rlm@73
|
1 #+title: First attempt at a creature!
|
rlm@73
|
2 #+author: Robert McIntyre
|
rlm@73
|
3 #+email: rlm@mit.edu
|
rlm@73
|
4 #+description:
|
rlm@73
|
5 #+keywords: simulation, jMonkeyEngine3, clojure
|
rlm@73
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@73
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@73
|
8
|
rlm@99
|
9 * objectives
|
rlm@103
|
10 - [X] get an overall bitmap-like image for touch
|
rlm@103
|
11 - [X] write code to visuliaze this bitmap
|
rlm@99
|
12 - [ ] directly change the UV-pixels to show touch sensor activation
|
rlm@99
|
13 - [ ] write an explination for why b&w bitmaps for senses is appropiate
|
rlm@99
|
14 - [ ] clean up touch code and write visulazation test
|
rlm@99
|
15 - [ ] do the same for eyes
|
rlm@99
|
16
|
rlm@73
|
17 * Intro
|
rlm@73
|
18 So far, I've made the following senses --
|
rlm@73
|
19 - Vision
|
rlm@73
|
20 - Hearing
|
rlm@73
|
21 - Touch
|
rlm@73
|
22 - Proprioception
|
rlm@73
|
23
|
rlm@73
|
24 And one effector:
|
rlm@73
|
25 - Movement
|
rlm@73
|
26
|
rlm@73
|
27 However, the code so far has only enabled these senses, but has not
|
rlm@73
|
28 actually implemented them. For example, there is still a lot of work
|
rlm@73
|
29 to be done for vision. I need to be able to create an /eyeball/ in
|
rlm@73
|
30 simulation that can be moved around and see the world from different
|
rlm@73
|
31 angles. I also need to determine weather to use log-polar or cartesian
|
rlm@73
|
32 for the visual input, and I need to determine how/wether to
|
rlm@73
|
33 disceritise the visual input.
|
rlm@73
|
34
|
rlm@73
|
35 I also want to be able to visualize both the sensors and the
|
rlm@104
|
36 effectors in pretty pictures. This semi-retarted creature will be my
|
rlm@73
|
37 first attempt at bringing everything together.
|
rlm@73
|
38
|
rlm@73
|
39 * The creature's body
|
rlm@73
|
40
|
rlm@73
|
41 Still going to do an eve-like body in blender, but due to problems
|
rlm@104
|
42 importing the joints, etc into jMonkeyEngine3, I'm going to do all
|
rlm@73
|
43 the connecting here in clojure code, using the names of the individual
|
rlm@73
|
44 components and trial and error. Later, I'll maybe make some sort of
|
rlm@73
|
45 creature-building modifications to blender that support whatever
|
rlm@73
|
46 discreitized senses I'm going to make.
|
rlm@73
|
47
|
rlm@73
|
48 #+name: body-1
|
rlm@73
|
49 #+begin_src clojure
|
rlm@73
|
50 (ns cortex.silly
|
rlm@73
|
51 "let's play!"
|
rlm@73
|
52 {:author "Robert McIntyre"})
|
rlm@73
|
53
|
rlm@73
|
54 ;; TODO remove this!
|
rlm@73
|
55 (require 'cortex.import)
|
rlm@73
|
56 (cortex.import/mega-import-jme3)
|
rlm@73
|
57 (use '(cortex world util body hearing touch vision))
|
rlm@73
|
58
|
rlm@73
|
59 (rlm.rlm-commands/help)
|
rlm@99
|
60 (import java.awt.image.BufferedImage)
|
rlm@99
|
61 (import javax.swing.JPanel)
|
rlm@99
|
62 (import javax.swing.SwingUtilities)
|
rlm@99
|
63 (import java.awt.Dimension)
|
rlm@99
|
64 (import javax.swing.JFrame)
|
rlm@99
|
65 (import java.awt.Dimension)
|
rlm@106
|
66 (import com.aurellem.capture.RatchetTimer)
|
rlm@99
|
67 (declare joint-create)
|
rlm@108
|
68 (use 'clojure.contrib.def)
|
rlm@73
|
69
|
rlm@100
|
70 (defn points->image
|
rlm@100
|
71 "Take a sparse collection of points and visuliaze it as a
|
rlm@100
|
72 BufferedImage."
|
rlm@102
|
73
|
rlm@102
|
74 ;; TODO maybe parallelize this since it's easy
|
rlm@102
|
75
|
rlm@100
|
76 [points]
|
rlm@106
|
77 (if (empty? points)
|
rlm@106
|
78 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
|
rlm@106
|
79 (let [xs (vec (map first points))
|
rlm@106
|
80 ys (vec (map second points))
|
rlm@106
|
81 x0 (apply min xs)
|
rlm@106
|
82 y0 (apply min ys)
|
rlm@106
|
83 width (- (apply max xs) x0)
|
rlm@106
|
84 height (- (apply max ys) y0)
|
rlm@106
|
85 image (BufferedImage. (inc width) (inc height)
|
rlm@119
|
86 BufferedImage/TYPE_INT_RGB)]
|
rlm@118
|
87 (dorun
|
rlm@118
|
88 (for [x (range (.getWidth image))
|
rlm@118
|
89 y (range (.getHeight image))]
|
rlm@119
|
90 (.setRGB image x y 0xFF0000)))
|
rlm@106
|
91 (dorun
|
rlm@106
|
92 (for [index (range (count points))]
|
rlm@106
|
93 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
|
rlm@106
|
94
|
rlm@106
|
95 image)))
|
rlm@100
|
96
|
rlm@101
|
97 (defn average [coll]
|
rlm@101
|
98 (/ (reduce + coll) (count coll)))
|
rlm@101
|
99
|
rlm@101
|
100 (defn collapse-1d
|
rlm@101
|
101 "One dimensional analogue of collapse"
|
rlm@101
|
102 [center line]
|
rlm@101
|
103 (let [length (count line)
|
rlm@101
|
104 num-above (count (filter (partial < center) line))
|
rlm@101
|
105 num-below (- length num-above)]
|
rlm@101
|
106 (range (- center num-below)
|
rlm@115
|
107 (+ center num-above))))
|
rlm@99
|
108
|
rlm@99
|
109 (defn collapse
|
rlm@99
|
110 "Take a set of pairs of integers and collapse them into a
|
rlm@99
|
111 contigous bitmap."
|
rlm@99
|
112 [points]
|
rlm@108
|
113 (if (empty? points) []
|
rlm@108
|
114 (let
|
rlm@108
|
115 [num-points (count points)
|
rlm@108
|
116 center (vector
|
rlm@108
|
117 (int (average (map first points)))
|
rlm@108
|
118 (int (average (map first points))))
|
rlm@108
|
119 flattened
|
rlm@108
|
120 (reduce
|
rlm@108
|
121 concat
|
rlm@108
|
122 (map
|
rlm@108
|
123 (fn [column]
|
rlm@108
|
124 (map vector
|
rlm@108
|
125 (map first column)
|
rlm@108
|
126 (collapse-1d (second center)
|
rlm@108
|
127 (map second column))))
|
rlm@108
|
128 (partition-by first (sort-by first points))))
|
rlm@108
|
129 squeezed
|
rlm@108
|
130 (reduce
|
rlm@108
|
131 concat
|
rlm@108
|
132 (map
|
rlm@108
|
133 (fn [row]
|
rlm@108
|
134 (map vector
|
rlm@108
|
135 (collapse-1d (first center)
|
rlm@108
|
136 (map first row))
|
rlm@108
|
137 (map second row)))
|
rlm@108
|
138 (partition-by second (sort-by second flattened))))
|
rlm@108
|
139 relocate
|
rlm@108
|
140 (let [min-x (apply min (map first squeezed))
|
rlm@108
|
141 min-y (apply min (map second squeezed))]
|
rlm@108
|
142 (map (fn [[x y]]
|
rlm@108
|
143 [(- x min-x)
|
rlm@108
|
144 (- y min-y)])
|
rlm@108
|
145 squeezed))]
|
rlm@115
|
146 relocate)))
|
rlm@83
|
147
|
rlm@83
|
148 (defn load-bullet []
|
rlm@84
|
149 (let [sim (world (Node.) {} no-op no-op)]
|
rlm@102
|
150 (doto sim
|
rlm@102
|
151 (.enqueue
|
rlm@102
|
152 (fn []
|
rlm@102
|
153 (.stop sim)))
|
rlm@102
|
154 (.start))))
|
rlm@83
|
155
|
rlm@73
|
156 (defn load-blender-model
|
rlm@73
|
157 "Load a .blend file using an asset folder relative path."
|
rlm@73
|
158 [^String model]
|
rlm@73
|
159 (.loadModel
|
rlm@73
|
160 (doto (asset-manager)
|
rlm@73
|
161 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
|
rlm@73
|
162 model))
|
rlm@73
|
163
|
rlm@74
|
164 (defn meta-data [blender-node key]
|
rlm@74
|
165 (if-let [data (.getUserData blender-node "properties")]
|
rlm@74
|
166 (.findValue data key)
|
rlm@74
|
167 nil))
|
rlm@73
|
168
|
rlm@78
|
169 (defn blender-to-jme
|
rlm@78
|
170 "Convert from Blender coordinates to JME coordinates"
|
rlm@78
|
171 [#^Vector3f in]
|
rlm@78
|
172 (Vector3f. (.getX in)
|
rlm@78
|
173 (.getZ in)
|
rlm@78
|
174 (- (.getY in))))
|
rlm@74
|
175
|
rlm@79
|
176 (defn jme-to-blender
|
rlm@79
|
177 "Convert from JME coordinates to Blender coordinates"
|
rlm@79
|
178 [#^Vector3f in]
|
rlm@79
|
179 (Vector3f. (.getX in)
|
rlm@79
|
180 (- (.getZ in))
|
rlm@79
|
181 (.getY in)))
|
rlm@79
|
182
|
rlm@78
|
183 (defn joint-targets
|
rlm@78
|
184 "Return the two closest two objects to the joint object, ordered
|
rlm@78
|
185 from bottom to top according to the joint's rotation."
|
rlm@78
|
186 [#^Node parts #^Node joint]
|
rlm@78
|
187 (loop [radius (float 0.01)]
|
rlm@78
|
188 (let [results (CollisionResults.)]
|
rlm@78
|
189 (.collideWith
|
rlm@78
|
190 parts
|
rlm@78
|
191 (BoundingBox. (.getWorldTranslation joint)
|
rlm@78
|
192 radius radius radius)
|
rlm@78
|
193 results)
|
rlm@78
|
194 (let [targets
|
rlm@78
|
195 (distinct
|
rlm@78
|
196 (map #(.getGeometry %) results))]
|
rlm@78
|
197 (if (>= (count targets) 2)
|
rlm@78
|
198 (sort-by
|
rlm@79
|
199 #(let [v
|
rlm@79
|
200 (jme-to-blender
|
rlm@79
|
201 (.mult
|
rlm@79
|
202 (.inverse (.getWorldRotation joint))
|
rlm@79
|
203 (.subtract (.getWorldTranslation %)
|
rlm@79
|
204 (.getWorldTranslation joint))))]
|
rlm@79
|
205 (println-repl (.getName %) ":" v)
|
rlm@79
|
206 (.dot (Vector3f. 1 1 1)
|
rlm@79
|
207 v))
|
rlm@78
|
208 (take 2 targets))
|
rlm@78
|
209 (recur (float (* radius 2))))))))
|
rlm@74
|
210
|
rlm@87
|
211 (defn world-to-local
|
rlm@87
|
212 "Convert the world coordinates into coordinates relative to the
|
rlm@87
|
213 object (i.e. local coordinates), taking into account the rotation
|
rlm@87
|
214 of object."
|
rlm@87
|
215 [#^Spatial object world-coordinate]
|
rlm@87
|
216 (let [out (Vector3f.)]
|
rlm@88
|
217 (.worldToLocal object world-coordinate out) out))
|
rlm@87
|
218
|
rlm@96
|
219 (defn local-to-world
|
rlm@96
|
220 "Convert the local coordinates into coordinates into world relative
|
rlm@96
|
221 coordinates"
|
rlm@96
|
222 [#^Spatial object local-coordinate]
|
rlm@96
|
223 (let [world-coordinate (Vector3f.)]
|
rlm@96
|
224 (.localToWorld object local-coordinate world-coordinate)
|
rlm@96
|
225 world-coordinate))
|
rlm@96
|
226
|
rlm@87
|
227 (defmulti joint-dispatch
|
rlm@87
|
228 "Translate blender pseudo-joints into real JME joints."
|
rlm@88
|
229 (fn [constraints & _]
|
rlm@87
|
230 (:type constraints)))
|
rlm@87
|
231
|
rlm@87
|
232 (defmethod joint-dispatch :point
|
rlm@87
|
233 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
234 (println-repl "creating POINT2POINT joint")
|
rlm@87
|
235 (Point2PointJoint.
|
rlm@87
|
236 control-a
|
rlm@87
|
237 control-b
|
rlm@87
|
238 pivot-a
|
rlm@87
|
239 pivot-b))
|
rlm@87
|
240
|
rlm@87
|
241 (defmethod joint-dispatch :hinge
|
rlm@87
|
242 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
243 (println-repl "creating HINGE joint")
|
rlm@87
|
244 (let [axis
|
rlm@87
|
245 (if-let
|
rlm@87
|
246 [axis (:axis constraints)]
|
rlm@87
|
247 axis
|
rlm@87
|
248 Vector3f/UNIT_X)
|
rlm@87
|
249 [limit-1 limit-2] (:limit constraints)
|
rlm@87
|
250 hinge-axis
|
rlm@87
|
251 (.mult
|
rlm@87
|
252 rotation
|
rlm@87
|
253 (blender-to-jme axis))]
|
rlm@87
|
254 (doto
|
rlm@87
|
255 (HingeJoint.
|
rlm@87
|
256 control-a
|
rlm@87
|
257 control-b
|
rlm@87
|
258 pivot-a
|
rlm@87
|
259 pivot-b
|
rlm@87
|
260 hinge-axis
|
rlm@87
|
261 hinge-axis)
|
rlm@87
|
262 (.setLimit limit-1 limit-2))))
|
rlm@87
|
263
|
rlm@87
|
264 (defmethod joint-dispatch :cone
|
rlm@87
|
265 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
266 (let [limit-xz (:limit-xz constraints)
|
rlm@87
|
267 limit-xy (:limit-xy constraints)
|
rlm@87
|
268 twist (:twist constraints)]
|
rlm@87
|
269
|
rlm@87
|
270 (println-repl "creating CONE joint")
|
rlm@87
|
271 (println-repl rotation)
|
rlm@87
|
272 (println-repl
|
rlm@87
|
273 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
|
rlm@87
|
274 (println-repl
|
rlm@87
|
275 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
|
rlm@87
|
276 (println-repl
|
rlm@87
|
277 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
|
rlm@87
|
278 (doto
|
rlm@87
|
279 (ConeJoint.
|
rlm@87
|
280 control-a
|
rlm@87
|
281 control-b
|
rlm@87
|
282 pivot-a
|
rlm@87
|
283 pivot-b
|
rlm@87
|
284 rotation
|
rlm@87
|
285 rotation)
|
rlm@87
|
286 (.setLimit (float limit-xz)
|
rlm@87
|
287 (float limit-xy)
|
rlm@87
|
288 (float twist)))))
|
rlm@87
|
289
|
rlm@88
|
290 (defn connect
|
rlm@87
|
291 "here are some examples:
|
rlm@87
|
292 {:type :point}
|
rlm@87
|
293 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
|
rlm@87
|
294 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
|
rlm@87
|
295
|
rlm@89
|
296 {:type :cone :limit-xz 0]
|
rlm@89
|
297 :limit-xy 0]
|
rlm@89
|
298 :twist 0]} (use XZY rotation mode in blender!)"
|
rlm@87
|
299 [#^Node obj-a #^Node obj-b #^Node joint]
|
rlm@87
|
300 (let [control-a (.getControl obj-a RigidBodyControl)
|
rlm@87
|
301 control-b (.getControl obj-b RigidBodyControl)
|
rlm@87
|
302 joint-center (.getWorldTranslation joint)
|
rlm@87
|
303 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
|
rlm@87
|
304 pivot-a (world-to-local obj-a joint-center)
|
rlm@87
|
305 pivot-b (world-to-local obj-b joint-center)]
|
rlm@89
|
306
|
rlm@87
|
307 (if-let [constraints
|
rlm@87
|
308 (map-vals
|
rlm@87
|
309 eval
|
rlm@87
|
310 (read-string
|
rlm@87
|
311 (meta-data joint "joint")))]
|
rlm@89
|
312 ;; A side-effect of creating a joint registers
|
rlm@89
|
313 ;; it with both physics objects which in turn
|
rlm@89
|
314 ;; will register the joint with the physics system
|
rlm@89
|
315 ;; when the simulation is started.
|
rlm@87
|
316 (do
|
rlm@87
|
317 (println-repl "creating joint between"
|
rlm@87
|
318 (.getName obj-a) "and" (.getName obj-b))
|
rlm@87
|
319 (joint-dispatch constraints
|
rlm@87
|
320 control-a control-b
|
rlm@87
|
321 pivot-a pivot-b
|
rlm@87
|
322 joint-rotation))
|
rlm@87
|
323 (println-repl "could not find joint meta-data!"))))
|
rlm@87
|
324
|
rlm@78
|
325 (defn assemble-creature [#^Node pieces joints]
|
rlm@78
|
326 (dorun
|
rlm@78
|
327 (map
|
rlm@78
|
328 (fn [geom]
|
rlm@78
|
329 (let [physics-control
|
rlm@78
|
330 (RigidBodyControl.
|
rlm@78
|
331 (HullCollisionShape.
|
rlm@78
|
332 (.getMesh geom))
|
rlm@78
|
333 (if-let [mass (meta-data geom "mass")]
|
rlm@78
|
334 (do
|
rlm@78
|
335 (println-repl
|
rlm@78
|
336 "setting" (.getName geom) "mass to" (float mass))
|
rlm@78
|
337 (float mass))
|
rlm@78
|
338 (float 1)))]
|
rlm@78
|
339
|
rlm@78
|
340 (.addControl geom physics-control)))
|
rlm@78
|
341 (filter #(isa? (class %) Geometry )
|
rlm@78
|
342 (node-seq pieces))))
|
rlm@78
|
343 (dorun
|
rlm@78
|
344 (map
|
rlm@78
|
345 (fn [joint]
|
rlm@78
|
346 (let [[obj-a obj-b]
|
rlm@78
|
347 (joint-targets pieces joint)]
|
rlm@88
|
348 (connect obj-a obj-b joint)))
|
rlm@78
|
349 joints))
|
rlm@78
|
350 pieces)
|
rlm@74
|
351
|
rlm@116
|
352 (declare blender-creature)
|
rlm@74
|
353
|
rlm@78
|
354 (def hand "Models/creature1/one.blend")
|
rlm@74
|
355
|
rlm@78
|
356 (def worm "Models/creature1/try-again.blend")
|
rlm@78
|
357
|
rlm@90
|
358 (def touch "Models/creature1/touch.blend")
|
rlm@90
|
359
|
rlm@90
|
360 (defn worm-model [] (load-blender-model worm))
|
rlm@90
|
361
|
rlm@80
|
362 (defn x-ray [#^ColorRGBA color]
|
rlm@80
|
363 (doto (Material. (asset-manager)
|
rlm@80
|
364 "Common/MatDefs/Misc/Unshaded.j3md")
|
rlm@80
|
365 (.setColor "Color" color)
|
rlm@80
|
366 (-> (.getAdditionalRenderState)
|
rlm@80
|
367 (.setDepthTest false))))
|
rlm@80
|
368
|
rlm@91
|
369 (defn colorful []
|
rlm@91
|
370 (.getChild (worm-model) "worm-21"))
|
rlm@90
|
371
|
rlm@90
|
372 (import jme3tools.converters.ImageToAwt)
|
rlm@90
|
373
|
rlm@90
|
374 (import ij.ImagePlus)
|
rlm@90
|
375
|
rlm@108
|
376 ;; Every Mesh has many triangles, each with its own index.
|
rlm@108
|
377 ;; Every vertex has its own index as well.
|
rlm@90
|
378
|
rlm@108
|
379 (defn tactile-sensor-image
|
rlm@110
|
380 "Return the touch-sensor distribution image in BufferedImage format,
|
rlm@110
|
381 or nil if it does not exist."
|
rlm@91
|
382 [#^Geometry obj]
|
rlm@110
|
383 (if-let [image-path (meta-data obj "touch")]
|
rlm@110
|
384 (ImageToAwt/convert
|
rlm@110
|
385 (.getImage
|
rlm@110
|
386 (.loadTexture
|
rlm@110
|
387 (asset-manager)
|
rlm@110
|
388 image-path))
|
rlm@110
|
389 false false 0)))
|
rlm@110
|
390
|
rlm@91
|
391 (import ij.process.ImageProcessor)
|
rlm@91
|
392 (import java.awt.image.BufferedImage)
|
rlm@91
|
393
|
rlm@92
|
394 (def white -1)
|
rlm@94
|
395
|
rlm@91
|
396 (defn filter-pixels
|
rlm@108
|
397 "List the coordinates of all pixels matching pred, within the bounds
|
rlm@108
|
398 provided. Bounds -> [x0 y0 width height]"
|
rlm@92
|
399 {:author "Dylan Holmes"}
|
rlm@108
|
400 ([pred #^BufferedImage image]
|
rlm@108
|
401 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
|
rlm@108
|
402 ([pred #^BufferedImage image [x0 y0 width height]]
|
rlm@108
|
403 ((fn accumulate [x y matches]
|
rlm@108
|
404 (cond
|
rlm@108
|
405 (>= y (+ height y0)) matches
|
rlm@108
|
406 (>= x (+ width x0)) (recur 0 (inc y) matches)
|
rlm@108
|
407 (pred (.getRGB image x y))
|
rlm@108
|
408 (recur (inc x) y (conj matches [x y]))
|
rlm@108
|
409 :else (recur (inc x) y matches)))
|
rlm@108
|
410 x0 y0 [])))
|
rlm@91
|
411
|
rlm@91
|
412 (defn white-coordinates
|
rlm@108
|
413 "Coordinates of all the white pixels in a subset of the image."
|
rlm@112
|
414 ([#^BufferedImage image bounds]
|
rlm@112
|
415 (filter-pixels #(= % white) image bounds))
|
rlm@112
|
416 ([#^BufferedImage image]
|
rlm@112
|
417 (filter-pixels #(= % white) image)))
|
rlm@108
|
418
|
rlm@108
|
419 (defn triangle
|
rlm@112
|
420 "Get the triangle specified by triangle-index from the mesh within
|
rlm@112
|
421 bounds."
|
rlm@108
|
422 [#^Mesh mesh triangle-index]
|
rlm@108
|
423 (let [scratch (Triangle.)]
|
rlm@108
|
424 (.getTriangle mesh triangle-index scratch)
|
rlm@108
|
425 scratch))
|
rlm@108
|
426
|
rlm@108
|
427 (defn triangle-vertex-indices
|
rlm@108
|
428 "Get the triangle vertex indices of a given triangle from a given
|
rlm@108
|
429 mesh."
|
rlm@108
|
430 [#^Mesh mesh triangle-index]
|
rlm@108
|
431 (let [indices (int-array 3)]
|
rlm@108
|
432 (.getTriangle mesh triangle-index indices)
|
rlm@108
|
433 (vec indices)))
|
rlm@108
|
434
|
rlm@108
|
435 (defn vertex-UV-coord
|
rlm@108
|
436 "Get the uv-coordinates of the vertex named by vertex-index"
|
rlm@108
|
437 [#^Mesh mesh vertex-index]
|
rlm@108
|
438 (let [UV-buffer
|
rlm@108
|
439 (.getData
|
rlm@108
|
440 (.getBuffer
|
rlm@108
|
441 mesh
|
rlm@108
|
442 VertexBuffer$Type/TexCoord))]
|
rlm@108
|
443 [(.get UV-buffer (* vertex-index 2))
|
rlm@108
|
444 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
|
rlm@108
|
445
|
rlm@108
|
446 (defn triangle-UV-coord
|
rlm@108
|
447 "Get the uv-cooridnates of the triangle's verticies."
|
rlm@108
|
448 [#^Mesh mesh width height triangle-index]
|
rlm@108
|
449 (map (fn [[u v]] (vector (* width u) (* height v)))
|
rlm@108
|
450 (map (partial vertex-UV-coord mesh)
|
rlm@108
|
451 (triangle-vertex-indices mesh triangle-index))))
|
rlm@91
|
452
|
rlm@102
|
453 (defn same-side?
|
rlm@102
|
454 "Given the points p1 and p2 and the reference point ref, is point p
|
rlm@102
|
455 on the same side of the line that goes through p1 and p2 as ref is?"
|
rlm@102
|
456 [p1 p2 ref p]
|
rlm@91
|
457 (<=
|
rlm@91
|
458 0
|
rlm@91
|
459 (.dot
|
rlm@91
|
460 (.cross (.subtract p2 p1) (.subtract p p1))
|
rlm@91
|
461 (.cross (.subtract p2 p1) (.subtract ref p1)))))
|
rlm@91
|
462
|
rlm@108
|
463 (defn triangle-seq [#^Triangle tri]
|
rlm@108
|
464 [(.get1 tri) (.get2 tri) (.get3 tri)])
|
rlm@108
|
465
|
rlm@108
|
466 (defn vector3f-seq [#^Vector3f v]
|
rlm@108
|
467 [(.getX v) (.getY v) (.getZ v)])
|
rlm@108
|
468
|
rlm@108
|
469 (defn inside-triangle?
|
rlm@108
|
470 "Is the point inside the triangle?"
|
rlm@108
|
471 {:author "Dylan Holmes"}
|
rlm@108
|
472 [#^Triangle tri #^Vector3f p]
|
rlm@108
|
473 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
|
rlm@108
|
474 (and
|
rlm@108
|
475 (same-side? vert-1 vert-2 vert-3 p)
|
rlm@108
|
476 (same-side? vert-2 vert-3 vert-1 p)
|
rlm@108
|
477 (same-side? vert-3 vert-1 vert-2 p))))
|
rlm@108
|
478
|
rlm@94
|
479 (defn triangle->matrix4f
|
rlm@108
|
480 "Converts the triangle into a 4x4 matrix: The first three columns
|
rlm@108
|
481 contain the vertices of the triangle; the last contains the unit
|
rlm@108
|
482 normal of the triangle. The bottom row is filled with 1s."
|
rlm@94
|
483 [#^Triangle t]
|
rlm@94
|
484 (let [mat (Matrix4f.)
|
rlm@94
|
485 [vert-1 vert-2 vert-3]
|
rlm@94
|
486 ((comp vec map) #(.get t %) (range 3))
|
rlm@94
|
487 unit-normal (do (.calculateNormal t)(.getNormal t))
|
rlm@94
|
488 vertices [vert-1 vert-2 vert-3 unit-normal]]
|
rlm@94
|
489 (dorun
|
rlm@94
|
490 (for [row (range 4) col (range 3)]
|
rlm@94
|
491 (do
|
rlm@94
|
492 (.set mat col row (.get (vertices row)col))
|
rlm@94
|
493 (.set mat 3 row 1))))
|
rlm@94
|
494 mat))
|
rlm@94
|
495
|
rlm@94
|
496 (defn triangle-transformation
|
rlm@94
|
497 "Returns the affine transformation that converts each vertex in the
|
rlm@94
|
498 first triangle into the corresponding vertex in the second
|
rlm@94
|
499 triangle."
|
rlm@94
|
500 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@94
|
501 (.mult
|
rlm@94
|
502 (triangle->matrix4f tri-2)
|
rlm@94
|
503 (.invert (triangle->matrix4f tri-1))))
|
rlm@94
|
504
|
rlm@108
|
505 (defn point->vector2f [[u v]]
|
rlm@108
|
506 (Vector2f. u v))
|
rlm@94
|
507
|
rlm@94
|
508 (defn vector2f->vector3f [v]
|
rlm@94
|
509 (Vector3f. (.getX v) (.getY v) 0))
|
rlm@94
|
510
|
rlm@94
|
511 (defn map-triangle [f #^Triangle tri]
|
rlm@94
|
512 (Triangle.
|
rlm@94
|
513 (f 0 (.get1 tri))
|
rlm@94
|
514 (f 1 (.get2 tri))
|
rlm@94
|
515 (f 2 (.get3 tri))))
|
rlm@94
|
516
|
rlm@108
|
517 (defn points->triangle
|
rlm@108
|
518 "Convert a list of points into a triangle."
|
rlm@108
|
519 [points]
|
rlm@108
|
520 (apply #(Triangle. %1 %2 %3)
|
rlm@108
|
521 (map (fn [point]
|
rlm@108
|
522 (let [point (vec point)]
|
rlm@108
|
523 (Vector3f. (get point 0 0)
|
rlm@108
|
524 (get point 1 0)
|
rlm@108
|
525 (get point 2 0))))
|
rlm@108
|
526 (take 3 points))))
|
rlm@94
|
527
|
rlm@108
|
528 (defn convex-bounds
|
rlm@108
|
529 "Dimensions of the smallest integer bounding square of the list of
|
rlm@108
|
530 2D verticies in the form: [x y width height]."
|
rlm@108
|
531 [uv-verts]
|
rlm@108
|
532 (let [xs (map first uv-verts)
|
rlm@108
|
533 ys (map second uv-verts)
|
rlm@108
|
534 x0 (Math/floor (apply min xs))
|
rlm@108
|
535 y0 (Math/floor (apply min ys))
|
rlm@108
|
536 x1 (Math/ceil (apply max xs))
|
rlm@108
|
537 y1 (Math/ceil (apply max ys))]
|
rlm@108
|
538 [x0 y0 (- x1 x0) (- y1 y0)]))
|
rlm@93
|
539
|
rlm@106
|
540 (defn sensors-in-triangle
|
rlm@107
|
541 "Find the locations of the touch sensors within a triangle in both
|
rlm@107
|
542 UV and gemoetry relative coordinates."
|
rlm@107
|
543 [image mesh tri-index]
|
rlm@107
|
544 (let [width (.getWidth image)
|
rlm@108
|
545 height (.getHeight image)
|
rlm@108
|
546 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
|
rlm@108
|
547 bounds (convex-bounds UV-vertex-coords)
|
rlm@108
|
548
|
rlm@108
|
549 cutout-triangle (points->triangle UV-vertex-coords)
|
rlm@108
|
550 UV-sensor-coords
|
rlm@108
|
551 (filter (comp (partial inside-triangle? cutout-triangle)
|
rlm@108
|
552 (fn [[u v]] (Vector3f. u v 0)))
|
rlm@108
|
553 (white-coordinates image bounds))
|
rlm@108
|
554 UV->geometry (triangle-transformation
|
rlm@108
|
555 cutout-triangle
|
rlm@108
|
556 (triangle mesh tri-index))
|
rlm@108
|
557 geometry-sensor-coords
|
rlm@108
|
558 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
|
rlm@108
|
559 UV-sensor-coords)]
|
rlm@108
|
560 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
|
rlm@107
|
561
|
rlm@108
|
562 (defn-memo locate-feelers
|
rlm@94
|
563 "Search the geometry's tactile UV image for touch sensors, returning
|
rlm@94
|
564 their positions in geometry-relative coordinates."
|
rlm@94
|
565 [#^Geometry geo]
|
rlm@108
|
566 (let [mesh (.getMesh geo)
|
rlm@108
|
567 num-triangles (.getTriangleCount mesh)]
|
rlm@108
|
568 (if-let [image (tactile-sensor-image geo)]
|
rlm@108
|
569 (map
|
rlm@108
|
570 (partial sensors-in-triangle image mesh)
|
rlm@108
|
571 (range num-triangles))
|
rlm@108
|
572 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
|
rlm@102
|
573
|
rlm@102
|
574 (use 'clojure.contrib.def)
|
rlm@102
|
575
|
rlm@102
|
576 (defn-memo touch-topology [#^Gemoetry geo]
|
rlm@108
|
577 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
|
rlm@108
|
578
|
rlm@108
|
579 (defn-memo feeler-coordinates [#^Geometry geo]
|
rlm@108
|
580 (vec (map :geometry (locate-feelers geo))))
|
rlm@102
|
581
|
rlm@97
|
582 (defn enable-touch [#^Geometry geo]
|
rlm@108
|
583 (let [feeler-coords (feeler-coordinates geo)
|
rlm@96
|
584 tris (triangles geo)
|
rlm@109
|
585 limit 0.1
|
rlm@109
|
586 ;;results (CollisionResults.)
|
rlm@109
|
587 ]
|
rlm@111
|
588 (if (empty? (touch-topology geo))
|
rlm@111
|
589 nil
|
rlm@111
|
590 (fn [node]
|
rlm@111
|
591 (let [sensor-origins
|
rlm@111
|
592 (map
|
rlm@111
|
593 #(map (partial local-to-world geo) %)
|
rlm@111
|
594 feeler-coords)
|
rlm@111
|
595 triangle-normals
|
rlm@111
|
596 (map (partial get-ray-direction geo)
|
rlm@111
|
597 tris)
|
rlm@111
|
598 rays
|
rlm@111
|
599 (flatten
|
rlm@111
|
600 (map (fn [origins norm]
|
rlm@111
|
601 (map #(doto (Ray. % norm)
|
rlm@97
|
602 (.setLimit limit)) origins))
|
rlm@111
|
603 sensor-origins triangle-normals))]
|
rlm@111
|
604 (vector
|
rlm@111
|
605 (touch-topology geo)
|
rlm@111
|
606 (vec
|
rlm@111
|
607 (for [ray rays]
|
rlm@111
|
608 (do
|
rlm@111
|
609 (let [results (CollisionResults.)]
|
rlm@111
|
610 (.collideWith node ray results)
|
rlm@111
|
611 (let [touch-objects
|
rlm@111
|
612 (set
|
rlm@111
|
613 (filter #(not (= geo %))
|
rlm@111
|
614 (map #(.getGeometry %) results)))]
|
rlm@111
|
615 (if (> (count touch-objects) 0)
|
rlm@111
|
616 1 0))))))))))))
|
rlm@111
|
617
|
rlm@111
|
618 (defn touch [#^Node pieces]
|
rlm@111
|
619 (filter (comp not nil?)
|
rlm@111
|
620 (map enable-touch
|
rlm@111
|
621 (filter #(isa? (class %) Geometry)
|
rlm@111
|
622 (node-seq pieces)))))
|
rlm@94
|
623
|
rlm@109
|
624
|
rlm@111
|
625 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
|
rlm@111
|
626 ;; http://en.wikipedia.org/wiki/Retina
|
rlm@109
|
627
|
rlm@111
|
628 (defn test-eye []
|
rlm@117
|
629 (.getChild
|
rlm@117
|
630 (.getChild (worm-model) "eyes")
|
rlm@117
|
631 "eye"))
|
rlm@111
|
632
|
rlm@111
|
633
|
rlm@111
|
634 (defn retina-sensor-image
|
rlm@111
|
635 "Return a map of pixel selection functions to BufferedImages
|
rlm@111
|
636 describing the distribution of light-sensitive components on this
|
rlm@111
|
637 geometry's surface. Each function creates an integer from the rgb
|
rlm@111
|
638 values found in the pixel. :red, :green, :blue, :gray are already
|
rlm@111
|
639 defined as extracting the red green blue and average components
|
rlm@111
|
640 respectively."
|
rlm@117
|
641 [#^Spatial eye]
|
rlm@111
|
642 (if-let [eye-map (meta-data eye "eye")]
|
rlm@111
|
643 (map-vals
|
rlm@111
|
644 #(ImageToAwt/convert
|
rlm@111
|
645 (.getImage (.loadTexture (asset-manager) %))
|
rlm@111
|
646 false false 0)
|
rlm@120
|
647 (eval (read-string eye-map)))))
|
rlm@111
|
648
|
rlm@117
|
649 (defn eye-dimensions
|
rlm@117
|
650 "returns the width and height specified in the metadata of the eye"
|
rlm@117
|
651 [#^Spatial eye]
|
rlm@117
|
652 (let [dimensions
|
rlm@117
|
653 (map #(vector (.getWidth %) (.getHeight %))
|
rlm@117
|
654 (vals (retina-sensor-image eye)))]
|
rlm@117
|
655 [(apply max (map first dimensions))
|
rlm@117
|
656 (apply max (map second dimensions))]))
|
rlm@117
|
657
|
rlm@117
|
658
|
rlm@116
|
659 (defn creature-eyes
|
rlm@116
|
660 "The eye nodes which are children of the \"eyes\" node in the
|
rlm@116
|
661 creature."
|
rlm@116
|
662 [#^Node creature]
|
rlm@116
|
663 (if-let [eye-node (.getChild creature "eyes")]
|
rlm@116
|
664 (seq (.getChildren eye-node))
|
rlm@116
|
665 (do (println-repl "could not find eyes node") [])))
|
rlm@111
|
666
|
rlm@112
|
667
|
rlm@112
|
668 ;; Here's how vision will work.
|
rlm@112
|
669
|
rlm@112
|
670 ;; Make the continuation in scene-processor take FrameBuffer,
|
rlm@112
|
671 ;; byte-buffer, BufferedImage already sized to the correct
|
rlm@112
|
672 ;; dimensions. the continuation will decide wether to "mix" them
|
rlm@112
|
673 ;; into the BufferedImage, lazily ignore them, or mix them halfway
|
rlm@112
|
674 ;; and call c/graphics card routines.
|
rlm@112
|
675
|
rlm@112
|
676 ;; (vision creature) will take an optional :skip argument which will
|
rlm@112
|
677 ;; inform the continuations in scene processor to skip the given
|
rlm@112
|
678 ;; number of cycles; 0 means that no cycles will be skipped.
|
rlm@112
|
679
|
rlm@112
|
680 ;; (vision creature) will return [init-functions sensor-functions].
|
rlm@112
|
681 ;; The init-functions are each single-arg functions that take the
|
rlm@112
|
682 ;; world and register the cameras and must each be called before the
|
rlm@112
|
683 ;; corresponding sensor-functions. Each init-function returns the
|
rlm@112
|
684 ;; viewport for that eye which can be manipulated, saved, etc. Each
|
rlm@112
|
685 ;; sensor-function is a thunk and will return data in the same
|
rlm@112
|
686 ;; format as the tactile-sensor functions; the structure is
|
rlm@112
|
687 ;; [topology, sensor-data]. Internally, these sensor-functions
|
rlm@112
|
688 ;; maintain a reference to sensor-data which is periodically updated
|
rlm@112
|
689 ;; by the continuation function established by its init-function.
|
rlm@112
|
690 ;; They can be queried every cycle, but their information may not
|
rlm@112
|
691 ;; necessairly be different every cycle.
|
rlm@112
|
692
|
rlm@112
|
693 ;; Each eye in the creature in blender will work the same way as
|
rlm@112
|
694 ;; joints -- a one dimensional object with no geometry whose local
|
rlm@112
|
695 ;; coordinate system determines the orientation of the resulting
|
rlm@112
|
696 ;; eye. All eyes will have a parent named "eyes" just as all joints
|
rlm@112
|
697 ;; have a parent named "joints". The resulting camera will be a
|
rlm@112
|
698 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
|
rlm@112
|
699 ;; the eye marker. The eye marker will contain the metadata for the
|
rlm@112
|
700 ;; eye, and will be moved by it's bound geometry. The dimensions of
|
rlm@112
|
701 ;; the eye's camera are equal to the dimensions of the eye's "UV"
|
rlm@112
|
702 ;; map.
|
rlm@116
|
703
|
rlm@116
|
704 (defn eye-target
|
rlm@116
|
705 "The closest object in creature to eye."
|
rlm@116
|
706 [#^Node creature #^Node eye]
|
rlm@116
|
707 (loop [radius (float 0.01)]
|
rlm@116
|
708 (let [results (CollisionResults.)]
|
rlm@116
|
709 (.collideWith
|
rlm@116
|
710 creature
|
rlm@116
|
711 (BoundingBox. (.getWorldTranslation eye)
|
rlm@116
|
712 radius radius radius)
|
rlm@116
|
713 results)
|
rlm@116
|
714 (if-let [target (first results)]
|
rlm@116
|
715 (.getGeometry target)
|
rlm@116
|
716 (recur (float (* 2 radius)))))))
|
rlm@116
|
717
|
rlm@117
|
718 (defn bind-camera
|
rlm@117
|
719 "Bind the camera to the Spatial such that it will maintain its
|
rlm@117
|
720 current position relative to the Spatial no matter how the spatial
|
rlm@117
|
721 moves."
|
rlm@117
|
722 [#^Spatial obj #^Camera cam]
|
rlm@117
|
723 (let [cam-offset (.subtract (.getLocation cam)
|
rlm@117
|
724 (.getWorldTranslation obj))
|
rlm@117
|
725 initial-cam-rotation (Quaternion. (.getRotation cam))
|
rlm@117
|
726 base-anti-rotation (.inverse (.getWorldRotation obj))]
|
rlm@117
|
727 (.addControl
|
rlm@117
|
728 obj
|
rlm@117
|
729 (proxy [AbstractControl] []
|
rlm@117
|
730 (controlUpdate [tpf]
|
rlm@117
|
731 (let [total-rotation
|
rlm@117
|
732 (.mult base-anti-rotation (.getWorldRotation obj))]
|
rlm@117
|
733 (.setLocation cam
|
rlm@117
|
734 (.add
|
rlm@117
|
735 (.mult total-rotation cam-offset)
|
rlm@117
|
736 (.getWorldTranslation obj)))
|
rlm@117
|
737 (.setRotation cam
|
rlm@117
|
738 (.mult total-rotation initial-cam-rotation))))
|
rlm@117
|
739 (controlRender [_ _])))))
|
rlm@117
|
740
|
rlm@117
|
741
|
rlm@118
|
742 (defn attach-eye
|
rlm@118
|
743 "Attach a Camera to the appropiate area and return the Camera."
|
rlm@118
|
744 [#^Node creature #^Spatial eye]
|
rlm@118
|
745
|
rlm@118
|
746 (let [target (eye-target creature eye)
|
rlm@118
|
747 [cam-width cam-height] (eye-dimensions eye)
|
rlm@118
|
748 cam (Camera. cam-width cam-height)]
|
rlm@118
|
749 (.setLocation cam (.getWorldTranslation eye))
|
rlm@118
|
750 (.setRotation cam (.getWorldRotation eye))
|
rlm@119
|
751 (.setFrustumPerspective
|
rlm@119
|
752 cam 45 (/ (.getWidth cam) (.getHeight cam))
|
rlm@119
|
753 1 1000)
|
rlm@119
|
754
|
rlm@118
|
755 (bind-camera target cam)
|
rlm@118
|
756 cam))
|
rlm@118
|
757
|
rlm@118
|
758
|
rlm@118
|
759 (def presets
|
rlm@119
|
760 {:all 0x000000
|
rlm@119
|
761 :red 0xFF0000
|
rlm@119
|
762 :blue 0x0000FF
|
rlm@119
|
763 :green 0x00FF00})
|
rlm@119
|
764
|
rlm@119
|
765
|
rlm@118
|
766
|
rlm@118
|
767 (defn enable-vision
|
rlm@118
|
768 "return [init-function sensor-functions] for a particular eye"
|
rlm@118
|
769 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
|
rlm@118
|
770 (let [retinal-map (retina-sensor-image eye)
|
rlm@118
|
771 vision-image (atom nil)
|
rlm@118
|
772 camera (attach-eye creature eye)]
|
rlm@118
|
773 [
|
rlm@118
|
774 (fn [world]
|
rlm@118
|
775 (add-eye
|
rlm@118
|
776 world camera
|
rlm@118
|
777 (let [counter (atom 0)]
|
rlm@118
|
778 (fn [r fb bb bi]
|
rlm@118
|
779 (if (zero? (rem (swap! counter inc) (inc skip)))
|
rlm@118
|
780 (reset! vision-image (BufferedImage! r fb bb bi)))))))
|
rlm@119
|
781 (vec
|
rlm@119
|
782 (map
|
rlm@119
|
783 (fn [[key image]]
|
rlm@119
|
784 (let [whites (white-coordinates image)
|
rlm@119
|
785 topology (vec (collapse whites))
|
rlm@119
|
786 mask (presets key)]
|
rlm@119
|
787 (fn []
|
rlm@119
|
788 (vector
|
rlm@119
|
789 topology
|
rlm@119
|
790 (vec
|
rlm@119
|
791 (for [[x y] whites]
|
rlm@120
|
792 (bit-and
|
rlm@119
|
793 mask (.getRGB @vision-image x y))))))))
|
rlm@119
|
794 retinal-map))
|
rlm@118
|
795 ]))
|
rlm@118
|
796
|
rlm@116
|
797 (defn vision
|
rlm@116
|
798
|
rlm@118
|
799 ;; need to create a camera based on UV image,
|
rlm@116
|
800 ;; update this camera every frame based on the position of this
|
rlm@116
|
801 ;; geometry. (maybe can get cam to follow the object)
|
rlm@116
|
802
|
rlm@116
|
803 ;; use a stack for the continuation to grab the image.
|
rlm@116
|
804
|
rlm@116
|
805
|
rlm@116
|
806 [#^Geometry eye]
|
rlm@116
|
807
|
rlm@116
|
808
|
rlm@112
|
809
|
rlm@112
|
810
|
rlm@112
|
811 )
|
rlm@102
|
812
|
rlm@116
|
813
|
rlm@116
|
814 (defn blender-creature
|
rlm@116
|
815 "Return a creature with all joints in place."
|
rlm@116
|
816 [blender-path]
|
rlm@116
|
817 (let [model (load-blender-model blender-path)
|
rlm@116
|
818 joints
|
rlm@116
|
819 (if-let [joint-node (.getChild model "joints")]
|
rlm@116
|
820 (seq (.getChildren joint-node))
|
rlm@116
|
821 (do (println-repl "could not find joints node") []))]
|
rlm@116
|
822 (assemble-creature model joints)))
|
rlm@116
|
823
|
rlm@116
|
824
|
rlm@116
|
825
|
rlm@116
|
826
|
rlm@116
|
827
|
rlm@116
|
828
|
rlm@103
|
829 (defn debug-window
|
rlm@103
|
830 "creates function that offers a debug view of sensor data"
|
rlm@103
|
831 []
|
rlm@103
|
832 (let [vi (view-image)]
|
rlm@103
|
833 (fn
|
rlm@103
|
834 [[coords sensor-data]]
|
rlm@103
|
835 (let [image (points->image coords)]
|
rlm@103
|
836 (dorun
|
rlm@103
|
837 (for [i (range (count coords))]
|
rlm@103
|
838 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@103
|
839 ({0 -16777216
|
rlm@103
|
840 1 -1} (sensor-data i)))))
|
rlm@103
|
841 (vi image)))))
|
rlm@103
|
842
|
rlm@118
|
843 (defn debug-vision-window
|
rlm@118
|
844 "creates function that offers a debug view of sensor data"
|
rlm@118
|
845 []
|
rlm@118
|
846 (let [vi (view-image)]
|
rlm@118
|
847 (fn
|
rlm@118
|
848 [[coords sensor-data]]
|
rlm@118
|
849 (let [image (points->image coords)]
|
rlm@118
|
850 (dorun
|
rlm@118
|
851 (for [i (range (count coords))]
|
rlm@118
|
852 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@118
|
853 (sensor-data i))))
|
rlm@118
|
854 (vi image)))))
|
rlm@118
|
855
|
rlm@118
|
856
|
rlm@83
|
857
|
rlm@106
|
858 ;;(defn test-touch [world creature]
|
rlm@83
|
859
|
rlm@78
|
860
|
rlm@106
|
861 (defn test-creature [thing]
|
rlm@106
|
862 (let [x-axis
|
rlm@106
|
863 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
|
rlm@106
|
864 y-axis
|
rlm@106
|
865 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
|
rlm@106
|
866 z-axis
|
rlm@106
|
867 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
|
rlm@106
|
868 creature (blender-creature thing)
|
rlm@106
|
869 touch-nerves (touch creature)
|
rlm@106
|
870 touch-debug-windows (map (fn [_] (debug-window)) touch-nerves)
|
rlm@118
|
871 [init-vision [vision-data]]
|
rlm@118
|
872 (enable-vision creature (test-eye))
|
rlm@118
|
873 vision-debug (debug-vision-window)
|
rlm@118
|
874 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
|
rlm@106
|
875 ]
|
rlm@106
|
876 (world
|
rlm@106
|
877 (nodify [creature
|
rlm@106
|
878 (box 10 2 10 :position (Vector3f. 0 -9 0)
|
rlm@106
|
879 :color ColorRGBA/Gray :mass 0)
|
rlm@106
|
880 x-axis y-axis z-axis
|
rlm@118
|
881 me
|
rlm@106
|
882 ])
|
rlm@106
|
883 standard-debug-controls
|
rlm@106
|
884 (fn [world]
|
rlm@106
|
885 (light-up-everything world)
|
rlm@106
|
886 (enable-debug world)
|
rlm@118
|
887 (init-vision world)
|
rlm@118
|
888
|
rlm@118
|
889 (add-eye world
|
rlm@118
|
890 (attach-eye creature (test-eye))
|
rlm@118
|
891 (comp (view-image) BufferedImage!))
|
rlm@118
|
892
|
rlm@118
|
893 (add-eye world (.getCamera world) no-op)
|
rlm@118
|
894
|
rlm@106
|
895 ;;(com.aurellem.capture.Capture/captureVideo
|
rlm@106
|
896 ;; world (file-str "/home/r/proj/ai-videos/hand"))
|
rlm@110
|
897 ;;(.setTimer world (RatchetTimer. 60))
|
rlm@119
|
898 (speed-up world)
|
rlm@106
|
899 ;;(set-gravity world (Vector3f. 0 0 0))
|
rlm@106
|
900 )
|
rlm@106
|
901 (fn [world tpf]
|
rlm@109
|
902 ;;(dorun
|
rlm@109
|
903 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
|
rlm@110
|
904
|
rlm@106
|
905 (dorun
|
rlm@109
|
906 (map #(%1 (%2 (.getRootNode world)))
|
rlm@110
|
907 touch-debug-windows touch-nerves)
|
rlm@110
|
908 )
|
rlm@118
|
909 ;;(println-repl (vision-data))
|
rlm@118
|
910 (.setLocalTranslation me (.getLocation (.getCamera world)))
|
rlm@118
|
911
|
rlm@118
|
912 (vision-debug (vision-data))
|
rlm@106
|
913 )
|
rlm@106
|
914 ;;(let [timer (atom 0)]
|
rlm@106
|
915 ;; (fn [_ _]
|
rlm@106
|
916 ;; (swap! timer inc)
|
rlm@106
|
917 ;; (if (= (rem @timer 60) 0)
|
rlm@106
|
918 ;; (println-repl (float (/ @timer 60))))))
|
rlm@106
|
919 )))
|
rlm@83
|
920
|
rlm@109
|
921
|
rlm@109
|
922
|
rlm@109
|
923
|
rlm@109
|
924
|
rlm@109
|
925
|
rlm@109
|
926
|
rlm@109
|
927
|
rlm@109
|
928
|
rlm@109
|
929 ;;; experiments in collisions
|
rlm@109
|
930
|
rlm@109
|
931
|
rlm@109
|
932
|
rlm@109
|
933 (defn collision-test []
|
rlm@110
|
934 (let [b-radius 1
|
rlm@110
|
935 b-position (Vector3f. 0 0 0)
|
rlm@109
|
936 obj-b (box 1 1 1 :color ColorRGBA/Blue
|
rlm@109
|
937 :position b-position
|
rlm@110
|
938 :mass 0)
|
rlm@110
|
939 node (nodify [obj-b])
|
rlm@110
|
940 bounds-b
|
rlm@110
|
941 (doto (Picture.)
|
rlm@110
|
942 (.setHeight 50)
|
rlm@110
|
943 (.setWidth 50)
|
rlm@110
|
944 (.setImage (asset-manager)
|
rlm@110
|
945 "Models/creature1/hand.png"
|
rlm@110
|
946 false
|
rlm@110
|
947 ))
|
rlm@110
|
948
|
rlm@110
|
949 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
|
rlm@110
|
950
|
rlm@110
|
951 collisions
|
rlm@110
|
952 (let [cr (CollisionResults.)]
|
rlm@110
|
953 (.collideWith node bounds-b cr)
|
rlm@110
|
954 (println (map #(.getContactPoint %) cr))
|
rlm@110
|
955 cr)
|
rlm@110
|
956
|
rlm@110
|
957 ;;collision-points
|
rlm@110
|
958 ;;(map #(sphere 0.1 :position (.getContactPoint %))
|
rlm@110
|
959 ;; collisions)
|
rlm@110
|
960
|
rlm@110
|
961 ;;node (nodify (conj collision-points obj-b))
|
rlm@110
|
962
|
rlm@109
|
963 sim
|
rlm@109
|
964 (world node
|
rlm@110
|
965 {"key-space"
|
rlm@110
|
966 (fn [_ value]
|
rlm@110
|
967 (if value
|
rlm@110
|
968 (let [cr (CollisionResults.)]
|
rlm@110
|
969 (.collideWith node bounds-b cr)
|
rlm@110
|
970 (println-repl (map #(.getContactPoint %) cr))
|
rlm@110
|
971 cr)))}
|
rlm@109
|
972 no-op
|
rlm@109
|
973 no-op)
|
rlm@109
|
974
|
rlm@109
|
975 ]
|
rlm@110
|
976 sim
|
rlm@109
|
977
|
rlm@109
|
978 ))
|
rlm@109
|
979
|
rlm@116
|
980
|
rlm@116
|
981 ;; the camera will stay in its initial position/rotation with relation
|
rlm@116
|
982 ;; to the spatial.
|
rlm@116
|
983
|
rlm@116
|
984
|
rlm@117
|
985 (defn follow-test
|
rlm@117
|
986 "show a camera that stays in the same relative position to a blue cube."
|
rlm@117
|
987 []
|
rlm@116
|
988 (let [camera-pos (Vector3f. 0 30 0)
|
rlm@116
|
989 rock (box 1 1 1 :color ColorRGBA/Blue
|
rlm@116
|
990 :position (Vector3f. 0 10 0)
|
rlm@116
|
991 :mass 30
|
rlm@116
|
992 )
|
rlm@118
|
993 rot (.getWorldRotation rock)
|
rlm@116
|
994
|
rlm@116
|
995 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
|
rlm@116
|
996 :position (Vector3f. 0 -3 0))]
|
rlm@116
|
997
|
rlm@116
|
998 (world
|
rlm@116
|
999 (nodify [rock table])
|
rlm@116
|
1000 standard-debug-controls
|
rlm@116
|
1001 (fn [world]
|
rlm@116
|
1002 (let
|
rlm@116
|
1003 [cam (doto (.clone (.getCamera world))
|
rlm@116
|
1004 (.setLocation camera-pos)
|
rlm@116
|
1005 (.lookAt Vector3f/ZERO
|
rlm@116
|
1006 Vector3f/UNIT_X))]
|
rlm@116
|
1007 (bind-camera rock cam)
|
rlm@116
|
1008
|
rlm@116
|
1009 (.setTimer world (RatchetTimer. 60))
|
rlm@116
|
1010 (add-eye world cam (comp (view-image) BufferedImage!))
|
rlm@116
|
1011 (add-eye world (.getCamera world) no-op))
|
rlm@116
|
1012 )
|
rlm@118
|
1013 (fn [_ _] (println-repl rot)))))
|
rlm@116
|
1014
|
rlm@118
|
1015
|
rlm@87
|
1016 #+end_src
|
rlm@83
|
1017
|
rlm@87
|
1018 #+results: body-1
|
rlm@109
|
1019 : #'cortex.silly/test-creature
|
rlm@78
|
1020
|
rlm@78
|
1021
|
rlm@78
|
1022 * COMMENT purgatory
|
rlm@78
|
1023 #+begin_src clojure
|
rlm@77
|
1024 (defn bullet-trans []
|
rlm@77
|
1025 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
|
rlm@77
|
1026 :position (Vector3f. -10 5 0))
|
rlm@77
|
1027 obj-b (sphere 0.5 :color ColorRGBA/Blue
|
rlm@77
|
1028 :position (Vector3f. -10 -5 0)
|
rlm@77
|
1029 :mass 0)
|
rlm@77
|
1030 control-a (.getControl obj-a RigidBodyControl)
|
rlm@77
|
1031 control-b (.getControl obj-b RigidBodyControl)
|
rlm@77
|
1032 swivel
|
rlm@77
|
1033 (.toRotationMatrix
|
rlm@77
|
1034 (doto (Quaternion.)
|
rlm@77
|
1035 (.fromAngleAxis (/ Math/PI 2)
|
rlm@77
|
1036 Vector3f/UNIT_X)))]
|
rlm@77
|
1037 (doto
|
rlm@77
|
1038 (ConeJoint.
|
rlm@77
|
1039 control-a control-b
|
rlm@77
|
1040 (Vector3f. 0 5 0)
|
rlm@77
|
1041 (Vector3f. 0 -5 0)
|
rlm@77
|
1042 swivel swivel)
|
rlm@77
|
1043 (.setLimit (* 0.6 (/ Math/PI 4))
|
rlm@77
|
1044 (/ Math/PI 4)
|
rlm@77
|
1045 (* Math/PI 0.8)))
|
rlm@77
|
1046 (world (nodify
|
rlm@77
|
1047 [obj-a obj-b])
|
rlm@77
|
1048 standard-debug-controls
|
rlm@77
|
1049 enable-debug
|
rlm@77
|
1050 no-op)))
|
rlm@74
|
1051
|
rlm@74
|
1052
|
rlm@77
|
1053 (defn bullet-trans* []
|
rlm@77
|
1054 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
|
rlm@77
|
1055 :position (Vector3f. 5 0 0)
|
rlm@77
|
1056 :mass 90)
|
rlm@77
|
1057 obj-b (sphere 0.5 :color ColorRGBA/Blue
|
rlm@77
|
1058 :position (Vector3f. -5 0 0)
|
rlm@77
|
1059 :mass 0)
|
rlm@77
|
1060 control-a (.getControl obj-a RigidBodyControl)
|
rlm@77
|
1061 control-b (.getControl obj-b RigidBodyControl)
|
rlm@77
|
1062 move-up? (atom nil)
|
rlm@77
|
1063 move-down? (atom nil)
|
rlm@77
|
1064 move-left? (atom nil)
|
rlm@77
|
1065 move-right? (atom nil)
|
rlm@77
|
1066 roll-left? (atom nil)
|
rlm@77
|
1067 roll-right? (atom nil)
|
rlm@77
|
1068 force 100
|
rlm@77
|
1069 swivel
|
rlm@77
|
1070 (.toRotationMatrix
|
rlm@77
|
1071 (doto (Quaternion.)
|
rlm@77
|
1072 (.fromAngleAxis (/ Math/PI 2)
|
rlm@77
|
1073 Vector3f/UNIT_X)))
|
rlm@77
|
1074 x-move
|
rlm@77
|
1075 (doto (Matrix3f.)
|
rlm@77
|
1076 (.fromStartEndVectors Vector3f/UNIT_X
|
rlm@77
|
1077 (.normalize (Vector3f. 1 1 0))))
|
rlm@77
|
1078
|
rlm@77
|
1079 timer (atom 0)]
|
rlm@77
|
1080 (doto
|
rlm@77
|
1081 (ConeJoint.
|
rlm@77
|
1082 control-a control-b
|
rlm@77
|
1083 (Vector3f. -8 0 0)
|
rlm@77
|
1084 (Vector3f. 2 0 0)
|
rlm@77
|
1085 ;;swivel swivel
|
rlm@77
|
1086 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
|
rlm@77
|
1087 x-move Matrix3f/IDENTITY
|
rlm@77
|
1088 )
|
rlm@77
|
1089 (.setCollisionBetweenLinkedBodys false)
|
rlm@77
|
1090 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
|
rlm@77
|
1091 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
|
rlm@77
|
1092 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
|
rlm@77
|
1093 (world (nodify
|
rlm@77
|
1094 [obj-a obj-b])
|
rlm@77
|
1095 (merge standard-debug-controls
|
rlm@77
|
1096 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
|
rlm@77
|
1097 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
|
rlm@77
|
1098 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
|
rlm@77
|
1099 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
|
rlm@77
|
1100 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
|
rlm@77
|
1101 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
|
rlm@77
|
1102
|
rlm@77
|
1103 (fn [world]
|
rlm@77
|
1104 (enable-debug world)
|
rlm@77
|
1105 (set-gravity world Vector3f/ZERO)
|
rlm@77
|
1106 )
|
rlm@77
|
1107
|
rlm@77
|
1108 (fn [world _]
|
rlm@77
|
1109
|
rlm@77
|
1110 (if @move-up?
|
rlm@77
|
1111 (.applyForce control-a
|
rlm@77
|
1112 (Vector3f. force 0 0)
|
rlm@77
|
1113 (Vector3f. 0 0 0)))
|
rlm@77
|
1114 (if @move-down?
|
rlm@77
|
1115 (.applyForce control-a
|
rlm@77
|
1116 (Vector3f. (- force) 0 0)
|
rlm@77
|
1117 (Vector3f. 0 0 0)))
|
rlm@77
|
1118 (if @move-left?
|
rlm@77
|
1119 (.applyForce control-a
|
rlm@77
|
1120 (Vector3f. 0 force 0)
|
rlm@77
|
1121 (Vector3f. 0 0 0)))
|
rlm@77
|
1122 (if @move-right?
|
rlm@77
|
1123 (.applyForce control-a
|
rlm@77
|
1124 (Vector3f. 0 (- force) 0)
|
rlm@77
|
1125 (Vector3f. 0 0 0)))
|
rlm@77
|
1126
|
rlm@77
|
1127 (if @roll-left?
|
rlm@77
|
1128 (.applyForce control-a
|
rlm@77
|
1129 (Vector3f. 0 0 force)
|
rlm@77
|
1130 (Vector3f. 0 0 0)))
|
rlm@77
|
1131 (if @roll-right?
|
rlm@77
|
1132 (.applyForce control-a
|
rlm@77
|
1133 (Vector3f. 0 0 (- force))
|
rlm@77
|
1134 (Vector3f. 0 0 0)))
|
rlm@77
|
1135
|
rlm@77
|
1136 (if (zero? (rem (swap! timer inc) 100))
|
rlm@77
|
1137 (.attachChild
|
rlm@77
|
1138 (.getRootNode world)
|
rlm@77
|
1139 (sphere 0.05 :color ColorRGBA/Yellow
|
rlm@77
|
1140 :physical? false :position
|
rlm@77
|
1141 (.getWorldTranslation obj-a)))))
|
rlm@77
|
1142 )
|
rlm@77
|
1143 ))
|
rlm@77
|
1144
|
rlm@94
|
1145 (defn transform-trianglesdsd
|
rlm@94
|
1146 "Transform that converts each vertex in the first triangle
|
rlm@94
|
1147 into the corresponding vertex in the second triangle."
|
rlm@94
|
1148 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@94
|
1149 (let [in [(.get1 tri-1)
|
rlm@94
|
1150 (.get2 tri-1)
|
rlm@94
|
1151 (.get3 tri-1)]
|
rlm@94
|
1152 out [(.get1 tri-2)
|
rlm@94
|
1153 (.get2 tri-2)
|
rlm@94
|
1154 (.get3 tri-2)]]
|
rlm@94
|
1155 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
|
rlm@94
|
1156 in* [(.mult translate (in 0))
|
rlm@94
|
1157 (.mult translate (in 1))
|
rlm@94
|
1158 (.mult translate (in 2))]
|
rlm@94
|
1159 final-translation
|
rlm@94
|
1160 (doto (Matrix4f.)
|
rlm@94
|
1161 (.setTranslation (out 1)))
|
rlm@94
|
1162
|
rlm@94
|
1163 rotate-1
|
rlm@94
|
1164 (doto (Matrix3f.)
|
rlm@94
|
1165 (.fromStartEndVectors
|
rlm@94
|
1166 (.normalize
|
rlm@94
|
1167 (.subtract
|
rlm@94
|
1168 (in* 1) (in* 0)))
|
rlm@94
|
1169 (.normalize
|
rlm@94
|
1170 (.subtract
|
rlm@94
|
1171 (out 1) (out 0)))))
|
rlm@94
|
1172 in** [(.mult rotate-1 (in* 0))
|
rlm@94
|
1173 (.mult rotate-1 (in* 1))
|
rlm@94
|
1174 (.mult rotate-1 (in* 2))]
|
rlm@94
|
1175 scale-factor-1
|
rlm@94
|
1176 (.mult
|
rlm@94
|
1177 (.normalize
|
rlm@94
|
1178 (.subtract
|
rlm@94
|
1179 (out 1)
|
rlm@94
|
1180 (out 0)))
|
rlm@94
|
1181 (/ (.length
|
rlm@94
|
1182 (.subtract (out 1)
|
rlm@94
|
1183 (out 0)))
|
rlm@94
|
1184 (.length
|
rlm@94
|
1185 (.subtract (in** 1)
|
rlm@94
|
1186 (in** 0)))))
|
rlm@94
|
1187 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
|
rlm@94
|
1188 in*** [(.mult scale-1 (in** 0))
|
rlm@94
|
1189 (.mult scale-1 (in** 1))
|
rlm@94
|
1190 (.mult scale-1 (in** 2))]
|
rlm@94
|
1191
|
rlm@94
|
1192
|
rlm@94
|
1193
|
rlm@94
|
1194
|
rlm@94
|
1195
|
rlm@94
|
1196 ]
|
rlm@94
|
1197
|
rlm@94
|
1198 (dorun (map println in))
|
rlm@94
|
1199 (println)
|
rlm@94
|
1200 (dorun (map println in*))
|
rlm@94
|
1201 (println)
|
rlm@94
|
1202 (dorun (map println in**))
|
rlm@94
|
1203 (println)
|
rlm@94
|
1204 (dorun (map println in***))
|
rlm@94
|
1205 (println)
|
rlm@94
|
1206
|
rlm@99
|
1207 ))))
|
rlm@94
|
1208
|
rlm@94
|
1209
|
rlm@106
|
1210 (defn world-setup [joint]
|
rlm@106
|
1211 (let [joint-position (Vector3f. 0 0 0)
|
rlm@106
|
1212 joint-rotation
|
rlm@106
|
1213 (.toRotationMatrix
|
rlm@106
|
1214 (.mult
|
rlm@106
|
1215 (doto (Quaternion.)
|
rlm@106
|
1216 (.fromAngleAxis
|
rlm@106
|
1217 (* 1 (/ Math/PI 4))
|
rlm@106
|
1218 (Vector3f. -1 0 0)))
|
rlm@106
|
1219 (doto (Quaternion.)
|
rlm@106
|
1220 (.fromAngleAxis
|
rlm@106
|
1221 (* 1 (/ Math/PI 2))
|
rlm@106
|
1222 (Vector3f. 0 0 1)))))
|
rlm@106
|
1223 top-position (.mult joint-rotation (Vector3f. 8 0 0))
|
rlm@106
|
1224
|
rlm@106
|
1225 origin (doto
|
rlm@106
|
1226 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
|
rlm@106
|
1227 :position top-position))
|
rlm@106
|
1228 top (doto
|
rlm@106
|
1229 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
|
rlm@106
|
1230 :position top-position)
|
rlm@106
|
1231
|
rlm@106
|
1232 (.addControl
|
rlm@106
|
1233 (RigidBodyControl.
|
rlm@106
|
1234 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
|
rlm@106
|
1235 bottom (doto
|
rlm@106
|
1236 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
|
rlm@106
|
1237 :position (Vector3f. 0 0 0))
|
rlm@106
|
1238 (.addControl
|
rlm@106
|
1239 (RigidBodyControl.
|
rlm@106
|
1240 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
|
rlm@106
|
1241 table (box 10 2 10 :position (Vector3f. 0 -20 0)
|
rlm@106
|
1242 :color ColorRGBA/Gray :mass 0)
|
rlm@106
|
1243 a (.getControl top RigidBodyControl)
|
rlm@106
|
1244 b (.getControl bottom RigidBodyControl)]
|
rlm@106
|
1245
|
rlm@106
|
1246 (cond
|
rlm@106
|
1247 (= joint :cone)
|
rlm@106
|
1248
|
rlm@106
|
1249 (doto (ConeJoint.
|
rlm@106
|
1250 a b
|
rlm@106
|
1251 (world-to-local top joint-position)
|
rlm@106
|
1252 (world-to-local bottom joint-position)
|
rlm@106
|
1253 joint-rotation
|
rlm@106
|
1254 joint-rotation
|
rlm@106
|
1255 )
|
rlm@106
|
1256
|
rlm@106
|
1257
|
rlm@106
|
1258 (.setLimit (* (/ 10) Math/PI)
|
rlm@106
|
1259 (* (/ 4) Math/PI)
|
rlm@106
|
1260 0)))
|
rlm@106
|
1261 [origin top bottom table]))
|
rlm@106
|
1262
|
rlm@106
|
1263 (defn test-joint [joint]
|
rlm@106
|
1264 (let [[origin top bottom floor] (world-setup joint)
|
rlm@106
|
1265 control (.getControl top RigidBodyControl)
|
rlm@106
|
1266 move-up? (atom false)
|
rlm@106
|
1267 move-down? (atom false)
|
rlm@106
|
1268 move-left? (atom false)
|
rlm@106
|
1269 move-right? (atom false)
|
rlm@106
|
1270 roll-left? (atom false)
|
rlm@106
|
1271 roll-right? (atom false)
|
rlm@106
|
1272 timer (atom 0)]
|
rlm@106
|
1273
|
rlm@106
|
1274 (world
|
rlm@106
|
1275 (nodify [top bottom floor origin])
|
rlm@106
|
1276 (merge standard-debug-controls
|
rlm@106
|
1277 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
|
rlm@106
|
1278 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
|
rlm@106
|
1279 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
|
rlm@106
|
1280 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
|
rlm@106
|
1281 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
|
rlm@106
|
1282 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
|
rlm@106
|
1283
|
rlm@106
|
1284 (fn [world]
|
rlm@106
|
1285 (light-up-everything world)
|
rlm@106
|
1286 (enable-debug world)
|
rlm@106
|
1287 (set-gravity world (Vector3f. 0 0 0))
|
rlm@106
|
1288 )
|
rlm@106
|
1289
|
rlm@106
|
1290 (fn [world _]
|
rlm@106
|
1291 (if (zero? (rem (swap! timer inc) 100))
|
rlm@106
|
1292 (do
|
rlm@106
|
1293 ;; (println-repl @timer)
|
rlm@106
|
1294 (.attachChild (.getRootNode world)
|
rlm@106
|
1295 (sphere 0.05 :color ColorRGBA/Yellow
|
rlm@106
|
1296 :position (.getWorldTranslation top)
|
rlm@106
|
1297 :physical? false))
|
rlm@106
|
1298 (.attachChild (.getRootNode world)
|
rlm@106
|
1299 (sphere 0.05 :color ColorRGBA/LightGray
|
rlm@106
|
1300 :position (.getWorldTranslation bottom)
|
rlm@106
|
1301 :physical? false))))
|
rlm@106
|
1302
|
rlm@106
|
1303 (if @move-up?
|
rlm@106
|
1304 (.applyTorque control
|
rlm@106
|
1305 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1306 (Vector3f. 0 0 10))))
|
rlm@106
|
1307 (if @move-down?
|
rlm@106
|
1308 (.applyTorque control
|
rlm@106
|
1309 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1310 (Vector3f. 0 0 -10))))
|
rlm@106
|
1311 (if @move-left?
|
rlm@106
|
1312 (.applyTorque control
|
rlm@106
|
1313 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1314 (Vector3f. 0 10 0))))
|
rlm@106
|
1315 (if @move-right?
|
rlm@106
|
1316 (.applyTorque control
|
rlm@106
|
1317 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1318 (Vector3f. 0 -10 0))))
|
rlm@106
|
1319 (if @roll-left?
|
rlm@106
|
1320 (.applyTorque control
|
rlm@106
|
1321 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1322 (Vector3f. -1 0 0))))
|
rlm@106
|
1323 (if @roll-right?
|
rlm@106
|
1324 (.applyTorque control
|
rlm@106
|
1325 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1326 (Vector3f. 1 0 0))))))))
|
rlm@106
|
1327
|
rlm@99
|
1328
|
rlm@99
|
1329
|
rlm@107
|
1330 (defprotocol Frame
|
rlm@107
|
1331 (frame [this]))
|
rlm@107
|
1332
|
rlm@107
|
1333 (extend-type BufferedImage
|
rlm@107
|
1334 Frame
|
rlm@107
|
1335 (frame [image]
|
rlm@107
|
1336 (merge
|
rlm@107
|
1337 (apply
|
rlm@107
|
1338 hash-map
|
rlm@107
|
1339 (interleave
|
rlm@107
|
1340 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
|
rlm@107
|
1341 (vector x y)))
|
rlm@107
|
1342 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
|
rlm@107
|
1343 (let [data (.getRGB image x y)]
|
rlm@107
|
1344 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
|
rlm@107
|
1345 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
|
rlm@107
|
1346 :b (bit-and 0x0000ff data)))))))
|
rlm@107
|
1347 {:width (.getWidth image) :height (.getHeight image)})))
|
rlm@107
|
1348
|
rlm@107
|
1349
|
rlm@107
|
1350 (extend-type ImagePlus
|
rlm@107
|
1351 Frame
|
rlm@107
|
1352 (frame [image+]
|
rlm@107
|
1353 (frame (.getBufferedImage image+))))
|
rlm@107
|
1354
|
rlm@107
|
1355
|
rlm@99
|
1356 #+end_src
|
rlm@99
|
1357
|
rlm@99
|
1358
|
rlm@99
|
1359 * COMMENT generate source
|
rlm@99
|
1360 #+begin_src clojure :tangle ../src/cortex/silly.clj
|
rlm@99
|
1361 <<body-1>>
|
rlm@99
|
1362 #+end_src
|
rlm@99
|
1363
|
rlm@99
|
1364
|
rlm@94
|
1365
|
rlm@94
|
1366
|