annotate org/test-creature.org @ 132:3206d5e20bee

still trying to fix proprioception
author Robert McIntyre <rlm@mit.edu>
date Tue, 31 Jan 2012 01:40:47 -0700
parents b26017d1fe9a
children 2ed7e60d3821
rev   line source
rlm@73 1 #+title: First attempt at a creature!
rlm@73 2 #+author: Robert McIntyre
rlm@73 3 #+email: rlm@mit.edu
rlm@73 4 #+description:
rlm@73 5 #+keywords: simulation, jMonkeyEngine3, clojure
rlm@73 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@73 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@73 8
rlm@129 9
rlm@129 10
rlm@129 11 * Brainstorming different sensors and effectors.
rlm@129 12
rlm@129 13 Every sense that we have should have an effector that changes what
rlm@129 14 that sense (or others who have that sense) experiences.
rlm@129 15
rlm@129 16 ** Classic Senses
rlm@129 17 | Sense | Effector |
rlm@129 18 |------------------------------+---------------------------------|
rlm@129 19 | Vision | Variable Coloration |
rlm@129 20 | Hearing | Speech |
rlm@129 21 | Proprioception | Movement |
rlm@129 22 | Smell/Taste (Chemoreception) | Pheremones |
rlm@129 23 | Touch | Movement / Controllable Texture |
rlm@129 24 | Acceleration | Movement |
rlm@129 25 | Balance (sense gravity) | Movement |
rlm@129 26 | | |
rlm@129 27
rlm@129 28 - New Senses/Effectors
rlm@129 29 - Levitation
rlm@129 30 - Telekenesis
rlm@129 31
rlm@129 32 - Symbol Sense
rlm@129 33 Where objects in the world can be queried for description /
rlm@129 34 symbols.
rlm@129 35
rlm@129 36 - Symbol Marking
rlm@129 37 The ability to mark objects in the world with your own descriptions
rlm@129 38 and symbols.
rlm@129 39
rlm@129 40 - Vision
rlm@129 41 Distinguish the polarization of light
rlm@129 42 Color
rlm@129 43 Movement
rlm@129 44
rlm@129 45 * project ideas
rlm@129 46 - HACKER for writing muscle-control programs : Presented with
rlm@129 47 low-level muscle control/ sense API, generate higher level programs
rlm@129 48 for accomplishing various stated goals. Example goals might be
rlm@129 49 "extend all your fingers" or "move your hand into the area with
rlm@129 50 blue light" or "decrease the angle of this joint". It would be
rlm@129 51 like Sussman's HACKER, except it would operate with much more data
rlm@129 52 in a more realistic world. Start off with "calestanthics" to
rlm@129 53 develop subrouitines over the motor control API. This would be the
rlm@129 54 "spinal chord" of a more intelligent creature. The low level
rlm@129 55 programming code might be a turning machine that could develop
rlm@129 56 programs to iterate over a "tape" where each entry in the tape
rlm@129 57 could control recruitment of the fibers in a muscle.
rlm@129 58 - Make a virtual computer in the virtual world which with which the
rlm@129 59 creature interacts using its fingers to press keys on a virtual
rlm@129 60 keyboard. The creature can access the internet, watch videos, take
rlm@129 61 over the world, anything it wants.
rlm@129 62 - Make virtual insturments like pianos, drumbs, etc that it learns to
rlm@129 63 play.
rlm@129 64 - make a joint that figures out what type of joint it is (range of
rlm@129 65 motion)
rlm@129 66
rlm@129 67
rlm@129 68
rlm@129 69
rlm@129 70
rlm@129 71 * goals
rlm@125 72
rlm@125 73 ** have to get done before winston
rlm@126 74 - [ ] write an explination for why greyscale bitmaps for senses is
rlm@126 75 appropiate -- 1/2 day
rlm@126 76 - [ ] muscle control -- day
rlm@126 77 - [ ] proprioception sensor map in the style of the other senses -- day
rlm@125 78 - [ ] refactor integration code to distribute to each of the senses
rlm@126 79 -- day
rlm@126 80 - [ ] create video showing all the senses for Winston -- 2 days
rlm@126 81 - [ ] write summary of project for Winston \
rlm@126 82 - [ ] project proposals for Winston \
rlm@126 83 - [ ] additional senses to be implemented for Winston | -- 2 days
rlm@126 84 - [ ] send Winston package /
rlm@125 85
rlm@125 86 ** would be cool to get done before winston
rlm@126 87 - [X] enable greyscale bitmaps for touch -- 2 hours
rlm@126 88 - [X] use sawfish to auto-tile sense windows -- 6 hours
rlm@126 89 - [X] sawfish keybinding to automatically delete all sense windows
rlm@126 90 - [ ] directly change the UV-pixels to show sensor activation -- 2
rlm@126 91 days
rlm@126 92 - [ ] proof of concept C sense manipulation -- 2 days
rlm@126 93 - [ ] proof of concept GPU sense manipulation -- week
rlm@126 94 - [ ] fourier view of sound -- 2 or 3 days
rlm@127 95 - [ ] dancing music generator -- 1 day, depends on fourier
rlm@125 96
rlm@125 97 ** don't have to get done before winston
rlm@126 98 - [ ] write tests for integration -- 3 days
rlm@126 99 - [ ] usertime/gametime clock HUD display -- day
rlm@126 100 - [ ] find papers for each of the senses justifying my own
rlm@126 101 representation -- week
rlm@126 102 - [ ] show sensor maps in HUD display? -- 4 days
rlm@126 103 - [ ] show sensor maps in AWT display? -- 2 days
rlm@124 104
rlm@99 105
rlm@73 106 * Intro
rlm@73 107 So far, I've made the following senses --
rlm@73 108 - Vision
rlm@73 109 - Hearing
rlm@73 110 - Touch
rlm@73 111 - Proprioception
rlm@73 112
rlm@73 113 And one effector:
rlm@73 114 - Movement
rlm@73 115
rlm@73 116 However, the code so far has only enabled these senses, but has not
rlm@73 117 actually implemented them. For example, there is still a lot of work
rlm@73 118 to be done for vision. I need to be able to create an /eyeball/ in
rlm@73 119 simulation that can be moved around and see the world from different
rlm@73 120 angles. I also need to determine weather to use log-polar or cartesian
rlm@73 121 for the visual input, and I need to determine how/wether to
rlm@73 122 disceritise the visual input.
rlm@73 123
rlm@73 124 I also want to be able to visualize both the sensors and the
rlm@104 125 effectors in pretty pictures. This semi-retarted creature will be my
rlm@73 126 first attempt at bringing everything together.
rlm@73 127
rlm@73 128 * The creature's body
rlm@73 129
rlm@73 130 Still going to do an eve-like body in blender, but due to problems
rlm@104 131 importing the joints, etc into jMonkeyEngine3, I'm going to do all
rlm@73 132 the connecting here in clojure code, using the names of the individual
rlm@73 133 components and trial and error. Later, I'll maybe make some sort of
rlm@73 134 creature-building modifications to blender that support whatever
rlm@73 135 discreitized senses I'm going to make.
rlm@73 136
rlm@73 137 #+name: body-1
rlm@73 138 #+begin_src clojure
rlm@73 139 (ns cortex.silly
rlm@73 140 "let's play!"
rlm@73 141 {:author "Robert McIntyre"})
rlm@73 142
rlm@73 143 ;; TODO remove this!
rlm@73 144 (require 'cortex.import)
rlm@73 145 (cortex.import/mega-import-jme3)
rlm@73 146 (use '(cortex world util body hearing touch vision))
rlm@73 147
rlm@73 148 (rlm.rlm-commands/help)
rlm@99 149 (import java.awt.image.BufferedImage)
rlm@99 150 (import javax.swing.JPanel)
rlm@99 151 (import javax.swing.SwingUtilities)
rlm@99 152 (import java.awt.Dimension)
rlm@99 153 (import javax.swing.JFrame)
rlm@99 154 (import java.awt.Dimension)
rlm@106 155 (import com.aurellem.capture.RatchetTimer)
rlm@99 156 (declare joint-create)
rlm@108 157 (use 'clojure.contrib.def)
rlm@73 158
rlm@100 159 (defn points->image
rlm@100 160 "Take a sparse collection of points and visuliaze it as a
rlm@100 161 BufferedImage."
rlm@102 162
rlm@102 163 ;; TODO maybe parallelize this since it's easy
rlm@102 164
rlm@100 165 [points]
rlm@106 166 (if (empty? points)
rlm@106 167 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
rlm@106 168 (let [xs (vec (map first points))
rlm@106 169 ys (vec (map second points))
rlm@106 170 x0 (apply min xs)
rlm@106 171 y0 (apply min ys)
rlm@106 172 width (- (apply max xs) x0)
rlm@106 173 height (- (apply max ys) y0)
rlm@106 174 image (BufferedImage. (inc width) (inc height)
rlm@119 175 BufferedImage/TYPE_INT_RGB)]
rlm@118 176 (dorun
rlm@118 177 (for [x (range (.getWidth image))
rlm@118 178 y (range (.getHeight image))]
rlm@119 179 (.setRGB image x y 0xFF0000)))
rlm@106 180 (dorun
rlm@106 181 (for [index (range (count points))]
rlm@106 182 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
rlm@106 183
rlm@106 184 image)))
rlm@100 185
rlm@101 186 (defn average [coll]
rlm@101 187 (/ (reduce + coll) (count coll)))
rlm@101 188
rlm@101 189 (defn collapse-1d
rlm@101 190 "One dimensional analogue of collapse"
rlm@101 191 [center line]
rlm@101 192 (let [length (count line)
rlm@101 193 num-above (count (filter (partial < center) line))
rlm@101 194 num-below (- length num-above)]
rlm@101 195 (range (- center num-below)
rlm@115 196 (+ center num-above))))
rlm@99 197
rlm@99 198 (defn collapse
rlm@99 199 "Take a set of pairs of integers and collapse them into a
rlm@99 200 contigous bitmap."
rlm@99 201 [points]
rlm@108 202 (if (empty? points) []
rlm@108 203 (let
rlm@108 204 [num-points (count points)
rlm@108 205 center (vector
rlm@108 206 (int (average (map first points)))
rlm@108 207 (int (average (map first points))))
rlm@108 208 flattened
rlm@108 209 (reduce
rlm@108 210 concat
rlm@108 211 (map
rlm@108 212 (fn [column]
rlm@108 213 (map vector
rlm@108 214 (map first column)
rlm@108 215 (collapse-1d (second center)
rlm@108 216 (map second column))))
rlm@108 217 (partition-by first (sort-by first points))))
rlm@108 218 squeezed
rlm@108 219 (reduce
rlm@108 220 concat
rlm@108 221 (map
rlm@108 222 (fn [row]
rlm@108 223 (map vector
rlm@108 224 (collapse-1d (first center)
rlm@108 225 (map first row))
rlm@108 226 (map second row)))
rlm@108 227 (partition-by second (sort-by second flattened))))
rlm@108 228 relocate
rlm@108 229 (let [min-x (apply min (map first squeezed))
rlm@108 230 min-y (apply min (map second squeezed))]
rlm@108 231 (map (fn [[x y]]
rlm@108 232 [(- x min-x)
rlm@108 233 (- y min-y)])
rlm@108 234 squeezed))]
rlm@115 235 relocate)))
rlm@83 236
rlm@83 237 (defn load-bullet []
rlm@84 238 (let [sim (world (Node.) {} no-op no-op)]
rlm@102 239 (doto sim
rlm@102 240 (.enqueue
rlm@102 241 (fn []
rlm@102 242 (.stop sim)))
rlm@102 243 (.start))))
rlm@83 244
rlm@73 245 (defn load-blender-model
rlm@73 246 "Load a .blend file using an asset folder relative path."
rlm@73 247 [^String model]
rlm@73 248 (.loadModel
rlm@73 249 (doto (asset-manager)
rlm@73 250 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@73 251 model))
rlm@73 252
rlm@74 253 (defn meta-data [blender-node key]
rlm@74 254 (if-let [data (.getUserData blender-node "properties")]
rlm@74 255 (.findValue data key)
rlm@74 256 nil))
rlm@73 257
rlm@78 258 (defn blender-to-jme
rlm@78 259 "Convert from Blender coordinates to JME coordinates"
rlm@78 260 [#^Vector3f in]
rlm@78 261 (Vector3f. (.getX in)
rlm@78 262 (.getZ in)
rlm@78 263 (- (.getY in))))
rlm@74 264
rlm@79 265 (defn jme-to-blender
rlm@79 266 "Convert from JME coordinates to Blender coordinates"
rlm@79 267 [#^Vector3f in]
rlm@79 268 (Vector3f. (.getX in)
rlm@79 269 (- (.getZ in))
rlm@79 270 (.getY in)))
rlm@79 271
rlm@78 272 (defn joint-targets
rlm@78 273 "Return the two closest two objects to the joint object, ordered
rlm@78 274 from bottom to top according to the joint's rotation."
rlm@78 275 [#^Node parts #^Node joint]
rlm@78 276 (loop [radius (float 0.01)]
rlm@78 277 (let [results (CollisionResults.)]
rlm@78 278 (.collideWith
rlm@78 279 parts
rlm@78 280 (BoundingBox. (.getWorldTranslation joint)
rlm@78 281 radius radius radius)
rlm@78 282 results)
rlm@78 283 (let [targets
rlm@78 284 (distinct
rlm@78 285 (map #(.getGeometry %) results))]
rlm@78 286 (if (>= (count targets) 2)
rlm@78 287 (sort-by
rlm@79 288 #(let [v
rlm@79 289 (jme-to-blender
rlm@79 290 (.mult
rlm@79 291 (.inverse (.getWorldRotation joint))
rlm@79 292 (.subtract (.getWorldTranslation %)
rlm@79 293 (.getWorldTranslation joint))))]
rlm@79 294 (println-repl (.getName %) ":" v)
rlm@79 295 (.dot (Vector3f. 1 1 1)
rlm@79 296 v))
rlm@78 297 (take 2 targets))
rlm@78 298 (recur (float (* radius 2))))))))
rlm@74 299
rlm@87 300 (defn world-to-local
rlm@87 301 "Convert the world coordinates into coordinates relative to the
rlm@87 302 object (i.e. local coordinates), taking into account the rotation
rlm@87 303 of object."
rlm@87 304 [#^Spatial object world-coordinate]
rlm@87 305 (let [out (Vector3f.)]
rlm@88 306 (.worldToLocal object world-coordinate out) out))
rlm@87 307
rlm@96 308 (defn local-to-world
rlm@96 309 "Convert the local coordinates into coordinates into world relative
rlm@96 310 coordinates"
rlm@96 311 [#^Spatial object local-coordinate]
rlm@96 312 (let [world-coordinate (Vector3f.)]
rlm@96 313 (.localToWorld object local-coordinate world-coordinate)
rlm@96 314 world-coordinate))
rlm@96 315
rlm@87 316 (defmulti joint-dispatch
rlm@87 317 "Translate blender pseudo-joints into real JME joints."
rlm@88 318 (fn [constraints & _]
rlm@87 319 (:type constraints)))
rlm@87 320
rlm@87 321 (defmethod joint-dispatch :point
rlm@87 322 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 323 (println-repl "creating POINT2POINT joint")
rlm@130 324 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@130 325 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@130 326
rlm@130 327 ;; should be able to do this:
rlm@130 328 (comment
rlm@130 329 (Point2PointJoint.
rlm@130 330 control-a
rlm@130 331 control-b
rlm@130 332 pivot-a
rlm@130 333 pivot-b))
rlm@130 334
rlm@130 335 ;; but instead we must do this:
rlm@130 336 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@130 337 (doto
rlm@130 338 (SixDofJoint.
rlm@130 339 control-a
rlm@130 340 control-b
rlm@130 341 pivot-a
rlm@130 342 pivot-b
rlm@130 343 false)
rlm@130 344 (.setLinearLowerLimit Vector3f/ZERO)
rlm@130 345 (.setLinearUpperLimit Vector3f/ZERO)
rlm@130 346 ;;(.setAngularLowerLimit (Vector3f. 1 1 1))
rlm@130 347 ;;(.setAngularUpperLimit (Vector3f. 0 0 0))
rlm@130 348
rlm@130 349 ))
rlm@130 350
rlm@87 351
rlm@87 352 (defmethod joint-dispatch :hinge
rlm@87 353 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 354 (println-repl "creating HINGE joint")
rlm@87 355 (let [axis
rlm@87 356 (if-let
rlm@87 357 [axis (:axis constraints)]
rlm@87 358 axis
rlm@87 359 Vector3f/UNIT_X)
rlm@87 360 [limit-1 limit-2] (:limit constraints)
rlm@87 361 hinge-axis
rlm@87 362 (.mult
rlm@87 363 rotation
rlm@87 364 (blender-to-jme axis))]
rlm@87 365 (doto
rlm@87 366 (HingeJoint.
rlm@87 367 control-a
rlm@87 368 control-b
rlm@87 369 pivot-a
rlm@87 370 pivot-b
rlm@87 371 hinge-axis
rlm@87 372 hinge-axis)
rlm@87 373 (.setLimit limit-1 limit-2))))
rlm@87 374
rlm@87 375 (defmethod joint-dispatch :cone
rlm@87 376 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@87 377 (let [limit-xz (:limit-xz constraints)
rlm@87 378 limit-xy (:limit-xy constraints)
rlm@87 379 twist (:twist constraints)]
rlm@87 380
rlm@87 381 (println-repl "creating CONE joint")
rlm@87 382 (println-repl rotation)
rlm@87 383 (println-repl
rlm@87 384 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@87 385 (println-repl
rlm@87 386 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@87 387 (println-repl
rlm@87 388 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@87 389 (doto
rlm@87 390 (ConeJoint.
rlm@87 391 control-a
rlm@87 392 control-b
rlm@87 393 pivot-a
rlm@87 394 pivot-b
rlm@87 395 rotation
rlm@87 396 rotation)
rlm@87 397 (.setLimit (float limit-xz)
rlm@87 398 (float limit-xy)
rlm@87 399 (float twist)))))
rlm@87 400
rlm@88 401 (defn connect
rlm@87 402 "here are some examples:
rlm@87 403 {:type :point}
rlm@87 404 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@87 405 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@87 406
rlm@89 407 {:type :cone :limit-xz 0]
rlm@89 408 :limit-xy 0]
rlm@89 409 :twist 0]} (use XZY rotation mode in blender!)"
rlm@87 410 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@87 411 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@87 412 control-b (.getControl obj-b RigidBodyControl)
rlm@87 413 joint-center (.getWorldTranslation joint)
rlm@87 414 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@87 415 pivot-a (world-to-local obj-a joint-center)
rlm@87 416 pivot-b (world-to-local obj-b joint-center)]
rlm@89 417
rlm@87 418 (if-let [constraints
rlm@87 419 (map-vals
rlm@87 420 eval
rlm@87 421 (read-string
rlm@87 422 (meta-data joint "joint")))]
rlm@89 423 ;; A side-effect of creating a joint registers
rlm@89 424 ;; it with both physics objects which in turn
rlm@89 425 ;; will register the joint with the physics system
rlm@89 426 ;; when the simulation is started.
rlm@87 427 (do
rlm@87 428 (println-repl "creating joint between"
rlm@87 429 (.getName obj-a) "and" (.getName obj-b))
rlm@87 430 (joint-dispatch constraints
rlm@87 431 control-a control-b
rlm@87 432 pivot-a pivot-b
rlm@87 433 joint-rotation))
rlm@87 434 (println-repl "could not find joint meta-data!"))))
rlm@87 435
rlm@130 436
rlm@130 437
rlm@130 438
rlm@78 439 (defn assemble-creature [#^Node pieces joints]
rlm@78 440 (dorun
rlm@78 441 (map
rlm@78 442 (fn [geom]
rlm@78 443 (let [physics-control
rlm@78 444 (RigidBodyControl.
rlm@78 445 (HullCollisionShape.
rlm@78 446 (.getMesh geom))
rlm@78 447 (if-let [mass (meta-data geom "mass")]
rlm@78 448 (do
rlm@78 449 (println-repl
rlm@78 450 "setting" (.getName geom) "mass to" (float mass))
rlm@78 451 (float mass))
rlm@78 452 (float 1)))]
rlm@78 453
rlm@78 454 (.addControl geom physics-control)))
rlm@78 455 (filter #(isa? (class %) Geometry )
rlm@78 456 (node-seq pieces))))
rlm@78 457 (dorun
rlm@78 458 (map
rlm@78 459 (fn [joint]
rlm@78 460 (let [[obj-a obj-b]
rlm@78 461 (joint-targets pieces joint)]
rlm@88 462 (connect obj-a obj-b joint)))
rlm@78 463 joints))
rlm@78 464 pieces)
rlm@74 465
rlm@116 466 (declare blender-creature)
rlm@74 467
rlm@78 468 (def hand "Models/creature1/one.blend")
rlm@74 469
rlm@78 470 (def worm "Models/creature1/try-again.blend")
rlm@78 471
rlm@90 472 (def touch "Models/creature1/touch.blend")
rlm@90 473
rlm@90 474 (defn worm-model [] (load-blender-model worm))
rlm@90 475
rlm@80 476 (defn x-ray [#^ColorRGBA color]
rlm@80 477 (doto (Material. (asset-manager)
rlm@80 478 "Common/MatDefs/Misc/Unshaded.j3md")
rlm@80 479 (.setColor "Color" color)
rlm@80 480 (-> (.getAdditionalRenderState)
rlm@80 481 (.setDepthTest false))))
rlm@80 482
rlm@91 483 (defn colorful []
rlm@91 484 (.getChild (worm-model) "worm-21"))
rlm@90 485
rlm@90 486 (import jme3tools.converters.ImageToAwt)
rlm@90 487
rlm@90 488 (import ij.ImagePlus)
rlm@90 489
rlm@108 490 ;; Every Mesh has many triangles, each with its own index.
rlm@108 491 ;; Every vertex has its own index as well.
rlm@90 492
rlm@108 493 (defn tactile-sensor-image
rlm@110 494 "Return the touch-sensor distribution image in BufferedImage format,
rlm@110 495 or nil if it does not exist."
rlm@91 496 [#^Geometry obj]
rlm@110 497 (if-let [image-path (meta-data obj "touch")]
rlm@110 498 (ImageToAwt/convert
rlm@110 499 (.getImage
rlm@110 500 (.loadTexture
rlm@110 501 (asset-manager)
rlm@110 502 image-path))
rlm@110 503 false false 0)))
rlm@110 504
rlm@91 505 (import ij.process.ImageProcessor)
rlm@91 506 (import java.awt.image.BufferedImage)
rlm@91 507
rlm@92 508 (def white -1)
rlm@94 509
rlm@91 510 (defn filter-pixels
rlm@108 511 "List the coordinates of all pixels matching pred, within the bounds
rlm@108 512 provided. Bounds -> [x0 y0 width height]"
rlm@92 513 {:author "Dylan Holmes"}
rlm@108 514 ([pred #^BufferedImage image]
rlm@108 515 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
rlm@108 516 ([pred #^BufferedImage image [x0 y0 width height]]
rlm@108 517 ((fn accumulate [x y matches]
rlm@108 518 (cond
rlm@108 519 (>= y (+ height y0)) matches
rlm@108 520 (>= x (+ width x0)) (recur 0 (inc y) matches)
rlm@108 521 (pred (.getRGB image x y))
rlm@108 522 (recur (inc x) y (conj matches [x y]))
rlm@108 523 :else (recur (inc x) y matches)))
rlm@108 524 x0 y0 [])))
rlm@91 525
rlm@91 526 (defn white-coordinates
rlm@108 527 "Coordinates of all the white pixels in a subset of the image."
rlm@112 528 ([#^BufferedImage image bounds]
rlm@112 529 (filter-pixels #(= % white) image bounds))
rlm@112 530 ([#^BufferedImage image]
rlm@112 531 (filter-pixels #(= % white) image)))
rlm@108 532
rlm@108 533 (defn triangle
rlm@112 534 "Get the triangle specified by triangle-index from the mesh within
rlm@112 535 bounds."
rlm@108 536 [#^Mesh mesh triangle-index]
rlm@108 537 (let [scratch (Triangle.)]
rlm@108 538 (.getTriangle mesh triangle-index scratch)
rlm@108 539 scratch))
rlm@108 540
rlm@108 541 (defn triangle-vertex-indices
rlm@108 542 "Get the triangle vertex indices of a given triangle from a given
rlm@108 543 mesh."
rlm@108 544 [#^Mesh mesh triangle-index]
rlm@108 545 (let [indices (int-array 3)]
rlm@108 546 (.getTriangle mesh triangle-index indices)
rlm@108 547 (vec indices)))
rlm@108 548
rlm@108 549 (defn vertex-UV-coord
rlm@108 550 "Get the uv-coordinates of the vertex named by vertex-index"
rlm@108 551 [#^Mesh mesh vertex-index]
rlm@108 552 (let [UV-buffer
rlm@108 553 (.getData
rlm@108 554 (.getBuffer
rlm@108 555 mesh
rlm@108 556 VertexBuffer$Type/TexCoord))]
rlm@108 557 [(.get UV-buffer (* vertex-index 2))
rlm@108 558 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
rlm@108 559
rlm@108 560 (defn triangle-UV-coord
rlm@108 561 "Get the uv-cooridnates of the triangle's verticies."
rlm@108 562 [#^Mesh mesh width height triangle-index]
rlm@108 563 (map (fn [[u v]] (vector (* width u) (* height v)))
rlm@108 564 (map (partial vertex-UV-coord mesh)
rlm@108 565 (triangle-vertex-indices mesh triangle-index))))
rlm@91 566
rlm@102 567 (defn same-side?
rlm@102 568 "Given the points p1 and p2 and the reference point ref, is point p
rlm@102 569 on the same side of the line that goes through p1 and p2 as ref is?"
rlm@102 570 [p1 p2 ref p]
rlm@91 571 (<=
rlm@91 572 0
rlm@91 573 (.dot
rlm@91 574 (.cross (.subtract p2 p1) (.subtract p p1))
rlm@91 575 (.cross (.subtract p2 p1) (.subtract ref p1)))))
rlm@91 576
rlm@108 577 (defn triangle-seq [#^Triangle tri]
rlm@108 578 [(.get1 tri) (.get2 tri) (.get3 tri)])
rlm@108 579
rlm@108 580 (defn vector3f-seq [#^Vector3f v]
rlm@108 581 [(.getX v) (.getY v) (.getZ v)])
rlm@108 582
rlm@108 583 (defn inside-triangle?
rlm@108 584 "Is the point inside the triangle?"
rlm@108 585 {:author "Dylan Holmes"}
rlm@108 586 [#^Triangle tri #^Vector3f p]
rlm@108 587 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
rlm@108 588 (and
rlm@108 589 (same-side? vert-1 vert-2 vert-3 p)
rlm@108 590 (same-side? vert-2 vert-3 vert-1 p)
rlm@108 591 (same-side? vert-3 vert-1 vert-2 p))))
rlm@108 592
rlm@94 593 (defn triangle->matrix4f
rlm@108 594 "Converts the triangle into a 4x4 matrix: The first three columns
rlm@108 595 contain the vertices of the triangle; the last contains the unit
rlm@108 596 normal of the triangle. The bottom row is filled with 1s."
rlm@94 597 [#^Triangle t]
rlm@94 598 (let [mat (Matrix4f.)
rlm@94 599 [vert-1 vert-2 vert-3]
rlm@94 600 ((comp vec map) #(.get t %) (range 3))
rlm@94 601 unit-normal (do (.calculateNormal t)(.getNormal t))
rlm@94 602 vertices [vert-1 vert-2 vert-3 unit-normal]]
rlm@94 603 (dorun
rlm@94 604 (for [row (range 4) col (range 3)]
rlm@94 605 (do
rlm@94 606 (.set mat col row (.get (vertices row)col))
rlm@94 607 (.set mat 3 row 1))))
rlm@94 608 mat))
rlm@94 609
rlm@94 610 (defn triangle-transformation
rlm@94 611 "Returns the affine transformation that converts each vertex in the
rlm@94 612 first triangle into the corresponding vertex in the second
rlm@94 613 triangle."
rlm@94 614 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 615 (.mult
rlm@94 616 (triangle->matrix4f tri-2)
rlm@94 617 (.invert (triangle->matrix4f tri-1))))
rlm@94 618
rlm@108 619 (defn point->vector2f [[u v]]
rlm@108 620 (Vector2f. u v))
rlm@94 621
rlm@94 622 (defn vector2f->vector3f [v]
rlm@94 623 (Vector3f. (.getX v) (.getY v) 0))
rlm@94 624
rlm@94 625 (defn map-triangle [f #^Triangle tri]
rlm@94 626 (Triangle.
rlm@94 627 (f 0 (.get1 tri))
rlm@94 628 (f 1 (.get2 tri))
rlm@94 629 (f 2 (.get3 tri))))
rlm@94 630
rlm@108 631 (defn points->triangle
rlm@108 632 "Convert a list of points into a triangle."
rlm@108 633 [points]
rlm@108 634 (apply #(Triangle. %1 %2 %3)
rlm@108 635 (map (fn [point]
rlm@108 636 (let [point (vec point)]
rlm@108 637 (Vector3f. (get point 0 0)
rlm@108 638 (get point 1 0)
rlm@108 639 (get point 2 0))))
rlm@108 640 (take 3 points))))
rlm@94 641
rlm@108 642 (defn convex-bounds
rlm@128 643 ;;dylan
rlm@128 644 "Returns the smallest square containing the given
rlm@128 645 vertices, as a vector of integers [left top width height]."
rlm@128 646 ;; "Dimensions of the smallest integer bounding square of the list of
rlm@128 647 ;; 2D verticies in the form: [x y width height]."
rlm@108 648 [uv-verts]
rlm@108 649 (let [xs (map first uv-verts)
rlm@108 650 ys (map second uv-verts)
rlm@108 651 x0 (Math/floor (apply min xs))
rlm@108 652 y0 (Math/floor (apply min ys))
rlm@108 653 x1 (Math/ceil (apply max xs))
rlm@108 654 y1 (Math/ceil (apply max ys))]
rlm@108 655 [x0 y0 (- x1 x0) (- y1 y0)]))
rlm@93 656
rlm@106 657 (defn sensors-in-triangle
rlm@128 658 ;;dylan
rlm@128 659 "Locate the touch sensors in the triangle, returning a map of their UV and geometry-relative coordinates."
rlm@128 660 ;;"Find the locations of the touch sensors within a triangle in both
rlm@128 661 ;; UV and gemoetry relative coordinates."
rlm@107 662 [image mesh tri-index]
rlm@107 663 (let [width (.getWidth image)
rlm@108 664 height (.getHeight image)
rlm@108 665 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
rlm@108 666 bounds (convex-bounds UV-vertex-coords)
rlm@108 667
rlm@108 668 cutout-triangle (points->triangle UV-vertex-coords)
rlm@108 669 UV-sensor-coords
rlm@108 670 (filter (comp (partial inside-triangle? cutout-triangle)
rlm@108 671 (fn [[u v]] (Vector3f. u v 0)))
rlm@108 672 (white-coordinates image bounds))
rlm@108 673 UV->geometry (triangle-transformation
rlm@108 674 cutout-triangle
rlm@108 675 (triangle mesh tri-index))
rlm@108 676 geometry-sensor-coords
rlm@108 677 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
rlm@108 678 UV-sensor-coords)]
rlm@108 679 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
rlm@107 680
rlm@108 681 (defn-memo locate-feelers
rlm@94 682 "Search the geometry's tactile UV image for touch sensors, returning
rlm@94 683 their positions in geometry-relative coordinates."
rlm@94 684 [#^Geometry geo]
rlm@108 685 (let [mesh (.getMesh geo)
rlm@108 686 num-triangles (.getTriangleCount mesh)]
rlm@108 687 (if-let [image (tactile-sensor-image geo)]
rlm@108 688 (map
rlm@108 689 (partial sensors-in-triangle image mesh)
rlm@108 690 (range num-triangles))
rlm@108 691 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
rlm@102 692
rlm@102 693 (use 'clojure.contrib.def)
rlm@102 694
rlm@102 695 (defn-memo touch-topology [#^Gemoetry geo]
rlm@108 696 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
rlm@108 697
rlm@108 698 (defn-memo feeler-coordinates [#^Geometry geo]
rlm@108 699 (vec (map :geometry (locate-feelers geo))))
rlm@102 700
rlm@97 701 (defn enable-touch [#^Geometry geo]
rlm@108 702 (let [feeler-coords (feeler-coordinates geo)
rlm@96 703 tris (triangles geo)
rlm@109 704 limit 0.1
rlm@109 705 ;;results (CollisionResults.)
rlm@109 706 ]
rlm@111 707 (if (empty? (touch-topology geo))
rlm@111 708 nil
rlm@111 709 (fn [node]
rlm@111 710 (let [sensor-origins
rlm@111 711 (map
rlm@111 712 #(map (partial local-to-world geo) %)
rlm@111 713 feeler-coords)
rlm@111 714 triangle-normals
rlm@111 715 (map (partial get-ray-direction geo)
rlm@111 716 tris)
rlm@111 717 rays
rlm@111 718 (flatten
rlm@111 719 (map (fn [origins norm]
rlm@111 720 (map #(doto (Ray. % norm)
rlm@97 721 (.setLimit limit)) origins))
rlm@111 722 sensor-origins triangle-normals))]
rlm@111 723 (vector
rlm@111 724 (touch-topology geo)
rlm@111 725 (vec
rlm@111 726 (for [ray rays]
rlm@111 727 (do
rlm@111 728 (let [results (CollisionResults.)]
rlm@111 729 (.collideWith node ray results)
rlm@111 730 (let [touch-objects
rlm@126 731 (filter #(not (= geo (.getGeometry %)))
rlm@126 732 results)]
rlm@126 733 (- 255
rlm@126 734 (if (empty? touch-objects) 255
rlm@126 735 (rem
rlm@126 736 (int
rlm@126 737 (* 255 (/ (.getDistance
rlm@126 738 (first touch-objects)) limit)))
rlm@126 739 256))))))))))))))
rlm@126 740
rlm@111 741
rlm@111 742 (defn touch [#^Node pieces]
rlm@111 743 (filter (comp not nil?)
rlm@111 744 (map enable-touch
rlm@111 745 (filter #(isa? (class %) Geometry)
rlm@111 746 (node-seq pieces)))))
rlm@94 747
rlm@109 748
rlm@111 749 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
rlm@111 750 ;; http://en.wikipedia.org/wiki/Retina
rlm@109 751
rlm@111 752 (defn test-eye []
rlm@117 753 (.getChild
rlm@117 754 (.getChild (worm-model) "eyes")
rlm@117 755 "eye"))
rlm@111 756
rlm@111 757
rlm@111 758 (defn retina-sensor-image
rlm@111 759 "Return a map of pixel selection functions to BufferedImages
rlm@111 760 describing the distribution of light-sensitive components on this
rlm@111 761 geometry's surface. Each function creates an integer from the rgb
rlm@111 762 values found in the pixel. :red, :green, :blue, :gray are already
rlm@111 763 defined as extracting the red green blue and average components
rlm@111 764 respectively."
rlm@117 765 [#^Spatial eye]
rlm@111 766 (if-let [eye-map (meta-data eye "eye")]
rlm@111 767 (map-vals
rlm@111 768 #(ImageToAwt/convert
rlm@111 769 (.getImage (.loadTexture (asset-manager) %))
rlm@111 770 false false 0)
rlm@120 771 (eval (read-string eye-map)))))
rlm@111 772
rlm@117 773 (defn eye-dimensions
rlm@117 774 "returns the width and height specified in the metadata of the eye"
rlm@117 775 [#^Spatial eye]
rlm@117 776 (let [dimensions
rlm@117 777 (map #(vector (.getWidth %) (.getHeight %))
rlm@117 778 (vals (retina-sensor-image eye)))]
rlm@117 779 [(apply max (map first dimensions))
rlm@117 780 (apply max (map second dimensions))]))
rlm@117 781
rlm@116 782 (defn creature-eyes
rlm@128 783 ;;dylan
rlm@128 784 "Return the children of the creature's \"eyes\" node."
rlm@128 785 ;;"The eye nodes which are children of the \"eyes\" node in the
rlm@128 786 ;;creature."
rlm@116 787 [#^Node creature]
rlm@116 788 (if-let [eye-node (.getChild creature "eyes")]
rlm@116 789 (seq (.getChildren eye-node))
rlm@116 790 (do (println-repl "could not find eyes node") [])))
rlm@111 791
rlm@123 792 ;; Here's how vision will work.
rlm@112 793
rlm@123 794 ;; Make the continuation in scene-processor take FrameBuffer,
rlm@123 795 ;; byte-buffer, BufferedImage already sized to the correct
rlm@123 796 ;; dimensions. the continuation will decide wether to "mix" them
rlm@123 797 ;; into the BufferedImage, lazily ignore them, or mix them halfway
rlm@123 798 ;; and call c/graphics card routines.
rlm@112 799
rlm@123 800 ;; (vision creature) will take an optional :skip argument which will
rlm@123 801 ;; inform the continuations in scene processor to skip the given
rlm@123 802 ;; number of cycles; 0 means that no cycles will be skipped.
rlm@112 803
rlm@123 804 ;; (vision creature) will return [init-functions sensor-functions].
rlm@123 805 ;; The init-functions are each single-arg functions that take the
rlm@123 806 ;; world and register the cameras and must each be called before the
rlm@123 807 ;; corresponding sensor-functions. Each init-function returns the
rlm@123 808 ;; viewport for that eye which can be manipulated, saved, etc. Each
rlm@123 809 ;; sensor-function is a thunk and will return data in the same
rlm@123 810 ;; format as the tactile-sensor functions; the structure is
rlm@123 811 ;; [topology, sensor-data]. Internally, these sensor-functions
rlm@123 812 ;; maintain a reference to sensor-data which is periodically updated
rlm@123 813 ;; by the continuation function established by its init-function.
rlm@123 814 ;; They can be queried every cycle, but their information may not
rlm@123 815 ;; necessairly be different every cycle.
rlm@112 816
rlm@123 817 ;; Each eye in the creature in blender will work the same way as
rlm@123 818 ;; joints -- a zero dimensional object with no geometry whose local
rlm@123 819 ;; coordinate system determines the orientation of the resulting
rlm@123 820 ;; eye. All eyes will have a parent named "eyes" just as all joints
rlm@123 821 ;; have a parent named "joints". The resulting camera will be a
rlm@123 822 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
rlm@123 823 ;; the eye marker. The eye marker will contain the metadata for the
rlm@123 824 ;; eye, and will be moved by it's bound geometry. The dimensions of
rlm@123 825 ;; the eye's camera are equal to the dimensions of the eye's "UV"
rlm@123 826 ;; map.
rlm@116 827
rlm@123 828
rlm@123 829 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@123 830
rlm@123 831 ;; Ears work the same way as vision.
rlm@123 832
rlm@123 833 ;; (hearing creature) will return [init-functions
rlm@123 834 ;; sensor-functions]. The init functions each take the world and
rlm@123 835 ;; register a SoundProcessor that does foureier transforms on the
rlm@123 836 ;; incommong sound data, making it available to each sensor function.
rlm@123 837
rlm@123 838 (defn creature-ears
rlm@128 839 "Return the children of the creature's \"ears\" node."
rlm@128 840 ;;dylan
rlm@128 841 ;;"The ear nodes which are children of the \"ears\" node in the
rlm@128 842 ;;creature."
rlm@123 843 [#^Node creature]
rlm@123 844 (if-let [ear-node (.getChild creature "ears")]
rlm@123 845 (seq (.getChildren ear-node))
rlm@123 846 (do (println-repl "could not find ears node") [])))
rlm@123 847
rlm@123 848 (defn closest-node
rlm@128 849 "Return the object in creature which is closest to the given node."
rlm@128 850 ;;dylan"The closest object in creature to the given node."
rlm@116 851 [#^Node creature #^Node eye]
rlm@116 852 (loop [radius (float 0.01)]
rlm@116 853 (let [results (CollisionResults.)]
rlm@116 854 (.collideWith
rlm@116 855 creature
rlm@116 856 (BoundingBox. (.getWorldTranslation eye)
rlm@116 857 radius radius radius)
rlm@116 858 results)
rlm@116 859 (if-let [target (first results)]
rlm@116 860 (.getGeometry target)
rlm@116 861 (recur (float (* 2 radius)))))))
rlm@116 862
rlm@128 863 ;;dylan (defn follow-sense, adjoin-sense, attach-stimuli,
rlm@128 864 ;;anchor-qualia, augment-organ, with-organ
rlm@123 865 (defn bind-sense
rlm@123 866 "Bind the sense to the Spatial such that it will maintain its
rlm@117 867 current position relative to the Spatial no matter how the spatial
rlm@123 868 moves. 'sense can be either a Camera or Listener object."
rlm@123 869 [#^Spatial obj sense]
rlm@123 870 (let [sense-offset (.subtract (.getLocation sense)
rlm@123 871 (.getWorldTranslation obj))
rlm@123 872 initial-sense-rotation (Quaternion. (.getRotation sense))
rlm@117 873 base-anti-rotation (.inverse (.getWorldRotation obj))]
rlm@117 874 (.addControl
rlm@117 875 obj
rlm@117 876 (proxy [AbstractControl] []
rlm@117 877 (controlUpdate [tpf]
rlm@117 878 (let [total-rotation
rlm@117 879 (.mult base-anti-rotation (.getWorldRotation obj))]
rlm@123 880 (.setLocation sense
rlm@117 881 (.add
rlm@123 882 (.mult total-rotation sense-offset)
rlm@117 883 (.getWorldTranslation obj)))
rlm@123 884 (.setRotation sense
rlm@123 885 (.mult total-rotation initial-sense-rotation))))
rlm@117 886 (controlRender [_ _])))))
rlm@117 887
rlm@117 888
rlm@123 889 (defn update-listener-velocity
rlm@123 890 "Update the listener's velocity every update loop."
rlm@123 891 [#^Spatial obj #^Listener lis]
rlm@123 892 (let [old-position (atom (.getLocation lis))]
rlm@123 893 (.addControl
rlm@123 894 obj
rlm@123 895 (proxy [AbstractControl] []
rlm@123 896 (controlUpdate [tpf]
rlm@123 897 (let [new-position (.getLocation lis)]
rlm@123 898 (.setVelocity
rlm@123 899 lis
rlm@123 900 (.mult (.subtract new-position @old-position)
rlm@123 901 (float (/ tpf))))
rlm@123 902 (reset! old-position new-position)))
rlm@123 903 (controlRender [_ _])))))
rlm@123 904
rlm@123 905 (import com.aurellem.capture.audio.AudioSendRenderer)
rlm@123 906
rlm@123 907 (defn attach-ear
rlm@123 908 [#^Application world #^Node creature #^Spatial ear continuation]
rlm@123 909 (let [target (closest-node creature ear)
rlm@123 910 lis (Listener.)
rlm@123 911 audio-renderer (.getAudioRenderer world)
rlm@123 912 sp (sound-processor continuation)]
rlm@123 913 (.setLocation lis (.getWorldTranslation ear))
rlm@123 914 (.setRotation lis (.getWorldRotation ear))
rlm@123 915 (bind-sense target lis)
rlm@123 916 (update-listener-velocity target lis)
rlm@123 917 (.addListener audio-renderer lis)
rlm@123 918 (.registerSoundProcessor audio-renderer lis sp)))
rlm@123 919
rlm@123 920 (defn enable-hearing
rlm@123 921 [#^Node creature #^Spatial ear]
rlm@123 922 (let [hearing-data (atom [])]
rlm@123 923 [(fn [world]
rlm@123 924 (attach-ear world creature ear
rlm@123 925 (fn [data]
rlm@123 926 (reset! hearing-data (vec data)))))
rlm@123 927 [(fn []
rlm@123 928 (let [data @hearing-data
rlm@123 929 topology
rlm@123 930 (vec (map #(vector % 0) (range 0 (count data))))
rlm@123 931 scaled-data
rlm@123 932 (vec
rlm@123 933 (map
rlm@123 934 #(rem (int (* 255 (/ (+ 1 %) 2))) 256)
rlm@123 935 data))]
rlm@123 936 [topology scaled-data]))
rlm@123 937 ]]))
rlm@123 938
rlm@123 939 (defn hearing
rlm@123 940 [#^Node creature]
rlm@123 941 (reduce
rlm@123 942 (fn [[init-a senses-a]
rlm@123 943 [init-b senses-b]]
rlm@123 944 [(conj init-a init-b)
rlm@123 945 (into senses-a senses-b)])
rlm@123 946 [[][]]
rlm@123 947 (for [ear (creature-ears creature)]
rlm@123 948 (enable-hearing creature ear))))
rlm@123 949
rlm@118 950 (defn attach-eye
rlm@118 951 "Attach a Camera to the appropiate area and return the Camera."
rlm@118 952 [#^Node creature #^Spatial eye]
rlm@123 953 (let [target (closest-node creature eye)
rlm@118 954 [cam-width cam-height] (eye-dimensions eye)
rlm@118 955 cam (Camera. cam-width cam-height)]
rlm@118 956 (.setLocation cam (.getWorldTranslation eye))
rlm@118 957 (.setRotation cam (.getWorldRotation eye))
rlm@119 958 (.setFrustumPerspective
rlm@119 959 cam 45 (/ (.getWidth cam) (.getHeight cam))
rlm@119 960 1 1000)
rlm@123 961 (bind-sense target cam)
rlm@118 962 cam))
rlm@118 963
rlm@118 964 (def presets
rlm@121 965 {:all 0xFFFFFF
rlm@119 966 :red 0xFF0000
rlm@119 967 :blue 0x0000FF
rlm@119 968 :green 0x00FF00})
rlm@119 969
rlm@118 970 (defn enable-vision
rlm@118 971 "return [init-function sensor-functions] for a particular eye"
rlm@118 972 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
rlm@118 973 (let [retinal-map (retina-sensor-image eye)
rlm@123 974 camera (attach-eye creature eye)
rlm@123 975 vision-image
rlm@123 976 (atom
rlm@123 977 (BufferedImage. (.getWidth camera)
rlm@123 978 (.getHeight camera)
rlm@123 979 BufferedImage/TYPE_BYTE_BINARY))]
rlm@123 980 [(fn [world]
rlm@123 981 (add-eye
rlm@123 982 world camera
rlm@123 983 (let [counter (atom 0)]
rlm@123 984 (fn [r fb bb bi]
rlm@123 985 (if (zero? (rem (swap! counter inc) (inc skip)))
rlm@123 986 (reset! vision-image (BufferedImage! r fb bb bi)))))))
rlm@123 987 (vec
rlm@123 988 (map
rlm@123 989 (fn [[key image]]
rlm@123 990 (let [whites (white-coordinates image)
rlm@123 991 topology (vec (collapse whites))
rlm@123 992 mask (presets key)]
rlm@123 993 (fn []
rlm@123 994 (vector
rlm@123 995 topology
rlm@123 996 (vec
rlm@123 997 (for [[x y] whites]
rlm@123 998 (bit-and
rlm@123 999 mask (.getRGB @vision-image x y))))))))
rlm@123 1000 retinal-map))]))
rlm@118 1001
rlm@116 1002 (defn vision
rlm@121 1003 [#^Node creature & {skip :skip :or {skip 0}}]
rlm@121 1004 (reduce
rlm@121 1005 (fn [[init-a senses-a]
rlm@121 1006 [init-b senses-b]]
rlm@121 1007 [(conj init-a init-b)
rlm@121 1008 (into senses-a senses-b)])
rlm@121 1009 [[][]]
rlm@121 1010 (for [eye (creature-eyes creature)]
rlm@121 1011 (enable-vision creature eye))))
rlm@128 1012
rlm@128 1013
rlm@128 1014
rlm@128 1015
rlm@128 1016
rlm@128 1017 ;; lower level --- nodes
rlm@128 1018 ;; closest-node "parse/compile-x" -> makes organ, which is spatial, fn pair
rlm@128 1019
rlm@128 1020 ;; higher level -- organs
rlm@128 1021 ;;
rlm@128 1022
rlm@128 1023 ;; higher level --- sense/effector
rlm@128 1024 ;; these are the functions that provide world i/o, chinese-room style
rlm@128 1025
rlm@128 1026
rlm@116 1027
rlm@116 1028 (defn blender-creature
rlm@116 1029 "Return a creature with all joints in place."
rlm@116 1030 [blender-path]
rlm@116 1031 (let [model (load-blender-model blender-path)
rlm@116 1032 joints
rlm@116 1033 (if-let [joint-node (.getChild model "joints")]
rlm@116 1034 (seq (.getChildren joint-node))
rlm@116 1035 (do (println-repl "could not find joints node") []))]
rlm@116 1036 (assemble-creature model joints)))
rlm@116 1037
rlm@126 1038 (defn gray-scale [num]
rlm@126 1039 (+ num
rlm@126 1040 (bit-shift-left num 8)
rlm@126 1041 (bit-shift-left num 16)))
rlm@126 1042
rlm@130 1043 (defn debug-touch-window
rlm@103 1044 "creates function that offers a debug view of sensor data"
rlm@103 1045 []
rlm@103 1046 (let [vi (view-image)]
rlm@103 1047 (fn
rlm@103 1048 [[coords sensor-data]]
rlm@103 1049 (let [image (points->image coords)]
rlm@103 1050 (dorun
rlm@103 1051 (for [i (range (count coords))]
rlm@103 1052 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@126 1053 (gray-scale (sensor-data i)))))
rlm@126 1054
rlm@126 1055
rlm@103 1056 (vi image)))))
rlm@103 1057
rlm@118 1058 (defn debug-vision-window
rlm@118 1059 "creates function that offers a debug view of sensor data"
rlm@118 1060 []
rlm@118 1061 (let [vi (view-image)]
rlm@118 1062 (fn
rlm@118 1063 [[coords sensor-data]]
rlm@118 1064 (let [image (points->image coords)]
rlm@118 1065 (dorun
rlm@118 1066 (for [i (range (count coords))]
rlm@118 1067 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@118 1068 (sensor-data i))))
rlm@118 1069 (vi image)))))
rlm@118 1070
rlm@123 1071 (defn debug-hearing-window
rlm@123 1072 "view audio data"
rlm@123 1073 [height]
rlm@123 1074 (let [vi (view-image)]
rlm@123 1075 (fn [[coords sensor-data]]
rlm@123 1076 (let [image (BufferedImage. (count coords) height
rlm@123 1077 BufferedImage/TYPE_INT_RGB)]
rlm@123 1078 (dorun
rlm@123 1079 (for [x (range (count coords))]
rlm@123 1080 (dorun
rlm@123 1081 (for [y (range height)]
rlm@123 1082 (let [raw-sensor (sensor-data x)]
rlm@126 1083 (.setRGB image x y (gray-scale raw-sensor)))))))
rlm@126 1084
rlm@123 1085 (vi image)))))
rlm@123 1086
rlm@123 1087
rlm@123 1088
rlm@106 1089 ;;(defn test-touch [world creature]
rlm@83 1090
rlm@78 1091
rlm@123 1092
rlm@123 1093
rlm@130 1094 ;; here's how motor-control/ proprioception will work: Each muscle is
rlm@130 1095 ;; defined by a 1-D array of numbers (the "motor pool") each of which
rlm@130 1096 ;; represent muscle fibers. A muscle also has a scalar :strength
rlm@130 1097 ;; factor which determines how strong the muscle as a whole is.
rlm@130 1098 ;; The effector function for a muscle takes a number < (count
rlm@130 1099 ;; motor-pool) and that number is said to "activate" all the muscle
rlm@130 1100 ;; fibers whose index is lower than the number. Each fiber will apply
rlm@130 1101 ;; force in proportion to its value in the array. Lower values cause
rlm@130 1102 ;; less force. The lower values can be put at the "beginning" of the
rlm@130 1103 ;; 1-D array to simulate the layout of actual human muscles, which are
rlm@130 1104 ;; capable of more percise movements when exerting less force.
rlm@129 1105
rlm@130 1106 ;; I don't know how to encode proprioception, so for now, just return
rlm@130 1107 ;; a function for each joint that returns a triplet of floats which
rlm@130 1108 ;; represent relative roll, pitch, and yaw. Write display code for
rlm@130 1109 ;; this though.
rlm@130 1110
rlm@130 1111 (defn muscle-fibre-values
rlm@130 1112 "Take the first row of the image and return the low-order bytes."
rlm@130 1113 [#^BufferedImage image]
rlm@130 1114 (let [width (.getWidth image)]
rlm@130 1115 (for [x (range width)]
rlm@130 1116 (bit-and
rlm@130 1117 0xFF
rlm@130 1118 (.getRGB image x 0)))))
rlm@130 1119
rlm@130 1120
rlm@130 1121 (defn rad->deg [rad]
rlm@130 1122 (* 180 (/ Math/PI) rad))
rlm@130 1123
rlm@130 1124
rlm@130 1125 (defn debug-prop-window
rlm@130 1126 "create a debug view for proprioception"
rlm@130 1127 []
rlm@130 1128 (let [vi (view-image)]
rlm@130 1129 (fn [sensor-data]
rlm@130 1130 (println-repl
rlm@130 1131 (map
rlm@130 1132 (fn [[yaw pitch roll]]
rlm@130 1133 [(rad->deg yaw)
rlm@130 1134 (rad->deg pitch)
rlm@130 1135 (rad->deg roll)])
rlm@130 1136 sensor-data)))))
rlm@129 1137
rlm@129 1138
rlm@129 1139
rlm@129 1140
rlm@123 1141
rlm@123 1142
rlm@106 1143 (defn test-creature [thing]
rlm@106 1144 (let [x-axis
rlm@106 1145 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
rlm@106 1146 y-axis
rlm@106 1147 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
rlm@106 1148 z-axis
rlm@106 1149 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
rlm@106 1150 creature (blender-creature thing)
rlm@106 1151 touch-nerves (touch creature)
rlm@130 1152 touch-debug-windows (map (fn [_] (debug-touch-window)) touch-nerves)
rlm@121 1153 [init-vision-fns vision-data] (vision creature)
rlm@121 1154 vision-debug (map (fn [_] (debug-vision-window)) vision-data)
rlm@118 1155 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
rlm@123 1156 [init-hearing-fns hearing-senses] (hearing creature)
rlm@123 1157 hearing-windows (map (fn [_] (debug-hearing-window 50))
rlm@123 1158 hearing-senses)
rlm@124 1159 bell (AudioNode. (asset-manager)
rlm@128 1160 "Sounds/pure.wav" false)
rlm@130 1161 prop (proprioception creature)
rlm@130 1162 prop-debug (debug-prop-window)
rlm@123 1163 ;; dream
rlm@123 1164
rlm@106 1165 ]
rlm@106 1166 (world
rlm@106 1167 (nodify [creature
rlm@106 1168 (box 10 2 10 :position (Vector3f. 0 -9 0)
rlm@106 1169 :color ColorRGBA/Gray :mass 0)
rlm@106 1170 x-axis y-axis z-axis
rlm@118 1171 me
rlm@106 1172 ])
rlm@123 1173 (merge standard-debug-controls
rlm@123 1174 {"key-return"
rlm@123 1175 (fn [_ value]
rlm@123 1176 (if value
rlm@123 1177 (do
rlm@123 1178 (println-repl "play-sound")
rlm@124 1179 (.play bell))))})
rlm@106 1180 (fn [world]
rlm@106 1181 (light-up-everything world)
rlm@106 1182 (enable-debug world)
rlm@122 1183 (dorun (map #(% world) init-vision-fns))
rlm@123 1184 (dorun (map #(% world) init-hearing-fns))
rlm@118 1185
rlm@118 1186 (add-eye world
rlm@118 1187 (attach-eye creature (test-eye))
rlm@118 1188 (comp (view-image) BufferedImage!))
rlm@118 1189
rlm@118 1190 (add-eye world (.getCamera world) no-op)
rlm@118 1191
rlm@106 1192 ;;(com.aurellem.capture.Capture/captureVideo
rlm@106 1193 ;; world (file-str "/home/r/proj/ai-videos/hand"))
rlm@110 1194 ;;(.setTimer world (RatchetTimer. 60))
rlm@119 1195 (speed-up world)
rlm@106 1196 ;;(set-gravity world (Vector3f. 0 0 0))
rlm@106 1197 )
rlm@106 1198 (fn [world tpf]
rlm@109 1199 ;;(dorun
rlm@109 1200 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
rlm@123 1201
rlm@130 1202 (prop-debug (prop))
rlm@123 1203
rlm@106 1204 (dorun
rlm@109 1205 (map #(%1 (%2 (.getRootNode world)))
rlm@121 1206 touch-debug-windows touch-nerves))
rlm@123 1207
rlm@121 1208 (dorun
rlm@121 1209 (map #(%1 (%2))
rlm@121 1210 vision-debug vision-data))
rlm@123 1211 (dorun
rlm@123 1212 (map #(%1 (%2)) hearing-windows hearing-senses))
rlm@123 1213
rlm@123 1214
rlm@118 1215 ;;(println-repl (vision-data))
rlm@118 1216 (.setLocalTranslation me (.getLocation (.getCamera world)))
rlm@118 1217
rlm@121 1218
rlm@106 1219 )
rlm@106 1220 ;;(let [timer (atom 0)]
rlm@106 1221 ;; (fn [_ _]
rlm@106 1222 ;; (swap! timer inc)
rlm@106 1223 ;; (if (= (rem @timer 60) 0)
rlm@106 1224 ;; (println-repl (float (/ @timer 60))))))
rlm@106 1225 )))
rlm@83 1226
rlm@109 1227
rlm@109 1228
rlm@109 1229
rlm@109 1230
rlm@109 1231
rlm@109 1232
rlm@109 1233
rlm@109 1234
rlm@109 1235 ;;; experiments in collisions
rlm@109 1236
rlm@109 1237
rlm@109 1238
rlm@109 1239 (defn collision-test []
rlm@110 1240 (let [b-radius 1
rlm@110 1241 b-position (Vector3f. 0 0 0)
rlm@109 1242 obj-b (box 1 1 1 :color ColorRGBA/Blue
rlm@109 1243 :position b-position
rlm@110 1244 :mass 0)
rlm@110 1245 node (nodify [obj-b])
rlm@110 1246 bounds-b
rlm@110 1247 (doto (Picture.)
rlm@110 1248 (.setHeight 50)
rlm@110 1249 (.setWidth 50)
rlm@110 1250 (.setImage (asset-manager)
rlm@110 1251 "Models/creature1/hand.png"
rlm@110 1252 false
rlm@110 1253 ))
rlm@110 1254
rlm@110 1255 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
rlm@110 1256
rlm@110 1257 collisions
rlm@110 1258 (let [cr (CollisionResults.)]
rlm@110 1259 (.collideWith node bounds-b cr)
rlm@110 1260 (println (map #(.getContactPoint %) cr))
rlm@110 1261 cr)
rlm@110 1262
rlm@110 1263 ;;collision-points
rlm@110 1264 ;;(map #(sphere 0.1 :position (.getContactPoint %))
rlm@110 1265 ;; collisions)
rlm@110 1266
rlm@110 1267 ;;node (nodify (conj collision-points obj-b))
rlm@110 1268
rlm@109 1269 sim
rlm@109 1270 (world node
rlm@110 1271 {"key-space"
rlm@130 1272 (fn [_ value]
rlm@110 1273 (if value
rlm@110 1274 (let [cr (CollisionResults.)]
rlm@110 1275 (.collideWith node bounds-b cr)
rlm@110 1276 (println-repl (map #(.getContactPoint %) cr))
rlm@110 1277 cr)))}
rlm@109 1278 no-op
rlm@109 1279 no-op)
rlm@109 1280
rlm@109 1281 ]
rlm@110 1282 sim
rlm@109 1283
rlm@109 1284 ))
rlm@109 1285
rlm@116 1286
rlm@116 1287 ;; the camera will stay in its initial position/rotation with relation
rlm@116 1288 ;; to the spatial.
rlm@116 1289
rlm@116 1290
rlm@117 1291 (defn follow-test
rlm@117 1292 "show a camera that stays in the same relative position to a blue cube."
rlm@117 1293 []
rlm@116 1294 (let [camera-pos (Vector3f. 0 30 0)
rlm@116 1295 rock (box 1 1 1 :color ColorRGBA/Blue
rlm@116 1296 :position (Vector3f. 0 10 0)
rlm@116 1297 :mass 30
rlm@116 1298 )
rlm@118 1299 rot (.getWorldRotation rock)
rlm@116 1300
rlm@116 1301 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
rlm@116 1302 :position (Vector3f. 0 -3 0))]
rlm@116 1303
rlm@116 1304 (world
rlm@116 1305 (nodify [rock table])
rlm@116 1306 standard-debug-controls
rlm@116 1307 (fn [world]
rlm@116 1308 (let
rlm@116 1309 [cam (doto (.clone (.getCamera world))
rlm@116 1310 (.setLocation camera-pos)
rlm@116 1311 (.lookAt Vector3f/ZERO
rlm@116 1312 Vector3f/UNIT_X))]
rlm@123 1313 (bind-sense rock cam)
rlm@116 1314
rlm@116 1315 (.setTimer world (RatchetTimer. 60))
rlm@116 1316 (add-eye world cam (comp (view-image) BufferedImage!))
rlm@116 1317 (add-eye world (.getCamera world) no-op))
rlm@116 1318 )
rlm@118 1319 (fn [_ _] (println-repl rot)))))
rlm@116 1320
rlm@118 1321
rlm@123 1322
rlm@87 1323 #+end_src
rlm@83 1324
rlm@87 1325 #+results: body-1
rlm@109 1326 : #'cortex.silly/test-creature
rlm@78 1327
rlm@78 1328
rlm@78 1329 * COMMENT purgatory
rlm@78 1330 #+begin_src clojure
rlm@77 1331 (defn bullet-trans []
rlm@77 1332 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
rlm@77 1333 :position (Vector3f. -10 5 0))
rlm@77 1334 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1335 :position (Vector3f. -10 -5 0)
rlm@77 1336 :mass 0)
rlm@77 1337 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1338 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1339 swivel
rlm@77 1340 (.toRotationMatrix
rlm@77 1341 (doto (Quaternion.)
rlm@77 1342 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1343 Vector3f/UNIT_X)))]
rlm@77 1344 (doto
rlm@77 1345 (ConeJoint.
rlm@77 1346 control-a control-b
rlm@77 1347 (Vector3f. 0 5 0)
rlm@77 1348 (Vector3f. 0 -5 0)
rlm@77 1349 swivel swivel)
rlm@77 1350 (.setLimit (* 0.6 (/ Math/PI 4))
rlm@77 1351 (/ Math/PI 4)
rlm@77 1352 (* Math/PI 0.8)))
rlm@77 1353 (world (nodify
rlm@77 1354 [obj-a obj-b])
rlm@77 1355 standard-debug-controls
rlm@77 1356 enable-debug
rlm@77 1357 no-op)))
rlm@74 1358
rlm@74 1359
rlm@77 1360 (defn bullet-trans* []
rlm@77 1361 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
rlm@77 1362 :position (Vector3f. 5 0 0)
rlm@77 1363 :mass 90)
rlm@77 1364 obj-b (sphere 0.5 :color ColorRGBA/Blue
rlm@77 1365 :position (Vector3f. -5 0 0)
rlm@77 1366 :mass 0)
rlm@77 1367 control-a (.getControl obj-a RigidBodyControl)
rlm@77 1368 control-b (.getControl obj-b RigidBodyControl)
rlm@77 1369 move-up? (atom nil)
rlm@77 1370 move-down? (atom nil)
rlm@77 1371 move-left? (atom nil)
rlm@77 1372 move-right? (atom nil)
rlm@77 1373 roll-left? (atom nil)
rlm@77 1374 roll-right? (atom nil)
rlm@77 1375 force 100
rlm@77 1376 swivel
rlm@77 1377 (.toRotationMatrix
rlm@77 1378 (doto (Quaternion.)
rlm@77 1379 (.fromAngleAxis (/ Math/PI 2)
rlm@77 1380 Vector3f/UNIT_X)))
rlm@77 1381 x-move
rlm@77 1382 (doto (Matrix3f.)
rlm@77 1383 (.fromStartEndVectors Vector3f/UNIT_X
rlm@77 1384 (.normalize (Vector3f. 1 1 0))))
rlm@77 1385
rlm@77 1386 timer (atom 0)]
rlm@77 1387 (doto
rlm@77 1388 (ConeJoint.
rlm@77 1389 control-a control-b
rlm@77 1390 (Vector3f. -8 0 0)
rlm@77 1391 (Vector3f. 2 0 0)
rlm@77 1392 ;;swivel swivel
rlm@77 1393 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
rlm@77 1394 x-move Matrix3f/IDENTITY
rlm@77 1395 )
rlm@77 1396 (.setCollisionBetweenLinkedBodys false)
rlm@77 1397 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
rlm@77 1398 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
rlm@77 1399 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
rlm@77 1400 (world (nodify
rlm@77 1401 [obj-a obj-b])
rlm@77 1402 (merge standard-debug-controls
rlm@77 1403 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@77 1404 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@77 1405 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@77 1406 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@77 1407 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@77 1408 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@77 1409
rlm@77 1410 (fn [world]
rlm@77 1411 (enable-debug world)
rlm@77 1412 (set-gravity world Vector3f/ZERO)
rlm@77 1413 )
rlm@77 1414
rlm@77 1415 (fn [world _]
rlm@77 1416
rlm@77 1417 (if @move-up?
rlm@77 1418 (.applyForce control-a
rlm@77 1419 (Vector3f. force 0 0)
rlm@77 1420 (Vector3f. 0 0 0)))
rlm@77 1421 (if @move-down?
rlm@77 1422 (.applyForce control-a
rlm@77 1423 (Vector3f. (- force) 0 0)
rlm@77 1424 (Vector3f. 0 0 0)))
rlm@77 1425 (if @move-left?
rlm@77 1426 (.applyForce control-a
rlm@77 1427 (Vector3f. 0 force 0)
rlm@77 1428 (Vector3f. 0 0 0)))
rlm@77 1429 (if @move-right?
rlm@77 1430 (.applyForce control-a
rlm@77 1431 (Vector3f. 0 (- force) 0)
rlm@77 1432 (Vector3f. 0 0 0)))
rlm@77 1433
rlm@77 1434 (if @roll-left?
rlm@77 1435 (.applyForce control-a
rlm@77 1436 (Vector3f. 0 0 force)
rlm@77 1437 (Vector3f. 0 0 0)))
rlm@77 1438 (if @roll-right?
rlm@77 1439 (.applyForce control-a
rlm@77 1440 (Vector3f. 0 0 (- force))
rlm@77 1441 (Vector3f. 0 0 0)))
rlm@77 1442
rlm@77 1443 (if (zero? (rem (swap! timer inc) 100))
rlm@77 1444 (.attachChild
rlm@77 1445 (.getRootNode world)
rlm@77 1446 (sphere 0.05 :color ColorRGBA/Yellow
rlm@77 1447 :physical? false :position
rlm@77 1448 (.getWorldTranslation obj-a)))))
rlm@77 1449 )
rlm@77 1450 ))
rlm@77 1451
rlm@94 1452 (defn transform-trianglesdsd
rlm@94 1453 "Transform that converts each vertex in the first triangle
rlm@94 1454 into the corresponding vertex in the second triangle."
rlm@94 1455 [#^Triangle tri-1 #^Triangle tri-2]
rlm@94 1456 (let [in [(.get1 tri-1)
rlm@94 1457 (.get2 tri-1)
rlm@94 1458 (.get3 tri-1)]
rlm@94 1459 out [(.get1 tri-2)
rlm@94 1460 (.get2 tri-2)
rlm@94 1461 (.get3 tri-2)]]
rlm@94 1462 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
rlm@94 1463 in* [(.mult translate (in 0))
rlm@94 1464 (.mult translate (in 1))
rlm@94 1465 (.mult translate (in 2))]
rlm@94 1466 final-translation
rlm@94 1467 (doto (Matrix4f.)
rlm@94 1468 (.setTranslation (out 1)))
rlm@94 1469
rlm@94 1470 rotate-1
rlm@94 1471 (doto (Matrix3f.)
rlm@94 1472 (.fromStartEndVectors
rlm@94 1473 (.normalize
rlm@94 1474 (.subtract
rlm@94 1475 (in* 1) (in* 0)))
rlm@94 1476 (.normalize
rlm@94 1477 (.subtract
rlm@94 1478 (out 1) (out 0)))))
rlm@94 1479 in** [(.mult rotate-1 (in* 0))
rlm@94 1480 (.mult rotate-1 (in* 1))
rlm@94 1481 (.mult rotate-1 (in* 2))]
rlm@94 1482 scale-factor-1
rlm@94 1483 (.mult
rlm@94 1484 (.normalize
rlm@94 1485 (.subtract
rlm@94 1486 (out 1)
rlm@94 1487 (out 0)))
rlm@94 1488 (/ (.length
rlm@94 1489 (.subtract (out 1)
rlm@94 1490 (out 0)))
rlm@94 1491 (.length
rlm@94 1492 (.subtract (in** 1)
rlm@94 1493 (in** 0)))))
rlm@94 1494 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
rlm@94 1495 in*** [(.mult scale-1 (in** 0))
rlm@94 1496 (.mult scale-1 (in** 1))
rlm@94 1497 (.mult scale-1 (in** 2))]
rlm@94 1498
rlm@94 1499
rlm@94 1500
rlm@94 1501
rlm@94 1502
rlm@94 1503 ]
rlm@94 1504
rlm@94 1505 (dorun (map println in))
rlm@94 1506 (println)
rlm@94 1507 (dorun (map println in*))
rlm@94 1508 (println)
rlm@94 1509 (dorun (map println in**))
rlm@94 1510 (println)
rlm@94 1511 (dorun (map println in***))
rlm@94 1512 (println)
rlm@94 1513
rlm@99 1514 ))))
rlm@94 1515
rlm@94 1516
rlm@106 1517 (defn world-setup [joint]
rlm@106 1518 (let [joint-position (Vector3f. 0 0 0)
rlm@106 1519 joint-rotation
rlm@106 1520 (.toRotationMatrix
rlm@106 1521 (.mult
rlm@106 1522 (doto (Quaternion.)
rlm@106 1523 (.fromAngleAxis
rlm@106 1524 (* 1 (/ Math/PI 4))
rlm@106 1525 (Vector3f. -1 0 0)))
rlm@106 1526 (doto (Quaternion.)
rlm@106 1527 (.fromAngleAxis
rlm@106 1528 (* 1 (/ Math/PI 2))
rlm@106 1529 (Vector3f. 0 0 1)))))
rlm@106 1530 top-position (.mult joint-rotation (Vector3f. 8 0 0))
rlm@106 1531
rlm@106 1532 origin (doto
rlm@106 1533 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
rlm@106 1534 :position top-position))
rlm@106 1535 top (doto
rlm@106 1536 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
rlm@106 1537 :position top-position)
rlm@106 1538
rlm@106 1539 (.addControl
rlm@106 1540 (RigidBodyControl.
rlm@106 1541 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
rlm@106 1542 bottom (doto
rlm@106 1543 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
rlm@106 1544 :position (Vector3f. 0 0 0))
rlm@106 1545 (.addControl
rlm@106 1546 (RigidBodyControl.
rlm@106 1547 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
rlm@106 1548 table (box 10 2 10 :position (Vector3f. 0 -20 0)
rlm@106 1549 :color ColorRGBA/Gray :mass 0)
rlm@106 1550 a (.getControl top RigidBodyControl)
rlm@106 1551 b (.getControl bottom RigidBodyControl)]
rlm@106 1552
rlm@106 1553 (cond
rlm@106 1554 (= joint :cone)
rlm@106 1555
rlm@106 1556 (doto (ConeJoint.
rlm@106 1557 a b
rlm@106 1558 (world-to-local top joint-position)
rlm@106 1559 (world-to-local bottom joint-position)
rlm@106 1560 joint-rotation
rlm@106 1561 joint-rotation
rlm@106 1562 )
rlm@106 1563
rlm@106 1564
rlm@106 1565 (.setLimit (* (/ 10) Math/PI)
rlm@106 1566 (* (/ 4) Math/PI)
rlm@106 1567 0)))
rlm@106 1568 [origin top bottom table]))
rlm@106 1569
rlm@106 1570 (defn test-joint [joint]
rlm@106 1571 (let [[origin top bottom floor] (world-setup joint)
rlm@106 1572 control (.getControl top RigidBodyControl)
rlm@106 1573 move-up? (atom false)
rlm@106 1574 move-down? (atom false)
rlm@106 1575 move-left? (atom false)
rlm@106 1576 move-right? (atom false)
rlm@106 1577 roll-left? (atom false)
rlm@106 1578 roll-right? (atom false)
rlm@106 1579 timer (atom 0)]
rlm@106 1580
rlm@106 1581 (world
rlm@106 1582 (nodify [top bottom floor origin])
rlm@106 1583 (merge standard-debug-controls
rlm@106 1584 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
rlm@106 1585 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
rlm@106 1586 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
rlm@106 1587 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
rlm@106 1588 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
rlm@106 1589 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
rlm@106 1590
rlm@106 1591 (fn [world]
rlm@106 1592 (light-up-everything world)
rlm@106 1593 (enable-debug world)
rlm@106 1594 (set-gravity world (Vector3f. 0 0 0))
rlm@106 1595 )
rlm@106 1596
rlm@106 1597 (fn [world _]
rlm@106 1598 (if (zero? (rem (swap! timer inc) 100))
rlm@106 1599 (do
rlm@106 1600 ;; (println-repl @timer)
rlm@106 1601 (.attachChild (.getRootNode world)
rlm@106 1602 (sphere 0.05 :color ColorRGBA/Yellow
rlm@106 1603 :position (.getWorldTranslation top)
rlm@106 1604 :physical? false))
rlm@106 1605 (.attachChild (.getRootNode world)
rlm@106 1606 (sphere 0.05 :color ColorRGBA/LightGray
rlm@106 1607 :position (.getWorldTranslation bottom)
rlm@106 1608 :physical? false))))
rlm@106 1609
rlm@106 1610 (if @move-up?
rlm@106 1611 (.applyTorque control
rlm@106 1612 (.mult (.getPhysicsRotation control)
rlm@106 1613 (Vector3f. 0 0 10))))
rlm@106 1614 (if @move-down?
rlm@106 1615 (.applyTorque control
rlm@106 1616 (.mult (.getPhysicsRotation control)
rlm@106 1617 (Vector3f. 0 0 -10))))
rlm@106 1618 (if @move-left?
rlm@106 1619 (.applyTorque control
rlm@106 1620 (.mult (.getPhysicsRotation control)
rlm@106 1621 (Vector3f. 0 10 0))))
rlm@106 1622 (if @move-right?
rlm@106 1623 (.applyTorque control
rlm@106 1624 (.mult (.getPhysicsRotation control)
rlm@106 1625 (Vector3f. 0 -10 0))))
rlm@106 1626 (if @roll-left?
rlm@106 1627 (.applyTorque control
rlm@106 1628 (.mult (.getPhysicsRotation control)
rlm@106 1629 (Vector3f. -1 0 0))))
rlm@106 1630 (if @roll-right?
rlm@106 1631 (.applyTorque control
rlm@106 1632 (.mult (.getPhysicsRotation control)
rlm@106 1633 (Vector3f. 1 0 0))))))))
rlm@106 1634
rlm@99 1635
rlm@99 1636
rlm@107 1637 (defprotocol Frame
rlm@107 1638 (frame [this]))
rlm@107 1639
rlm@107 1640 (extend-type BufferedImage
rlm@107 1641 Frame
rlm@107 1642 (frame [image]
rlm@107 1643 (merge
rlm@107 1644 (apply
rlm@107 1645 hash-map
rlm@107 1646 (interleave
rlm@107 1647 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1648 (vector x y)))
rlm@107 1649 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
rlm@107 1650 (let [data (.getRGB image x y)]
rlm@107 1651 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
rlm@107 1652 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
rlm@107 1653 :b (bit-and 0x0000ff data)))))))
rlm@107 1654 {:width (.getWidth image) :height (.getHeight image)})))
rlm@107 1655
rlm@107 1656
rlm@107 1657 (extend-type ImagePlus
rlm@107 1658 Frame
rlm@107 1659 (frame [image+]
rlm@107 1660 (frame (.getBufferedImage image+))))
rlm@107 1661
rlm@107 1662
rlm@99 1663 #+end_src
rlm@99 1664
rlm@99 1665
rlm@99 1666 * COMMENT generate source
rlm@99 1667 #+begin_src clojure :tangle ../src/cortex/silly.clj
rlm@99 1668 <<body-1>>
rlm@99 1669 #+end_src
rlm@99 1670
rlm@99 1671
rlm@94 1672
rlm@94 1673