annotate org/test-creature.org @ 135:421cc43441ae

cleaned up test, moved some functions
author Robert McIntyre <rlm@mit.edu>
date Wed, 01 Feb 2012 05:43:51 -0700
parents ac350a0ac6b0
children ffbab4199c0d
rev   line source
rlm@73 1 #+title: First attempt at a creature!
rlm@73 2 #+author: Robert McIntyre
rlm@73 3 #+email: rlm@mit.edu
rlm@73 4 #+description:
rlm@73 5 #+keywords: simulation, jMonkeyEngine3, clojure
rlm@73 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@73 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@73 8
rlm@129 9
rlm@129 10
rlm@129 11 * Brainstorming different sensors and effectors.
rlm@129 12
rlm@129 13 Every sense that we have should have an effector that changes what
rlm@129 14 that sense (or others who have that sense) experiences.
rlm@129 15
rlm@129 16 ** Classic Senses
rlm@129 17 | Sense | Effector |
rlm@129 18 |------------------------------+---------------------------------|
rlm@129 19 | Vision | Variable Coloration |
rlm@129 20 | Hearing | Speech |
rlm@129 21 | Proprioception | Movement |
rlm@129 22 | Smell/Taste (Chemoreception) | Pheremones |
rlm@129 23 | Touch | Movement / Controllable Texture |
rlm@129 24 | Acceleration | Movement |
rlm@129 25 | Balance (sense gravity) | Movement |
rlm@129 26 | | |
rlm@129 27
rlm@129 28 - New Senses/Effectors
rlm@129 29 - Levitation
rlm@129 30 - Telekenesis
rlm@129 31
rlm@129 32 - Symbol Sense
rlm@129 33 Where objects in the world can be queried for description /
rlm@129 34 symbols.
rlm@129 35
rlm@129 36 - Symbol Marking
rlm@129 37 The ability to mark objects in the world with your own descriptions
rlm@129 38 and symbols.
rlm@129 39
rlm@129 40 - Vision
rlm@129 41 Distinguish the polarization of light
rlm@129 42 Color
rlm@129 43 Movement
rlm@129 44
rlm@129 45 * project ideas
rlm@129 46 - HACKER for writing muscle-control programs : Presented with
rlm@129 47 low-level muscle control/ sense API, generate higher level programs
rlm@129 48 for accomplishing various stated goals. Example goals might be
rlm@129 49 "extend all your fingers" or "move your hand into the area with
rlm@129 50 blue light" or "decrease the angle of this joint". It would be
rlm@129 51 like Sussman's HACKER, except it would operate with much more data
rlm@129 52 in a more realistic world. Start off with "calestanthics" to
rlm@129 53 develop subrouitines over the motor control API. This would be the
rlm@129 54 "spinal chord" of a more intelligent creature. The low level
rlm@129 55 programming code might be a turning machine that could develop
rlm@129 56 programs to iterate over a "tape" where each entry in the tape
rlm@129 57 could control recruitment of the fibers in a muscle.
rlm@129 58 - Make a virtual computer in the virtual world which with which the
rlm@129 59 creature interacts using its fingers to press keys on a virtual
rlm@129 60 keyboard. The creature can access the internet, watch videos, take
rlm@129 61 over the world, anything it wants.
rlm@129 62 - Make virtual insturments like pianos, drumbs, etc that it learns to
rlm@129 63 play.
rlm@129 64 - make a joint that figures out what type of joint it is (range of
rlm@129 65 motion)
rlm@129 66
rlm@129 67
rlm@129 68
rlm@129 69
rlm@129 70
rlm@129 71 * goals
rlm@125 72
rlm@125 73 ** have to get done before winston
rlm@126 74 - [ ] write an explination for why greyscale bitmaps for senses is
rlm@126 75 appropiate -- 1/2 day
rlm@126 76 - [ ] muscle control -- day
rlm@126 77 - [ ] proprioception sensor map in the style of the other senses -- day
rlm@125 78 - [ ] refactor integration code to distribute to each of the senses
rlm@126 79 -- day
rlm@126 80 - [ ] create video showing all the senses for Winston -- 2 days
rlm@126 81 - [ ] write summary of project for Winston \
rlm@126 82 - [ ] project proposals for Winston \
rlm@126 83 - [ ] additional senses to be implemented for Winston | -- 2 days
rlm@126 84 - [ ] send Winston package /
rlm@125 85
rlm@125 86 ** would be cool to get done before winston
rlm@126 87 - [X] enable greyscale bitmaps for touch -- 2 hours
rlm@126 88 - [X] use sawfish to auto-tile sense windows -- 6 hours
rlm@126 89 - [X] sawfish keybinding to automatically delete all sense windows
rlm@126 90 - [ ] directly change the UV-pixels to show sensor activation -- 2
rlm@126 91 days
rlm@126 92 - [ ] proof of concept C sense manipulation -- 2 days
rlm@126 93 - [ ] proof of concept GPU sense manipulation -- week
rlm@126 94 - [ ] fourier view of sound -- 2 or 3 days
rlm@127 95 - [ ] dancing music generator -- 1 day, depends on fourier
rlm@125 96
rlm@125 97 ** don't have to get done before winston
rlm@126 98 - [ ] write tests for integration -- 3 days
rlm@126 99 - [ ] usertime/gametime clock HUD display -- day
rlm@126 100 - [ ] find papers for each of the senses justifying my own
rlm@126 101 representation -- week
rlm@126 102 - [ ] show sensor maps in HUD display? -- 4 days
rlm@126 103 - [ ] show sensor maps in AWT display? -- 2 days
rlm@124 104
rlm@99 105
rlm@73 106 * Intro
rlm@73 107 So far, I've made the following senses --
rlm@73 108 - Vision
rlm@73 109 - Hearing
rlm@73 110 - Touch
rlm@73 111 - Proprioception
rlm@73 112
rlm@73 113 And one effector:
rlm@73 114 - Movement
rlm@73 115
rlm@73 116 However, the code so far has only enabled these senses, but has not
rlm@73 117 actually implemented them. For example, there is still a lot of work
rlm@73 118 to be done for vision. I need to be able to create an /eyeball/ in
rlm@73 119 simulation that can be moved around and see the world from different
rlm@73 120 angles. I also need to determine weather to use log-polar or cartesian
rlm@73 121 for the visual input, and I need to determine how/wether to
rlm@73 122 disceritise the visual input.
rlm@73 123
rlm@73 124 I also want to be able to visualize both the sensors and the
rlm@104 125 effectors in pretty pictures. This semi-retarted creature will be my
rlm@73 126 first attempt at bringing everything together.
rlm@73 127
rlm@73 128 * The creature's body
rlm@73 129
rlm@73 130 Still going to do an eve-like body in blender, but due to problems
rlm@104 131 importing the joints, etc into jMonkeyEngine3, I'm going to do all
rlm@73 132 the connecting here in clojure code, using the names of the individual
rlm@73 133 components and trial and error. Later, I'll maybe make some sort of
rlm@73 134 creature-building modifications to blender that support whatever
rlm@73 135 discreitized senses I'm going to make.
rlm@73 136
rlm@73 137 #+name: body-1
rlm@73 138 #+begin_src clojure
rlm@73 139 (ns cortex.silly
rlm@73 140 "let's play!"
rlm@73 141 {:author "Robert McIntyre"})
rlm@73 142
rlm@73 143 ;; TODO remove this!
rlm@73 144 (require 'cortex.import)
rlm@73 145 (cortex.import/mega-import-jme3)
rlm@73 146 (use '(cortex world util body hearing touch vision))
rlm@73 147
rlm@73 148 (rlm.rlm-commands/help)
rlm@99 149 (import java.awt.image.BufferedImage)
rlm@99 150 (import javax.swing.JPanel)
rlm@99 151 (import javax.swing.SwingUtilities)
rlm@99 152 (import java.awt.Dimension)
rlm@99 153 (import javax.swing.JFrame)
rlm@99 154 (import java.awt.Dimension)
rlm@106 155 (import com.aurellem.capture.RatchetTimer)
rlm@99 156 (declare joint-create)
rlm@108 157 (use 'clojure.contrib.def)
rlm@73 158
rlm@100 159 (defn points->image
rlm@100 160 "Take a sparse collection of points and visuliaze it as a
rlm@100 161 BufferedImage."
rlm@102 162
rlm@102 163 ;; TODO maybe parallelize this since it's easy
rlm@102 164
rlm@100 165 [points]
rlm@106 166 (if (empty? points)
rlm@106 167 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
rlm@106 168 (let [xs (vec (map first points))
rlm@106 169 ys (vec (map second points))
rlm@106 170 x0 (apply min xs)
rlm@106 171 y0 (apply min ys)
rlm@106 172 width (- (apply max xs) x0)
rlm@106 173 height (- (apply max ys) y0)
rlm@106 174 image (BufferedImage. (inc width) (inc height)
rlm@119 175 BufferedImage/TYPE_INT_RGB)]
rlm@118 176 (dorun
rlm@118 177 (for [x (range (.getWidth image))
rlm@118 178 y (range (.getHeight image))]
rlm@119 179 (.setRGB image x y 0xFF0000)))
rlm@106 180 (dorun
rlm@106 181 (for [index (range (count points))]
rlm@106 182 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
rlm@106 183
rlm@106 184 image)))
rlm@100 185
rlm@101 186 (defn average [coll]
rlm@101 187 (/ (reduce + coll) (count coll)))
rlm@101 188
rlm@101 189 (defn collapse-1d
rlm@101 190 "One dimensional analogue of collapse"
rlm@101 191 [center line]
rlm@101 192 (let [length (count line)
rlm@101 193 num-above (count (filter (partial < center) line))
rlm@101 194 num-below (- length num-above)]
rlm@101 195 (range (- center num-below)
rlm@115 196 (+ center num-above))))
rlm@99 197
rlm@99 198 (defn collapse
rlm@99 199 "Take a set of pairs of integers and collapse them into a
rlm@99 200 contigous bitmap."
rlm@99 201 [points]
rlm@108 202 (if (empty? points) []
rlm@108 203 (let
rlm@108 204 [num-points (count points)
rlm@108 205 center (vector
rlm@108 206 (int (average (map first points)))
rlm@108 207 (int (average (map first points))))
rlm@108 208 flattened
rlm@108 209 (reduce
rlm@108 210 concat
rlm@108 211 (map
rlm@108 212 (fn [column]
rlm@108 213 (map vector
rlm@108 214 (map first column)
rlm@108 215 (collapse-1d (second center)
rlm@108 216 (map second column))))
rlm@108 217 (partition-by first (sort-by first points))))
rlm@108 218 squeezed
rlm@108 219 (reduce
rlm@108 220 concat
rlm@108 221 (map
rlm@108 222 (fn [row]
rlm@108 223 (map vector
rlm@108 224 (collapse-1d (first center)
rlm@108 225 (map first row))
rlm@108 226 (map second row)))
rlm@108 227 (partition-by second (sort-by second flattened))))
rlm@108 228 relocate
rlm@108 229 (let [min-x (apply min (map first squeezed))
rlm@108 230 min-y (apply min (map second squeezed))]
rlm@108 231 (map (fn [[x y]]
rlm@108 232 [(- x min-x)
rlm@108 233 (- y min-y)])
rlm@108 234 squeezed))]
rlm@115 235 relocate)))
rlm@83 236
rlm@83 237 (defn load-bullet []
rlm@84 238 (let [sim (world (Node.) {} no-op no-op)]
rlm@102 239 (doto sim
rlm@102 240 (.enqueue
rlm@102 241 (fn []
rlm@102 242 (.stop sim)))
rlm@102 243 (.start))))
rlm@83 244
rlm@73 245 (defn load-blender-model
rlm@73 246 "Load a .blend file using an asset folder relative path."
rlm@73 247 [^String model]
rlm@73 248 (.loadModel
rlm@73 249 (doto (asset-manager)
rlm@73 250 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@73 251 model))
rlm@73 252
rlm@74 253 (defn meta-data [blender-node key]
rlm@74 254 (if-let [data (.getUserData blender-node "properties")]
rlm@74 255 (.findValue data key)
rlm@74 256 nil))
rlm@73 257
rlm@78 258 (defn blender-to-jme
rlm@78 259 "Convert from Blender coordinates to JME coordinates"
rlm@78 260 [#^Vector3f in]
rlm@78 261 (Vector3f. (.getX in)
rlm@78 262 (.getZ in)
rlm@78 263 (- (.getY in))))
rlm@74 264
rlm@79 265
rlm@133 266
rlm@133 267
rlm@133 268
rlm@87 269 (defn world-to-local
rlm@87 270 "Convert the world coordinates into coordinates relative to the
rlm@87 271 object (i.e. local coordinates), taking into account the rotation
rlm@87 272 of object."
rlm@87 273 [#^Spatial object world-coordinate]
rlm@87 274 (let [out (Vector3f.)]
rlm@88 275 (.worldToLocal object world-coordinate out) out))
rlm@87 276
rlm@96 277 (defn local-to-world
rlm@96 278 "Convert the local coordinates into coordinates into world relative
rlm@96 279 coordinates"
rlm@96 280 [#^Spatial object local-coordinate]
rlm@96 281 (let [world-coordinate (Vector3f.)]
rlm@96 282 (.localToWorld object local-coordinate world-coordinate)
rlm@96 283 world-coordinate))
rlm@96 284
rlm@87 285 (defmulti joint-dispatch
rlm@87 286 "Translate blender pseudo-joints into real JME joints."
rlm@88 287 (fn [constraints & _]
rlm@87 288 (:type constraints)))
rlm@87 289
rlm@87 290 (defmethod joint-dispatch :point
rlm@87 291 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 292 (println-repl "creating POINT2POINT joint")
rlm@130 293 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@130 294 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@130 295
rlm@130 296 ;; should be able to do this:
rlm@130 297 (comment
rlm@130 298 (Point2PointJoint.
rlm@130 299 control-a
rlm@130 300 control-b
rlm@130 301 pivot-a
rlm@130 302 pivot-b))
rlm@130 303
rlm@130 304 ;; but instead we must do this:
rlm@130 305 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@130 306 (doto
rlm@130 307 (SixDofJoint.
rlm@130 308 control-a
rlm@130 309 control-b
rlm@130 310 pivot-a
rlm@130 311 pivot-b
rlm@130 312 false)
rlm@130 313 (.setLinearLowerLimit Vector3f/ZERO)
rlm@130 314 (.setLinearUpperLimit Vector3f/ZERO)
rlm@130 315 ;;(.setAngularLowerLimit (Vector3f. 1 1 1))
rlm@130 316 ;;(.setAngularUpperLimit (Vector3f. 0 0 0))
rlm@130 317
rlm@130 318 ))
rlm@130 319
rlm@87 320
rlm@87 321 (defmethod joint-dispatch :hinge
rlm@87 322 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 323 (println-repl "creating HINGE joint")
rlm@87 324 (let [axis
rlm@87 325 (if-let
rlm@87 326 [axis (:axis constraints)]
rlm@87 327 axis
rlm@87 328 Vector3f/UNIT_X)
rlm@87 329 [limit-1 limit-2] (:limit constraints)
rlm@87 330 hinge-axis
rlm@87 331 (.mult
rlm@87 332 rotation
rlm@87 333 (blender-to-jme axis))]
rlm@87 334 (doto
rlm@87 335 (HingeJoint.
rlm@87 336 control-a
rlm@87 337 control-b
rlm@87 338 pivot-a
rlm@87 339 pivot-b
rlm@87 340 hinge-axis
rlm@87 341 hinge-axis)
rlm@87 342 (.setLimit limit-1 limit-2))))
rlm@87 343
rlm@87 344 (defmethod joint-dispatch :cone
rlm@87 345 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 346 (let [limit-xz (:limit-xz constraints)
rlm@87 347 limit-xy (:limit-xy constraints)
rlm@87 348 twist (:twist constraints)]
rlm@87 349
rlm@87 350 (println-repl "creating CONE joint")
rlm@87 351 (println-repl rotation)
rlm@87 352 (println-repl
rlm@87 353 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@87 354 (println-repl
rlm@87 355 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@87 356 (println-repl
rlm@87 357 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@87 358 (doto
rlm@87 359 (ConeJoint.
rlm@87 360 control-a
rlm@87 361 control-b
rlm@87 362 pivot-a
rlm@87 363 pivot-b
rlm@87 364 rotation
rlm@87 365 rotation)
rlm@87 366 (.setLimit (float limit-xz)
rlm@87 367 (float limit-xy)
rlm@87 368 (float twist)))))
rlm@87 369
rlm@88 370 (defn connect
rlm@87 371 "here are some examples:
rlm@87 372 {:type :point}
rlm@87 373 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@87 374 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@87 375
rlm@89 376 {:type :cone :limit-xz 0]
rlm@89 377 :limit-xy 0]
rlm@89 378 :twist 0]} (use XZY rotation mode in blender!)"
rlm@87 379 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@87 380 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@87 381 control-b (.getControl obj-b RigidBodyControl)
rlm@87 382 joint-center (.getWorldTranslation joint)
rlm@87 383 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@87 384 pivot-a (world-to-local obj-a joint-center)
rlm@87 385 pivot-b (world-to-local obj-b joint-center)]
rlm@89 386
rlm@87 387 (if-let [constraints
rlm@87 388 (map-vals
rlm@87 389 eval
rlm@87 390 (read-string
rlm@87 391 (meta-data joint "joint")))]
rlm@89 392 ;; A side-effect of creating a joint registers
rlm@89 393 ;; it with both physics objects which in turn
rlm@89 394 ;; will register the joint with the physics system
rlm@89 395 ;; when the simulation is started.
rlm@87 396 (do
rlm@87 397 (println-repl "creating joint between"
rlm@87 398 (.getName obj-a) "and" (.getName obj-b))
rlm@87 399 (joint-dispatch constraints
rlm@87 400 control-a control-b
rlm@87 401 pivot-a pivot-b
rlm@87 402 joint-rotation))
rlm@87 403 (println-repl "could not find joint meta-data!"))))
rlm@87 404
rlm@130 405
rlm@130 406
rlm@130 407
rlm@78 408 (defn assemble-creature [#^Node pieces joints]
rlm@78 409 (dorun
rlm@78 410 (map
rlm@78 411 (fn [geom]
rlm@78 412 (let [physics-control
rlm@78 413 (RigidBodyControl.
rlm@78 414 (HullCollisionShape.
rlm@78 415 (.getMesh geom))
rlm@78 416 (if-let [mass (meta-data geom "mass")]
rlm@78 417 (do
rlm@78 418 (println-repl
rlm@78 419 "setting" (.getName geom) "mass to" (float mass))
rlm@78 420 (float mass))
rlm@78 421 (float 1)))]
rlm@78 422
rlm@78 423 (.addControl geom physics-control)))
rlm@78 424 (filter #(isa? (class %) Geometry )
rlm@78 425 (node-seq pieces))))
rlm@78 426 (dorun
rlm@78 427 (map
rlm@78 428 (fn [joint]
rlm@133 429 (let [[obj-a obj-b] (joint-targets pieces joint)]
rlm@88 430 (connect obj-a obj-b joint)))
rlm@78 431 joints))
rlm@78 432 pieces)
rlm@74 433
rlm@116 434 (declare blender-creature)
rlm@74 435
rlm@78 436 (def hand "Models/creature1/one.blend")
rlm@74 437
rlm@78 438 (def worm "Models/creature1/try-again.blend")
rlm@78 439
rlm@90 440 (def touch "Models/creature1/touch.blend")
rlm@90 441
rlm@90 442 (defn worm-model [] (load-blender-model worm))
rlm@90 443
rlm@80 444 (defn x-ray [#^ColorRGBA color]
rlm@80 445 (doto (Material. (asset-manager)
rlm@80 446 "Common/MatDefs/Misc/Unshaded.j3md")
rlm@80 447 (.setColor "Color" color)
rlm@80 448 (-> (.getAdditionalRenderState)
rlm@80 449 (.setDepthTest false))))
rlm@80 450
rlm@91 451 (defn colorful []
rlm@91 452 (.getChild (worm-model) "worm-21"))
rlm@90 453
rlm@90 454 (import jme3tools.converters.ImageToAwt)
rlm@90 455
rlm@90 456 (import ij.ImagePlus)
rlm@90 457
rlm@108 458 ;; Every Mesh has many triangles, each with its own index.
rlm@108 459 ;; Every vertex has its own index as well.
rlm@90 460
rlm@108 461 (defn tactile-sensor-image
rlm@110 462 "Return the touch-sensor distribution image in BufferedImage format,
rlm@110 463 or nil if it does not exist."
rlm@91 464 [#^Geometry obj]
rlm@110 465 (if-let [image-path (meta-data obj "touch")]
rlm@110 466 (ImageToAwt/convert
rlm@110 467 (.getImage
rlm@110 468 (.loadTexture
rlm@110 469 (asset-manager)
rlm@110 470 image-path))
rlm@110 471 false false 0)))
rlm@110 472
rlm@91 473 (import ij.process.ImageProcessor)
rlm@91 474 (import java.awt.image.BufferedImage)
rlm@91 475
rlm@92 476 (def white -1)
rlm@94 477
rlm@91 478 (defn filter-pixels
rlm@108 479 "List the coordinates of all pixels matching pred, within the bounds
rlm@108 480 provided. Bounds -> [x0 y0 width height]"
rlm@92 481 {:author "Dylan Holmes"}
rlm@108 482 ([pred #^BufferedImage image]
rlm@108 483 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
rlm@108 484 ([pred #^BufferedImage image [x0 y0 width height]]
rlm@108 485 ((fn accumulate [x y matches]
rlm@108 486 (cond
rlm@108 487 (>= y (+ height y0)) matches
rlm@108 488 (>= x (+ width x0)) (recur 0 (inc y) matches)
rlm@108 489 (pred (.getRGB image x y))
rlm@108 490 (recur (inc x) y (conj matches [x y]))
rlm@108 491 :else (recur (inc x) y matches)))
rlm@108 492 x0 y0 [])))
rlm@91 493
rlm@91 494 (defn white-coordinates
rlm@108 495 "Coordinates of all the white pixels in a subset of the image."
rlm@112 496 ([#^BufferedImage image bounds]
rlm@112 497 (filter-pixels #(= % white) image bounds))
rlm@112 498 ([#^BufferedImage image]
rlm@112 499 (filter-pixels #(= % white) image)))
rlm@108 500
rlm@108 501 (defn triangle
rlm@112 502 "Get the triangle specified by triangle-index from the mesh within
rlm@112 503 bounds."
rlm@108 504 [#^Mesh mesh triangle-index]
rlm@108 505 (let [scratch (Triangle.)]
rlm@108 506 (.getTriangle mesh triangle-index scratch)
rlm@108 507 scratch))
rlm@108 508
rlm@108 509 (defn triangle-vertex-indices
rlm@108 510 "Get the triangle vertex indices of a given triangle from a given
rlm@108 511 mesh."
rlm@108 512 [#^Mesh mesh triangle-index]
rlm@108 513 (let [indices (int-array 3)]
rlm@108 514 (.getTriangle mesh triangle-index indices)
rlm@108 515 (vec indices)))
rlm@108 516
rlm@108 517 (defn vertex-UV-coord
rlm@108 518 "Get the uv-coordinates of the vertex named by vertex-index"
rlm@108 519 [#^Mesh mesh vertex-index]
rlm@108 520 (let [UV-buffer
rlm@108 521 (.getData
rlm@108 522 (.getBuffer
rlm@108 523 mesh
rlm@108 524 VertexBuffer$Type/TexCoord))]
rlm@108 525 [(.get UV-buffer (* vertex-index 2))
rlm@108 526 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
rlm@108 527
rlm@108 528 (defn triangle-UV-coord
rlm@108 529 "Get the uv-cooridnates of the triangle's verticies."
rlm@108 530 [#^Mesh mesh width height triangle-index]
rlm@108 531 (map (fn [[u v]] (vector (* width u) (* height v)))
rlm@108 532 (map (partial vertex-UV-coord mesh)
rlm@108 533 (triangle-vertex-indices mesh triangle-index))))
rlm@91 534
rlm@102 535 (defn same-side?
rlm@102 536 "Given the points p1 and p2 and the reference point ref, is point p
rlm@102 537 on the same side of the line that goes through p1 and p2 as ref is?"
rlm@102 538 [p1 p2 ref p]
rlm@91 539 (<=
rlm@91 540 0
rlm@91 541 (.dot
rlm@91 542 (.cross (.subtract p2 p1) (.subtract p p1))
rlm@91 543 (.cross (.subtract p2 p1) (.subtract ref p1)))))
rlm@91 544
rlm@108 545 (defn triangle-seq [#^Triangle tri]
rlm@108 546 [(.get1 tri) (.get2 tri) (.get3 tri)])
rlm@108 547
rlm@108 548 (defn vector3f-seq [#^Vector3f v]
rlm@108 549 [(.getX v) (.getY v) (.getZ v)])
rlm@108 550
rlm@108 551 (defn inside-triangle?
rlm@108 552 "Is the point inside the triangle?"
rlm@108 553 {:author "Dylan Holmes"}
rlm@108 554 [#^Triangle tri #^Vector3f p]
rlm@108 555 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
rlm@108 556 (and
rlm@108 557 (same-side? vert-1 vert-2 vert-3 p)
rlm@108 558 (same-side? vert-2 vert-3 vert-1 p)
rlm@108 559 (same-side? vert-3 vert-1 vert-2 p))))
rlm@108 560
rlm@94 561 (defn triangle->matrix4f
rlm@108 562 "Converts the triangle into a 4x4 matrix: The first three columns
rlm@108 563 contain the vertices of the triangle; the last contains the unit
rlm@108 564 normal of the triangle. The bottom row is filled with 1s."
rlm@94 565 [#^Triangle t]
rlm@94 566 (let [mat (Matrix4f.)
rlm@94 567 [vert-1 vert-2 vert-3]
rlm@94 568 ((comp vec map) #(.get t %) (range 3))
rlm@94 569 unit-normal (do (.calculateNormal t)(.getNormal t))
rlm@94 570 vertices [vert-1 vert-2 vert-3 unit-normal]]
rlm@94 571 (dorun
rlm@94 572 (for [row (range 4) col (range 3)]
rlm@94 573 (do
rlm@94 574 (.set mat col row (.get (vertices row)col))
rlm@94 575 (.set mat 3 row 1))))
rlm@94 576 mat))
rlm@94 577
rlm@94 578 (defn triangle-transformation
rlm@94 579 "Returns the affine transformation that converts each vertex in the
rlm@94 580 first triangle into the corresponding vertex in the second
rlm@94 581 triangle."
rlm@94 582 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 583 (.mult
rlm@94 584 (triangle->matrix4f tri-2)
rlm@94 585 (.invert (triangle->matrix4f tri-1))))
rlm@94 586
rlm@108 587 (defn point->vector2f [[u v]]
rlm@108 588 (Vector2f. u v))
rlm@94 589
rlm@94 590 (defn vector2f->vector3f [v]
rlm@94 591 (Vector3f. (.getX v) (.getY v) 0))
rlm@94 592
rlm@94 593 (defn map-triangle [f #^Triangle tri]
rlm@94 594 (Triangle.
rlm@94 595 (f 0 (.get1 tri))
rlm@94 596 (f 1 (.get2 tri))
rlm@94 597 (f 2 (.get3 tri))))
rlm@94 598
rlm@108 599 (defn points->triangle
rlm@108 600 "Convert a list of points into a triangle."
rlm@108 601 [points]
rlm@108 602 (apply #(Triangle. %1 %2 %3)
rlm@108 603 (map (fn [point]
rlm@108 604 (let [point (vec point)]
rlm@108 605 (Vector3f. (get point 0 0)
rlm@108 606 (get point 1 0)
rlm@108 607 (get point 2 0))))
rlm@108 608 (take 3 points))))
rlm@94 609
rlm@108 610 (defn convex-bounds
rlm@128 611 ;;dylan
rlm@128 612 "Returns the smallest square containing the given
rlm@128 613 vertices, as a vector of integers [left top width height]."
rlm@128 614 ;; "Dimensions of the smallest integer bounding square of the list of
rlm@128 615 ;; 2D verticies in the form: [x y width height]."
rlm@108 616 [uv-verts]
rlm@108 617 (let [xs (map first uv-verts)
rlm@108 618 ys (map second uv-verts)
rlm@108 619 x0 (Math/floor (apply min xs))
rlm@108 620 y0 (Math/floor (apply min ys))
rlm@108 621 x1 (Math/ceil (apply max xs))
rlm@108 622 y1 (Math/ceil (apply max ys))]
rlm@108 623 [x0 y0 (- x1 x0) (- y1 y0)]))
rlm@93 624
rlm@106 625 (defn sensors-in-triangle
rlm@128 626 ;;dylan
rlm@128 627 "Locate the touch sensors in the triangle, returning a map of their UV and geometry-relative coordinates."
rlm@128 628 ;;"Find the locations of the touch sensors within a triangle in both
rlm@128 629 ;; UV and gemoetry relative coordinates."
rlm@107 630 [image mesh tri-index]
rlm@107 631 (let [width (.getWidth image)
rlm@108 632 height (.getHeight image)
rlm@108 633 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
rlm@108 634 bounds (convex-bounds UV-vertex-coords)
rlm@108 635
rlm@108 636 cutout-triangle (points->triangle UV-vertex-coords)
rlm@108 637 UV-sensor-coords
rlm@108 638 (filter (comp (partial inside-triangle? cutout-triangle)
rlm@108 639 (fn [[u v]] (Vector3f. u v 0)))
rlm@108 640 (white-coordinates image bounds))
rlm@108 641 UV->geometry (triangle-transformation
rlm@108 642 cutout-triangle
rlm@108 643 (triangle mesh tri-index))
rlm@108 644 geometry-sensor-coords
rlm@108 645 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
rlm@108 646 UV-sensor-coords)]
rlm@108 647 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
rlm@107 648
rlm@108 649 (defn-memo locate-feelers
rlm@94 650 "Search the geometry's tactile UV image for touch sensors, returning
rlm@94 651 their positions in geometry-relative coordinates."
rlm@94 652 [#^Geometry geo]
rlm@108 653 (let [mesh (.getMesh geo)
rlm@108 654 num-triangles (.getTriangleCount mesh)]
rlm@108 655 (if-let [image (tactile-sensor-image geo)]
rlm@108 656 (map
rlm@108 657 (partial sensors-in-triangle image mesh)
rlm@108 658 (range num-triangles))
rlm@108 659 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
rlm@102 660
rlm@102 661 (use 'clojure.contrib.def)
rlm@102 662
rlm@102 663 (defn-memo touch-topology [#^Gemoetry geo]
rlm@108 664 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
rlm@108 665
rlm@108 666 (defn-memo feeler-coordinates [#^Geometry geo]
rlm@108 667 (vec (map :geometry (locate-feelers geo))))
rlm@102 668
rlm@97 669 (defn enable-touch [#^Geometry geo]
rlm@108 670 (let [feeler-coords (feeler-coordinates geo)
rlm@96 671 tris (triangles geo)
rlm@109 672 limit 0.1
rlm@109 673 ;;results (CollisionResults.)
rlm@109 674 ]
rlm@111 675 (if (empty? (touch-topology geo))
rlm@111 676 nil
rlm@111 677 (fn [node]
rlm@111 678 (let [sensor-origins
rlm@111 679 (map
rlm@111 680 #(map (partial local-to-world geo) %)
rlm@111 681 feeler-coords)
rlm@111 682 triangle-normals
rlm@111 683 (map (partial get-ray-direction geo)
rlm@111 684 tris)
rlm@111 685 rays
rlm@111 686 (flatten
rlm@111 687 (map (fn [origins norm]
rlm@111 688 (map #(doto (Ray. % norm)
rlm@97 689 (.setLimit limit)) origins))
rlm@111 690 sensor-origins triangle-normals))]
rlm@111 691 (vector
rlm@111 692 (touch-topology geo)
rlm@111 693 (vec
rlm@111 694 (for [ray rays]
rlm@111 695 (do
rlm@111 696 (let [results (CollisionResults.)]
rlm@111 697 (.collideWith node ray results)
rlm@111 698 (let [touch-objects
rlm@126 699 (filter #(not (= geo (.getGeometry %)))
rlm@126 700 results)]
rlm@126 701 (- 255
rlm@126 702 (if (empty? touch-objects) 255
rlm@126 703 (rem
rlm@126 704 (int
rlm@126 705 (* 255 (/ (.getDistance
rlm@126 706 (first touch-objects)) limit)))
rlm@126 707 256))))))))))))))
rlm@126 708
rlm@111 709
rlm@111 710 (defn touch [#^Node pieces]
rlm@111 711 (filter (comp not nil?)
rlm@111 712 (map enable-touch
rlm@111 713 (filter #(isa? (class %) Geometry)
rlm@111 714 (node-seq pieces)))))
rlm@94 715
rlm@109 716
rlm@111 717 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
rlm@111 718 ;; http://en.wikipedia.org/wiki/Retina
rlm@109 719
rlm@111 720 (defn test-eye []
rlm@117 721 (.getChild
rlm@117 722 (.getChild (worm-model) "eyes")
rlm@117 723 "eye"))
rlm@111 724
rlm@111 725
rlm@111 726 (defn retina-sensor-image
rlm@111 727 "Return a map of pixel selection functions to BufferedImages
rlm@111 728 describing the distribution of light-sensitive components on this
rlm@111 729 geometry's surface. Each function creates an integer from the rgb
rlm@111 730 values found in the pixel. :red, :green, :blue, :gray are already
rlm@111 731 defined as extracting the red green blue and average components
rlm@111 732 respectively."
rlm@117 733 [#^Spatial eye]
rlm@111 734 (if-let [eye-map (meta-data eye "eye")]
rlm@111 735 (map-vals
rlm@111 736 #(ImageToAwt/convert
rlm@111 737 (.getImage (.loadTexture (asset-manager) %))
rlm@111 738 false false 0)
rlm@120 739 (eval (read-string eye-map)))))
rlm@111 740
rlm@117 741 (defn eye-dimensions
rlm@117 742 "returns the width and height specified in the metadata of the eye"
rlm@117 743 [#^Spatial eye]
rlm@117 744 (let [dimensions
rlm@117 745 (map #(vector (.getWidth %) (.getHeight %))
rlm@117 746 (vals (retina-sensor-image eye)))]
rlm@117 747 [(apply max (map first dimensions))
rlm@117 748 (apply max (map second dimensions))]))
rlm@117 749
rlm@116 750 (defn creature-eyes
rlm@128 751 ;;dylan
rlm@128 752 "Return the children of the creature's \"eyes\" node."
rlm@128 753 ;;"The eye nodes which are children of the \"eyes\" node in the
rlm@128 754 ;;creature."
rlm@116 755 [#^Node creature]
rlm@116 756 (if-let [eye-node (.getChild creature "eyes")]
rlm@116 757 (seq (.getChildren eye-node))
rlm@116 758 (do (println-repl "could not find eyes node") [])))
rlm@111 759
rlm@123 760 ;; Here's how vision will work.
rlm@112 761
rlm@123 762 ;; Make the continuation in scene-processor take FrameBuffer,
rlm@123 763 ;; byte-buffer, BufferedImage already sized to the correct
rlm@123 764 ;; dimensions. the continuation will decide wether to "mix" them
rlm@123 765 ;; into the BufferedImage, lazily ignore them, or mix them halfway
rlm@123 766 ;; and call c/graphics card routines.
rlm@112 767
rlm@123 768 ;; (vision creature) will take an optional :skip argument which will
rlm@123 769 ;; inform the continuations in scene processor to skip the given
rlm@123 770 ;; number of cycles; 0 means that no cycles will be skipped.
rlm@112 771
rlm@123 772 ;; (vision creature) will return [init-functions sensor-functions].
rlm@123 773 ;; The init-functions are each single-arg functions that take the
rlm@123 774 ;; world and register the cameras and must each be called before the
rlm@123 775 ;; corresponding sensor-functions. Each init-function returns the
rlm@123 776 ;; viewport for that eye which can be manipulated, saved, etc. Each
rlm@123 777 ;; sensor-function is a thunk and will return data in the same
rlm@123 778 ;; format as the tactile-sensor functions; the structure is
rlm@123 779 ;; [topology, sensor-data]. Internally, these sensor-functions
rlm@123 780 ;; maintain a reference to sensor-data which is periodically updated
rlm@123 781 ;; by the continuation function established by its init-function.
rlm@123 782 ;; They can be queried every cycle, but their information may not
rlm@123 783 ;; necessairly be different every cycle.
rlm@112 784
rlm@123 785 ;; Each eye in the creature in blender will work the same way as
rlm@123 786 ;; joints -- a zero dimensional object with no geometry whose local
rlm@123 787 ;; coordinate system determines the orientation of the resulting
rlm@123 788 ;; eye. All eyes will have a parent named "eyes" just as all joints
rlm@123 789 ;; have a parent named "joints". The resulting camera will be a
rlm@123 790 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
rlm@123 791 ;; the eye marker. The eye marker will contain the metadata for the
rlm@123 792 ;; eye, and will be moved by it's bound geometry. The dimensions of
rlm@123 793 ;; the eye's camera are equal to the dimensions of the eye's "UV"
rlm@123 794 ;; map.
rlm@116 795
rlm@123 796
rlm@123 797 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@123 798
rlm@123 799 ;; Ears work the same way as vision.
rlm@123 800
rlm@123 801 ;; (hearing creature) will return [init-functions
rlm@123 802 ;; sensor-functions]. The init functions each take the world and
rlm@123 803 ;; register a SoundProcessor that does foureier transforms on the
rlm@123 804 ;; incommong sound data, making it available to each sensor function.
rlm@123 805
rlm@123 806 (defn creature-ears
rlm@128 807 "Return the children of the creature's \"ears\" node."
rlm@128 808 ;;dylan
rlm@128 809 ;;"The ear nodes which are children of the \"ears\" node in the
rlm@128 810 ;;creature."
rlm@123 811 [#^Node creature]
rlm@123 812 (if-let [ear-node (.getChild creature "ears")]
rlm@123 813 (seq (.getChildren ear-node))
rlm@123 814 (do (println-repl "could not find ears node") [])))
rlm@123 815
rlm@123 816 (defn closest-node
rlm@128 817 "Return the object in creature which is closest to the given node."
rlm@128 818 ;;dylan"The closest object in creature to the given node."
rlm@116 819 [#^Node creature #^Node eye]
rlm@116 820 (loop [radius (float 0.01)]
rlm@116 821 (let [results (CollisionResults.)]
rlm@116 822 (.collideWith
rlm@116 823 creature
rlm@116 824 (BoundingBox. (.getWorldTranslation eye)
rlm@116 825 radius radius radius)
rlm@116 826 results)
rlm@116 827 (if-let [target (first results)]
rlm@116 828 (.getGeometry target)
rlm@116 829 (recur (float (* 2 radius)))))))
rlm@116 830
rlm@128 831 ;;dylan (defn follow-sense, adjoin-sense, attach-stimuli,
rlm@128 832 ;;anchor-qualia, augment-organ, with-organ
rlm@123 833 (defn bind-sense
rlm@123 834 "Bind the sense to the Spatial such that it will maintain its
rlm@117 835 current position relative to the Spatial no matter how the spatial
rlm@123 836 moves. 'sense can be either a Camera or Listener object."
rlm@123 837 [#^Spatial obj sense]
rlm@123 838 (let [sense-offset (.subtract (.getLocation sense)
rlm@123 839 (.getWorldTranslation obj))
rlm@123 840 initial-sense-rotation (Quaternion. (.getRotation sense))
rlm@117 841 base-anti-rotation (.inverse (.getWorldRotation obj))]
rlm@117 842 (.addControl
rlm@117 843 obj
rlm@117 844 (proxy [AbstractControl] []
rlm@117 845 (controlUpdate [tpf]
rlm@117 846 (let [total-rotation
rlm@117 847 (.mult base-anti-rotation (.getWorldRotation obj))]
rlm@123 848 (.setLocation sense
rlm@117 849 (.add
rlm@123 850 (.mult total-rotation sense-offset)
rlm@117 851 (.getWorldTranslation obj)))
rlm@123 852 (.setRotation sense
rlm@123 853 (.mult total-rotation initial-sense-rotation))))
rlm@117 854 (controlRender [_ _])))))
rlm@117 855
rlm@117 856
rlm@123 857 (defn update-listener-velocity
rlm@123 858 "Update the listener's velocity every update loop."
rlm@123 859 [#^Spatial obj #^Listener lis]
rlm@123 860 (let [old-position (atom (.getLocation lis))]
rlm@123 861 (.addControl
rlm@123 862 obj
rlm@123 863 (proxy [AbstractControl] []
rlm@123 864 (controlUpdate [tpf]
rlm@123 865 (let [new-position (.getLocation lis)]
rlm@123 866 (.setVelocity
rlm@123 867 lis
rlm@123 868 (.mult (.subtract new-position @old-position)
rlm@123 869 (float (/ tpf))))
rlm@123 870 (reset! old-position new-position)))
rlm@123 871 (controlRender [_ _])))))
rlm@123 872
rlm@123 873 (import com.aurellem.capture.audio.AudioSendRenderer)
rlm@123 874
rlm@123 875 (defn attach-ear
rlm@123 876 [#^Application world #^Node creature #^Spatial ear continuation]
rlm@123 877 (let [target (closest-node creature ear)
rlm@123 878 lis (Listener.)
rlm@123 879 audio-renderer (.getAudioRenderer world)
rlm@123 880 sp (sound-processor continuation)]
rlm@123 881 (.setLocation lis (.getWorldTranslation ear))
rlm@123 882 (.setRotation lis (.getWorldRotation ear))
rlm@123 883 (bind-sense target lis)
rlm@123 884 (update-listener-velocity target lis)
rlm@123 885 (.addListener audio-renderer lis)
rlm@123 886 (.registerSoundProcessor audio-renderer lis sp)))
rlm@123 887
rlm@123 888 (defn enable-hearing
rlm@123 889 [#^Node creature #^Spatial ear]
rlm@123 890 (let [hearing-data (atom [])]
rlm@123 891 [(fn [world]
rlm@123 892 (attach-ear world creature ear
rlm@123 893 (fn [data]
rlm@123 894 (reset! hearing-data (vec data)))))
rlm@123 895 [(fn []
rlm@123 896 (let [data @hearing-data
rlm@123 897 topology
rlm@123 898 (vec (map #(vector % 0) (range 0 (count data))))
rlm@123 899 scaled-data
rlm@123 900 (vec
rlm@123 901 (map
rlm@123 902 #(rem (int (* 255 (/ (+ 1 %) 2))) 256)
rlm@123 903 data))]
rlm@123 904 [topology scaled-data]))
rlm@123 905 ]]))
rlm@123 906
rlm@123 907 (defn hearing
rlm@123 908 [#^Node creature]
rlm@123 909 (reduce
rlm@123 910 (fn [[init-a senses-a]
rlm@123 911 [init-b senses-b]]
rlm@123 912 [(conj init-a init-b)
rlm@123 913 (into senses-a senses-b)])
rlm@123 914 [[][]]
rlm@123 915 (for [ear (creature-ears creature)]
rlm@123 916 (enable-hearing creature ear))))
rlm@123 917
rlm@118 918 (defn attach-eye
rlm@118 919 "Attach a Camera to the appropiate area and return the Camera."
rlm@118 920 [#^Node creature #^Spatial eye]
rlm@123 921 (let [target (closest-node creature eye)
rlm@118 922 [cam-width cam-height] (eye-dimensions eye)
rlm@118 923 cam (Camera. cam-width cam-height)]
rlm@118 924 (.setLocation cam (.getWorldTranslation eye))
rlm@118 925 (.setRotation cam (.getWorldRotation eye))
rlm@119 926 (.setFrustumPerspective
rlm@119 927 cam 45 (/ (.getWidth cam) (.getHeight cam))
rlm@119 928 1 1000)
rlm@123 929 (bind-sense target cam)
rlm@118 930 cam))
rlm@118 931
rlm@118 932 (def presets
rlm@121 933 {:all 0xFFFFFF
rlm@119 934 :red 0xFF0000
rlm@119 935 :blue 0x0000FF
rlm@119 936 :green 0x00FF00})
rlm@119 937
rlm@118 938 (defn enable-vision
rlm@118 939 "return [init-function sensor-functions] for a particular eye"
rlm@118 940 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
rlm@118 941 (let [retinal-map (retina-sensor-image eye)
rlm@123 942 camera (attach-eye creature eye)
rlm@123 943 vision-image
rlm@123 944 (atom
rlm@123 945 (BufferedImage. (.getWidth camera)
rlm@123 946 (.getHeight camera)
rlm@123 947 BufferedImage/TYPE_BYTE_BINARY))]
rlm@123 948 [(fn [world]
rlm@123 949 (add-eye
rlm@123 950 world camera
rlm@123 951 (let [counter (atom 0)]
rlm@123 952 (fn [r fb bb bi]
rlm@123 953 (if (zero? (rem (swap! counter inc) (inc skip)))
rlm@123 954 (reset! vision-image (BufferedImage! r fb bb bi)))))))
rlm@123 955 (vec
rlm@123 956 (map
rlm@123 957 (fn [[key image]]
rlm@123 958 (let [whites (white-coordinates image)
rlm@123 959 topology (vec (collapse whites))
rlm@123 960 mask (presets key)]
rlm@123 961 (fn []
rlm@123 962 (vector
rlm@123 963 topology
rlm@123 964 (vec
rlm@123 965 (for [[x y] whites]
rlm@123 966 (bit-and
rlm@123 967 mask (.getRGB @vision-image x y))))))))
rlm@123 968 retinal-map))]))
rlm@118 969
rlm@116 970 (defn vision
rlm@121 971 [#^Node creature & {skip :skip :or {skip 0}}]
rlm@121 972 (reduce
rlm@121 973 (fn [[init-a senses-a]
rlm@121 974 [init-b senses-b]]
rlm@121 975 [(conj init-a init-b)
rlm@121 976 (into senses-a senses-b)])
rlm@121 977 [[][]]
rlm@121 978 (for [eye (creature-eyes creature)]
rlm@121 979 (enable-vision creature eye))))
rlm@128 980
rlm@128 981
rlm@128 982
rlm@128 983
rlm@128 984
rlm@128 985 ;; lower level --- nodes
rlm@128 986 ;; closest-node "parse/compile-x" -> makes organ, which is spatial, fn pair
rlm@128 987
rlm@128 988 ;; higher level -- organs
rlm@128 989 ;;
rlm@128 990
rlm@128 991 ;; higher level --- sense/effector
rlm@128 992 ;; these are the functions that provide world i/o, chinese-room style
rlm@128 993
rlm@128 994
rlm@134 995
rlm@116 996
rlm@116 997 (defn blender-creature
rlm@116 998 "Return a creature with all joints in place."
rlm@116 999 [blender-path]
rlm@116 1000 (let [model (load-blender-model blender-path)
rlm@134 1001 joints (creature-joints model)]
rlm@134 1002 (assemble-creature model joints)))
rlm@116 1003
rlm@126 1004 (defn gray-scale [num]
rlm@126 1005 (+ num
rlm@126 1006 (bit-shift-left num 8)
rlm@126 1007 (bit-shift-left num 16)))
rlm@126 1008
rlm@130 1009 (defn debug-touch-window
rlm@103 1010 "creates function that offers a debug view of sensor data"
rlm@103 1011 []
rlm@103 1012 (let [vi (view-image)]
rlm@103 1013 (fn
rlm@103 1014 [[coords sensor-data]]
rlm@103 1015 (let [image (points->image coords)]
rlm@103 1016 (dorun
rlm@103 1017 (for [i (range (count coords))]
rlm@103 1018 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@126 1019 (gray-scale (sensor-data i)))))
rlm@126 1020
rlm@126 1021
rlm@103 1022 (vi image)))))
rlm@103 1023
rlm@118 1024 (defn debug-vision-window
rlm@118 1025 "creates function that offers a debug view of sensor data"
rlm@118 1026 []
rlm@118 1027 (let [vi (view-image)]
rlm@118 1028 (fn
rlm@118 1029 [[coords sensor-data]]
rlm@118 1030 (let [image (points->image coords)]
rlm@118 1031 (dorun
rlm@118 1032 (for [i (range (count coords))]
rlm@118 1033 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@118 1034 (sensor-data i))))
rlm@118 1035 (vi image)))))
rlm@118 1036
rlm@123 1037 (defn debug-hearing-window
rlm@123 1038 "view audio data"
rlm@123 1039 [height]
rlm@123 1040 (let [vi (view-image)]
rlm@123 1041 (fn [[coords sensor-data]]
rlm@123 1042 (let [image (BufferedImage. (count coords) height
rlm@123 1043 BufferedImage/TYPE_INT_RGB)]
rlm@123 1044 (dorun
rlm@123 1045 (for [x (range (count coords))]
rlm@123 1046 (dorun
rlm@123 1047 (for [y (range height)]
rlm@123 1048 (let [raw-sensor (sensor-data x)]
rlm@126 1049 (.setRGB image x y (gray-scale raw-sensor)))))))
rlm@126 1050
rlm@123 1051 (vi image)))))
rlm@123 1052
rlm@123 1053
rlm@123 1054
rlm@106 1055 ;;(defn test-touch [world creature]
rlm@83 1056
rlm@78 1057
rlm@123 1058
rlm@123 1059
rlm@130 1060 ;; here's how motor-control/ proprioception will work: Each muscle is
rlm@130 1061 ;; defined by a 1-D array of numbers (the "motor pool") each of which
rlm@130 1062 ;; represent muscle fibers. A muscle also has a scalar :strength
rlm@130 1063 ;; factor which determines how strong the muscle as a whole is.
rlm@130 1064 ;; The effector function for a muscle takes a number < (count
rlm@130 1065 ;; motor-pool) and that number is said to "activate" all the muscle
rlm@130 1066 ;; fibers whose index is lower than the number. Each fiber will apply
rlm@130 1067 ;; force in proportion to its value in the array. Lower values cause
rlm@130 1068 ;; less force. The lower values can be put at the "beginning" of the
rlm@130 1069 ;; 1-D array to simulate the layout of actual human muscles, which are
rlm@130 1070 ;; capable of more percise movements when exerting less force.
rlm@129 1071
rlm@130 1072 ;; I don't know how to encode proprioception, so for now, just return
rlm@130 1073 ;; a function for each joint that returns a triplet of floats which
rlm@130 1074 ;; represent relative roll, pitch, and yaw. Write display code for
rlm@130 1075 ;; this though.
rlm@130 1076
rlm@130 1077 (defn muscle-fibre-values
rlm@130 1078 "Take the first row of the image and return the low-order bytes."
rlm@130 1079 [#^BufferedImage image]
rlm@130 1080 (let [width (.getWidth image)]
rlm@130 1081 (for [x (range width)]
rlm@130 1082 (bit-and
rlm@130 1083 0xFF
rlm@130 1084 (.getRGB image x 0)))))
rlm@130 1085
rlm@130 1086
rlm@134 1087 (defn draw-sprite [image sprite x y color ]
rlm@134 1088 (dorun
rlm@134 1089 (for [[u v] sprite]
rlm@134 1090 (.setRGB image (+ u x) (+ v y) color))))
rlm@134 1091
rlm@134 1092 (defn view-angle
rlm@134 1093 "create a debug view of an angle"
rlm@134 1094 [color]
rlm@134 1095 (let [image (BufferedImage. 50 50 BufferedImage/TYPE_INT_RGB)
rlm@134 1096 previous (atom [25 25])
rlm@134 1097 sprite [[0 0] [0 1]
rlm@134 1098 [0 -1] [-1 0] [1 0]]]
rlm@134 1099 (fn [angle]
rlm@134 1100 (let [angle (float angle)]
rlm@134 1101 (let [position
rlm@134 1102 [(+ 25 (int (* 20 (Math/cos angle))))
rlm@134 1103 (+ 25 (int (* 20(Math/sin angle))))]]
rlm@134 1104 (draw-sprite image sprite (@previous 0) (@previous 1) 0x000000)
rlm@134 1105 (draw-sprite image sprite (position 0) (position 1) color)
rlm@134 1106 (reset! previous position))
rlm@134 1107 image))))
rlm@134 1108
rlm@134 1109 (defn proprioception-debug-window
rlm@134 1110 []
rlm@134 1111 (let [yaw (view-angle 0xFF0000)
rlm@134 1112 roll (view-angle 0x00FF00)
rlm@134 1113 pitch (view-angle 0xFFFFFF)
rlm@134 1114 v-yaw (view-image)
rlm@134 1115 v-roll (view-image)
rlm@134 1116 v-pitch (view-image)
rlm@134 1117 ]
rlm@134 1118 (fn [prop-data]
rlm@134 1119 (dorun
rlm@134 1120 (map
rlm@134 1121 (fn [[y r p]]
rlm@134 1122 (v-yaw (yaw y))
rlm@134 1123 (v-roll (roll r))
rlm@134 1124 (v-pitch (pitch p)))
rlm@134 1125 prop-data)))))
rlm@134 1126
rlm@129 1127
rlm@129 1128
rlm@129 1129
rlm@129 1130
rlm@123 1131
rlm@123 1132
rlm@106 1133 (defn test-creature [thing]
rlm@106 1134 (let [x-axis
rlm@106 1135 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
rlm@106 1136 y-axis
rlm@106 1137 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
rlm@106 1138 z-axis
rlm@106 1139 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
rlm@106 1140 creature (blender-creature thing)
rlm@106 1141 touch-nerves (touch creature)
rlm@130 1142 touch-debug-windows (map (fn [_] (debug-touch-window)) touch-nerves)
rlm@121 1143 [init-vision-fns vision-data] (vision creature)
rlm@121 1144 vision-debug (map (fn [_] (debug-vision-window)) vision-data)
rlm@118 1145 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
rlm@123 1146 [init-hearing-fns hearing-senses] (hearing creature)
rlm@123 1147 hearing-windows (map (fn [_] (debug-hearing-window 50))
rlm@123 1148 hearing-senses)
rlm@124 1149 bell (AudioNode. (asset-manager)
rlm@128 1150 "Sounds/pure.wav" false)
rlm@130 1151 prop (proprioception creature)
rlm@135 1152 prop-debug (proprioception-debug-window)
rlm@123 1153 ;; dream
rlm@123 1154
rlm@106 1155 ]
rlm@106 1156 (world
rlm@106 1157 (nodify [creature
rlm@106 1158 (box 10 2 10 :position (Vector3f. 0 -9 0)
rlm@106 1159 :color ColorRGBA/Gray :mass 0)
rlm@106 1160 x-axis y-axis z-axis
rlm@118 1161 me
rlm@106 1162 ])
rlm@123 1163 (merge standard-debug-controls
rlm@123 1164 {"key-return"
rlm@123 1165 (fn [_ value]
rlm@123 1166 (if value
rlm@123 1167 (do
rlm@123 1168 (println-repl "play-sound")
rlm@124 1169 (.play bell))))})
rlm@106 1170 (fn [world]
rlm@106 1171 (light-up-everything world)
rlm@106 1172 (enable-debug world)
rlm@122 1173 (dorun (map #(% world) init-vision-fns))
rlm@123 1174 (dorun (map #(% world) init-hearing-fns))
rlm@118 1175
rlm@118 1176 (add-eye world
rlm@118 1177 (attach-eye creature (test-eye))
rlm@118 1178 (comp (view-image) BufferedImage!))
rlm@118 1179
rlm@118 1180 (add-eye world (.getCamera world) no-op)
rlm@133 1181 ;;(set-gravity world (Vector3f. 0 0 0))
rlm@106 1182 ;;(com.aurellem.capture.Capture/captureVideo
rlm@106 1183 ;; world (file-str "/home/r/proj/ai-videos/hand"))
rlm@110 1184 ;;(.setTimer world (RatchetTimer. 60))
rlm@119 1185 (speed-up world)
rlm@106 1186 ;;(set-gravity world (Vector3f. 0 0 0))
rlm@106 1187 )
rlm@106 1188 (fn [world tpf]
rlm@109 1189 ;;(dorun
rlm@109 1190 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
rlm@123 1191
rlm@130 1192 (prop-debug (prop))
rlm@123 1193
rlm@106 1194 (dorun
rlm@109 1195 (map #(%1 (%2 (.getRootNode world)))
rlm@121 1196 touch-debug-windows touch-nerves))
rlm@123 1197
rlm@121 1198 (dorun
rlm@121 1199 (map #(%1 (%2))
rlm@121 1200 vision-debug vision-data))
rlm@123 1201 (dorun
rlm@123 1202 (map #(%1 (%2)) hearing-windows hearing-senses))
rlm@123 1203
rlm@123 1204
rlm@118 1205 ;;(println-repl (vision-data))
rlm@118 1206 (.setLocalTranslation me (.getLocation (.getCamera world)))
rlm@118 1207
rlm@121 1208
rlm@106 1209 )
rlm@106 1210 ;;(let [timer (atom 0)]
rlm@106 1211 ;; (fn [_ _]
rlm@106 1212 ;; (swap! timer inc)
rlm@106 1213 ;; (if (= (rem @timer 60) 0)
rlm@106 1214 ;; (println-repl (float (/ @timer 60))))))
rlm@106 1215 )))
rlm@83 1216
rlm@109 1217
rlm@109 1218
rlm@109 1219
rlm@109 1220
rlm@109 1221
rlm@109 1222
rlm@109 1223
rlm@109 1224
rlm@109 1225 ;;; experiments in collisions
rlm@109 1226
rlm@109 1227
rlm@109 1228
rlm@109 1229 (defn collision-test []
rlm@110 1230 (let [b-radius 1
rlm@110 1231 b-position (Vector3f. 0 0 0)
rlm@109 1232 obj-b (box 1 1 1 :color ColorRGBA/Blue
rlm@109 1233 :position b-position
rlm@110 1234 :mass 0)
rlm@110 1235 node (nodify [obj-b])
rlm@110 1236 bounds-b
rlm@110 1237 (doto (Picture.)
rlm@110 1238 (.setHeight 50)
rlm@110 1239 (.setWidth 50)
rlm@110 1240 (.setImage (asset-manager)
rlm@110 1241 "Models/creature1/hand.png"
rlm@110 1242 false
rlm@110 1243 ))
rlm@110 1244
rlm@110 1245 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
rlm@110 1246
rlm@110 1247 collisions
rlm@110 1248 (let [cr (CollisionResults.)]
rlm@110 1249 (.collideWith node bounds-b cr)
rlm@110 1250 (println (map #(.getContactPoint %) cr))
rlm@110 1251 cr)
rlm@110 1252
rlm@110 1253 ;;collision-points
rlm@110 1254 ;;(map #(sphere 0.1 :position (.getContactPoint %))
rlm@110 1255 ;; collisions)
rlm@110 1256
rlm@110 1257 ;;node (nodify (conj collision-points obj-b))
rlm@110 1258
rlm@109 1259 sim
rlm@109 1260 (world node
rlm@110 1261 {"key-space"
rlm@130 1262 (fn [_ value]
rlm@110 1263 (if value
rlm@110 1264 (let [cr (CollisionResults.)]
rlm@110 1265 (.collideWith node bounds-b cr)
rlm@110 1266 (println-repl (map #(.getContactPoint %) cr))
rlm@110 1267 cr)))}
rlm@109 1268 no-op
rlm@109 1269 no-op)
rlm@109 1270
rlm@109 1271 ]
rlm@110 1272 sim
rlm@109 1273
rlm@109 1274 ))
rlm@109 1275
rlm@116 1276
rlm@116 1277 ;; the camera will stay in its initial position/rotation with relation
rlm@116 1278 ;; to the spatial.
rlm@116 1279
rlm@116 1280
rlm@117 1281 (defn follow-test
rlm@117 1282 "show a camera that stays in the same relative position to a blue cube."
rlm@117 1283 []
rlm@116 1284 (let [camera-pos (Vector3f. 0 30 0)
rlm@116 1285 rock (box 1 1 1 :color ColorRGBA/Blue
rlm@116 1286 :position (Vector3f. 0 10 0)
rlm@116 1287 :mass 30
rlm@116 1288 )
rlm@118 1289 rot (.getWorldRotation rock)
rlm@116 1290
rlm@116 1291 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
rlm@116 1292 :position (Vector3f. 0 -3 0))]
rlm@116 1293
rlm@116 1294 (world
rlm@116 1295 (nodify [rock table])
rlm@116 1296 standard-debug-controls
rlm@116 1297 (fn [world]
rlm@116 1298 (let
rlm@116 1299 [cam (doto (.clone (.getCamera world))
rlm@116 1300 (.setLocation camera-pos)
rlm@116 1301 (.lookAt Vector3f/ZERO
rlm@116 1302 Vector3f/UNIT_X))]
rlm@123 1303 (bind-sense rock cam)
rlm@116 1304
rlm@116 1305 (.setTimer world (RatchetTimer. 60))
rlm@116 1306 (add-eye world cam (comp (view-image) BufferedImage!))
rlm@116 1307 (add-eye world (.getCamera world) no-op))
rlm@116 1308 )
rlm@118 1309 (fn [_ _] (println-repl rot)))))
rlm@116 1310
rlm@118 1311
rlm@123 1312
rlm@87 1313 #+end_src
rlm@83 1314
rlm@87 1315 #+results: body-1
rlm@133 1316 : #'cortex.silly/follow-test
rlm@78 1317
rlm@78 1318
rlm@78 1319 * COMMENT purgatory
rlm@78 1320 #+begin_src clojure
rlm@77 1321 (defn bullet-trans []
rlm@77 1322 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
rlm@77 1323 :position (Vector3f. -10 5 0))
rlm@77 1324 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1325 :position (Vector3f. -10 -5 0)
rlm@77 1326 :mass 0)
rlm@77 1327 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1328 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1329 swivel
rlm@77 1330 (.toRotationMatrix
rlm@77 1331 (doto (Quaternion.)
rlm@77 1332 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1333 Vector3f/UNIT_X)))]
rlm@77 1334 (doto
rlm@77 1335 (ConeJoint.
rlm@77 1336 control-a control-b
rlm@77 1337 (Vector3f. 0 5 0)
rlm@77 1338 (Vector3f. 0 -5 0)
rlm@77 1339 swivel swivel)
rlm@77 1340 (.setLimit (* 0.6 (/ Math/PI 4))
rlm@77 1341 (/ Math/PI 4)
rlm@77 1342 (* Math/PI 0.8)))
rlm@77 1343 (world (nodify
rlm@77 1344 [obj-a obj-b])
rlm@77 1345 standard-debug-controls
rlm@77 1346 enable-debug
rlm@77 1347 no-op)))
rlm@74 1348
rlm@74 1349
rlm@77 1350 (defn bullet-trans* []
rlm@77 1351 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
rlm@77 1352 :position (Vector3f. 5 0 0)
rlm@77 1353 :mass 90)
rlm@77 1354 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1355 :position (Vector3f. -5 0 0)
rlm@77 1356 :mass 0)
rlm@77 1357 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1358 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1359 move-up? (atom nil)
rlm@77 1360 move-down? (atom nil)
rlm@77 1361 move-left? (atom nil)
rlm@77 1362 move-right? (atom nil)
rlm@77 1363 roll-left? (atom nil)
rlm@77 1364 roll-right? (atom nil)
rlm@77 1365 force 100
rlm@77 1366 swivel
rlm@77 1367 (.toRotationMatrix
rlm@77 1368 (doto (Quaternion.)
rlm@77 1369 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1370 Vector3f/UNIT_X)))
rlm@77 1371 x-move
rlm@77 1372 (doto (Matrix3f.)
rlm@77 1373 (.fromStartEndVectors Vector3f/UNIT_X
rlm@77 1374 (.normalize (Vector3f. 1 1 0))))
rlm@77 1375
rlm@77 1376 timer (atom 0)]
rlm@77 1377 (doto
rlm@77 1378 (ConeJoint.
rlm@77 1379 control-a control-b
rlm@77 1380 (Vector3f. -8 0 0)
rlm@77 1381 (Vector3f. 2 0 0)
rlm@77 1382 ;;swivel swivel
rlm@77 1383 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
rlm@77 1384 x-move Matrix3f/IDENTITY
rlm@77 1385 )
rlm@77 1386 (.setCollisionBetweenLinkedBodys false)
rlm@77 1387 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
rlm@77 1388 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
rlm@77 1389 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
rlm@77 1390 (world (nodify
rlm@77 1391 [obj-a obj-b])
rlm@77 1392 (merge standard-debug-controls
rlm@77 1393 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@77 1394 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@77 1395 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@77 1396 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@77 1397 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@77 1398 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@77 1399
rlm@77 1400 (fn [world]
rlm@77 1401 (enable-debug world)
rlm@77 1402 (set-gravity world Vector3f/ZERO)
rlm@77 1403 )
rlm@77 1404
rlm@77 1405 (fn [world _]
rlm@77 1406
rlm@77 1407 (if @move-up?
rlm@77 1408 (.applyForce control-a
rlm@77 1409 (Vector3f. force 0 0)
rlm@77 1410 (Vector3f. 0 0 0)))
rlm@77 1411 (if @move-down?
rlm@77 1412 (.applyForce control-a
rlm@77 1413 (Vector3f. (- force) 0 0)
rlm@77 1414 (Vector3f. 0 0 0)))
rlm@77 1415 (if @move-left?
rlm@77 1416 (.applyForce control-a
rlm@77 1417 (Vector3f. 0 force 0)
rlm@77 1418 (Vector3f. 0 0 0)))
rlm@77 1419 (if @move-right?
rlm@77 1420 (.applyForce control-a
rlm@77 1421 (Vector3f. 0 (- force) 0)
rlm@77 1422 (Vector3f. 0 0 0)))
rlm@77 1423
rlm@77 1424 (if @roll-left?
rlm@77 1425 (.applyForce control-a
rlm@77 1426 (Vector3f. 0 0 force)
rlm@77 1427 (Vector3f. 0 0 0)))
rlm@77 1428 (if @roll-right?
rlm@77 1429 (.applyForce control-a
rlm@77 1430 (Vector3f. 0 0 (- force))
rlm@77 1431 (Vector3f. 0 0 0)))
rlm@77 1432
rlm@77 1433 (if (zero? (rem (swap! timer inc) 100))
rlm@77 1434 (.attachChild
rlm@77 1435 (.getRootNode world)
rlm@77 1436 (sphere 0.05 :color ColorRGBA/Yellow
rlm@77 1437 :physical? false :position
rlm@77 1438 (.getWorldTranslation obj-a)))))
rlm@77 1439 )
rlm@77 1440 ))
rlm@77 1441
rlm@94 1442 (defn transform-trianglesdsd
rlm@94 1443 "Transform that converts each vertex in the first triangle
rlm@94 1444 into the corresponding vertex in the second triangle."
rlm@94 1445 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 1446 (let [in [(.get1 tri-1)
rlm@94 1447 (.get2 tri-1)
rlm@94 1448 (.get3 tri-1)]
rlm@94 1449 out [(.get1 tri-2)
rlm@94 1450 (.get2 tri-2)
rlm@94 1451 (.get3 tri-2)]]
rlm@94 1452 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
rlm@94 1453 in* [(.mult translate (in 0))
rlm@94 1454 (.mult translate (in 1))
rlm@94 1455 (.mult translate (in 2))]
rlm@94 1456 final-translation
rlm@94 1457 (doto (Matrix4f.)
rlm@94 1458 (.setTranslation (out 1)))
rlm@94 1459
rlm@94 1460 rotate-1
rlm@94 1461 (doto (Matrix3f.)
rlm@94 1462 (.fromStartEndVectors
rlm@94 1463 (.normalize
rlm@94 1464 (.subtract
rlm@94 1465 (in* 1) (in* 0)))
rlm@94 1466 (.normalize
rlm@94 1467 (.subtract
rlm@94 1468 (out 1) (out 0)))))
rlm@94 1469 in** [(.mult rotate-1 (in* 0))
rlm@94 1470 (.mult rotate-1 (in* 1))
rlm@94 1471 (.mult rotate-1 (in* 2))]
rlm@94 1472 scale-factor-1
rlm@94 1473 (.mult
rlm@94 1474 (.normalize
rlm@94 1475 (.subtract
rlm@94 1476 (out 1)
rlm@94 1477 (out 0)))
rlm@94 1478 (/ (.length
rlm@94 1479 (.subtract (out 1)
rlm@94 1480 (out 0)))
rlm@94 1481 (.length
rlm@94 1482 (.subtract (in** 1)
rlm@94 1483 (in** 0)))))
rlm@94 1484 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
rlm@94 1485 in*** [(.mult scale-1 (in** 0))
rlm@94 1486 (.mult scale-1 (in** 1))
rlm@94 1487 (.mult scale-1 (in** 2))]
rlm@94 1488
rlm@94 1489
rlm@94 1490
rlm@94 1491
rlm@94 1492
rlm@94 1493 ]
rlm@94 1494
rlm@94 1495 (dorun (map println in))
rlm@94 1496 (println)
rlm@94 1497 (dorun (map println in*))
rlm@94 1498 (println)
rlm@94 1499 (dorun (map println in**))
rlm@94 1500 (println)
rlm@94 1501 (dorun (map println in***))
rlm@94 1502 (println)
rlm@94 1503
rlm@99 1504 ))))
rlm@94 1505
rlm@94 1506
rlm@106 1507 (defn world-setup [joint]
rlm@106 1508 (let [joint-position (Vector3f. 0 0 0)
rlm@106 1509 joint-rotation
rlm@106 1510 (.toRotationMatrix
rlm@106 1511 (.mult
rlm@106 1512 (doto (Quaternion.)
rlm@106 1513 (.fromAngleAxis
rlm@106 1514 (* 1 (/ Math/PI 4))
rlm@106 1515 (Vector3f. -1 0 0)))
rlm@106 1516 (doto (Quaternion.)
rlm@106 1517 (.fromAngleAxis
rlm@106 1518 (* 1 (/ Math/PI 2))
rlm@106 1519 (Vector3f. 0 0 1)))))
rlm@106 1520 top-position (.mult joint-rotation (Vector3f. 8 0 0))
rlm@106 1521
rlm@106 1522 origin (doto
rlm@106 1523 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
rlm@106 1524 :position top-position))
rlm@106 1525 top (doto
rlm@106 1526 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
rlm@106 1527 :position top-position)
rlm@106 1528
rlm@106 1529 (.addControl
rlm@106 1530 (RigidBodyControl.
rlm@106 1531 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
rlm@106 1532 bottom (doto
rlm@106 1533 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
rlm@106 1534 :position (Vector3f. 0 0 0))
rlm@106 1535 (.addControl
rlm@106 1536 (RigidBodyControl.
rlm@106 1537 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
rlm@106 1538 table (box 10 2 10 :position (Vector3f. 0 -20 0)
rlm@106 1539 :color ColorRGBA/Gray :mass 0)
rlm@106 1540 a (.getControl top RigidBodyControl)
rlm@106 1541 b (.getControl bottom RigidBodyControl)]
rlm@106 1542
rlm@106 1543 (cond
rlm@106 1544 (= joint :cone)
rlm@106 1545
rlm@106 1546 (doto (ConeJoint.
rlm@106 1547 a b
rlm@106 1548 (world-to-local top joint-position)
rlm@106 1549 (world-to-local bottom joint-position)
rlm@106 1550 joint-rotation
rlm@106 1551 joint-rotation
rlm@106 1552 )
rlm@106 1553
rlm@106 1554
rlm@106 1555 (.setLimit (* (/ 10) Math/PI)
rlm@106 1556 (* (/ 4) Math/PI)
rlm@106 1557 0)))
rlm@106 1558 [origin top bottom table]))
rlm@106 1559
rlm@106 1560 (defn test-joint [joint]
rlm@106 1561 (let [[origin top bottom floor] (world-setup joint)
rlm@106 1562 control (.getControl top RigidBodyControl)
rlm@106 1563 move-up? (atom false)
rlm@106 1564 move-down? (atom false)
rlm@106 1565 move-left? (atom false)
rlm@106 1566 move-right? (atom false)
rlm@106 1567 roll-left? (atom false)
rlm@106 1568 roll-right? (atom false)
rlm@106 1569 timer (atom 0)]
rlm@106 1570
rlm@106 1571 (world
rlm@106 1572 (nodify [top bottom floor origin])
rlm@106 1573 (merge standard-debug-controls
rlm@106 1574 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@106 1575 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@106 1576 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@106 1577 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@106 1578 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@106 1579 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@106 1580
rlm@106 1581 (fn [world]
rlm@106 1582 (light-up-everything world)
rlm@106 1583 (enable-debug world)
rlm@106 1584 (set-gravity world (Vector3f. 0 0 0))
rlm@106 1585 )
rlm@106 1586
rlm@106 1587 (fn [world _]
rlm@106 1588 (if (zero? (rem (swap! timer inc) 100))
rlm@106 1589 (do
rlm@106 1590 ;; (println-repl @timer)
rlm@106 1591 (.attachChild (.getRootNode world)
rlm@106 1592 (sphere 0.05 :color ColorRGBA/Yellow
rlm@106 1593 :position (.getWorldTranslation top)
rlm@106 1594 :physical? false))
rlm@106 1595 (.attachChild (.getRootNode world)
rlm@106 1596 (sphere 0.05 :color ColorRGBA/LightGray
rlm@106 1597 :position (.getWorldTranslation bottom)
rlm@106 1598 :physical? false))))
rlm@106 1599
rlm@106 1600 (if @move-up?
rlm@106 1601 (.applyTorque control
rlm@106 1602 (.mult (.getPhysicsRotation control)
rlm@106 1603 (Vector3f. 0 0 10))))
rlm@106 1604 (if @move-down?
rlm@106 1605 (.applyTorque control
rlm@106 1606 (.mult (.getPhysicsRotation control)
rlm@106 1607 (Vector3f. 0 0 -10))))
rlm@106 1608 (if @move-left?
rlm@106 1609 (.applyTorque control
rlm@106 1610 (.mult (.getPhysicsRotation control)
rlm@106 1611 (Vector3f. 0 10 0))))
rlm@106 1612 (if @move-right?
rlm@106 1613 (.applyTorque control
rlm@106 1614 (.mult (.getPhysicsRotation control)
rlm@106 1615 (Vector3f. 0 -10 0))))
rlm@106 1616 (if @roll-left?
rlm@106 1617 (.applyTorque control
rlm@106 1618 (.mult (.getPhysicsRotation control)
rlm@106 1619 (Vector3f. -1 0 0))))
rlm@106 1620 (if @roll-right?
rlm@106 1621 (.applyTorque control
rlm@106 1622 (.mult (.getPhysicsRotation control)
rlm@106 1623 (Vector3f. 1 0 0))))))))
rlm@106 1624
rlm@99 1625
rlm@99 1626
rlm@107 1627 (defprotocol Frame
rlm@107 1628 (frame [this]))
rlm@107 1629
rlm@107 1630 (extend-type BufferedImage
rlm@107 1631 Frame
rlm@107 1632 (frame [image]
rlm@107 1633 (merge
rlm@107 1634 (apply
rlm@107 1635 hash-map
rlm@107 1636 (interleave
rlm@107 1637 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1638 (vector x y)))
rlm@107 1639 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1640 (let [data (.getRGB image x y)]
rlm@107 1641 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
rlm@107 1642 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
rlm@107 1643 :b (bit-and 0x0000ff data)))))))
rlm@107 1644 {:width (.getWidth image) :height (.getHeight image)})))
rlm@107 1645
rlm@107 1646
rlm@107 1647 (extend-type ImagePlus
rlm@107 1648 Frame
rlm@107 1649 (frame [image+]
rlm@107 1650 (frame (.getBufferedImage image+))))
rlm@107 1651
rlm@107 1652
rlm@99 1653 #+end_src
rlm@99 1654
rlm@99 1655
rlm@99 1656 * COMMENT generate source
rlm@99 1657 #+begin_src clojure :tangle ../src/cortex/silly.clj
rlm@99 1658 <<body-1>>
rlm@99 1659 #+end_src
rlm@99 1660
rlm@99 1661
rlm@94 1662
rlm@94 1663