rlm@73
|
1 #+title: First attempt at a creature!
|
rlm@73
|
2 #+author: Robert McIntyre
|
rlm@73
|
3 #+email: rlm@mit.edu
|
rlm@73
|
4 #+description:
|
rlm@73
|
5 #+keywords: simulation, jMonkeyEngine3, clojure
|
rlm@73
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@73
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@73
|
8
|
rlm@129
|
9
|
rlm@129
|
10
|
rlm@129
|
11 * Brainstorming different sensors and effectors.
|
rlm@129
|
12
|
rlm@129
|
13 Every sense that we have should have an effector that changes what
|
rlm@129
|
14 that sense (or others who have that sense) experiences.
|
rlm@129
|
15
|
rlm@129
|
16 ** Classic Senses
|
rlm@129
|
17 | Sense | Effector |
|
rlm@129
|
18 |------------------------------+---------------------------------|
|
rlm@129
|
19 | Vision | Variable Coloration |
|
rlm@129
|
20 | Hearing | Speech |
|
rlm@129
|
21 | Proprioception | Movement |
|
rlm@129
|
22 | Smell/Taste (Chemoreception) | Pheremones |
|
rlm@129
|
23 | Touch | Movement / Controllable Texture |
|
rlm@129
|
24 | Acceleration | Movement |
|
rlm@129
|
25 | Balance (sense gravity) | Movement |
|
rlm@129
|
26 | | |
|
rlm@129
|
27
|
rlm@129
|
28 - New Senses/Effectors
|
rlm@129
|
29 - Levitation
|
rlm@129
|
30 - Telekenesis
|
rlm@139
|
31 - control of gravity within a certain radius
|
rlm@139
|
32 - speed up/slow time
|
rlm@139
|
33 - object creation/destruction
|
rlm@129
|
34
|
rlm@129
|
35 - Symbol Sense
|
rlm@129
|
36 Where objects in the world can be queried for description /
|
rlm@129
|
37 symbols.
|
rlm@129
|
38
|
rlm@129
|
39 - Symbol Marking
|
rlm@129
|
40 The ability to mark objects in the world with your own descriptions
|
rlm@129
|
41 and symbols.
|
rlm@129
|
42
|
rlm@129
|
43 - Vision
|
rlm@129
|
44 Distinguish the polarization of light
|
rlm@129
|
45 Color
|
rlm@129
|
46 Movement
|
rlm@129
|
47
|
rlm@129
|
48 * project ideas
|
rlm@129
|
49 - HACKER for writing muscle-control programs : Presented with
|
rlm@129
|
50 low-level muscle control/ sense API, generate higher level programs
|
rlm@129
|
51 for accomplishing various stated goals. Example goals might be
|
rlm@129
|
52 "extend all your fingers" or "move your hand into the area with
|
rlm@129
|
53 blue light" or "decrease the angle of this joint". It would be
|
rlm@129
|
54 like Sussman's HACKER, except it would operate with much more data
|
rlm@129
|
55 in a more realistic world. Start off with "calestanthics" to
|
rlm@129
|
56 develop subrouitines over the motor control API. This would be the
|
rlm@129
|
57 "spinal chord" of a more intelligent creature. The low level
|
rlm@129
|
58 programming code might be a turning machine that could develop
|
rlm@129
|
59 programs to iterate over a "tape" where each entry in the tape
|
rlm@129
|
60 could control recruitment of the fibers in a muscle.
|
rlm@129
|
61 - Make a virtual computer in the virtual world which with which the
|
rlm@129
|
62 creature interacts using its fingers to press keys on a virtual
|
rlm@129
|
63 keyboard. The creature can access the internet, watch videos, take
|
rlm@129
|
64 over the world, anything it wants.
|
rlm@129
|
65 - Make virtual insturments like pianos, drumbs, etc that it learns to
|
rlm@129
|
66 play.
|
rlm@129
|
67 - make a joint that figures out what type of joint it is (range of
|
rlm@129
|
68 motion)
|
rlm@129
|
69
|
rlm@129
|
70
|
rlm@129
|
71
|
rlm@129
|
72
|
rlm@129
|
73
|
rlm@129
|
74 * goals
|
rlm@125
|
75
|
rlm@125
|
76 ** have to get done before winston
|
rlm@126
|
77 - [ ] write an explination for why greyscale bitmaps for senses is
|
rlm@126
|
78 appropiate -- 1/2 day
|
rlm@149
|
79 - [X] muscle control -- day
|
rlm@146
|
80 - [X] proprioception sensor map in the style of the other senses -- day
|
rlm@125
|
81 - [ ] refactor integration code to distribute to each of the senses
|
rlm@126
|
82 -- day
|
rlm@147
|
83 - [ ] create video showing all the senses for Winston -- 2 days
|
rlm@147
|
84 - [ ] send package to friends for critiques -- 2 days
|
rlm@126
|
85 - [ ] write summary of project for Winston \
|
rlm@126
|
86 - [ ] project proposals for Winston \
|
rlm@126
|
87 - [ ] additional senses to be implemented for Winston | -- 2 days
|
rlm@126
|
88 - [ ] send Winston package /
|
rlm@125
|
89
|
rlm@125
|
90 ** would be cool to get done before winston
|
rlm@126
|
91 - [X] enable greyscale bitmaps for touch -- 2 hours
|
rlm@126
|
92 - [X] use sawfish to auto-tile sense windows -- 6 hours
|
rlm@126
|
93 - [X] sawfish keybinding to automatically delete all sense windows
|
rlm@126
|
94 - [ ] directly change the UV-pixels to show sensor activation -- 2
|
rlm@126
|
95 days
|
rlm@126
|
96 - [ ] proof of concept C sense manipulation -- 2 days
|
rlm@126
|
97 - [ ] proof of concept GPU sense manipulation -- week
|
rlm@126
|
98 - [ ] fourier view of sound -- 2 or 3 days
|
rlm@146
|
99 - [ ] dancing music listener -- 1 day, depends on fourier
|
rlm@125
|
100
|
rlm@125
|
101 ** don't have to get done before winston
|
rlm@126
|
102 - [ ] write tests for integration -- 3 days
|
rlm@126
|
103 - [ ] usertime/gametime clock HUD display -- day
|
rlm@126
|
104 - [ ] find papers for each of the senses justifying my own
|
rlm@126
|
105 representation -- week
|
rlm@126
|
106 - [ ] show sensor maps in HUD display? -- 4 days
|
rlm@126
|
107 - [ ] show sensor maps in AWT display? -- 2 days
|
rlm@124
|
108
|
rlm@99
|
109
|
rlm@73
|
110 * Intro
|
rlm@73
|
111 So far, I've made the following senses --
|
rlm@73
|
112 - Vision
|
rlm@73
|
113 - Hearing
|
rlm@73
|
114 - Touch
|
rlm@73
|
115 - Proprioception
|
rlm@73
|
116
|
rlm@73
|
117 And one effector:
|
rlm@73
|
118 - Movement
|
rlm@73
|
119
|
rlm@73
|
120 However, the code so far has only enabled these senses, but has not
|
rlm@73
|
121 actually implemented them. For example, there is still a lot of work
|
rlm@73
|
122 to be done for vision. I need to be able to create an /eyeball/ in
|
rlm@73
|
123 simulation that can be moved around and see the world from different
|
rlm@73
|
124 angles. I also need to determine weather to use log-polar or cartesian
|
rlm@73
|
125 for the visual input, and I need to determine how/wether to
|
rlm@73
|
126 disceritise the visual input.
|
rlm@73
|
127
|
rlm@73
|
128 I also want to be able to visualize both the sensors and the
|
rlm@104
|
129 effectors in pretty pictures. This semi-retarted creature will be my
|
rlm@73
|
130 first attempt at bringing everything together.
|
rlm@73
|
131
|
rlm@73
|
132 * The creature's body
|
rlm@73
|
133
|
rlm@73
|
134 Still going to do an eve-like body in blender, but due to problems
|
rlm@104
|
135 importing the joints, etc into jMonkeyEngine3, I'm going to do all
|
rlm@73
|
136 the connecting here in clojure code, using the names of the individual
|
rlm@73
|
137 components and trial and error. Later, I'll maybe make some sort of
|
rlm@73
|
138 creature-building modifications to blender that support whatever
|
rlm@73
|
139 discreitized senses I'm going to make.
|
rlm@73
|
140
|
rlm@73
|
141 #+name: body-1
|
rlm@73
|
142 #+begin_src clojure
|
rlm@73
|
143 (ns cortex.silly
|
rlm@73
|
144 "let's play!"
|
rlm@73
|
145 {:author "Robert McIntyre"})
|
rlm@73
|
146
|
rlm@73
|
147 ;; TODO remove this!
|
rlm@73
|
148 (require 'cortex.import)
|
rlm@73
|
149 (cortex.import/mega-import-jme3)
|
rlm@73
|
150 (use '(cortex world util body hearing touch vision))
|
rlm@73
|
151
|
rlm@73
|
152 (rlm.rlm-commands/help)
|
rlm@99
|
153 (import java.awt.image.BufferedImage)
|
rlm@99
|
154 (import javax.swing.JPanel)
|
rlm@99
|
155 (import javax.swing.SwingUtilities)
|
rlm@99
|
156 (import java.awt.Dimension)
|
rlm@99
|
157 (import javax.swing.JFrame)
|
rlm@99
|
158 (import java.awt.Dimension)
|
rlm@106
|
159 (import com.aurellem.capture.RatchetTimer)
|
rlm@99
|
160 (declare joint-create)
|
rlm@108
|
161 (use 'clojure.contrib.def)
|
rlm@73
|
162
|
rlm@100
|
163 (defn points->image
|
rlm@100
|
164 "Take a sparse collection of points and visuliaze it as a
|
rlm@100
|
165 BufferedImage."
|
rlm@102
|
166
|
rlm@102
|
167 ;; TODO maybe parallelize this since it's easy
|
rlm@102
|
168
|
rlm@100
|
169 [points]
|
rlm@106
|
170 (if (empty? points)
|
rlm@106
|
171 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
|
rlm@106
|
172 (let [xs (vec (map first points))
|
rlm@106
|
173 ys (vec (map second points))
|
rlm@106
|
174 x0 (apply min xs)
|
rlm@106
|
175 y0 (apply min ys)
|
rlm@106
|
176 width (- (apply max xs) x0)
|
rlm@106
|
177 height (- (apply max ys) y0)
|
rlm@106
|
178 image (BufferedImage. (inc width) (inc height)
|
rlm@119
|
179 BufferedImage/TYPE_INT_RGB)]
|
rlm@118
|
180 (dorun
|
rlm@118
|
181 (for [x (range (.getWidth image))
|
rlm@118
|
182 y (range (.getHeight image))]
|
rlm@119
|
183 (.setRGB image x y 0xFF0000)))
|
rlm@106
|
184 (dorun
|
rlm@106
|
185 (for [index (range (count points))]
|
rlm@106
|
186 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
|
rlm@106
|
187
|
rlm@106
|
188 image)))
|
rlm@100
|
189
|
rlm@101
|
190 (defn average [coll]
|
rlm@101
|
191 (/ (reduce + coll) (count coll)))
|
rlm@101
|
192
|
rlm@101
|
193 (defn collapse-1d
|
rlm@101
|
194 "One dimensional analogue of collapse"
|
rlm@101
|
195 [center line]
|
rlm@101
|
196 (let [length (count line)
|
rlm@101
|
197 num-above (count (filter (partial < center) line))
|
rlm@101
|
198 num-below (- length num-above)]
|
rlm@101
|
199 (range (- center num-below)
|
rlm@115
|
200 (+ center num-above))))
|
rlm@99
|
201
|
rlm@99
|
202 (defn collapse
|
rlm@99
|
203 "Take a set of pairs of integers and collapse them into a
|
rlm@99
|
204 contigous bitmap."
|
rlm@99
|
205 [points]
|
rlm@108
|
206 (if (empty? points) []
|
rlm@108
|
207 (let
|
rlm@108
|
208 [num-points (count points)
|
rlm@108
|
209 center (vector
|
rlm@108
|
210 (int (average (map first points)))
|
rlm@108
|
211 (int (average (map first points))))
|
rlm@108
|
212 flattened
|
rlm@108
|
213 (reduce
|
rlm@108
|
214 concat
|
rlm@108
|
215 (map
|
rlm@108
|
216 (fn [column]
|
rlm@108
|
217 (map vector
|
rlm@108
|
218 (map first column)
|
rlm@108
|
219 (collapse-1d (second center)
|
rlm@108
|
220 (map second column))))
|
rlm@108
|
221 (partition-by first (sort-by first points))))
|
rlm@108
|
222 squeezed
|
rlm@108
|
223 (reduce
|
rlm@108
|
224 concat
|
rlm@108
|
225 (map
|
rlm@108
|
226 (fn [row]
|
rlm@108
|
227 (map vector
|
rlm@108
|
228 (collapse-1d (first center)
|
rlm@108
|
229 (map first row))
|
rlm@108
|
230 (map second row)))
|
rlm@108
|
231 (partition-by second (sort-by second flattened))))
|
rlm@108
|
232 relocate
|
rlm@108
|
233 (let [min-x (apply min (map first squeezed))
|
rlm@108
|
234 min-y (apply min (map second squeezed))]
|
rlm@108
|
235 (map (fn [[x y]]
|
rlm@108
|
236 [(- x min-x)
|
rlm@108
|
237 (- y min-y)])
|
rlm@108
|
238 squeezed))]
|
rlm@115
|
239 relocate)))
|
rlm@83
|
240
|
rlm@83
|
241 (defn load-bullet []
|
rlm@84
|
242 (let [sim (world (Node.) {} no-op no-op)]
|
rlm@102
|
243 (doto sim
|
rlm@102
|
244 (.enqueue
|
rlm@102
|
245 (fn []
|
rlm@102
|
246 (.stop sim)))
|
rlm@102
|
247 (.start))))
|
rlm@83
|
248
|
rlm@73
|
249 (defn load-blender-model
|
rlm@73
|
250 "Load a .blend file using an asset folder relative path."
|
rlm@73
|
251 [^String model]
|
rlm@73
|
252 (.loadModel
|
rlm@73
|
253 (doto (asset-manager)
|
rlm@73
|
254 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
|
rlm@73
|
255 model))
|
rlm@73
|
256
|
rlm@74
|
257 (defn meta-data [blender-node key]
|
rlm@74
|
258 (if-let [data (.getUserData blender-node "properties")]
|
rlm@74
|
259 (.findValue data key)
|
rlm@74
|
260 nil))
|
rlm@73
|
261
|
rlm@78
|
262 (defn blender-to-jme
|
rlm@78
|
263 "Convert from Blender coordinates to JME coordinates"
|
rlm@78
|
264 [#^Vector3f in]
|
rlm@78
|
265 (Vector3f. (.getX in)
|
rlm@78
|
266 (.getZ in)
|
rlm@78
|
267 (- (.getY in))))
|
rlm@74
|
268
|
rlm@79
|
269
|
rlm@133
|
270
|
rlm@133
|
271
|
rlm@133
|
272
|
rlm@87
|
273 (defn world-to-local
|
rlm@87
|
274 "Convert the world coordinates into coordinates relative to the
|
rlm@87
|
275 object (i.e. local coordinates), taking into account the rotation
|
rlm@87
|
276 of object."
|
rlm@87
|
277 [#^Spatial object world-coordinate]
|
rlm@87
|
278 (let [out (Vector3f.)]
|
rlm@88
|
279 (.worldToLocal object world-coordinate out) out))
|
rlm@87
|
280
|
rlm@96
|
281 (defn local-to-world
|
rlm@96
|
282 "Convert the local coordinates into coordinates into world relative
|
rlm@96
|
283 coordinates"
|
rlm@96
|
284 [#^Spatial object local-coordinate]
|
rlm@96
|
285 (let [world-coordinate (Vector3f.)]
|
rlm@96
|
286 (.localToWorld object local-coordinate world-coordinate)
|
rlm@96
|
287 world-coordinate))
|
rlm@96
|
288
|
rlm@87
|
289 (defmulti joint-dispatch
|
rlm@87
|
290 "Translate blender pseudo-joints into real JME joints."
|
rlm@88
|
291 (fn [constraints & _]
|
rlm@87
|
292 (:type constraints)))
|
rlm@87
|
293
|
rlm@87
|
294 (defmethod joint-dispatch :point
|
rlm@87
|
295 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
296 (println-repl "creating POINT2POINT joint")
|
rlm@130
|
297 ;; bullet's point2point joints are BROKEN, so we must use the
|
rlm@130
|
298 ;; generic 6DOF joint instead of an actual Point2Point joint!
|
rlm@130
|
299
|
rlm@130
|
300 ;; should be able to do this:
|
rlm@130
|
301 (comment
|
rlm@130
|
302 (Point2PointJoint.
|
rlm@130
|
303 control-a
|
rlm@130
|
304 control-b
|
rlm@130
|
305 pivot-a
|
rlm@130
|
306 pivot-b))
|
rlm@130
|
307
|
rlm@130
|
308 ;; but instead we must do this:
|
rlm@130
|
309 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
|
rlm@130
|
310 (doto
|
rlm@130
|
311 (SixDofJoint.
|
rlm@130
|
312 control-a
|
rlm@130
|
313 control-b
|
rlm@130
|
314 pivot-a
|
rlm@130
|
315 pivot-b
|
rlm@130
|
316 false)
|
rlm@130
|
317 (.setLinearLowerLimit Vector3f/ZERO)
|
rlm@130
|
318 (.setLinearUpperLimit Vector3f/ZERO)
|
rlm@130
|
319 ;;(.setAngularLowerLimit (Vector3f. 1 1 1))
|
rlm@130
|
320 ;;(.setAngularUpperLimit (Vector3f. 0 0 0))
|
rlm@130
|
321
|
rlm@130
|
322 ))
|
rlm@130
|
323
|
rlm@87
|
324
|
rlm@87
|
325 (defmethod joint-dispatch :hinge
|
rlm@87
|
326 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
327 (println-repl "creating HINGE joint")
|
rlm@87
|
328 (let [axis
|
rlm@87
|
329 (if-let
|
rlm@87
|
330 [axis (:axis constraints)]
|
rlm@87
|
331 axis
|
rlm@87
|
332 Vector3f/UNIT_X)
|
rlm@87
|
333 [limit-1 limit-2] (:limit constraints)
|
rlm@87
|
334 hinge-axis
|
rlm@87
|
335 (.mult
|
rlm@87
|
336 rotation
|
rlm@87
|
337 (blender-to-jme axis))]
|
rlm@87
|
338 (doto
|
rlm@87
|
339 (HingeJoint.
|
rlm@87
|
340 control-a
|
rlm@87
|
341 control-b
|
rlm@87
|
342 pivot-a
|
rlm@87
|
343 pivot-b
|
rlm@87
|
344 hinge-axis
|
rlm@87
|
345 hinge-axis)
|
rlm@87
|
346 (.setLimit limit-1 limit-2))))
|
rlm@87
|
347
|
rlm@87
|
348 (defmethod joint-dispatch :cone
|
rlm@87
|
349 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
350 (let [limit-xz (:limit-xz constraints)
|
rlm@87
|
351 limit-xy (:limit-xy constraints)
|
rlm@87
|
352 twist (:twist constraints)]
|
rlm@87
|
353
|
rlm@87
|
354 (println-repl "creating CONE joint")
|
rlm@87
|
355 (println-repl rotation)
|
rlm@87
|
356 (println-repl
|
rlm@87
|
357 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
|
rlm@87
|
358 (println-repl
|
rlm@87
|
359 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
|
rlm@87
|
360 (println-repl
|
rlm@87
|
361 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
|
rlm@87
|
362 (doto
|
rlm@87
|
363 (ConeJoint.
|
rlm@87
|
364 control-a
|
rlm@87
|
365 control-b
|
rlm@87
|
366 pivot-a
|
rlm@87
|
367 pivot-b
|
rlm@87
|
368 rotation
|
rlm@87
|
369 rotation)
|
rlm@87
|
370 (.setLimit (float limit-xz)
|
rlm@87
|
371 (float limit-xy)
|
rlm@87
|
372 (float twist)))))
|
rlm@87
|
373
|
rlm@88
|
374 (defn connect
|
rlm@87
|
375 "here are some examples:
|
rlm@87
|
376 {:type :point}
|
rlm@87
|
377 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
|
rlm@87
|
378 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
|
rlm@87
|
379
|
rlm@89
|
380 {:type :cone :limit-xz 0]
|
rlm@89
|
381 :limit-xy 0]
|
rlm@89
|
382 :twist 0]} (use XZY rotation mode in blender!)"
|
rlm@87
|
383 [#^Node obj-a #^Node obj-b #^Node joint]
|
rlm@87
|
384 (let [control-a (.getControl obj-a RigidBodyControl)
|
rlm@87
|
385 control-b (.getControl obj-b RigidBodyControl)
|
rlm@87
|
386 joint-center (.getWorldTranslation joint)
|
rlm@87
|
387 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
|
rlm@87
|
388 pivot-a (world-to-local obj-a joint-center)
|
rlm@87
|
389 pivot-b (world-to-local obj-b joint-center)]
|
rlm@89
|
390
|
rlm@87
|
391 (if-let [constraints
|
rlm@87
|
392 (map-vals
|
rlm@87
|
393 eval
|
rlm@87
|
394 (read-string
|
rlm@87
|
395 (meta-data joint "joint")))]
|
rlm@89
|
396 ;; A side-effect of creating a joint registers
|
rlm@89
|
397 ;; it with both physics objects which in turn
|
rlm@89
|
398 ;; will register the joint with the physics system
|
rlm@89
|
399 ;; when the simulation is started.
|
rlm@87
|
400 (do
|
rlm@87
|
401 (println-repl "creating joint between"
|
rlm@87
|
402 (.getName obj-a) "and" (.getName obj-b))
|
rlm@87
|
403 (joint-dispatch constraints
|
rlm@87
|
404 control-a control-b
|
rlm@87
|
405 pivot-a pivot-b
|
rlm@87
|
406 joint-rotation))
|
rlm@87
|
407 (println-repl "could not find joint meta-data!"))))
|
rlm@87
|
408
|
rlm@130
|
409
|
rlm@130
|
410
|
rlm@130
|
411
|
rlm@78
|
412 (defn assemble-creature [#^Node pieces joints]
|
rlm@78
|
413 (dorun
|
rlm@78
|
414 (map
|
rlm@78
|
415 (fn [geom]
|
rlm@78
|
416 (let [physics-control
|
rlm@78
|
417 (RigidBodyControl.
|
rlm@78
|
418 (HullCollisionShape.
|
rlm@78
|
419 (.getMesh geom))
|
rlm@78
|
420 (if-let [mass (meta-data geom "mass")]
|
rlm@78
|
421 (do
|
rlm@78
|
422 (println-repl
|
rlm@78
|
423 "setting" (.getName geom) "mass to" (float mass))
|
rlm@78
|
424 (float mass))
|
rlm@78
|
425 (float 1)))]
|
rlm@78
|
426
|
rlm@78
|
427 (.addControl geom physics-control)))
|
rlm@78
|
428 (filter #(isa? (class %) Geometry )
|
rlm@78
|
429 (node-seq pieces))))
|
rlm@78
|
430 (dorun
|
rlm@78
|
431 (map
|
rlm@78
|
432 (fn [joint]
|
rlm@133
|
433 (let [[obj-a obj-b] (joint-targets pieces joint)]
|
rlm@88
|
434 (connect obj-a obj-b joint)))
|
rlm@78
|
435 joints))
|
rlm@78
|
436 pieces)
|
rlm@74
|
437
|
rlm@116
|
438 (declare blender-creature)
|
rlm@74
|
439
|
rlm@78
|
440 (def hand "Models/creature1/one.blend")
|
rlm@74
|
441
|
rlm@78
|
442 (def worm "Models/creature1/try-again.blend")
|
rlm@78
|
443
|
rlm@90
|
444 (def touch "Models/creature1/touch.blend")
|
rlm@90
|
445
|
rlm@90
|
446 (defn worm-model [] (load-blender-model worm))
|
rlm@90
|
447
|
rlm@80
|
448 (defn x-ray [#^ColorRGBA color]
|
rlm@80
|
449 (doto (Material. (asset-manager)
|
rlm@80
|
450 "Common/MatDefs/Misc/Unshaded.j3md")
|
rlm@80
|
451 (.setColor "Color" color)
|
rlm@80
|
452 (-> (.getAdditionalRenderState)
|
rlm@80
|
453 (.setDepthTest false))))
|
rlm@80
|
454
|
rlm@91
|
455 (defn colorful []
|
rlm@91
|
456 (.getChild (worm-model) "worm-21"))
|
rlm@90
|
457
|
rlm@90
|
458 (import jme3tools.converters.ImageToAwt)
|
rlm@90
|
459
|
rlm@90
|
460 (import ij.ImagePlus)
|
rlm@90
|
461
|
rlm@108
|
462 ;; Every Mesh has many triangles, each with its own index.
|
rlm@108
|
463 ;; Every vertex has its own index as well.
|
rlm@90
|
464
|
rlm@108
|
465 (defn tactile-sensor-image
|
rlm@110
|
466 "Return the touch-sensor distribution image in BufferedImage format,
|
rlm@110
|
467 or nil if it does not exist."
|
rlm@91
|
468 [#^Geometry obj]
|
rlm@110
|
469 (if-let [image-path (meta-data obj "touch")]
|
rlm@110
|
470 (ImageToAwt/convert
|
rlm@110
|
471 (.getImage
|
rlm@110
|
472 (.loadTexture
|
rlm@110
|
473 (asset-manager)
|
rlm@110
|
474 image-path))
|
rlm@110
|
475 false false 0)))
|
rlm@110
|
476
|
rlm@91
|
477 (import ij.process.ImageProcessor)
|
rlm@91
|
478 (import java.awt.image.BufferedImage)
|
rlm@91
|
479
|
rlm@92
|
480 (def white -1)
|
rlm@94
|
481
|
rlm@91
|
482 (defn filter-pixels
|
rlm@108
|
483 "List the coordinates of all pixels matching pred, within the bounds
|
rlm@108
|
484 provided. Bounds -> [x0 y0 width height]"
|
rlm@92
|
485 {:author "Dylan Holmes"}
|
rlm@108
|
486 ([pred #^BufferedImage image]
|
rlm@108
|
487 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
|
rlm@108
|
488 ([pred #^BufferedImage image [x0 y0 width height]]
|
rlm@108
|
489 ((fn accumulate [x y matches]
|
rlm@108
|
490 (cond
|
rlm@108
|
491 (>= y (+ height y0)) matches
|
rlm@108
|
492 (>= x (+ width x0)) (recur 0 (inc y) matches)
|
rlm@108
|
493 (pred (.getRGB image x y))
|
rlm@108
|
494 (recur (inc x) y (conj matches [x y]))
|
rlm@108
|
495 :else (recur (inc x) y matches)))
|
rlm@108
|
496 x0 y0 [])))
|
rlm@91
|
497
|
rlm@91
|
498 (defn white-coordinates
|
rlm@108
|
499 "Coordinates of all the white pixels in a subset of the image."
|
rlm@112
|
500 ([#^BufferedImage image bounds]
|
rlm@112
|
501 (filter-pixels #(= % white) image bounds))
|
rlm@112
|
502 ([#^BufferedImage image]
|
rlm@112
|
503 (filter-pixels #(= % white) image)))
|
rlm@108
|
504
|
rlm@108
|
505 (defn triangle
|
rlm@112
|
506 "Get the triangle specified by triangle-index from the mesh within
|
rlm@112
|
507 bounds."
|
rlm@108
|
508 [#^Mesh mesh triangle-index]
|
rlm@108
|
509 (let [scratch (Triangle.)]
|
rlm@108
|
510 (.getTriangle mesh triangle-index scratch)
|
rlm@108
|
511 scratch))
|
rlm@108
|
512
|
rlm@108
|
513 (defn triangle-vertex-indices
|
rlm@108
|
514 "Get the triangle vertex indices of a given triangle from a given
|
rlm@108
|
515 mesh."
|
rlm@108
|
516 [#^Mesh mesh triangle-index]
|
rlm@108
|
517 (let [indices (int-array 3)]
|
rlm@108
|
518 (.getTriangle mesh triangle-index indices)
|
rlm@108
|
519 (vec indices)))
|
rlm@108
|
520
|
rlm@108
|
521 (defn vertex-UV-coord
|
rlm@108
|
522 "Get the uv-coordinates of the vertex named by vertex-index"
|
rlm@108
|
523 [#^Mesh mesh vertex-index]
|
rlm@108
|
524 (let [UV-buffer
|
rlm@108
|
525 (.getData
|
rlm@108
|
526 (.getBuffer
|
rlm@108
|
527 mesh
|
rlm@108
|
528 VertexBuffer$Type/TexCoord))]
|
rlm@108
|
529 [(.get UV-buffer (* vertex-index 2))
|
rlm@108
|
530 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
|
rlm@108
|
531
|
rlm@108
|
532 (defn triangle-UV-coord
|
rlm@108
|
533 "Get the uv-cooridnates of the triangle's verticies."
|
rlm@108
|
534 [#^Mesh mesh width height triangle-index]
|
rlm@108
|
535 (map (fn [[u v]] (vector (* width u) (* height v)))
|
rlm@108
|
536 (map (partial vertex-UV-coord mesh)
|
rlm@108
|
537 (triangle-vertex-indices mesh triangle-index))))
|
rlm@91
|
538
|
rlm@102
|
539 (defn same-side?
|
rlm@102
|
540 "Given the points p1 and p2 and the reference point ref, is point p
|
rlm@102
|
541 on the same side of the line that goes through p1 and p2 as ref is?"
|
rlm@102
|
542 [p1 p2 ref p]
|
rlm@91
|
543 (<=
|
rlm@91
|
544 0
|
rlm@91
|
545 (.dot
|
rlm@91
|
546 (.cross (.subtract p2 p1) (.subtract p p1))
|
rlm@91
|
547 (.cross (.subtract p2 p1) (.subtract ref p1)))))
|
rlm@91
|
548
|
rlm@108
|
549 (defn triangle-seq [#^Triangle tri]
|
rlm@108
|
550 [(.get1 tri) (.get2 tri) (.get3 tri)])
|
rlm@108
|
551
|
rlm@108
|
552 (defn vector3f-seq [#^Vector3f v]
|
rlm@108
|
553 [(.getX v) (.getY v) (.getZ v)])
|
rlm@108
|
554
|
rlm@108
|
555 (defn inside-triangle?
|
rlm@108
|
556 "Is the point inside the triangle?"
|
rlm@108
|
557 {:author "Dylan Holmes"}
|
rlm@108
|
558 [#^Triangle tri #^Vector3f p]
|
rlm@108
|
559 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
|
rlm@108
|
560 (and
|
rlm@108
|
561 (same-side? vert-1 vert-2 vert-3 p)
|
rlm@108
|
562 (same-side? vert-2 vert-3 vert-1 p)
|
rlm@108
|
563 (same-side? vert-3 vert-1 vert-2 p))))
|
rlm@108
|
564
|
rlm@94
|
565 (defn triangle->matrix4f
|
rlm@108
|
566 "Converts the triangle into a 4x4 matrix: The first three columns
|
rlm@108
|
567 contain the vertices of the triangle; the last contains the unit
|
rlm@108
|
568 normal of the triangle. The bottom row is filled with 1s."
|
rlm@94
|
569 [#^Triangle t]
|
rlm@94
|
570 (let [mat (Matrix4f.)
|
rlm@94
|
571 [vert-1 vert-2 vert-3]
|
rlm@94
|
572 ((comp vec map) #(.get t %) (range 3))
|
rlm@94
|
573 unit-normal (do (.calculateNormal t)(.getNormal t))
|
rlm@94
|
574 vertices [vert-1 vert-2 vert-3 unit-normal]]
|
rlm@94
|
575 (dorun
|
rlm@94
|
576 (for [row (range 4) col (range 3)]
|
rlm@94
|
577 (do
|
rlm@94
|
578 (.set mat col row (.get (vertices row)col))
|
rlm@94
|
579 (.set mat 3 row 1))))
|
rlm@94
|
580 mat))
|
rlm@94
|
581
|
rlm@94
|
582 (defn triangle-transformation
|
rlm@94
|
583 "Returns the affine transformation that converts each vertex in the
|
rlm@94
|
584 first triangle into the corresponding vertex in the second
|
rlm@94
|
585 triangle."
|
rlm@94
|
586 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@94
|
587 (.mult
|
rlm@94
|
588 (triangle->matrix4f tri-2)
|
rlm@94
|
589 (.invert (triangle->matrix4f tri-1))))
|
rlm@94
|
590
|
rlm@108
|
591 (defn point->vector2f [[u v]]
|
rlm@108
|
592 (Vector2f. u v))
|
rlm@94
|
593
|
rlm@94
|
594 (defn vector2f->vector3f [v]
|
rlm@94
|
595 (Vector3f. (.getX v) (.getY v) 0))
|
rlm@94
|
596
|
rlm@94
|
597 (defn map-triangle [f #^Triangle tri]
|
rlm@94
|
598 (Triangle.
|
rlm@94
|
599 (f 0 (.get1 tri))
|
rlm@94
|
600 (f 1 (.get2 tri))
|
rlm@94
|
601 (f 2 (.get3 tri))))
|
rlm@94
|
602
|
rlm@108
|
603 (defn points->triangle
|
rlm@108
|
604 "Convert a list of points into a triangle."
|
rlm@108
|
605 [points]
|
rlm@108
|
606 (apply #(Triangle. %1 %2 %3)
|
rlm@108
|
607 (map (fn [point]
|
rlm@108
|
608 (let [point (vec point)]
|
rlm@108
|
609 (Vector3f. (get point 0 0)
|
rlm@108
|
610 (get point 1 0)
|
rlm@108
|
611 (get point 2 0))))
|
rlm@108
|
612 (take 3 points))))
|
rlm@94
|
613
|
rlm@108
|
614 (defn convex-bounds
|
rlm@128
|
615 ;;dylan
|
rlm@128
|
616 "Returns the smallest square containing the given
|
rlm@128
|
617 vertices, as a vector of integers [left top width height]."
|
rlm@128
|
618 ;; "Dimensions of the smallest integer bounding square of the list of
|
rlm@128
|
619 ;; 2D verticies in the form: [x y width height]."
|
rlm@108
|
620 [uv-verts]
|
rlm@108
|
621 (let [xs (map first uv-verts)
|
rlm@108
|
622 ys (map second uv-verts)
|
rlm@108
|
623 x0 (Math/floor (apply min xs))
|
rlm@108
|
624 y0 (Math/floor (apply min ys))
|
rlm@108
|
625 x1 (Math/ceil (apply max xs))
|
rlm@108
|
626 y1 (Math/ceil (apply max ys))]
|
rlm@108
|
627 [x0 y0 (- x1 x0) (- y1 y0)]))
|
rlm@93
|
628
|
rlm@106
|
629 (defn sensors-in-triangle
|
rlm@128
|
630 ;;dylan
|
rlm@128
|
631 "Locate the touch sensors in the triangle, returning a map of their UV and geometry-relative coordinates."
|
rlm@128
|
632 ;;"Find the locations of the touch sensors within a triangle in both
|
rlm@128
|
633 ;; UV and gemoetry relative coordinates."
|
rlm@107
|
634 [image mesh tri-index]
|
rlm@107
|
635 (let [width (.getWidth image)
|
rlm@108
|
636 height (.getHeight image)
|
rlm@108
|
637 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
|
rlm@108
|
638 bounds (convex-bounds UV-vertex-coords)
|
rlm@108
|
639
|
rlm@108
|
640 cutout-triangle (points->triangle UV-vertex-coords)
|
rlm@108
|
641 UV-sensor-coords
|
rlm@108
|
642 (filter (comp (partial inside-triangle? cutout-triangle)
|
rlm@108
|
643 (fn [[u v]] (Vector3f. u v 0)))
|
rlm@108
|
644 (white-coordinates image bounds))
|
rlm@108
|
645 UV->geometry (triangle-transformation
|
rlm@108
|
646 cutout-triangle
|
rlm@108
|
647 (triangle mesh tri-index))
|
rlm@108
|
648 geometry-sensor-coords
|
rlm@108
|
649 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
|
rlm@108
|
650 UV-sensor-coords)]
|
rlm@108
|
651 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
|
rlm@107
|
652
|
rlm@108
|
653 (defn-memo locate-feelers
|
rlm@94
|
654 "Search the geometry's tactile UV image for touch sensors, returning
|
rlm@94
|
655 their positions in geometry-relative coordinates."
|
rlm@94
|
656 [#^Geometry geo]
|
rlm@108
|
657 (let [mesh (.getMesh geo)
|
rlm@108
|
658 num-triangles (.getTriangleCount mesh)]
|
rlm@108
|
659 (if-let [image (tactile-sensor-image geo)]
|
rlm@108
|
660 (map
|
rlm@108
|
661 (partial sensors-in-triangle image mesh)
|
rlm@108
|
662 (range num-triangles))
|
rlm@108
|
663 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
|
rlm@102
|
664
|
rlm@102
|
665 (use 'clojure.contrib.def)
|
rlm@102
|
666
|
rlm@102
|
667 (defn-memo touch-topology [#^Gemoetry geo]
|
rlm@108
|
668 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
|
rlm@108
|
669
|
rlm@108
|
670 (defn-memo feeler-coordinates [#^Geometry geo]
|
rlm@108
|
671 (vec (map :geometry (locate-feelers geo))))
|
rlm@102
|
672
|
rlm@97
|
673 (defn enable-touch [#^Geometry geo]
|
rlm@108
|
674 (let [feeler-coords (feeler-coordinates geo)
|
rlm@96
|
675 tris (triangles geo)
|
rlm@109
|
676 limit 0.1
|
rlm@109
|
677 ;;results (CollisionResults.)
|
rlm@109
|
678 ]
|
rlm@111
|
679 (if (empty? (touch-topology geo))
|
rlm@111
|
680 nil
|
rlm@111
|
681 (fn [node]
|
rlm@111
|
682 (let [sensor-origins
|
rlm@111
|
683 (map
|
rlm@111
|
684 #(map (partial local-to-world geo) %)
|
rlm@111
|
685 feeler-coords)
|
rlm@111
|
686 triangle-normals
|
rlm@111
|
687 (map (partial get-ray-direction geo)
|
rlm@111
|
688 tris)
|
rlm@111
|
689 rays
|
rlm@111
|
690 (flatten
|
rlm@111
|
691 (map (fn [origins norm]
|
rlm@111
|
692 (map #(doto (Ray. % norm)
|
rlm@97
|
693 (.setLimit limit)) origins))
|
rlm@111
|
694 sensor-origins triangle-normals))]
|
rlm@111
|
695 (vector
|
rlm@111
|
696 (touch-topology geo)
|
rlm@111
|
697 (vec
|
rlm@111
|
698 (for [ray rays]
|
rlm@111
|
699 (do
|
rlm@111
|
700 (let [results (CollisionResults.)]
|
rlm@111
|
701 (.collideWith node ray results)
|
rlm@111
|
702 (let [touch-objects
|
rlm@126
|
703 (filter #(not (= geo (.getGeometry %)))
|
rlm@126
|
704 results)]
|
rlm@126
|
705 (- 255
|
rlm@126
|
706 (if (empty? touch-objects) 255
|
rlm@126
|
707 (rem
|
rlm@126
|
708 (int
|
rlm@126
|
709 (* 255 (/ (.getDistance
|
rlm@126
|
710 (first touch-objects)) limit)))
|
rlm@126
|
711 256))))))))))))))
|
rlm@126
|
712
|
rlm@111
|
713
|
rlm@111
|
714 (defn touch [#^Node pieces]
|
rlm@111
|
715 (filter (comp not nil?)
|
rlm@111
|
716 (map enable-touch
|
rlm@111
|
717 (filter #(isa? (class %) Geometry)
|
rlm@111
|
718 (node-seq pieces)))))
|
rlm@94
|
719
|
rlm@109
|
720
|
rlm@111
|
721 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
|
rlm@111
|
722 ;; http://en.wikipedia.org/wiki/Retina
|
rlm@109
|
723
|
rlm@111
|
724 (defn test-eye []
|
rlm@117
|
725 (.getChild
|
rlm@117
|
726 (.getChild (worm-model) "eyes")
|
rlm@117
|
727 "eye"))
|
rlm@111
|
728
|
rlm@111
|
729
|
rlm@111
|
730 (defn retina-sensor-image
|
rlm@111
|
731 "Return a map of pixel selection functions to BufferedImages
|
rlm@111
|
732 describing the distribution of light-sensitive components on this
|
rlm@111
|
733 geometry's surface. Each function creates an integer from the rgb
|
rlm@111
|
734 values found in the pixel. :red, :green, :blue, :gray are already
|
rlm@111
|
735 defined as extracting the red green blue and average components
|
rlm@111
|
736 respectively."
|
rlm@117
|
737 [#^Spatial eye]
|
rlm@111
|
738 (if-let [eye-map (meta-data eye "eye")]
|
rlm@111
|
739 (map-vals
|
rlm@111
|
740 #(ImageToAwt/convert
|
rlm@111
|
741 (.getImage (.loadTexture (asset-manager) %))
|
rlm@111
|
742 false false 0)
|
rlm@120
|
743 (eval (read-string eye-map)))))
|
rlm@111
|
744
|
rlm@117
|
745 (defn eye-dimensions
|
rlm@117
|
746 "returns the width and height specified in the metadata of the eye"
|
rlm@117
|
747 [#^Spatial eye]
|
rlm@117
|
748 (let [dimensions
|
rlm@117
|
749 (map #(vector (.getWidth %) (.getHeight %))
|
rlm@117
|
750 (vals (retina-sensor-image eye)))]
|
rlm@117
|
751 [(apply max (map first dimensions))
|
rlm@117
|
752 (apply max (map second dimensions))]))
|
rlm@117
|
753
|
rlm@116
|
754 (defn creature-eyes
|
rlm@128
|
755 ;;dylan
|
rlm@128
|
756 "Return the children of the creature's \"eyes\" node."
|
rlm@128
|
757 ;;"The eye nodes which are children of the \"eyes\" node in the
|
rlm@128
|
758 ;;creature."
|
rlm@116
|
759 [#^Node creature]
|
rlm@116
|
760 (if-let [eye-node (.getChild creature "eyes")]
|
rlm@116
|
761 (seq (.getChildren eye-node))
|
rlm@116
|
762 (do (println-repl "could not find eyes node") [])))
|
rlm@111
|
763
|
rlm@123
|
764 ;; Here's how vision will work.
|
rlm@112
|
765
|
rlm@123
|
766 ;; Make the continuation in scene-processor take FrameBuffer,
|
rlm@123
|
767 ;; byte-buffer, BufferedImage already sized to the correct
|
rlm@123
|
768 ;; dimensions. the continuation will decide wether to "mix" them
|
rlm@123
|
769 ;; into the BufferedImage, lazily ignore them, or mix them halfway
|
rlm@123
|
770 ;; and call c/graphics card routines.
|
rlm@112
|
771
|
rlm@123
|
772 ;; (vision creature) will take an optional :skip argument which will
|
rlm@123
|
773 ;; inform the continuations in scene processor to skip the given
|
rlm@123
|
774 ;; number of cycles; 0 means that no cycles will be skipped.
|
rlm@112
|
775
|
rlm@123
|
776 ;; (vision creature) will return [init-functions sensor-functions].
|
rlm@123
|
777 ;; The init-functions are each single-arg functions that take the
|
rlm@123
|
778 ;; world and register the cameras and must each be called before the
|
rlm@123
|
779 ;; corresponding sensor-functions. Each init-function returns the
|
rlm@123
|
780 ;; viewport for that eye which can be manipulated, saved, etc. Each
|
rlm@123
|
781 ;; sensor-function is a thunk and will return data in the same
|
rlm@123
|
782 ;; format as the tactile-sensor functions; the structure is
|
rlm@123
|
783 ;; [topology, sensor-data]. Internally, these sensor-functions
|
rlm@123
|
784 ;; maintain a reference to sensor-data which is periodically updated
|
rlm@123
|
785 ;; by the continuation function established by its init-function.
|
rlm@123
|
786 ;; They can be queried every cycle, but their information may not
|
rlm@123
|
787 ;; necessairly be different every cycle.
|
rlm@112
|
788
|
rlm@123
|
789 ;; Each eye in the creature in blender will work the same way as
|
rlm@123
|
790 ;; joints -- a zero dimensional object with no geometry whose local
|
rlm@123
|
791 ;; coordinate system determines the orientation of the resulting
|
rlm@123
|
792 ;; eye. All eyes will have a parent named "eyes" just as all joints
|
rlm@123
|
793 ;; have a parent named "joints". The resulting camera will be a
|
rlm@123
|
794 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
|
rlm@123
|
795 ;; the eye marker. The eye marker will contain the metadata for the
|
rlm@123
|
796 ;; eye, and will be moved by it's bound geometry. The dimensions of
|
rlm@123
|
797 ;; the eye's camera are equal to the dimensions of the eye's "UV"
|
rlm@123
|
798 ;; map.
|
rlm@116
|
799
|
rlm@123
|
800
|
rlm@123
|
801 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
rlm@123
|
802
|
rlm@123
|
803 ;; Ears work the same way as vision.
|
rlm@123
|
804
|
rlm@123
|
805 ;; (hearing creature) will return [init-functions
|
rlm@123
|
806 ;; sensor-functions]. The init functions each take the world and
|
rlm@123
|
807 ;; register a SoundProcessor that does foureier transforms on the
|
rlm@123
|
808 ;; incommong sound data, making it available to each sensor function.
|
rlm@123
|
809
|
rlm@123
|
810 (defn creature-ears
|
rlm@128
|
811 "Return the children of the creature's \"ears\" node."
|
rlm@128
|
812 ;;dylan
|
rlm@128
|
813 ;;"The ear nodes which are children of the \"ears\" node in the
|
rlm@128
|
814 ;;creature."
|
rlm@123
|
815 [#^Node creature]
|
rlm@123
|
816 (if-let [ear-node (.getChild creature "ears")]
|
rlm@123
|
817 (seq (.getChildren ear-node))
|
rlm@123
|
818 (do (println-repl "could not find ears node") [])))
|
rlm@123
|
819
|
rlm@123
|
820 (defn closest-node
|
rlm@128
|
821 "Return the object in creature which is closest to the given node."
|
rlm@128
|
822 ;;dylan"The closest object in creature to the given node."
|
rlm@116
|
823 [#^Node creature #^Node eye]
|
rlm@116
|
824 (loop [radius (float 0.01)]
|
rlm@116
|
825 (let [results (CollisionResults.)]
|
rlm@116
|
826 (.collideWith
|
rlm@116
|
827 creature
|
rlm@116
|
828 (BoundingBox. (.getWorldTranslation eye)
|
rlm@116
|
829 radius radius radius)
|
rlm@116
|
830 results)
|
rlm@116
|
831 (if-let [target (first results)]
|
rlm@116
|
832 (.getGeometry target)
|
rlm@116
|
833 (recur (float (* 2 radius)))))))
|
rlm@116
|
834
|
rlm@128
|
835 ;;dylan (defn follow-sense, adjoin-sense, attach-stimuli,
|
rlm@128
|
836 ;;anchor-qualia, augment-organ, with-organ
|
rlm@123
|
837 (defn bind-sense
|
rlm@123
|
838 "Bind the sense to the Spatial such that it will maintain its
|
rlm@117
|
839 current position relative to the Spatial no matter how the spatial
|
rlm@123
|
840 moves. 'sense can be either a Camera or Listener object."
|
rlm@123
|
841 [#^Spatial obj sense]
|
rlm@123
|
842 (let [sense-offset (.subtract (.getLocation sense)
|
rlm@123
|
843 (.getWorldTranslation obj))
|
rlm@123
|
844 initial-sense-rotation (Quaternion. (.getRotation sense))
|
rlm@117
|
845 base-anti-rotation (.inverse (.getWorldRotation obj))]
|
rlm@117
|
846 (.addControl
|
rlm@117
|
847 obj
|
rlm@117
|
848 (proxy [AbstractControl] []
|
rlm@117
|
849 (controlUpdate [tpf]
|
rlm@117
|
850 (let [total-rotation
|
rlm@117
|
851 (.mult base-anti-rotation (.getWorldRotation obj))]
|
rlm@123
|
852 (.setLocation sense
|
rlm@117
|
853 (.add
|
rlm@123
|
854 (.mult total-rotation sense-offset)
|
rlm@117
|
855 (.getWorldTranslation obj)))
|
rlm@123
|
856 (.setRotation sense
|
rlm@123
|
857 (.mult total-rotation initial-sense-rotation))))
|
rlm@117
|
858 (controlRender [_ _])))))
|
rlm@117
|
859
|
rlm@117
|
860
|
rlm@123
|
861 (defn update-listener-velocity
|
rlm@123
|
862 "Update the listener's velocity every update loop."
|
rlm@123
|
863 [#^Spatial obj #^Listener lis]
|
rlm@123
|
864 (let [old-position (atom (.getLocation lis))]
|
rlm@123
|
865 (.addControl
|
rlm@123
|
866 obj
|
rlm@123
|
867 (proxy [AbstractControl] []
|
rlm@123
|
868 (controlUpdate [tpf]
|
rlm@123
|
869 (let [new-position (.getLocation lis)]
|
rlm@123
|
870 (.setVelocity
|
rlm@123
|
871 lis
|
rlm@123
|
872 (.mult (.subtract new-position @old-position)
|
rlm@123
|
873 (float (/ tpf))))
|
rlm@123
|
874 (reset! old-position new-position)))
|
rlm@123
|
875 (controlRender [_ _])))))
|
rlm@123
|
876
|
rlm@123
|
877 (import com.aurellem.capture.audio.AudioSendRenderer)
|
rlm@123
|
878
|
rlm@123
|
879 (defn attach-ear
|
rlm@123
|
880 [#^Application world #^Node creature #^Spatial ear continuation]
|
rlm@123
|
881 (let [target (closest-node creature ear)
|
rlm@123
|
882 lis (Listener.)
|
rlm@123
|
883 audio-renderer (.getAudioRenderer world)
|
rlm@123
|
884 sp (sound-processor continuation)]
|
rlm@123
|
885 (.setLocation lis (.getWorldTranslation ear))
|
rlm@123
|
886 (.setRotation lis (.getWorldRotation ear))
|
rlm@123
|
887 (bind-sense target lis)
|
rlm@123
|
888 (update-listener-velocity target lis)
|
rlm@123
|
889 (.addListener audio-renderer lis)
|
rlm@123
|
890 (.registerSoundProcessor audio-renderer lis sp)))
|
rlm@123
|
891
|
rlm@123
|
892 (defn enable-hearing
|
rlm@123
|
893 [#^Node creature #^Spatial ear]
|
rlm@123
|
894 (let [hearing-data (atom [])]
|
rlm@123
|
895 [(fn [world]
|
rlm@123
|
896 (attach-ear world creature ear
|
rlm@123
|
897 (fn [data]
|
rlm@123
|
898 (reset! hearing-data (vec data)))))
|
rlm@123
|
899 [(fn []
|
rlm@123
|
900 (let [data @hearing-data
|
rlm@123
|
901 topology
|
rlm@123
|
902 (vec (map #(vector % 0) (range 0 (count data))))
|
rlm@123
|
903 scaled-data
|
rlm@123
|
904 (vec
|
rlm@123
|
905 (map
|
rlm@123
|
906 #(rem (int (* 255 (/ (+ 1 %) 2))) 256)
|
rlm@123
|
907 data))]
|
rlm@123
|
908 [topology scaled-data]))
|
rlm@123
|
909 ]]))
|
rlm@123
|
910
|
rlm@123
|
911 (defn hearing
|
rlm@123
|
912 [#^Node creature]
|
rlm@123
|
913 (reduce
|
rlm@123
|
914 (fn [[init-a senses-a]
|
rlm@123
|
915 [init-b senses-b]]
|
rlm@123
|
916 [(conj init-a init-b)
|
rlm@123
|
917 (into senses-a senses-b)])
|
rlm@123
|
918 [[][]]
|
rlm@123
|
919 (for [ear (creature-ears creature)]
|
rlm@123
|
920 (enable-hearing creature ear))))
|
rlm@123
|
921
|
rlm@118
|
922 (defn attach-eye
|
rlm@118
|
923 "Attach a Camera to the appropiate area and return the Camera."
|
rlm@118
|
924 [#^Node creature #^Spatial eye]
|
rlm@123
|
925 (let [target (closest-node creature eye)
|
rlm@118
|
926 [cam-width cam-height] (eye-dimensions eye)
|
rlm@118
|
927 cam (Camera. cam-width cam-height)]
|
rlm@118
|
928 (.setLocation cam (.getWorldTranslation eye))
|
rlm@118
|
929 (.setRotation cam (.getWorldRotation eye))
|
rlm@119
|
930 (.setFrustumPerspective
|
rlm@119
|
931 cam 45 (/ (.getWidth cam) (.getHeight cam))
|
rlm@119
|
932 1 1000)
|
rlm@123
|
933 (bind-sense target cam)
|
rlm@118
|
934 cam))
|
rlm@118
|
935
|
rlm@118
|
936 (def presets
|
rlm@121
|
937 {:all 0xFFFFFF
|
rlm@119
|
938 :red 0xFF0000
|
rlm@119
|
939 :blue 0x0000FF
|
rlm@119
|
940 :green 0x00FF00})
|
rlm@119
|
941
|
rlm@118
|
942 (defn enable-vision
|
rlm@118
|
943 "return [init-function sensor-functions] for a particular eye"
|
rlm@118
|
944 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
|
rlm@118
|
945 (let [retinal-map (retina-sensor-image eye)
|
rlm@123
|
946 camera (attach-eye creature eye)
|
rlm@123
|
947 vision-image
|
rlm@123
|
948 (atom
|
rlm@123
|
949 (BufferedImage. (.getWidth camera)
|
rlm@123
|
950 (.getHeight camera)
|
rlm@123
|
951 BufferedImage/TYPE_BYTE_BINARY))]
|
rlm@123
|
952 [(fn [world]
|
rlm@123
|
953 (add-eye
|
rlm@123
|
954 world camera
|
rlm@123
|
955 (let [counter (atom 0)]
|
rlm@123
|
956 (fn [r fb bb bi]
|
rlm@123
|
957 (if (zero? (rem (swap! counter inc) (inc skip)))
|
rlm@123
|
958 (reset! vision-image (BufferedImage! r fb bb bi)))))))
|
rlm@123
|
959 (vec
|
rlm@123
|
960 (map
|
rlm@123
|
961 (fn [[key image]]
|
rlm@123
|
962 (let [whites (white-coordinates image)
|
rlm@123
|
963 topology (vec (collapse whites))
|
rlm@123
|
964 mask (presets key)]
|
rlm@123
|
965 (fn []
|
rlm@123
|
966 (vector
|
rlm@123
|
967 topology
|
rlm@123
|
968 (vec
|
rlm@123
|
969 (for [[x y] whites]
|
rlm@123
|
970 (bit-and
|
rlm@123
|
971 mask (.getRGB @vision-image x y))))))))
|
rlm@123
|
972 retinal-map))]))
|
rlm@118
|
973
|
rlm@116
|
974 (defn vision
|
rlm@121
|
975 [#^Node creature & {skip :skip :or {skip 0}}]
|
rlm@121
|
976 (reduce
|
rlm@121
|
977 (fn [[init-a senses-a]
|
rlm@121
|
978 [init-b senses-b]]
|
rlm@121
|
979 [(conj init-a init-b)
|
rlm@121
|
980 (into senses-a senses-b)])
|
rlm@121
|
981 [[][]]
|
rlm@121
|
982 (for [eye (creature-eyes creature)]
|
rlm@121
|
983 (enable-vision creature eye))))
|
rlm@128
|
984
|
rlm@128
|
985
|
rlm@128
|
986
|
rlm@128
|
987
|
rlm@128
|
988
|
rlm@128
|
989 ;; lower level --- nodes
|
rlm@128
|
990 ;; closest-node "parse/compile-x" -> makes organ, which is spatial, fn pair
|
rlm@128
|
991
|
rlm@128
|
992 ;; higher level -- organs
|
rlm@128
|
993 ;;
|
rlm@128
|
994
|
rlm@128
|
995 ;; higher level --- sense/effector
|
rlm@128
|
996 ;; these are the functions that provide world i/o, chinese-room style
|
rlm@128
|
997
|
rlm@128
|
998
|
rlm@134
|
999
|
rlm@116
|
1000
|
rlm@116
|
1001 (defn blender-creature
|
rlm@116
|
1002 "Return a creature with all joints in place."
|
rlm@116
|
1003 [blender-path]
|
rlm@116
|
1004 (let [model (load-blender-model blender-path)
|
rlm@134
|
1005 joints (creature-joints model)]
|
rlm@134
|
1006 (assemble-creature model joints)))
|
rlm@116
|
1007
|
rlm@126
|
1008 (defn gray-scale [num]
|
rlm@126
|
1009 (+ num
|
rlm@126
|
1010 (bit-shift-left num 8)
|
rlm@126
|
1011 (bit-shift-left num 16)))
|
rlm@126
|
1012
|
rlm@130
|
1013 (defn debug-touch-window
|
rlm@103
|
1014 "creates function that offers a debug view of sensor data"
|
rlm@103
|
1015 []
|
rlm@103
|
1016 (let [vi (view-image)]
|
rlm@103
|
1017 (fn
|
rlm@103
|
1018 [[coords sensor-data]]
|
rlm@103
|
1019 (let [image (points->image coords)]
|
rlm@103
|
1020 (dorun
|
rlm@103
|
1021 (for [i (range (count coords))]
|
rlm@103
|
1022 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@126
|
1023 (gray-scale (sensor-data i)))))
|
rlm@126
|
1024
|
rlm@126
|
1025
|
rlm@103
|
1026 (vi image)))))
|
rlm@103
|
1027
|
rlm@118
|
1028 (defn debug-vision-window
|
rlm@118
|
1029 "creates function that offers a debug view of sensor data"
|
rlm@118
|
1030 []
|
rlm@118
|
1031 (let [vi (view-image)]
|
rlm@118
|
1032 (fn
|
rlm@118
|
1033 [[coords sensor-data]]
|
rlm@118
|
1034 (let [image (points->image coords)]
|
rlm@118
|
1035 (dorun
|
rlm@118
|
1036 (for [i (range (count coords))]
|
rlm@118
|
1037 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@118
|
1038 (sensor-data i))))
|
rlm@118
|
1039 (vi image)))))
|
rlm@118
|
1040
|
rlm@123
|
1041 (defn debug-hearing-window
|
rlm@123
|
1042 "view audio data"
|
rlm@123
|
1043 [height]
|
rlm@123
|
1044 (let [vi (view-image)]
|
rlm@123
|
1045 (fn [[coords sensor-data]]
|
rlm@123
|
1046 (let [image (BufferedImage. (count coords) height
|
rlm@123
|
1047 BufferedImage/TYPE_INT_RGB)]
|
rlm@123
|
1048 (dorun
|
rlm@123
|
1049 (for [x (range (count coords))]
|
rlm@123
|
1050 (dorun
|
rlm@123
|
1051 (for [y (range height)]
|
rlm@123
|
1052 (let [raw-sensor (sensor-data x)]
|
rlm@126
|
1053 (.setRGB image x y (gray-scale raw-sensor)))))))
|
rlm@126
|
1054
|
rlm@123
|
1055 (vi image)))))
|
rlm@123
|
1056
|
rlm@123
|
1057
|
rlm@123
|
1058
|
rlm@106
|
1059 ;;(defn test-touch [world creature]
|
rlm@83
|
1060
|
rlm@78
|
1061
|
rlm@123
|
1062
|
rlm@123
|
1063
|
rlm@130
|
1064 ;; here's how motor-control/ proprioception will work: Each muscle is
|
rlm@130
|
1065 ;; defined by a 1-D array of numbers (the "motor pool") each of which
|
rlm@130
|
1066 ;; represent muscle fibers. A muscle also has a scalar :strength
|
rlm@130
|
1067 ;; factor which determines how strong the muscle as a whole is.
|
rlm@130
|
1068 ;; The effector function for a muscle takes a number < (count
|
rlm@130
|
1069 ;; motor-pool) and that number is said to "activate" all the muscle
|
rlm@130
|
1070 ;; fibers whose index is lower than the number. Each fiber will apply
|
rlm@130
|
1071 ;; force in proportion to its value in the array. Lower values cause
|
rlm@130
|
1072 ;; less force. The lower values can be put at the "beginning" of the
|
rlm@130
|
1073 ;; 1-D array to simulate the layout of actual human muscles, which are
|
rlm@130
|
1074 ;; capable of more percise movements when exerting less force.
|
rlm@129
|
1075
|
rlm@130
|
1076 ;; I don't know how to encode proprioception, so for now, just return
|
rlm@130
|
1077 ;; a function for each joint that returns a triplet of floats which
|
rlm@130
|
1078 ;; represent relative roll, pitch, and yaw. Write display code for
|
rlm@130
|
1079 ;; this though.
|
rlm@130
|
1080
|
rlm@147
|
1081 (defn muscle-fiber-values
|
rlm@147
|
1082 "get motor pool strengths"
|
rlm@130
|
1083 [#^BufferedImage image]
|
rlm@147
|
1084 (vec
|
rlm@147
|
1085 (let [width (.getWidth image)]
|
rlm@147
|
1086 (for [x (range width)]
|
rlm@147
|
1087 (- 255
|
rlm@147
|
1088 (bit-and
|
rlm@147
|
1089 0x0000FF
|
rlm@147
|
1090 (.getRGB image x 0)))))))
|
rlm@147
|
1091
|
rlm@147
|
1092
|
rlm@147
|
1093 (defn creature-muscles
|
rlm@147
|
1094 "Return the children of the creature's \"muscles\" node."
|
rlm@147
|
1095 [#^Node creature]
|
rlm@147
|
1096 (if-let [muscle-node (.getChild creature "muscles")]
|
rlm@147
|
1097 (seq (.getChildren muscle-node))
|
rlm@147
|
1098 (do (println-repl "could not find muscles node") [])))
|
rlm@147
|
1099
|
rlm@147
|
1100 (defn single-muscle [#^Node parts #^Node muscle]
|
rlm@147
|
1101 (let [target (closest-node parts muscle)
|
rlm@147
|
1102 axis
|
rlm@147
|
1103 (.mult (.getWorldRotation muscle) Vector3f/UNIT_Y)
|
rlm@147
|
1104 strength (meta-data muscle "strength")
|
rlm@147
|
1105 image-name (read-string (meta-data muscle "muscle"))
|
rlm@147
|
1106 image
|
rlm@147
|
1107 (ImageToAwt/convert
|
rlm@147
|
1108 (.getImage (.loadTexture (asset-manager) image-name))
|
rlm@147
|
1109 false false 0)
|
rlm@147
|
1110 fibers (muscle-fiber-values image)
|
rlm@147
|
1111 fiber-integral (reductions + fibers)
|
rlm@147
|
1112 force-index (vec
|
rlm@147
|
1113 (map
|
rlm@147
|
1114 #(float (* strength (/ % (last
|
rlm@147
|
1115 fiber-integral))))
|
rlm@147
|
1116 fiber-integral))
|
rlm@147
|
1117 control (.getControl target RigidBodyControl)]
|
rlm@147
|
1118 (fn [n]
|
rlm@147
|
1119 (let [pool-index (min n (count fibers))]
|
rlm@148
|
1120 (.applyTorque control (.mult axis (force-index n)))))))
|
rlm@147
|
1121
|
rlm@147
|
1122
|
rlm@147
|
1123 (defn enable-muscles
|
rlm@147
|
1124 "Must be called on a creature after RigidBodyControls have been
|
rlm@147
|
1125 created."
|
rlm@147
|
1126 [#^Node creature]
|
rlm@147
|
1127 (let [muscles (creature-muscles creature)]
|
rlm@147
|
1128 (for [muscle muscles]
|
rlm@147
|
1129 (single-muscle creature muscle))))
|
rlm@130
|
1130
|
rlm@106
|
1131 (defn test-creature [thing]
|
rlm@106
|
1132 (let [x-axis
|
rlm@106
|
1133 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
|
rlm@106
|
1134 y-axis
|
rlm@106
|
1135 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
|
rlm@106
|
1136 z-axis
|
rlm@106
|
1137 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
|
rlm@106
|
1138 creature (blender-creature thing)
|
rlm@106
|
1139 touch-nerves (touch creature)
|
rlm@130
|
1140 touch-debug-windows (map (fn [_] (debug-touch-window)) touch-nerves)
|
rlm@121
|
1141 [init-vision-fns vision-data] (vision creature)
|
rlm@121
|
1142 vision-debug (map (fn [_] (debug-vision-window)) vision-data)
|
rlm@118
|
1143 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
|
rlm@123
|
1144 [init-hearing-fns hearing-senses] (hearing creature)
|
rlm@123
|
1145 hearing-windows (map (fn [_] (debug-hearing-window 50))
|
rlm@123
|
1146 hearing-senses)
|
rlm@124
|
1147 bell (AudioNode. (asset-manager)
|
rlm@128
|
1148 "Sounds/pure.wav" false)
|
rlm@130
|
1149 prop (proprioception creature)
|
rlm@135
|
1150 prop-debug (proprioception-debug-window)
|
rlm@148
|
1151
|
rlm@148
|
1152 muscle-fns (enable-muscles creature)
|
rlm@123
|
1153 ;; dream
|
rlm@123
|
1154
|
rlm@106
|
1155 ]
|
rlm@143
|
1156
|
rlm@143
|
1157
|
rlm@143
|
1158 (apply
|
rlm@143
|
1159 world
|
rlm@143
|
1160 (with-movement
|
rlm@143
|
1161 (.getChild creature "worm-21")
|
rlm@143
|
1162 ["key-r" "key-t"
|
rlm@143
|
1163 "key-f" "key-g"
|
rlm@143
|
1164 "key-v" "key-b"]
|
rlm@143
|
1165 [10 10 10 10 1 1]
|
rlm@143
|
1166 [(nodify [creature
|
rlm@143
|
1167 (box 10 2 10 :position (Vector3f. 0 -9 0)
|
rlm@143
|
1168 :color ColorRGBA/Gray :mass 0)
|
rlm@143
|
1169 x-axis y-axis z-axis
|
rlm@143
|
1170 me
|
rlm@143
|
1171 ])
|
rlm@143
|
1172 (merge standard-debug-controls
|
rlm@143
|
1173 {"key-return"
|
rlm@143
|
1174 (fn [_ value]
|
rlm@143
|
1175 (if value
|
rlm@143
|
1176 (do
|
rlm@143
|
1177 (println-repl "play-sound")
|
rlm@148
|
1178 (.play bell))))
|
rlm@148
|
1179 "key-h"
|
rlm@148
|
1180 (fn [_ value]
|
rlm@148
|
1181 (if value
|
rlm@148
|
1182 (do
|
rlm@148
|
1183 (println-repl "muscle activating!")
|
rlm@148
|
1184 ((first muscle-fns) 199))))
|
rlm@148
|
1185
|
rlm@148
|
1186 })
|
rlm@143
|
1187 (fn [world]
|
rlm@143
|
1188 (light-up-everything world)
|
rlm@143
|
1189 (enable-debug world)
|
rlm@143
|
1190 (dorun (map #(% world) init-vision-fns))
|
rlm@143
|
1191 (dorun (map #(% world) init-hearing-fns))
|
rlm@143
|
1192
|
rlm@143
|
1193 (add-eye world
|
rlm@143
|
1194 (attach-eye creature (test-eye))
|
rlm@143
|
1195 (comp (view-image) BufferedImage!))
|
rlm@143
|
1196
|
rlm@143
|
1197 (add-eye world (.getCamera world) no-op)
|
rlm@145
|
1198 ;;(set-gravity world (Vector3f. 0 0 0))
|
rlm@143
|
1199 ;;(com.aurellem.capture.Capture/captureVideo
|
rlm@143
|
1200 ;; world (file-str "/home/r/proj/ai-videos/hand"))
|
rlm@143
|
1201 ;;(.setTimer world (RatchetTimer. 60))
|
rlm@143
|
1202 (speed-up world)
|
rlm@148
|
1203 (set-gravity world (Vector3f. 0 0 0))
|
rlm@143
|
1204 )
|
rlm@143
|
1205 (fn [world tpf]
|
rlm@143
|
1206 ;;(dorun
|
rlm@143
|
1207 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
|
rlm@143
|
1208
|
rlm@143
|
1209 (prop-debug (prop))
|
rlm@143
|
1210
|
rlm@143
|
1211 (dorun
|
rlm@143
|
1212 (map #(%1 (%2 (.getRootNode world)))
|
rlm@143
|
1213 touch-debug-windows touch-nerves))
|
rlm@143
|
1214
|
rlm@143
|
1215 (dorun
|
rlm@143
|
1216 (map #(%1 (%2))
|
rlm@143
|
1217 vision-debug vision-data))
|
rlm@143
|
1218 (dorun
|
rlm@143
|
1219 (map #(%1 (%2)) hearing-windows hearing-senses))
|
rlm@143
|
1220
|
rlm@143
|
1221
|
rlm@143
|
1222 ;;(println-repl (vision-data))
|
rlm@143
|
1223 (.setLocalTranslation me (.getLocation (.getCamera world)))
|
rlm@143
|
1224
|
rlm@143
|
1225
|
rlm@143
|
1226 )]
|
rlm@106
|
1227 ;;(let [timer (atom 0)]
|
rlm@106
|
1228 ;; (fn [_ _]
|
rlm@106
|
1229 ;; (swap! timer inc)
|
rlm@106
|
1230 ;; (if (= (rem @timer 60) 0)
|
rlm@106
|
1231 ;; (println-repl (float (/ @timer 60))))))
|
rlm@143
|
1232 ))))
|
rlm@83
|
1233
|
rlm@109
|
1234
|
rlm@109
|
1235
|
rlm@109
|
1236
|
rlm@109
|
1237
|
rlm@109
|
1238
|
rlm@109
|
1239
|
rlm@109
|
1240
|
rlm@109
|
1241
|
rlm@109
|
1242 ;;; experiments in collisions
|
rlm@109
|
1243
|
rlm@109
|
1244
|
rlm@109
|
1245
|
rlm@109
|
1246 (defn collision-test []
|
rlm@110
|
1247 (let [b-radius 1
|
rlm@110
|
1248 b-position (Vector3f. 0 0 0)
|
rlm@109
|
1249 obj-b (box 1 1 1 :color ColorRGBA/Blue
|
rlm@109
|
1250 :position b-position
|
rlm@110
|
1251 :mass 0)
|
rlm@110
|
1252 node (nodify [obj-b])
|
rlm@110
|
1253 bounds-b
|
rlm@110
|
1254 (doto (Picture.)
|
rlm@110
|
1255 (.setHeight 50)
|
rlm@110
|
1256 (.setWidth 50)
|
rlm@110
|
1257 (.setImage (asset-manager)
|
rlm@110
|
1258 "Models/creature1/hand.png"
|
rlm@110
|
1259 false
|
rlm@110
|
1260 ))
|
rlm@110
|
1261
|
rlm@110
|
1262 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
|
rlm@110
|
1263
|
rlm@110
|
1264 collisions
|
rlm@110
|
1265 (let [cr (CollisionResults.)]
|
rlm@110
|
1266 (.collideWith node bounds-b cr)
|
rlm@110
|
1267 (println (map #(.getContactPoint %) cr))
|
rlm@110
|
1268 cr)
|
rlm@110
|
1269
|
rlm@110
|
1270 ;;collision-points
|
rlm@110
|
1271 ;;(map #(sphere 0.1 :position (.getContactPoint %))
|
rlm@110
|
1272 ;; collisions)
|
rlm@110
|
1273
|
rlm@110
|
1274 ;;node (nodify (conj collision-points obj-b))
|
rlm@110
|
1275
|
rlm@109
|
1276 sim
|
rlm@109
|
1277 (world node
|
rlm@110
|
1278 {"key-space"
|
rlm@130
|
1279 (fn [_ value]
|
rlm@110
|
1280 (if value
|
rlm@110
|
1281 (let [cr (CollisionResults.)]
|
rlm@110
|
1282 (.collideWith node bounds-b cr)
|
rlm@110
|
1283 (println-repl (map #(.getContactPoint %) cr))
|
rlm@110
|
1284 cr)))}
|
rlm@109
|
1285 no-op
|
rlm@109
|
1286 no-op)
|
rlm@109
|
1287
|
rlm@109
|
1288 ]
|
rlm@110
|
1289 sim
|
rlm@109
|
1290
|
rlm@109
|
1291 ))
|
rlm@109
|
1292
|
rlm@116
|
1293
|
rlm@116
|
1294 ;; the camera will stay in its initial position/rotation with relation
|
rlm@116
|
1295 ;; to the spatial.
|
rlm@116
|
1296
|
rlm@116
|
1297
|
rlm@117
|
1298 (defn follow-test
|
rlm@117
|
1299 "show a camera that stays in the same relative position to a blue cube."
|
rlm@117
|
1300 []
|
rlm@116
|
1301 (let [camera-pos (Vector3f. 0 30 0)
|
rlm@116
|
1302 rock (box 1 1 1 :color ColorRGBA/Blue
|
rlm@116
|
1303 :position (Vector3f. 0 10 0)
|
rlm@116
|
1304 :mass 30
|
rlm@116
|
1305 )
|
rlm@118
|
1306 rot (.getWorldRotation rock)
|
rlm@116
|
1307
|
rlm@116
|
1308 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
|
rlm@116
|
1309 :position (Vector3f. 0 -3 0))]
|
rlm@116
|
1310
|
rlm@116
|
1311 (world
|
rlm@116
|
1312 (nodify [rock table])
|
rlm@116
|
1313 standard-debug-controls
|
rlm@116
|
1314 (fn [world]
|
rlm@116
|
1315 (let
|
rlm@116
|
1316 [cam (doto (.clone (.getCamera world))
|
rlm@116
|
1317 (.setLocation camera-pos)
|
rlm@116
|
1318 (.lookAt Vector3f/ZERO
|
rlm@116
|
1319 Vector3f/UNIT_X))]
|
rlm@123
|
1320 (bind-sense rock cam)
|
rlm@116
|
1321
|
rlm@116
|
1322 (.setTimer world (RatchetTimer. 60))
|
rlm@116
|
1323 (add-eye world cam (comp (view-image) BufferedImage!))
|
rlm@116
|
1324 (add-eye world (.getCamera world) no-op))
|
rlm@116
|
1325 )
|
rlm@118
|
1326 (fn [_ _] (println-repl rot)))))
|
rlm@116
|
1327
|
rlm@118
|
1328
|
rlm@123
|
1329
|
rlm@87
|
1330 #+end_src
|
rlm@83
|
1331
|
rlm@87
|
1332 #+results: body-1
|
rlm@133
|
1333 : #'cortex.silly/follow-test
|
rlm@78
|
1334
|
rlm@78
|
1335
|
rlm@78
|
1336 * COMMENT purgatory
|
rlm@78
|
1337 #+begin_src clojure
|
rlm@77
|
1338 (defn bullet-trans []
|
rlm@77
|
1339 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
|
rlm@77
|
1340 :position (Vector3f. -10 5 0))
|
rlm@77
|
1341 obj-b (sphere 0.5 :color ColorRGBA/Blue
|
rlm@77
|
1342 :position (Vector3f. -10 -5 0)
|
rlm@77
|
1343 :mass 0)
|
rlm@77
|
1344 control-a (.getControl obj-a RigidBodyControl)
|
rlm@77
|
1345 control-b (.getControl obj-b RigidBodyControl)
|
rlm@77
|
1346 swivel
|
rlm@77
|
1347 (.toRotationMatrix
|
rlm@77
|
1348 (doto (Quaternion.)
|
rlm@77
|
1349 (.fromAngleAxis (/ Math/PI 2)
|
rlm@77
|
1350 Vector3f/UNIT_X)))]
|
rlm@77
|
1351 (doto
|
rlm@77
|
1352 (ConeJoint.
|
rlm@77
|
1353 control-a control-b
|
rlm@77
|
1354 (Vector3f. 0 5 0)
|
rlm@77
|
1355 (Vector3f. 0 -5 0)
|
rlm@77
|
1356 swivel swivel)
|
rlm@77
|
1357 (.setLimit (* 0.6 (/ Math/PI 4))
|
rlm@77
|
1358 (/ Math/PI 4)
|
rlm@77
|
1359 (* Math/PI 0.8)))
|
rlm@77
|
1360 (world (nodify
|
rlm@77
|
1361 [obj-a obj-b])
|
rlm@77
|
1362 standard-debug-controls
|
rlm@77
|
1363 enable-debug
|
rlm@77
|
1364 no-op)))
|
rlm@74
|
1365
|
rlm@74
|
1366
|
rlm@77
|
1367 (defn bullet-trans* []
|
rlm@77
|
1368 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
|
rlm@77
|
1369 :position (Vector3f. 5 0 0)
|
rlm@77
|
1370 :mass 90)
|
rlm@77
|
1371 obj-b (sphere 0.5 :color ColorRGBA/Blue
|
rlm@77
|
1372 :position (Vector3f. -5 0 0)
|
rlm@77
|
1373 :mass 0)
|
rlm@77
|
1374 control-a (.getControl obj-a RigidBodyControl)
|
rlm@77
|
1375 control-b (.getControl obj-b RigidBodyControl)
|
rlm@77
|
1376 move-up? (atom nil)
|
rlm@77
|
1377 move-down? (atom nil)
|
rlm@77
|
1378 move-left? (atom nil)
|
rlm@77
|
1379 move-right? (atom nil)
|
rlm@77
|
1380 roll-left? (atom nil)
|
rlm@77
|
1381 roll-right? (atom nil)
|
rlm@77
|
1382 force 100
|
rlm@77
|
1383 swivel
|
rlm@77
|
1384 (.toRotationMatrix
|
rlm@77
|
1385 (doto (Quaternion.)
|
rlm@77
|
1386 (.fromAngleAxis (/ Math/PI 2)
|
rlm@77
|
1387 Vector3f/UNIT_X)))
|
rlm@77
|
1388 x-move
|
rlm@77
|
1389 (doto (Matrix3f.)
|
rlm@77
|
1390 (.fromStartEndVectors Vector3f/UNIT_X
|
rlm@77
|
1391 (.normalize (Vector3f. 1 1 0))))
|
rlm@77
|
1392
|
rlm@77
|
1393 timer (atom 0)]
|
rlm@77
|
1394 (doto
|
rlm@77
|
1395 (ConeJoint.
|
rlm@77
|
1396 control-a control-b
|
rlm@77
|
1397 (Vector3f. -8 0 0)
|
rlm@77
|
1398 (Vector3f. 2 0 0)
|
rlm@77
|
1399 ;;swivel swivel
|
rlm@77
|
1400 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
|
rlm@77
|
1401 x-move Matrix3f/IDENTITY
|
rlm@77
|
1402 )
|
rlm@77
|
1403 (.setCollisionBetweenLinkedBodys false)
|
rlm@77
|
1404 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
|
rlm@77
|
1405 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
|
rlm@77
|
1406 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
|
rlm@77
|
1407 (world (nodify
|
rlm@77
|
1408 [obj-a obj-b])
|
rlm@77
|
1409 (merge standard-debug-controls
|
rlm@77
|
1410 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
|
rlm@77
|
1411 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
|
rlm@77
|
1412 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
|
rlm@77
|
1413 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
|
rlm@77
|
1414 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
|
rlm@77
|
1415 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
|
rlm@77
|
1416
|
rlm@77
|
1417 (fn [world]
|
rlm@77
|
1418 (enable-debug world)
|
rlm@77
|
1419 (set-gravity world Vector3f/ZERO)
|
rlm@77
|
1420 )
|
rlm@77
|
1421
|
rlm@77
|
1422 (fn [world _]
|
rlm@77
|
1423
|
rlm@77
|
1424 (if @move-up?
|
rlm@77
|
1425 (.applyForce control-a
|
rlm@77
|
1426 (Vector3f. force 0 0)
|
rlm@77
|
1427 (Vector3f. 0 0 0)))
|
rlm@77
|
1428 (if @move-down?
|
rlm@77
|
1429 (.applyForce control-a
|
rlm@77
|
1430 (Vector3f. (- force) 0 0)
|
rlm@77
|
1431 (Vector3f. 0 0 0)))
|
rlm@77
|
1432 (if @move-left?
|
rlm@77
|
1433 (.applyForce control-a
|
rlm@77
|
1434 (Vector3f. 0 force 0)
|
rlm@77
|
1435 (Vector3f. 0 0 0)))
|
rlm@77
|
1436 (if @move-right?
|
rlm@77
|
1437 (.applyForce control-a
|
rlm@77
|
1438 (Vector3f. 0 (- force) 0)
|
rlm@77
|
1439 (Vector3f. 0 0 0)))
|
rlm@77
|
1440
|
rlm@77
|
1441 (if @roll-left?
|
rlm@77
|
1442 (.applyForce control-a
|
rlm@77
|
1443 (Vector3f. 0 0 force)
|
rlm@77
|
1444 (Vector3f. 0 0 0)))
|
rlm@77
|
1445 (if @roll-right?
|
rlm@77
|
1446 (.applyForce control-a
|
rlm@77
|
1447 (Vector3f. 0 0 (- force))
|
rlm@77
|
1448 (Vector3f. 0 0 0)))
|
rlm@77
|
1449
|
rlm@77
|
1450 (if (zero? (rem (swap! timer inc) 100))
|
rlm@77
|
1451 (.attachChild
|
rlm@77
|
1452 (.getRootNode world)
|
rlm@77
|
1453 (sphere 0.05 :color ColorRGBA/Yellow
|
rlm@77
|
1454 :physical? false :position
|
rlm@77
|
1455 (.getWorldTranslation obj-a)))))
|
rlm@77
|
1456 )
|
rlm@77
|
1457 ))
|
rlm@77
|
1458
|
rlm@94
|
1459 (defn transform-trianglesdsd
|
rlm@94
|
1460 "Transform that converts each vertex in the first triangle
|
rlm@94
|
1461 into the corresponding vertex in the second triangle."
|
rlm@94
|
1462 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@94
|
1463 (let [in [(.get1 tri-1)
|
rlm@94
|
1464 (.get2 tri-1)
|
rlm@94
|
1465 (.get3 tri-1)]
|
rlm@94
|
1466 out [(.get1 tri-2)
|
rlm@94
|
1467 (.get2 tri-2)
|
rlm@94
|
1468 (.get3 tri-2)]]
|
rlm@94
|
1469 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
|
rlm@94
|
1470 in* [(.mult translate (in 0))
|
rlm@94
|
1471 (.mult translate (in 1))
|
rlm@94
|
1472 (.mult translate (in 2))]
|
rlm@94
|
1473 final-translation
|
rlm@94
|
1474 (doto (Matrix4f.)
|
rlm@94
|
1475 (.setTranslation (out 1)))
|
rlm@94
|
1476
|
rlm@94
|
1477 rotate-1
|
rlm@94
|
1478 (doto (Matrix3f.)
|
rlm@94
|
1479 (.fromStartEndVectors
|
rlm@94
|
1480 (.normalize
|
rlm@94
|
1481 (.subtract
|
rlm@94
|
1482 (in* 1) (in* 0)))
|
rlm@94
|
1483 (.normalize
|
rlm@94
|
1484 (.subtract
|
rlm@94
|
1485 (out 1) (out 0)))))
|
rlm@94
|
1486 in** [(.mult rotate-1 (in* 0))
|
rlm@94
|
1487 (.mult rotate-1 (in* 1))
|
rlm@94
|
1488 (.mult rotate-1 (in* 2))]
|
rlm@94
|
1489 scale-factor-1
|
rlm@94
|
1490 (.mult
|
rlm@94
|
1491 (.normalize
|
rlm@94
|
1492 (.subtract
|
rlm@94
|
1493 (out 1)
|
rlm@94
|
1494 (out 0)))
|
rlm@94
|
1495 (/ (.length
|
rlm@94
|
1496 (.subtract (out 1)
|
rlm@94
|
1497 (out 0)))
|
rlm@94
|
1498 (.length
|
rlm@94
|
1499 (.subtract (in** 1)
|
rlm@94
|
1500 (in** 0)))))
|
rlm@94
|
1501 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
|
rlm@94
|
1502 in*** [(.mult scale-1 (in** 0))
|
rlm@94
|
1503 (.mult scale-1 (in** 1))
|
rlm@94
|
1504 (.mult scale-1 (in** 2))]
|
rlm@94
|
1505
|
rlm@94
|
1506
|
rlm@94
|
1507
|
rlm@94
|
1508
|
rlm@94
|
1509
|
rlm@94
|
1510 ]
|
rlm@94
|
1511
|
rlm@94
|
1512 (dorun (map println in))
|
rlm@94
|
1513 (println)
|
rlm@94
|
1514 (dorun (map println in*))
|
rlm@94
|
1515 (println)
|
rlm@94
|
1516 (dorun (map println in**))
|
rlm@94
|
1517 (println)
|
rlm@94
|
1518 (dorun (map println in***))
|
rlm@94
|
1519 (println)
|
rlm@94
|
1520
|
rlm@99
|
1521 ))))
|
rlm@94
|
1522
|
rlm@94
|
1523
|
rlm@106
|
1524 (defn world-setup [joint]
|
rlm@106
|
1525 (let [joint-position (Vector3f. 0 0 0)
|
rlm@106
|
1526 joint-rotation
|
rlm@106
|
1527 (.toRotationMatrix
|
rlm@106
|
1528 (.mult
|
rlm@106
|
1529 (doto (Quaternion.)
|
rlm@106
|
1530 (.fromAngleAxis
|
rlm@106
|
1531 (* 1 (/ Math/PI 4))
|
rlm@106
|
1532 (Vector3f. -1 0 0)))
|
rlm@106
|
1533 (doto (Quaternion.)
|
rlm@106
|
1534 (.fromAngleAxis
|
rlm@106
|
1535 (* 1 (/ Math/PI 2))
|
rlm@106
|
1536 (Vector3f. 0 0 1)))))
|
rlm@106
|
1537 top-position (.mult joint-rotation (Vector3f. 8 0 0))
|
rlm@106
|
1538
|
rlm@106
|
1539 origin (doto
|
rlm@106
|
1540 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
|
rlm@106
|
1541 :position top-position))
|
rlm@106
|
1542 top (doto
|
rlm@106
|
1543 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
|
rlm@106
|
1544 :position top-position)
|
rlm@106
|
1545
|
rlm@106
|
1546 (.addControl
|
rlm@106
|
1547 (RigidBodyControl.
|
rlm@106
|
1548 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
|
rlm@106
|
1549 bottom (doto
|
rlm@106
|
1550 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
|
rlm@106
|
1551 :position (Vector3f. 0 0 0))
|
rlm@106
|
1552 (.addControl
|
rlm@106
|
1553 (RigidBodyControl.
|
rlm@106
|
1554 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
|
rlm@106
|
1555 table (box 10 2 10 :position (Vector3f. 0 -20 0)
|
rlm@106
|
1556 :color ColorRGBA/Gray :mass 0)
|
rlm@106
|
1557 a (.getControl top RigidBodyControl)
|
rlm@106
|
1558 b (.getControl bottom RigidBodyControl)]
|
rlm@106
|
1559
|
rlm@106
|
1560 (cond
|
rlm@106
|
1561 (= joint :cone)
|
rlm@106
|
1562
|
rlm@106
|
1563 (doto (ConeJoint.
|
rlm@106
|
1564 a b
|
rlm@106
|
1565 (world-to-local top joint-position)
|
rlm@106
|
1566 (world-to-local bottom joint-position)
|
rlm@106
|
1567 joint-rotation
|
rlm@106
|
1568 joint-rotation
|
rlm@106
|
1569 )
|
rlm@106
|
1570
|
rlm@106
|
1571
|
rlm@106
|
1572 (.setLimit (* (/ 10) Math/PI)
|
rlm@106
|
1573 (* (/ 4) Math/PI)
|
rlm@106
|
1574 0)))
|
rlm@106
|
1575 [origin top bottom table]))
|
rlm@106
|
1576
|
rlm@106
|
1577 (defn test-joint [joint]
|
rlm@106
|
1578 (let [[origin top bottom floor] (world-setup joint)
|
rlm@106
|
1579 control (.getControl top RigidBodyControl)
|
rlm@106
|
1580 move-up? (atom false)
|
rlm@106
|
1581 move-down? (atom false)
|
rlm@106
|
1582 move-left? (atom false)
|
rlm@106
|
1583 move-right? (atom false)
|
rlm@106
|
1584 roll-left? (atom false)
|
rlm@106
|
1585 roll-right? (atom false)
|
rlm@106
|
1586 timer (atom 0)]
|
rlm@106
|
1587
|
rlm@106
|
1588 (world
|
rlm@106
|
1589 (nodify [top bottom floor origin])
|
rlm@106
|
1590 (merge standard-debug-controls
|
rlm@106
|
1591 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
|
rlm@106
|
1592 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
|
rlm@106
|
1593 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
|
rlm@106
|
1594 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
|
rlm@106
|
1595 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
|
rlm@106
|
1596 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
|
rlm@106
|
1597
|
rlm@106
|
1598 (fn [world]
|
rlm@106
|
1599 (light-up-everything world)
|
rlm@106
|
1600 (enable-debug world)
|
rlm@106
|
1601 (set-gravity world (Vector3f. 0 0 0))
|
rlm@106
|
1602 )
|
rlm@106
|
1603
|
rlm@106
|
1604 (fn [world _]
|
rlm@106
|
1605 (if (zero? (rem (swap! timer inc) 100))
|
rlm@106
|
1606 (do
|
rlm@106
|
1607 ;; (println-repl @timer)
|
rlm@106
|
1608 (.attachChild (.getRootNode world)
|
rlm@106
|
1609 (sphere 0.05 :color ColorRGBA/Yellow
|
rlm@106
|
1610 :position (.getWorldTranslation top)
|
rlm@106
|
1611 :physical? false))
|
rlm@106
|
1612 (.attachChild (.getRootNode world)
|
rlm@106
|
1613 (sphere 0.05 :color ColorRGBA/LightGray
|
rlm@106
|
1614 :position (.getWorldTranslation bottom)
|
rlm@106
|
1615 :physical? false))))
|
rlm@106
|
1616
|
rlm@106
|
1617 (if @move-up?
|
rlm@106
|
1618 (.applyTorque control
|
rlm@106
|
1619 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1620 (Vector3f. 0 0 10))))
|
rlm@106
|
1621 (if @move-down?
|
rlm@106
|
1622 (.applyTorque control
|
rlm@106
|
1623 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1624 (Vector3f. 0 0 -10))))
|
rlm@106
|
1625 (if @move-left?
|
rlm@106
|
1626 (.applyTorque control
|
rlm@106
|
1627 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1628 (Vector3f. 0 10 0))))
|
rlm@106
|
1629 (if @move-right?
|
rlm@106
|
1630 (.applyTorque control
|
rlm@106
|
1631 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1632 (Vector3f. 0 -10 0))))
|
rlm@106
|
1633 (if @roll-left?
|
rlm@106
|
1634 (.applyTorque control
|
rlm@106
|
1635 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1636 (Vector3f. -1 0 0))))
|
rlm@106
|
1637 (if @roll-right?
|
rlm@106
|
1638 (.applyTorque control
|
rlm@106
|
1639 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1640 (Vector3f. 1 0 0))))))))
|
rlm@106
|
1641
|
rlm@99
|
1642
|
rlm@99
|
1643
|
rlm@107
|
1644 (defprotocol Frame
|
rlm@107
|
1645 (frame [this]))
|
rlm@107
|
1646
|
rlm@107
|
1647 (extend-type BufferedImage
|
rlm@107
|
1648 Frame
|
rlm@107
|
1649 (frame [image]
|
rlm@107
|
1650 (merge
|
rlm@107
|
1651 (apply
|
rlm@107
|
1652 hash-map
|
rlm@107
|
1653 (interleave
|
rlm@107
|
1654 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
|
rlm@107
|
1655 (vector x y)))
|
rlm@107
|
1656 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
|
rlm@107
|
1657 (let [data (.getRGB image x y)]
|
rlm@107
|
1658 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
|
rlm@107
|
1659 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
|
rlm@107
|
1660 :b (bit-and 0x0000ff data)))))))
|
rlm@107
|
1661 {:width (.getWidth image) :height (.getHeight image)})))
|
rlm@107
|
1662
|
rlm@107
|
1663
|
rlm@107
|
1664 (extend-type ImagePlus
|
rlm@107
|
1665 Frame
|
rlm@107
|
1666 (frame [image+]
|
rlm@107
|
1667 (frame (.getBufferedImage image+))))
|
rlm@107
|
1668
|
rlm@107
|
1669
|
rlm@99
|
1670 #+end_src
|
rlm@99
|
1671
|
rlm@99
|
1672
|
rlm@99
|
1673 * COMMENT generate source
|
rlm@99
|
1674 #+begin_src clojure :tangle ../src/cortex/silly.clj
|
rlm@99
|
1675 <<body-1>>
|
rlm@99
|
1676 #+end_src
|
rlm@99
|
1677
|
rlm@99
|
1678
|
rlm@94
|
1679
|
rlm@94
|
1680
|