^String model]
rlm@73 251 (.loadModel
rlm@73 252 (doto (asset-manager)
rlm@73 253 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@73 254 model))
rlm@73 255
rlm@74 256 (defn meta-data [blender-node key]
rlm@74 257 (if-let [data (.getUserData blender-node "properties")]
rlm@74 258 (.findValue data key)
rlm@74 259 nil))
rlm@73 260
rlm@78 261 (defn blender-to-jme
rlm@78 262 "Convert from Blender coordinates to JME coordinates"
rlm@78 263 [#^Vector3f in]
rlm@78 264 (Vector3f. (.getX in)
rlm@78 265 (.getZ in)
rlm@78 266 (- (.getY in))))
rlm@74 267
rlm@79 268
rlm@133 269
rlm@133 270
rlm@133 271
rlm@87 272 (defn world-to-local
rlm@87 273 "Convert the world coordinates into coordinates relative to the
rlm@87 274 object (i.e. local coordinates), taking into account the rotation
rlm@87 275 of object."
rlm@87 276 [#^Spatial object world-coordinate]
rlm@87 277 (let [out (Vector3f.)]
rlm@88 278 (.worldToLocal object world-coordinate out) out))
rlm@87 279
rlm@96 280 (defn local-to-world
rlm@96 281 "Convert the local coordinates into coordinates into world relative
rlm@96 282 coordinates"
rlm@96 283 [#^Spatial object local-coordinate]
rlm@96 284 (let [world-coordinate (Vector3f.)]
rlm@96 285 (.localToWorld object local-coordinate world-coordinate)
rlm@96 286 world-coordinate))
rlm@96 287
rlm@87 288 (defmulti joint-dispatch
rlm@87 289 "Translate blender pseudo-joints into real JME joints."
rlm@88 290 (fn [constraints & _]
rlm@87 291 (:type constraints)))
rlm@87 292
rlm@87 293 (defmethod joint-dispatch :point
rlm@87 294 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 295 (println-repl "creating POINT2POINT joint")
rlm@130 296 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@130 297 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@130 298
rlm@130 299 ;; should be able to do this:
rlm@130 300 (comment
rlm@130 301 (Point2PointJoint.
rlm@130 302 control-a
rlm@130 303 control-b
rlm@130 304 pivot-a
rlm@130 305 pivot-b))
rlm@130 306
rlm@130 307 ;; but instead we must do this:
rlm@130 308 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@130 309 (doto
rlm@130 310 (SixDofJoint.
rlm@130 311 control-a
rlm@130 312 control-b
rlm@130 313 pivot-a
rlm@130 314 pivot-b
rlm@130 315 false)
rlm@130 316 (.setLinearLowerLimit Vector3f/ZERO)
rlm@130 317 (.setLinearUpperLimit Vector3f/ZERO)
rlm@130 318 ;;(.setAngularLowerLimit (Vector3f. 1 1 1))
rlm@130 319 ;;(.setAngularUpperLimit (Vector3f. 0 0 0))
rlm@130 320
rlm@130 321 ))
rlm@130 322
rlm@87 323
rlm@87 324 (defmethod joint-dispatch :hinge
rlm@87 325 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 326 (println-repl "creating HINGE joint")
rlm@87 327 (let [axis
rlm@87 328 (if-let
rlm@87 329 [axis (:axis constraints)]
rlm@87 330 axis
rlm@87 331 Vector3f/UNIT_X)
rlm@87 332 [limit-1 limit-2] (:limit constraints)
rlm@87 333 hinge-axis
rlm@87 334 (.mult
rlm@87 335 rotation
rlm@87 336 (blender-to-jme axis))]
rlm@87 337 (doto
rlm@87 338 (HingeJoint.
rlm@87 339 control-a
rlm@87 340 control-b
rlm@87 341 pivot-a
rlm@87 342 pivot-b
rlm@87 343 hinge-axis
rlm@87 344 hinge-axis)
rlm@87 345 (.setLimit limit-1 limit-2))))
rlm@87 346
rlm@87 347 (defmethod joint-dispatch :cone
rlm@87 348 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 349 (let [limit-xz (:limit-xz constraints)
rlm@87 350 limit-xy (:limit-xy constraints)
rlm@87 351 twist (:twist constraints)]
rlm@87 352
rlm@87 353 (println-repl "creating CONE joint")
rlm@87 354 (println-repl rotation)
rlm@87 355 (println-repl
rlm@87 356 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@87 357 (println-repl
rlm@87 358 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@87 359 (println-repl
rlm@87 360 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@87 361 (doto
rlm@87 362 (ConeJoint.
rlm@87 363 control-a
rlm@87 364 control-b
rlm@87 365 pivot-a
rlm@87 366 pivot-b
rlm@87 367 rotation
rlm@87 368 rotation)
rlm@87 369 (.setLimit (float limit-xz)
rlm@87 370 (float limit-xy)
rlm@87 371 (float twist)))))
rlm@87 372
rlm@88 373 (defn connect
rlm@87 374 "here are some examples:
rlm@87 375 {:type :point}
rlm@87 376 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@87 377 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@87 378
rlm@89 379 {:type :cone :limit-xz 0]
rlm@89 380 :limit-xy 0]
rlm@89 381 :twist 0]} (use XZY rotation mode in blender!)"
rlm@87 382 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@87 383 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@87 384 control-b (.getControl obj-b RigidBodyControl)
rlm@87 385 joint-center (.getWorldTranslation joint)
rlm@87 386 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@87 387 pivot-a (world-to-local obj-a joint-center)
rlm@87 388 pivot-b (world-to-local obj-b joint-center)]
rlm@89 389
rlm@87 390 (if-let [constraints
rlm@87 391 (map-vals
rlm@87 392 eval
rlm@87 393 (read-string
rlm@87 394 (meta-data joint "joint")))]
rlm@89 395 ;; A side-effect of creating a joint registers
rlm@89 396 ;; it with both physics objects which in turn
rlm@89 397 ;; will register the joint with the physics system
rlm@89 398 ;; when the simulation is started.
rlm@87 399 (do
rlm@87 400 (println-repl "creating joint between"
rlm@87 401 (.getName obj-a) "and" (.getName obj-b))
rlm@87 402 (joint-dispatch constraints
rlm@87 403 control-a control-b
rlm@87 404 pivot-a pivot-b
rlm@87 405 joint-rotation))
rlm@87 406 (println-repl "could not find joint meta-data!"))))
rlm@87 407
rlm@130 408
rlm@130 409
rlm@130 410
rlm@78 411 (defn assemble-creature [#^Node pieces joints]
rlm@78 412 (dorun
rlm@78 413 (map
rlm@78 414 (fn [geom]
rlm@78 415 (let [physics-control
rlm@78 416 (RigidBodyControl.
rlm@78 417 (HullCollisionShape.
rlm@78 418 (.getMesh geom))
rlm@78 419 (if-let [mass (meta-data geom "mass")]
rlm@78 420 (do
rlm@78 421 (println-repl
rlm@78 422 "setting" (.getName geom) "mass to" (float mass))
rlm@78 423 (float mass))
rlm@78 424 (float 1)))]
rlm@78 425
rlm@78 426 (.addControl geom physics-control)))
rlm@78 427 (filter #(isa? (class %) Geometry )
rlm@78 428 (node-seq pieces))))
rlm@78 429 (dorun
rlm@78 430 (map
rlm@78 431 (fn [joint]
rlm@133 432 (let [[obj-a obj-b] (joint-targets pieces joint)]
rlm@88 433 (connect obj-a obj-b joint)))
rlm@78 434 joints))
rlm@78 435 pieces)
rlm@74 436
rlm@116 437 (declare blender-creature)
rlm@74 438
rlm@78 439 (def hand "Models/creature1/one.blend")
rlm@74 440
rlm@78 441 (def worm "Models/creature1/try-again.blend")
rlm@78 442
rlm@90 443 (def touch "Models/creature1/touch.blend")
rlm@90 444
rlm@90 445 (defn worm-model [] (load-blender-model worm))
rlm@90 446
rlm@80 447 (defn x-ray [#^ColorRGBA color]
rlm@80 448 (doto (Material. (asset-manager)
rlm@80 449 "Common/MatDefs/Misc/Unshaded.j3md")
rlm@80 450 (.setColor "Color" color)
rlm@80 451 (-> (.getAdditionalRenderState)
rlm@80 452 (.setDepthTest false))))
rlm@80 453
rlm@91 454 (defn colorful []
rlm@91 455 (.getChild (worm-model) "worm-21"))
rlm@90 456
rlm@90 457 (import jme3tools.converters.ImageToAwt)
rlm@90 458
rlm@90 459 (import ij.ImagePlus)
rlm@90 460
rlm@108 461 ;; Every Mesh has many triangles, each with its own index.
rlm@108 462 ;; Every vertex has its own index as well.
rlm@90 463
rlm@108 464 (defn tactile-sensor-image
rlm@110 465 "Return the touch-sensor distribution image in BufferedImage format,
rlm@110 466 or nil if it does not exist."
rlm@91 467 [#^Geometry obj]
rlm@110 468 (if-let [image-path (meta-data obj "touch")]
rlm@110 469 (ImageToAwt/convert
rlm@110 470 (.getImage
rlm@110 471 (.loadTexture
rlm@110 472 (asset-manager)
rlm@110 473 image-path))
rlm@110 474 false false 0)))
rlm@110 475
rlm@91 476 (import ij.process.ImageProcessor)
rlm@91 477 (import java.awt.image.BufferedImage)
rlm@91 478
rlm@92 479 (def white -1)
rlm@94 480
rlm@91 481 (defn filter-pixels
rlm@108 482 "List the coordinates of all pixels matching pred, within the bounds
rlm@108 483 provided. Bounds -> [x0 y0 width height]"
rlm@92 484 {:author "Dylan Holmes"}
rlm@108 485 ([pred #^BufferedImage image]
rlm@108 486 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
rlm@108 487 ([pred #^BufferedImage image [x0 y0 width height]]
rlm@108 488 ((fn accumulate [x y matches]
rlm@108 489 (cond
rlm@108 490 (>= y (+ height y0)) matches
rlm@108 491 (>= x (+ width x0)) (recur 0 (inc y) matches)
rlm@108 492 (pred (.getRGB image x y))
rlm@108 493 (recur (inc x) y (conj matches [x y]))
rlm@108 494 :else (recur (inc x) y matches)))
rlm@108 495 x0 y0 [])))
rlm@91 496
rlm@91 497 (defn white-coordinates
rlm@108 498 "Coordinates of all the white pixels in a subset of the image."
rlm@112 499 ([#^BufferedImage image bounds]
rlm@112 500 (filter-pixels #(= % white) image bounds))
rlm@112 501 ([#^BufferedImage image]
rlm@112 502 (filter-pixels #(= % white) image)))
rlm@108 503
rlm@108 504 (defn triangle
rlm@112 505 "Get the triangle specified by triangle-index from the mesh within
rlm@112 506 bounds."
rlm@108 507 [#^Mesh mesh triangle-index]
rlm@108 508 (let [scratch (Triangle.)]
rlm@108 509 (.getTriangle mesh triangle-index scratch)
rlm@108 510 scratch))
rlm@108 511
rlm@108 512 (defn triangle-vertex-indices
rlm@108 513 "Get the triangle vertex indices of a given triangle from a given
rlm@108 514 mesh."
rlm@108 515 [#^Mesh mesh triangle-index]
rlm@108 516 (let [indices (int-array 3)]
rlm@108 517 (.getTriangle mesh triangle-index indices)
rlm@108 518 (vec indices)))
rlm@108 519
rlm@108 520 (defn vertex-UV-coord
rlm@108 521 "Get the uv-coordinates of the vertex named by vertex-index"
rlm@108 522 [#^Mesh mesh vertex-index]
rlm@108 523 (let [UV-buffer
rlm@108 524 (.getData
rlm@108 525 (.getBuffer
rlm@108 526 mesh
rlm@108 527 VertexBuffer$Type/TexCoord))]
rlm@108 528 [(.get UV-buffer (* vertex-index 2))
rlm@108 529 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
rlm@108 530
rlm@108 531 (defn triangle-UV-coord
rlm@108 532 "Get the uv-cooridnates of the triangle's verticies."
rlm@108 533 [#^Mesh mesh width height triangle-index]
rlm@108 534 (map (fn [[u v]] (vector (* width u) (* height v)))
rlm@108 535 (map (partial vertex-UV-coord mesh)
rlm@108 536 (triangle-vertex-indices mesh triangle-index))))
rlm@91 537
rlm@102 538 (defn same-side?
rlm@102 539 "Given the points p1 and p2 and the reference point ref, is point p
rlm@102 540 on the same side of the line that goes through p1 and p2 as ref is?"
rlm@102 541 [p1 p2 ref p]
rlm@91 542 (<=
rlm@91 543 0
rlm@91 544 (.dot
rlm@91 545 (.cross (.subtract p2 p1) (.subtract p p1))
rlm@91 546 (.cross (.subtract p2 p1) (.subtract ref p1)))))
rlm@91 547
rlm@108 548 (defn triangle-seq [#^Triangle tri]
rlm@108 549 [(.get1 tri) (.get2 tri) (.get3 tri)])
rlm@108 550
rlm@108 551 (defn vector3f-seq [#^Vector3f v]
rlm@108 552 [(.getX v) (.getY v) (.getZ v)])
rlm@108 553
rlm@108 554 (defn inside-triangle?
rlm@108 555 "Is the point inside the triangle?"
rlm@108 556 {:author "Dylan Holmes"}
rlm@108 557 [#^Triangle tri #^Vector3f p]
rlm@108 558 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
rlm@108 559 (and
rlm@108 560 (same-side? vert-1 vert-2 vert-3 p)
rlm@108 561 (same-side? vert-2 vert-3 vert-1 p)
rlm@108 562 (same-side? vert-3 vert-1 vert-2 p))))
rlm@108 563
rlm@94 564 (defn triangle->matrix4f
rlm@108 565 "Converts the triangle into a 4x4 matrix: The first three columns
rlm@108 566 contain the vertices of the triangle; the last contains the unit
rlm@108 567 normal of the triangle. The bottom row is filled with 1s."
rlm@94 568 [#^Triangle t]
rlm@94 569 (let [mat (Matrix4f.)
rlm@94 570 [vert-1 vert-2 vert-3]
rlm@94 571 ((comp vec map) #(.get t %) (range 3))
rlm@94 572 unit-normal (do (.calculateNormal t)(.getNormal t))
rlm@94 573 vertices [vert-1 vert-2 vert-3 unit-normal]]
rlm@94 574 (dorun
rlm@94 575 (for [row (range 4) col (range 3)]
rlm@94 576 (do
rlm@94 577 (.set mat col row (.get (vertices row)col))
rlm@94 578 (.set mat 3 row 1))))
rlm@94 579 mat))
rlm@94 580
rlm@94 581 (defn triangle-transformation
rlm@94 582 "Returns the affine transformation that converts each vertex in the
rlm@94 583 first triangle into the corresponding vertex in the second
rlm@94 584 triangle."
rlm@94 585 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 586 (.mult
rlm@94 587 (triangle->matrix4f tri-2)
rlm@94 588 (.invert (triangle->matrix4f tri-1))))
rlm@94 589
rlm@108 590 (defn point->vector2f [[u v]]
rlm@108 591 (Vector2f. u v))
rlm@94 592
rlm@94 593 (defn vector2f->vector3f [v]
rlm@94 594 (Vector3f. (.getX v) (.getY v) 0))
rlm@94 595
rlm@94 596 (defn map-triangle [f #^Triangle tri]
rlm@94 597 (Triangle.
rlm@94 598 (f 0 (.get1 tri))
rlm@94 599 (f 1 (.get2 tri))
rlm@94 600 (f 2 (.get3 tri))))
rlm@94 601
rlm@108 602 (defn points->triangle
rlm@108 603 "Convert a list of points into a triangle."
rlm@108 604 [points]
rlm@108 605 (apply #(Triangle. %1 %2 %3)
rlm@108 606 (map (fn [point]
rlm@108 607 (let [point (vec point)]
rlm@108 608 (Vector3f. (get point 0 0)
rlm@108 609 (get point 1 0)
rlm@108 610 (get point 2 0))))
rlm@108 611 (take 3 points))))
rlm@94 612
rlm@108 613 (defn convex-bounds
rlm@128 614 ;;dylan
rlm@128 615 "Returns the smallest square containing the given
rlm@128 616 vertices, as a vector of integers [left top width height]."
rlm@128 617 ;; "Dimensions of the smallest integer bounding square of the list of
rlm@128 618 ;; 2D verticies in the form: [x y width height]."
rlm@108 619 [uv-verts]
rlm@108 620 (let [xs (map first uv-verts)
rlm@108 621 ys (map second uv-verts)
rlm@108 622 x0 (Math/floor (apply min xs))
rlm@108 623 y0 (Math/floor (apply min ys))
rlm@108 624 x1 (Math/ceil (apply max xs))
rlm@108 625 y1 (Math/ceil (apply max ys))]
rlm@108 626 [x0 y0 (- x1 x0) (- y1 y0)]))
rlm@93 627
rlm@106 628 (defn sensors-in-triangle
rlm@128 629 ;;dylan
rlm@128 630 "Locate the touch sensors in the triangle, returning a map of their UV and geometry-relative coordinates."
rlm@128 631 ;;"Find the locations of the touch sensors within a triangle in both
rlm@128 632 ;; UV and gemoetry relative coordinates."
rlm@107 633 [image mesh tri-index]
rlm@107 634 (let [width (.getWidth image)
rlm@108 635 height (.getHeight image)
rlm@108 636 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
rlm@108 637 bounds (convex-bounds UV-vertex-coords)
rlm@108 638
rlm@108 639 cutout-triangle (points->triangle UV-vertex-coords)
rlm@108 640 UV-sensor-coords
rlm@108 641 (filter (comp (partial inside-triangle? cutout-triangle)
rlm@108 642 (fn [[u v]] (Vector3f. u v 0)))
rlm@108 643 (white-coordinates image bounds))
rlm@108 644 UV->geometry (triangle-transformation
rlm@108 645 cutout-triangle
rlm@108 646 (triangle mesh tri-index))
rlm@108 647 geometry-sensor-coords
rlm@108 648 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
rlm@108 649 UV-sensor-coords)]
rlm@108 650 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
rlm@107 651
rlm@108 652 (defn-memo locate-feelers
rlm@94 653 "Search the geometry's tactile UV image for touch sensors, returning
rlm@94 654 their positions in geometry-relative coordinates."
rlm@94 655 [#^Geometry geo]
rlm@108 656 (let [mesh (.getMesh geo)
rlm@108 657 num-triangles (.getTriangleCount mesh)]
rlm@108 658 (if-let [image (tactile-sensor-image geo)]
rlm@108 659 (map
rlm@108 660 (partial sensors-in-triangle image mesh)
rlm@108 661 (range num-triangles))
rlm@108 662 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
rlm@102 663
rlm@102 664 (use 'clojure.contrib.def)
rlm@102 665
rlm@102 666 (defn-memo touch-topology [#^Gemoetry geo]
rlm@108 667 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
rlm@108 668
rlm@108 669 (defn-memo feeler-coordinates [#^Geometry geo]
rlm@108 670 (vec (map :geometry (locate-feelers geo))))
rlm@102 671
rlm@97 672 (defn enable-touch [#^Geometry geo]
rlm@108 673 (let [feeler-coords (feeler-coordinates geo)
rlm@96 674 tris (triangles geo)
rlm@109 675 limit 0.1
rlm@109 676 ;;results (CollisionResults.)
rlm@109 677 ]
rlm@111 678 (if (empty? (touch-topology geo))
rlm@111 679 nil
rlm@111 680 (fn [node]
rlm@111 681 (let [sensor-origins
rlm@111 682 (map
rlm@111 683 #(map (partial local-to-world geo) %)
rlm@111 684 feeler-coords)
rlm@111 685 triangle-normals
rlm@111 686 (map (partial get-ray-direction geo)
rlm@111 687 tris)
rlm@111 688 rays
rlm@111 689 (flatten
rlm@111 690 (map (fn [origins norm]
rlm@111 691 (map #(doto (Ray. % norm)
rlm@97 692 (.setLimit limit)) origins))
rlm@111 693 sensor-origins triangle-normals))]
rlm@111 694 (vector
rlm@111 695 (touch-topology geo)
rlm@111 696 (vec
rlm@111 697 (for [ray rays]
rlm@111 698 (do
rlm@111 699 (let [results (CollisionResults.)]
rlm@111 700 (.collideWith node ray results)
rlm@111 701 (let [touch-objects
rlm@126 702 (filter #(not (= geo (.getGeometry %)))
rlm@126 703 results)]
rlm@126 704 (- 255
rlm@126 705 (if (empty? touch-objects) 255
rlm@126 706 (rem
rlm@126 707 (int
rlm@126 708 (* 255 (/ (.getDistance
rlm@126 709 (first touch-objects)) limit)))
rlm@126 710 256))))))))))))))
rlm@126 711
rlm@111 712
rlm@111 713 (defn touch [#^Node pieces]
rlm@111 714 (filter (comp not nil?)
rlm@111 715 (map enable-touch
rlm@111 716 (filter #(isa? (class %) Geometry)
rlm@111 717 (node-seq pieces)))))
rlm@94 718
rlm@109 719
rlm@111 720 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
rlm@111 721 ;; http://en.wikipedia.org/wiki/Retina
rlm@109 722
rlm@111 723 (defn test-eye []
rlm@117 724 (.getChild
rlm@117 725 (.getChild (worm-model) "eyes")
rlm@117 726 "eye"))
rlm@111 727
rlm@111 728
rlm@111 729 (defn retina-sensor-image
rlm@111 730 "Return a map of pixel selection functions to BufferedImages
rlm@111 731 describing the distribution of light-sensitive components on this
rlm@111 732 geometry's surface. Each function creates an integer from the rgb
rlm@111 733 values found in the pixel. :red, :green, :blue, :gray are already
rlm@111 734 defined as extracting the red green blue and average components
rlm@111 735 respectively."
rlm@117 736 [#^Spatial eye]
rlm@111 737 (if-let [eye-map (meta-data eye "eye")]
rlm@111 738 (map-vals
rlm@111 739 #(ImageToAwt/convert
rlm@111 740 (.getImage (.loadTexture (asset-manager) %))
rlm@111 741 false false 0)
rlm@120 742 (eval (read-string eye-map)))))
rlm@111 743
rlm@117 744 (defn eye-dimensions
rlm@117 745 "returns the width and height specified in the metadata of the eye"
rlm@117 746 [#^Spatial eye]
rlm@117 747 (let [dimensions
rlm@117 748 (map #(vector (.getWidth %) (.getHeight %))
rlm@117 749 (vals (retina-sensor-image eye)))]
rlm@117 750 [(apply max (map first dimensions))
rlm@117 751 (apply max (map second dimensions))]))
rlm@117 752
rlm@116 753 (defn creature-eyes
rlm@128 754 ;;dylan
rlm@128 755 "Return the children of the creature's \"eyes\" node."
rlm@128 756 ;;"The eye nodes which are children of the \"eyes\" node in the
rlm@128 757 ;;creature."
rlm@116 758 [#^Node creature]
rlm@116 759 (if-let [eye-node (.getChild creature "eyes")]
rlm@116 760 (seq (.getChildren eye-node))
rlm@116 761 (do (println-repl "could not find eyes node") [])))
rlm@111 762
rlm@123 763 ;; Here's how vision will work.
rlm@112 764
rlm@123 765 ;; Make the continuation in scene-processor take FrameBuffer,
rlm@123 766 ;; byte-buffer, BufferedImage already sized to the correct
rlm@123 767 ;; dimensions. the continuation will decide wether to "mix" them
rlm@123 768 ;; into the BufferedImage, lazily ignore them, or mix them halfway
rlm@123 769 ;; and call c/graphics card routines.
rlm@112 770
rlm@123 771 ;; (vision creature) will take an optional :skip argument which will
rlm@123 772 ;; inform the continuations in scene processor to skip the given
rlm@123 773 ;; number of cycles; 0 means that no cycles will be skipped.
rlm@112 774
rlm@123 775 ;; (vision creature) will return [init-functions sensor-functions].
rlm@123 776 ;; The init-functions are each single-arg functions that take the
rlm@123 777 ;; world and register the cameras and must each be called before the
rlm@123 778 ;; corresponding sensor-functions. Each init-function returns the
rlm@123 779 ;; viewport for that eye which can be manipulated, saved, etc. Each
rlm@123 780 ;; sensor-function is a thunk and will return data in the same
rlm@123 781 ;; format as the tactile-sensor functions; the structure is
rlm@123 782 ;; [topology, sensor-data]. Internally, these sensor-functions
rlm@123 783 ;; maintain a reference to sensor-data which is periodically updated
rlm@123 784 ;; by the continuation function established by its init-function.
rlm@123 785 ;; They can be queried every cycle, but their information may not
rlm@123 786 ;; necessairly be different every cycle.
rlm@112 787
rlm@123 788 ;; Each eye in the creature in blender will work the same way as
rlm@123 789 ;; joints -- a zero dimensional object with no geometry whose local
rlm@123 790 ;; coordinate system determines the orientation of the resulting
rlm@123 791 ;; eye. All eyes will have a parent named "eyes" just as all joints
rlm@123 792 ;; have a parent named "joints". The resulting camera will be a
rlm@123 793 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
rlm@123 794 ;; the eye marker. The eye marker will contain the metadata for the
rlm@123 795 ;; eye, and will be moved by it's bound geometry. The dimensions of
rlm@123 796 ;; the eye's camera are equal to the dimensions of the eye's "UV"
rlm@123 797 ;; map.
rlm@116 798
rlm@123 799
rlm@123 800 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@123 801
rlm@123 802 ;; Ears work the same way as vision.
rlm@123 803
rlm@123 804 ;; (hearing creature) will return [init-functions
rlm@123 805 ;; sensor-functions]. The init functions each take the world and
rlm@123 806 ;; register a SoundProcessor that does foureier transforms on the
rlm@123 807 ;; incommong sound data, making it available to each sensor function.
rlm@123 808
rlm@123 809 (defn creature-ears
rlm@128 810 "Return the children of the creature's \"ears\" node."
rlm@128 811 ;;dylan
rlm@128 812 ;;"The ear nodes which are children of the \"ears\" node in the
rlm@128 813 ;;creature."
rlm@123 814 [#^Node creature]
rlm@123 815 (if-let [ear-node (.getChild creature "ears")]
rlm@123 816 (seq (.getChildren ear-node))
rlm@123 817 (do (println-repl "could not find ears node") [])))
rlm@123 818
rlm@123 819 (defn closest-node
rlm@128 820 "Return the object in creature which is closest to the given node."
rlm@128 821 ;;dylan"The closest object in creature to the given node."
rlm@116 822 [#^Node creature #^Node eye]
rlm@116 823 (loop [radius (float 0.01)]
rlm@116 824 (let [results (CollisionResults.)]
rlm@116 825 (.collideWith
rlm@116 826 creature
rlm@116 827 (BoundingBox. (.getWorldTranslation eye)
rlm@116 828 radius radius radius)
rlm@116 829 results)
rlm@116 830 (if-let [target (first results)]
rlm@116 831 (.getGeometry target)
rlm@116 832 (recur (float (* 2 radius)))))))
rlm@116 833
rlm@128 834 ;;dylan (defn follow-sense, adjoin-sense, attach-stimuli,
rlm@128 835 ;;anchor-qualia, augment-organ, with-organ
rlm@123 836 (defn bind-sense
rlm@123 837 "Bind the sense to the Spatial such that it will maintain its
rlm@117 838 current position relative to the Spatial no matter how the spatial
rlm@123 839 moves. 'sense can be either a Camera or Listener object."
rlm@123 840 [#^Spatial obj sense]
rlm@123 841 (let [sense-offset (.subtract (.getLocation sense)
rlm@123 842 (.getWorldTranslation obj))
rlm@123 843 initial-sense-rotation (Quaternion. (.getRotation sense))
rlm@117 844 base-anti-rotation (.inverse (.getWorldRotation obj))]
rlm@117 845 (.addControl
rlm@117 846 obj
rlm@117 847 (proxy [AbstractControl] []
rlm@117 848 (controlUpdate [tpf]
rlm@117 849 (let [total-rotation
rlm@117 850 (.mult base-anti-rotation (.getWorldRotation obj))]
rlm@123 851 (.setLocation sense
rlm@117 852 (.add
rlm@123 853 (.mult total-rotation sense-offset)
rlm@117 854 (.getWorldTranslation obj)))
rlm@123 855 (.setRotation sense
rlm@123 856 (.mult total-rotation initial-sense-rotation))))
rlm@117 857 (controlRender [_ _])))))
rlm@117 858
rlm@117 859
rlm@123 860 (defn update-listener-velocity
rlm@123 861 "Update the listener's velocity every update loop."
rlm@123 862 [#^Spatial obj #^Listener lis]
rlm@123 863 (let [old-position (atom (.getLocation lis))]
rlm@123 864 (.addControl
rlm@123 865 obj
rlm@123 866 (proxy [AbstractControl] []
rlm@123 867 (controlUpdate [tpf]
rlm@123 868 (let [new-position (.getLocation lis)]
rlm@123 869 (.setVelocity
rlm@123 870 lis
rlm@123 871 (.mult (.subtract new-position @old-position)
rlm@123 872 (float (/ tpf))))
rlm@123 873 (reset! old-position new-position)))
rlm@123 874 (controlRender [_ _])))))
rlm@123 875
rlm@123 876 (import com.aurellem.capture.audio.AudioSendRenderer)
rlm@123 877
rlm@123 878 (defn attach-ear
rlm@123 879 [#^Application world #^Node creature #^Spatial ear continuation]
rlm@123 880 (let [target (closest-node creature ear)
rlm@123 881 lis (Listener.)
rlm@123 882 audio-renderer (.getAudioRenderer world)
rlm@123 883 sp (sound-processor continuation)]
rlm@123 884 (.setLocation lis (.getWorldTranslation ear))
rlm@123 885 (.setRotation lis (.getWorldRotation ear))
rlm@123 886 (bind-sense target lis)
rlm@123 887 (update-listener-velocity target lis)
rlm@123 888 (.addListener audio-renderer lis)
rlm@123 889 (.registerSoundProcessor audio-renderer lis sp)))
rlm@123 890
rlm@123 891 (defn enable-hearing
rlm@123 892 [#^Node creature #^Spatial ear]
rlm@123 893 (let [hearing-data (atom [])]
rlm@123 894 [(fn [world]
rlm@123 895 (attach-ear world creature ear
rlm@123 896 (fn [data]
rlm@123 897 (reset! hearing-data (vec data)))))
rlm@123 898 [(fn []
rlm@123 899 (let [data @hearing-data
rlm@123 900 topology
rlm@123 901 (vec (map #(vector % 0) (range 0 (count data))))
rlm@123 902 scaled-data
rlm@123 903 (vec
rlm@123 904 (map
rlm@123 905 #(rem (int (* 255 (/ (+ 1 %) 2))) 256)
rlm@123 906 data))]
rlm@123 907 [topology scaled-data]))
rlm@123 908 ]]))
rlm@123 909
rlm@123 910 (defn hearing
rlm@123 911 [#^Node creature]
rlm@123 912 (reduce
rlm@123 913 (fn [[init-a senses-a]
rlm@123 914 [init-b senses-b]]
rlm@123 915 [(conj init-a init-b)
rlm@123 916 (into senses-a senses-b)])
rlm@123 917 [[][]]
rlm@123 918 (for [ear (creature-ears creature)]
rlm@123 919 (enable-hearing creature ear))))
rlm@123 920
rlm@118 921 (defn attach-eye
rlm@118 922 "Attach a Camera to the appropiate area and return the Camera."
rlm@118 923 [#^Node creature #^Spatial eye]
rlm@123 924 (let [target (closest-node creature eye)
rlm@118 925 [cam-width cam-height] (eye-dimensions eye)
rlm@118 926 cam (Camera. cam-width cam-height)]
rlm@118 927 (.setLocation cam (.getWorldTranslation eye))
rlm@118 928 (.setRotation cam (.getWorldRotation eye))
rlm@119 929 (.setFrustumPerspective
rlm@119 930 cam 45 (/ (.getWidth cam) (.getHeight cam))
rlm@119 931 1 1000)
rlm@123 932 (bind-sense target cam)
rlm@118 933 cam))
rlm@118 934
rlm@118 935 (def presets
rlm@121 936 {:all 0xFFFFFF
rlm@119 937 :red 0xFF0000
rlm@119 938 :blue 0x0000FF
rlm@119 939 :green 0x00FF00})
rlm@119 940
rlm@118 941 (defn enable-vision
rlm@118 942 "return [init-function sensor-functions] for a particular eye"
rlm@118 943 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
rlm@118 944 (let [retinal-map (retina-sensor-image eye)
rlm@123 945 camera (attach-eye creature eye)
rlm@123 946 vision-image
rlm@123 947 (atom
rlm@123 948 (BufferedImage. (.getWidth camera)
rlm@123 949 (.getHeight camera)
rlm@123 950 BufferedImage/TYPE_BYTE_BINARY))]
rlm@123 951 [(fn [world]
rlm@123 952 (add-eye
rlm@123 953 world camera
rlm@123 954 (let [counter (atom 0)]
rlm@123 955 (fn [r fb bb bi]
rlm@123 956 (if (zero? (rem (swap! counter inc) (inc skip)))
rlm@123 957 (reset! vision-image (BufferedImage! r fb bb bi)))))))
rlm@123 958 (vec
rlm@123 959 (map
rlm@123 960 (fn [[key image]]
rlm@123 961 (let [whites (white-coordinates image)
rlm@123 962 topology (vec (collapse whites))
rlm@123 963 mask (presets key)]
rlm@123 964 (fn []
rlm@123 965 (vector
rlm@123 966 topology
rlm@123 967 (vec
rlm@123 968 (for [[x y] whites]
rlm@123 969 (bit-and
rlm@123 970 mask (.getRGB @vision-image x y))))))))
rlm@123 971 retinal-map))]))
rlm@118 972
rlm@116 973 (defn vision
rlm@121 974 [#^Node creature & {skip :skip :or {skip 0}}]
rlm@121 975 (reduce
rlm@121 976 (fn [[init-a senses-a]
rlm@121 977 [init-b senses-b]]
rlm@121 978 [(conj init-a init-b)
rlm@121 979 (into senses-a senses-b)])
rlm@121 980 [[][]]
rlm@121 981 (for [eye (creature-eyes creature)]
rlm@121 982 (enable-vision creature eye))))
rlm@128 983
rlm@128 984
rlm@128 985
rlm@128 986
rlm@128 987
rlm@128 988 ;; lower level --- nodes
rlm@128 989 ;; closest-node "parse/compile-x" -> makes organ, which is spatial, fn pair
rlm@128 990
rlm@128 991 ;; higher level -- organs
rlm@128 992 ;;
rlm@128 993
rlm@128 994 ;; higher level --- sense/effector
rlm@128 995 ;; these are the functions that provide world i/o, chinese-room style
rlm@128 996
rlm@128 997
rlm@134 998
rlm@116 999
rlm@116 1000 (defn blender-creature
rlm@116 1001 "Return a creature with all joints in place."
rlm@116 1002 [blender-path]
rlm@116 1003 (let [model (load-blender-model blender-path)
rlm@134 1004 joints (creature-joints model)]
rlm@134 1005 (assemble-creature model joints)))
rlm@116 1006
rlm@126 1007 (defn gray-scale [num]
rlm@126 1008 (+ num
rlm@126 1009 (bit-shift-left num 8)
rlm@126 1010 (bit-shift-left num 16)))
rlm@126 1011
rlm@130 1012 (defn debug-touch-window
rlm@103 1013 "creates function that offers a debug view of sensor data"
rlm@103 1014 []
rlm@103 1015 (let [vi (view-image)]
rlm@103 1016 (fn
rlm@103 1017 [[coords sensor-data]]
rlm@103 1018 (let [image (points->image coords)]
rlm@103 1019 (dorun
rlm@103 1020 (for [i (range (count coords))]
rlm@103 1021 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@126 1022 (gray-scale (sensor-data i)))))
rlm@126 1023
rlm@126 1024
rlm@103 1025 (vi image)))))
rlm@103 1026
rlm@118 1027 (defn debug-vision-window
rlm@118 1028 "creates function that offers a debug view of sensor data"
rlm@118 1029 []
rlm@118 1030 (let [vi (view-image)]
rlm@118 1031 (fn
rlm@118 1032 [[coords sensor-data]]
rlm@118 1033 (let [image (points->image coords)]
rlm@118 1034 (dorun
rlm@118 1035 (for [i (range (count coords))]
rlm@118 1036 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@118 1037 (sensor-data i))))
rlm@118 1038 (vi image)))))
rlm@118 1039
rlm@123 1040 (defn debug-hearing-window
rlm@123 1041 "view audio data"
rlm@123 1042 [height]
rlm@123 1043 (let [vi (view-image)]
rlm@123 1044 (fn [[coords sensor-data]]
rlm@123 1045 (let [image (BufferedImage. (count coords) height
rlm@123 1046 BufferedImage/TYPE_INT_RGB)]
rlm@123 1047 (dorun
rlm@123 1048 (for [x (range (count coords))]
rlm@123 1049 (dorun
rlm@123 1050 (for [y (range height)]
rlm@123 1051 (let [raw-sensor (sensor-data x)]
rlm@126 1052 (.setRGB image x y (gray-scale raw-sensor)))))))
rlm@126 1053
rlm@123 1054 (vi image)))))
rlm@123 1055
rlm@123 1056
rlm@123 1057
rlm@106 1058 ;;(defn test-touch [world creature]
rlm@83 1059
rlm@78 1060
rlm@123 1061
rlm@123 1062
rlm@130 1063 ;; here's how motor-control/ proprioception will work: Each muscle is
rlm@130 1064 ;; defined by a 1-D array of numbers (the "motor pool") each of which
rlm@130 1065 ;; represent muscle fibers. A muscle also has a scalar :strength
rlm@130 1066 ;; factor which determines how strong the muscle as a whole is.
rlm@130 1067 ;; The effector function for a muscle takes a number < (count
rlm@130 1068 ;; motor-pool) and that number is said to "activate" all the muscle
rlm@130 1069 ;; fibers whose index is lower than the number. Each fiber will apply
rlm@130 1070 ;; force in proportion to its value in the array. Lower values cause
rlm@130 1071 ;; less force. The lower values can be put at the "beginning" of the
rlm@130 1072 ;; 1-D array to simulate the layout of actual human muscles, which are
rlm@130 1073 ;; capable of more percise movements when exerting less force.
rlm@129 1074
rlm@130 1075 ;; I don't know how to encode proprioception, so for now, just return
rlm@130 1076 ;; a function for each joint that returns a triplet of floats which
rlm@130 1077 ;; represent relative roll, pitch, and yaw. Write display code for
rlm@130 1078 ;; this though.
rlm@130 1079
rlm@130 1080 (defn muscle-fibre-values
rlm@130 1081 "Take the first row of the image and return the low-order bytes."
rlm@130 1082 [#^BufferedImage image]
rlm@130 1083 (let [width (.getWidth image)]
rlm@130 1084 (for [x (range width)]
rlm@130 1085 (bit-and
rlm@130 1086 0xFF
rlm@130 1087 (.getRGB image x 0)))))
rlm@130 1088
rlm@106 1089 (defn test-creature [thing]
rlm@106 1090 (let [x-axis
rlm@106 1091 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
rlm@106 1092 y-axis
rlm@106 1093 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
rlm@106 1094 z-axis
rlm@106 1095 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
rlm@106 1096 creature (blender-creature thing)
rlm@106 1097 touch-nerves (touch creature)
rlm@130 1098 touch-debug-windows (map (fn [_] (debug-touch-window)) touch-nerves)
rlm@121 1099 [init-vision-fns vision-data] (vision creature)
rlm@121 1100 vision-debug (map (fn [_] (debug-vision-window)) vision-data)
rlm@118 1101 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
rlm@123 1102 [init-hearing-fns hearing-senses] (hearing creature)
rlm@123 1103 hearing-windows (map (fn [_] (debug-hearing-window 50))
rlm@123 1104 hearing-senses)
rlm@124 1105 bell (AudioNode. (asset-manager)
rlm@128 1106 "Sounds/pure.wav" false)
rlm@130 1107 prop (proprioception creature)
rlm@135 1108 prop-debug (proprioception-debug-window)
rlm@123 1109 ;; dream
rlm@123 1110
rlm@106 1111 ]
rlm@143 1112
rlm@143 1113
rlm@143 1114 (apply
rlm@143 1115 world
rlm@143 1116 (with-movement
rlm@143 1117 (.getChild creature "worm-21")
rlm@143 1118 ["key-r" "key-t"
rlm@143 1119 "key-f" "key-g"
rlm@143 1120 "key-v" "key-b"]
rlm@143 1121 [10 10 10 10 1 1]
rlm@143 1122 [(nodify [creature
rlm@143 1123 (box 10 2 10 :position (Vector3f. 0 -9 0)
rlm@143 1124 :color ColorRGBA/Gray :mass 0)
rlm@143 1125 x-axis y-axis z-axis
rlm@143 1126 me
rlm@143 1127 ])
rlm@143 1128 (merge standard-debug-controls
rlm@143 1129 {"key-return"
rlm@143 1130 (fn [_ value]
rlm@143 1131 (if value
rlm@143 1132 (do
rlm@143 1133 (println-repl "play-sound")
rlm@143 1134 (.play bell))))})
rlm@143 1135 (fn [world]
rlm@143 1136 (light-up-everything world)
rlm@143 1137 (enable-debug world)
rlm@143 1138 (dorun (map #(% world) init-vision-fns))
rlm@143 1139 (dorun (map #(% world) init-hearing-fns))
rlm@143 1140
rlm@143 1141 (add-eye world
rlm@143 1142 (attach-eye creature (test-eye))
rlm@143 1143 (comp (view-image) BufferedImage!))
rlm@143 1144
rlm@143 1145 (add-eye world (.getCamera world) no-op)
rlm@145 1146 ;;(set-gravity world (Vector3f. 0 0 0))
rlm@143 1147 ;;(com.aurellem.capture.Capture/captureVideo
rlm@143 1148 ;; world (file-str "/home/r/proj/ai-videos/hand"))
rlm@143 1149 ;;(.setTimer world (RatchetTimer. 60))
rlm@143 1150 (speed-up world)
rlm@143 1151 ;;(set-gravity world (Vector3f. 0 0 0))
rlm@143 1152 )
rlm@143 1153 (fn [world tpf]
rlm@143 1154 ;;(dorun
rlm@143 1155 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
rlm@143 1156
rlm@143 1157 (prop-debug (prop))
rlm@143 1158
rlm@143 1159 (dorun
rlm@143 1160 (map #(%1 (%2 (.getRootNode world)))
rlm@143 1161 touch-debug-windows touch-nerves))
rlm@143 1162
rlm@143 1163 (dorun
rlm@143 1164 (map #(%1 (%2))
rlm@143 1165 vision-debug vision-data))
rlm@143 1166 (dorun
rlm@143 1167 (map #(%1 (%2)) hearing-windows hearing-senses))
rlm@143 1168
rlm@143 1169
rlm@143 1170 ;;(println-repl (vision-data))
rlm@143 1171 (.setLocalTranslation me (.getLocation (.getCamera world)))
rlm@143 1172
rlm@143 1173
rlm@143 1174 )]
rlm@106 1175 ;;(let [timer (atom 0)]
rlm@106 1176 ;; (fn [_ _]
rlm@106 1177 ;; (swap! timer inc)
rlm@106 1178 ;; (if (= (rem @timer 60) 0)
rlm@106 1179 ;; (println-repl (float (/ @timer 60))))))
rlm@143 1180 ))))
rlm@83 1181
rlm@109 1182
rlm@109 1183
rlm@109 1184
rlm@109 1185
rlm@109 1186
rlm@109 1187
rlm@109 1188
rlm@109 1189
rlm@109 1190 ;;; experiments in collisions
rlm@109 1191
rlm@109 1192
rlm@109 1193
rlm@109 1194 (defn collision-test []
rlm@110 1195 (let [b-radius 1
rlm@110 1196 b-position (Vector3f. 0 0 0)
rlm@109 1197 obj-b (box 1 1 1 :color ColorRGBA/Blue
rlm@109 1198 :position b-position
rlm@110 1199 :mass 0)
rlm@110 1200 node (nodify [obj-b])
rlm@110 1201 bounds-b
rlm@110 1202 (doto (Picture.)
rlm@110 1203 (.setHeight 50)
rlm@110 1204 (.setWidth 50)
rlm@110 1205 (.setImage (asset-manager)
rlm@110 1206 "Models/creature1/hand.png"
rlm@110 1207 false
rlm@110 1208 ))
rlm@110 1209
rlm@110 1210 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
rlm@110 1211
rlm@110 1212 collisions
rlm@110 1213 (let [cr (CollisionResults.)]
rlm@110 1214 (.collideWith node bounds-b cr)
rlm@110 1215 (println (map #(.getContactPoint %) cr))
rlm@110 1216 cr)
rlm@110 1217
rlm@110 1218 ;;collision-points
rlm@110 1219 ;;(map #(sphere 0.1 :position (.getContactPoint %))
rlm@110 1220 ;; collisions)
rlm@110 1221
rlm@110 1222 ;;node (nodify (conj collision-points obj-b))
rlm@110 1223
rlm@109 1224 sim
rlm@109 1225 (world node
rlm@110 1226 {"key-space"
rlm@130 1227 (fn [_ value]
rlm@110 1228 (if value
rlm@110 1229 (let [cr (CollisionResults.)]
rlm@110 1230 (.collideWith node bounds-b cr)
rlm@110 1231 (println-repl (map #(.getContactPoint %) cr))
rlm@110 1232 cr)))}
rlm@109 1233 no-op
rlm@109 1234 no-op)
rlm@109 1235
rlm@109 1236 ]
rlm@110 1237 sim
rlm@109 1238
rlm@109 1239 ))
rlm@109 1240
rlm@116 1241
rlm@116 1242 ;; the camera will stay in its initial position/rotation with relation
rlm@116 1243 ;; to the spatial.
rlm@116 1244
rlm@116 1245
rlm@117 1246 (defn follow-test
rlm@117 1247 "show a camera that stays in the same relative position to a blue cube."
rlm@117 1248 []
rlm@116 1249 (let [camera-pos (Vector3f. 0 30 0)
rlm@116 1250 rock (box 1 1 1 :color ColorRGBA/Blue
rlm@116 1251 :position (Vector3f. 0 10 0)
rlm@116 1252 :mass 30
rlm@116 1253 )
rlm@118 1254 rot (.getWorldRotation rock)
rlm@116 1255
rlm@116 1256 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
rlm@116 1257 :position (Vector3f. 0 -3 0))]
rlm@116 1258
rlm@116 1259 (world
rlm@116 1260 (nodify [rock table])
rlm@116 1261 standard-debug-controls
rlm@116 1262 (fn [world]
rlm@116 1263 (let
rlm@116 1264 [cam (doto (.clone (.getCamera world))
rlm@116 1265 (.setLocation camera-pos)
rlm@116 1266 (.lookAt Vector3f/ZERO
rlm@116 1267 Vector3f/UNIT_X))]
rlm@123 1268 (bind-sense rock cam)
rlm@116 1269
rlm@116 1270 (.setTimer world (RatchetTimer. 60))
rlm@116 1271 (add-eye world cam (comp (view-image) BufferedImage!))
rlm@116 1272 (add-eye world (.getCamera world) no-op))
rlm@116 1273 )
rlm@118 1274 (fn [_ _] (println-repl rot)))))
rlm@116 1275
rlm@118 1276
rlm@123 1277
rlm@87 1278 #+end_src
rlm@83 1279
rlm@87 1280 #+results: body-1
rlm@133 1281 : #'cortex.silly/follow-test
rlm@78 1282
rlm@78 1283
rlm@78 1284 * COMMENT purgatory
rlm@78 1285 #+begin_src clojure
rlm@77 1286 (defn bullet-trans []
rlm@77 1287 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
rlm@77 1288 :position (Vector3f. -10 5 0))
rlm@77 1289 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1290 :position (Vector3f. -10 -5 0)
rlm@77 1291 :mass 0)
rlm@77 1292 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1293 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1294 swivel
rlm@77 1295 (.toRotationMatrix
rlm@77 1296 (doto (Quaternion.)
rlm@77 1297 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1298 Vector3f/UNIT_X)))]
rlm@77 1299 (doto
rlm@77 1300 (ConeJoint.
rlm@77 1301 control-a control-b
rlm@77 1302 (Vector3f. 0 5 0)
rlm@77 1303 (Vector3f. 0 -5 0)
rlm@77 1304 swivel swivel)
rlm@77 1305 (.setLimit (* 0.6 (/ Math/PI 4))
rlm@77 1306 (/ Math/PI 4)
rlm@77 1307 (* Math/PI 0.8)))
rlm@77 1308 (world (nodify
rlm@77 1309 [obj-a obj-b])
rlm@77 1310 standard-debug-controls
rlm@77 1311 enable-debug
rlm@77 1312 no-op)))
rlm@74 1313
rlm@74 1314
rlm@77 1315 (defn bullet-trans* []
rlm@77 1316 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
rlm@77 1317 :position (Vector3f. 5 0 0)
rlm@77 1318 :mass 90)
rlm@77 1319 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1320 :position (Vector3f. -5 0 0)
rlm@77 1321 :mass 0)
rlm@77 1322 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1323 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1324 move-up? (atom nil)
rlm@77 1325 move-down? (atom nil)
rlm@77 1326 move-left? (atom nil)
rlm@77 1327 move-right? (atom nil)
rlm@77 1328 roll-left? (atom nil)
rlm@77 1329 roll-right? (atom nil)
rlm@77 1330 force 100
rlm@77 1331 swivel
rlm@77 1332 (.toRotationMatrix
rlm@77 1333 (doto (Quaternion.)
rlm@77 1334 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1335 Vector3f/UNIT_X)))
rlm@77 1336 x-move
rlm@77 1337 (doto (Matrix3f.)
rlm@77 1338 (.fromStartEndVectors Vector3f/UNIT_X
rlm@77 1339 (.normalize (Vector3f. 1 1 0))))
rlm@77 1340
rlm@77 1341 timer (atom 0)]
rlm@77 1342 (doto
rlm@77 1343 (ConeJoint.
rlm@77 1344 control-a control-b
rlm@77 1345 (Vector3f. -8 0 0)
rlm@77 1346 (Vector3f. 2 0 0)
rlm@77 1347 ;;swivel swivel
rlm@77 1348 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
rlm@77 1349 x-move Matrix3f/IDENTITY
rlm@77 1350 )
rlm@77 1351 (.setCollisionBetweenLinkedBodys false)
rlm@77 1352 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
rlm@77 1353 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
rlm@77 1354 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
rlm@77 1355 (world (nodify
rlm@77 1356 [obj-a obj-b])
rlm@77 1357 (merge standard-debug-controls
rlm@77 1358 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@77 1359 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@77 1360 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@77 1361 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@77 1362 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@77 1363 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@77 1364
rlm@77 1365 (fn [world]
rlm@77 1366 (enable-debug world)
rlm@77 1367 (set-gravity world Vector3f/ZERO)
rlm@77 1368 )
rlm@77 1369
rlm@77 1370 (fn [world _]
rlm@77 1371
rlm@77 1372 (if @move-up?
rlm@77 1373 (.applyForce control-a
rlm@77 1374 (Vector3f. force 0 0)
rlm@77 1375 (Vector3f. 0 0 0)))
rlm@77 1376 (if @move-down?
rlm@77 1377 (.applyForce control-a
rlm@77 1378 (Vector3f. (- force) 0 0)
rlm@77 1379 (Vector3f. 0 0 0)))
rlm@77 1380 (if @move-left?
rlm@77 1381 (.applyForce control-a
rlm@77 1382 (Vector3f. 0 force 0)
rlm@77 1383 (Vector3f. 0 0 0)))
rlm@77 1384 (if @move-right?
rlm@77 1385 (.applyForce control-a
rlm@77 1386 (Vector3f. 0 (- force) 0)
rlm@77 1387 (Vector3f. 0 0 0)))
rlm@77 1388
rlm@77 1389 (if @roll-left?
rlm@77 1390 (.applyForce control-a
rlm@77 1391 (Vector3f. 0 0 force)
rlm@77 1392 (Vector3f. 0 0 0)))
rlm@77 1393 (if @roll-right?
rlm@77 1394 (.applyForce control-a
rlm@77 1395 (Vector3f. 0 0 (- force))
rlm@77 1396 (Vector3f. 0 0 0)))
rlm@77 1397
rlm@77 1398 (if (zero? (rem (swap! timer inc) 100))
rlm@77 1399 (.attachChild
rlm@77 1400 (.getRootNode world)
rlm@77 1401 (sphere 0.05 :color ColorRGBA/Yellow
rlm@77 1402 :physical? false :position
rlm@77 1403 (.getWorldTranslation obj-a)))))
rlm@77 1404 )
rlm@77 1405 ))
rlm@77 1406
rlm@94 1407 (defn transform-trianglesdsd
rlm@94 1408 "Transform that converts each vertex in the first triangle
rlm@94 1409 into the corresponding vertex in the second triangle."
rlm@94 1410 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 1411 (let [in [(.get1 tri-1)
rlm@94 1412 (.get2 tri-1)
rlm@94 1413 (.get3 tri-1)]
rlm@94 1414 out [(.get1 tri-2)
rlm@94 1415 (.get2 tri-2)
rlm@94 1416 (.get3 tri-2)]]
rlm@94 1417 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
rlm@94 1418 in* [(.mult translate (in 0))
rlm@94 1419 (.mult translate (in 1))
rlm@94 1420 (.mult translate (in 2))]
rlm@94 1421 final-translation
rlm@94 1422 (doto (Matrix4f.)
rlm@94 1423 (.setTranslation (out 1)))
rlm@94 1424
rlm@94 1425 rotate-1
rlm@94 1426 (doto (Matrix3f.)
rlm@94 1427 (.fromStartEndVectors
rlm@94 1428 (.normalize
rlm@94 1429 (.subtract
rlm@94 1430 (in* 1) (in* 0)))
rlm@94 1431 (.normalize
rlm@94 1432 (.subtract
rlm@94 1433 (out 1) (out 0)))))
rlm@94 1434 in** [(.mult rotate-1 (in* 0))
rlm@94 1435 (.mult rotate-1 (in* 1))
rlm@94 1436 (.mult rotate-1 (in* 2))]
rlm@94 1437 scale-factor-1
rlm@94 1438 (.mult
rlm@94 1439 (.normalize
rlm@94 1440 (.subtract
rlm@94 1441 (out 1)
rlm@94 1442 (out 0)))
rlm@94 1443 (/ (.length
rlm@94 1444 (.subtract (out 1)
rlm@94 1445 (out 0)))
rlm@94 1446 (.length
rlm@94 1447 (.subtract (in** 1)
rlm@94 1448 (in** 0)))))
rlm@94 1449 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
rlm@94 1450 in*** [(.mult scale-1 (in** 0))
rlm@94 1451 (.mult scale-1 (in** 1))
rlm@94 1452 (.mult scale-1 (in** 2))]
rlm@94 1453
rlm@94 1454
rlm@94 1455
rlm@94 1456
rlm@94 1457
rlm@94 1458 ]
rlm@94 1459
rlm@94 1460 (dorun (map println in))
rlm@94 1461 (println)
rlm@94 1462 (dorun (map println in*))
rlm@94 1463 (println)
rlm@94 1464 (dorun (map println in**))
rlm@94 1465 (println)
rlm@94 1466 (dorun (map println in***))
rlm@94 1467 (println)
rlm@94 1468
rlm@99 1469 ))))
rlm@94 1470
rlm@94 1471
rlm@106 1472 (defn world-setup [joint]
rlm@106 1473 (let [joint-position (Vector3f. 0 0 0)
rlm@106 1474 joint-rotation
rlm@106 1475 (.toRotationMatrix
rlm@106 1476 (.mult
rlm@106 1477 (doto (Quaternion.)
rlm@106 1478 (.fromAngleAxis
rlm@106 1479 (* 1 (/ Math/PI 4))
rlm@106 1480 (Vector3f. -1 0 0)))
rlm@106 1481 (doto (Quaternion.)
rlm@106 1482 (.fromAngleAxis
rlm@106 1483 (* 1 (/ Math/PI 2))
rlm@106 1484 (Vector3f. 0 0 1)))))
rlm@106 1485 top-position (.mult joint-rotation (Vector3f. 8 0 0))
rlm@106 1486
rlm@106 1487 origin (doto
rlm@106 1488 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
rlm@106 1489 :position top-position))
rlm@106 1490 top (doto
rlm@106 1491 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
rlm@106 1492 :position top-position)
rlm@106 1493
rlm@106 1494 (.addControl
rlm@106 1495 (RigidBodyControl.
rlm@106 1496 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
rlm@106 1497 bottom (doto
rlm@106 1498 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
rlm@106 1499 :position (Vector3f. 0 0 0))
rlm@106 1500 (.addControl
rlm@106 1501 (RigidBodyControl.
rlm@106 1502 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
rlm@106 1503 table (box 10 2 10 :position (Vector3f. 0 -20 0)
rlm@106 1504 :color ColorRGBA/Gray :mass 0)
rlm@106 1505 a (.getControl top RigidBodyControl)
rlm@106 1506 b (.getControl bottom RigidBodyControl)]
rlm@106 1507
rlm@106 1508 (cond
rlm@106 1509 (= joint :cone)
rlm@106 1510
rlm@106 1511 (doto (ConeJoint.
rlm@106 1512 a b
rlm@106 1513 (world-to-local top joint-position)
rlm@106 1514 (world-to-local bottom joint-position)
rlm@106 1515 joint-rotation
rlm@106 1516 joint-rotation
rlm@106 1517 )
rlm@106 1518
rlm@106 1519
rlm@106 1520 (.setLimit (* (/ 10) Math/PI)
rlm@106 1521 (* (/ 4) Math/PI)
rlm@106 1522 0)))
rlm@106 1523 [origin top bottom table]))
rlm@106 1524
rlm@106 1525 (defn test-joint [joint]
rlm@106 1526 (let [[origin top bottom floor] (world-setup joint)
rlm@106 1527 control (.getControl top RigidBodyControl)
rlm@106 1528 move-up? (atom false)
rlm@106 1529 move-down? (atom false)
rlm@106 1530 move-left? (atom false)
rlm@106 1531 move-right? (atom false)
rlm@106 1532 roll-left? (atom false)
rlm@106 1533 roll-right? (atom false)
rlm@106 1534 timer (atom 0)]
rlm@106 1535
rlm@106 1536 (world
rlm@106 1537 (nodify [top bottom floor origin])
rlm@106 1538 (merge standard-debug-controls
rlm@106 1539 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@106 1540 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@106 1541 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@106 1542 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@106 1543 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@106 1544 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@106 1545
rlm@106 1546 (fn [world]
rlm@106 1547 (light-up-everything world)
rlm@106 1548 (enable-debug world)
rlm@106 1549 (set-gravity world (Vector3f. 0 0 0))
rlm@106 1550 )
rlm@106 1551
rlm@106 1552 (fn [world _]
rlm@106 1553 (if (zero? (rem (swap! timer inc) 100))
rlm@106 1554 (do
rlm@106 1555 ;; (println-repl @timer)
rlm@106 1556 (.attachChild (.getRootNode world)
rlm@106 1557 (sphere 0.05 :color ColorRGBA/Yellow
rlm@106 1558 :position (.getWorldTranslation top)
rlm@106 1559 :physical? false))
rlm@106 1560 (.attachChild (.getRootNode world)
rlm@106 1561 (sphere 0.05 :color ColorRGBA/LightGray
rlm@106 1562 :position (.getWorldTranslation bottom)
rlm@106 1563 :physical? false))))
rlm@106 1564
rlm@106 1565 (if @move-up?
rlm@106 1566 (.applyTorque control
rlm@106 1567 (.mult (.getPhysicsRotation control)
rlm@106 1568 (Vector3f. 0 0 10))))
rlm@106 1569 (if @move-down?
rlm@106 1570 (.applyTorque control
rlm@106 1571 (.mult (.getPhysicsRotation control)
rlm@106 1572 (Vector3f. 0 0 -10))))
rlm@106 1573 (if @move-left?
rlm@106 1574 (.applyTorque control
rlm@106 1575 (.mult (.getPhysicsRotation control)
rlm@106 1576 (Vector3f. 0 10 0))))
rlm@106 1577 (if @move-right?
rlm@106 1578 (.applyTorque control
rlm@106 1579 (.mult (.getPhysicsRotation control)
rlm@106 1580 (Vector3f. 0 -10 0))))
rlm@106 1581 (if @roll-left?
rlm@106 1582 (.applyTorque control
rlm@106 1583 (.mult (.getPhysicsRotation control)
rlm@106 1584 (Vector3f. -1 0 0))))
rlm@106 1585 (if @roll-right?
rlm@106 1586 (.applyTorque control
rlm@106 1587 (.mult (.getPhysicsRotation control)
rlm@106 1588 (Vector3f. 1 0 0))))))))
rlm@106 1589
rlm@99 1590
rlm@99 1591
rlm@107 1592 (defprotocol Frame
rlm@107 1593 (frame [this]))
rlm@107 1594
rlm@107 1595 (extend-type BufferedImage
rlm@107 1596 Frame
rlm@107 1597 (frame [image]
rlm@107 1598 (merge
rlm@107 1599 (apply
rlm@107 1600 hash-map
rlm@107 1601 (interleave
rlm@107 1602 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1603 (vector x y)))
rlm@107 1604 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1605 (let [data (.getRGB image x y)]
rlm@107 1606 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
rlm@107 1607 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
rlm@107 1608 :b (bit-and 0x0000ff data)))))))
rlm@107 1609 {:width (.getWidth image) :height (.getHeight image)})))
rlm@107 1610
rlm@107 1611
rlm@107 1612 (extend-type ImagePlus
rlm@107 1613 Frame
rlm@107 1614 (frame [image+]
rlm@107 1615 (frame (.getBufferedImage image+))))
rlm@107 1616
rlm@107 1617
rlm@99 1618 #+end_src
rlm@99 1619
rlm@99 1620
rlm@99 1621 * COMMENT generate source
rlm@99 1622 #+begin_src clojure :tangle ../src/cortex/silly.clj
rlm@99 1623 <<body-1>>
rlm@99 1624 #+end_src
rlm@99 1625
rlm@99 1626
rlm@94 1627
rlm@94 1628