rlm@73
|
1 #+title: First attempt at a creature!
|
rlm@73
|
2 #+author: Robert McIntyre
|
rlm@73
|
3 #+email: rlm@mit.edu
|
rlm@73
|
4 #+description:
|
rlm@73
|
5 #+keywords: simulation, jMonkeyEngine3, clojure
|
rlm@73
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@73
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@73
|
8
|
rlm@129
|
9
|
rlm@129
|
10
|
rlm@129
|
11 * Brainstorming different sensors and effectors.
|
rlm@129
|
12
|
rlm@129
|
13 Every sense that we have should have an effector that changes what
|
rlm@129
|
14 that sense (or others who have that sense) experiences.
|
rlm@129
|
15
|
rlm@129
|
16 ** Classic Senses
|
rlm@129
|
17 | Sense | Effector |
|
rlm@129
|
18 |------------------------------+---------------------------------|
|
rlm@129
|
19 | Vision | Variable Coloration |
|
rlm@129
|
20 | Hearing | Speech |
|
rlm@129
|
21 | Proprioception | Movement |
|
rlm@129
|
22 | Smell/Taste (Chemoreception) | Pheremones |
|
rlm@129
|
23 | Touch | Movement / Controllable Texture |
|
rlm@129
|
24 | Acceleration | Movement |
|
rlm@129
|
25 | Balance (sense gravity) | Movement |
|
rlm@129
|
26 | | |
|
rlm@129
|
27
|
rlm@129
|
28 - New Senses/Effectors
|
rlm@129
|
29 - Levitation
|
rlm@129
|
30 - Telekenesis
|
rlm@129
|
31
|
rlm@129
|
32 - Symbol Sense
|
rlm@129
|
33 Where objects in the world can be queried for description /
|
rlm@129
|
34 symbols.
|
rlm@129
|
35
|
rlm@129
|
36 - Symbol Marking
|
rlm@129
|
37 The ability to mark objects in the world with your own descriptions
|
rlm@129
|
38 and symbols.
|
rlm@129
|
39
|
rlm@129
|
40 - Vision
|
rlm@129
|
41 Distinguish the polarization of light
|
rlm@129
|
42 Color
|
rlm@129
|
43 Movement
|
rlm@129
|
44
|
rlm@129
|
45 * project ideas
|
rlm@129
|
46 - HACKER for writing muscle-control programs : Presented with
|
rlm@129
|
47 low-level muscle control/ sense API, generate higher level programs
|
rlm@129
|
48 for accomplishing various stated goals. Example goals might be
|
rlm@129
|
49 "extend all your fingers" or "move your hand into the area with
|
rlm@129
|
50 blue light" or "decrease the angle of this joint". It would be
|
rlm@129
|
51 like Sussman's HACKER, except it would operate with much more data
|
rlm@129
|
52 in a more realistic world. Start off with "calestanthics" to
|
rlm@129
|
53 develop subrouitines over the motor control API. This would be the
|
rlm@129
|
54 "spinal chord" of a more intelligent creature. The low level
|
rlm@129
|
55 programming code might be a turning machine that could develop
|
rlm@129
|
56 programs to iterate over a "tape" where each entry in the tape
|
rlm@129
|
57 could control recruitment of the fibers in a muscle.
|
rlm@129
|
58 - Make a virtual computer in the virtual world which with which the
|
rlm@129
|
59 creature interacts using its fingers to press keys on a virtual
|
rlm@129
|
60 keyboard. The creature can access the internet, watch videos, take
|
rlm@129
|
61 over the world, anything it wants.
|
rlm@129
|
62 - Make virtual insturments like pianos, drumbs, etc that it learns to
|
rlm@129
|
63 play.
|
rlm@129
|
64 - make a joint that figures out what type of joint it is (range of
|
rlm@129
|
65 motion)
|
rlm@129
|
66
|
rlm@129
|
67
|
rlm@129
|
68
|
rlm@129
|
69
|
rlm@129
|
70
|
rlm@129
|
71 * goals
|
rlm@125
|
72
|
rlm@125
|
73 ** have to get done before winston
|
rlm@126
|
74 - [ ] write an explination for why greyscale bitmaps for senses is
|
rlm@126
|
75 appropiate -- 1/2 day
|
rlm@126
|
76 - [ ] muscle control -- day
|
rlm@126
|
77 - [ ] proprioception sensor map in the style of the other senses -- day
|
rlm@125
|
78 - [ ] refactor integration code to distribute to each of the senses
|
rlm@126
|
79 -- day
|
rlm@126
|
80 - [ ] create video showing all the senses for Winston -- 2 days
|
rlm@126
|
81 - [ ] write summary of project for Winston \
|
rlm@126
|
82 - [ ] project proposals for Winston \
|
rlm@126
|
83 - [ ] additional senses to be implemented for Winston | -- 2 days
|
rlm@126
|
84 - [ ] send Winston package /
|
rlm@125
|
85
|
rlm@125
|
86 ** would be cool to get done before winston
|
rlm@126
|
87 - [X] enable greyscale bitmaps for touch -- 2 hours
|
rlm@126
|
88 - [X] use sawfish to auto-tile sense windows -- 6 hours
|
rlm@126
|
89 - [X] sawfish keybinding to automatically delete all sense windows
|
rlm@126
|
90 - [ ] directly change the UV-pixels to show sensor activation -- 2
|
rlm@126
|
91 days
|
rlm@126
|
92 - [ ] proof of concept C sense manipulation -- 2 days
|
rlm@126
|
93 - [ ] proof of concept GPU sense manipulation -- week
|
rlm@126
|
94 - [ ] fourier view of sound -- 2 or 3 days
|
rlm@127
|
95 - [ ] dancing music generator -- 1 day, depends on fourier
|
rlm@125
|
96
|
rlm@125
|
97 ** don't have to get done before winston
|
rlm@126
|
98 - [ ] write tests for integration -- 3 days
|
rlm@126
|
99 - [ ] usertime/gametime clock HUD display -- day
|
rlm@126
|
100 - [ ] find papers for each of the senses justifying my own
|
rlm@126
|
101 representation -- week
|
rlm@126
|
102 - [ ] show sensor maps in HUD display? -- 4 days
|
rlm@126
|
103 - [ ] show sensor maps in AWT display? -- 2 days
|
rlm@124
|
104
|
rlm@99
|
105
|
rlm@73
|
106 * Intro
|
rlm@73
|
107 So far, I've made the following senses --
|
rlm@73
|
108 - Vision
|
rlm@73
|
109 - Hearing
|
rlm@73
|
110 - Touch
|
rlm@73
|
111 - Proprioception
|
rlm@73
|
112
|
rlm@73
|
113 And one effector:
|
rlm@73
|
114 - Movement
|
rlm@73
|
115
|
rlm@73
|
116 However, the code so far has only enabled these senses, but has not
|
rlm@73
|
117 actually implemented them. For example, there is still a lot of work
|
rlm@73
|
118 to be done for vision. I need to be able to create an /eyeball/ in
|
rlm@73
|
119 simulation that can be moved around and see the world from different
|
rlm@73
|
120 angles. I also need to determine weather to use log-polar or cartesian
|
rlm@73
|
121 for the visual input, and I need to determine how/wether to
|
rlm@73
|
122 disceritise the visual input.
|
rlm@73
|
123
|
rlm@73
|
124 I also want to be able to visualize both the sensors and the
|
rlm@104
|
125 effectors in pretty pictures. This semi-retarted creature will be my
|
rlm@73
|
126 first attempt at bringing everything together.
|
rlm@73
|
127
|
rlm@73
|
128 * The creature's body
|
rlm@73
|
129
|
rlm@73
|
130 Still going to do an eve-like body in blender, but due to problems
|
rlm@104
|
131 importing the joints, etc into jMonkeyEngine3, I'm going to do all
|
rlm@73
|
132 the connecting here in clojure code, using the names of the individual
|
rlm@73
|
133 components and trial and error. Later, I'll maybe make some sort of
|
rlm@73
|
134 creature-building modifications to blender that support whatever
|
rlm@73
|
135 discreitized senses I'm going to make.
|
rlm@73
|
136
|
rlm@73
|
137 #+name: body-1
|
rlm@73
|
138 #+begin_src clojure
|
rlm@73
|
139 (ns cortex.silly
|
rlm@73
|
140 "let's play!"
|
rlm@73
|
141 {:author "Robert McIntyre"})
|
rlm@73
|
142
|
rlm@73
|
143 ;; TODO remove this!
|
rlm@73
|
144 (require 'cortex.import)
|
rlm@73
|
145 (cortex.import/mega-import-jme3)
|
rlm@73
|
146 (use '(cortex world util body hearing touch vision))
|
rlm@73
|
147
|
rlm@73
|
148 (rlm.rlm-commands/help)
|
rlm@99
|
149 (import java.awt.image.BufferedImage)
|
rlm@99
|
150 (import javax.swing.JPanel)
|
rlm@99
|
151 (import javax.swing.SwingUtilities)
|
rlm@99
|
152 (import java.awt.Dimension)
|
rlm@99
|
153 (import javax.swing.JFrame)
|
rlm@99
|
154 (import java.awt.Dimension)
|
rlm@106
|
155 (import com.aurellem.capture.RatchetTimer)
|
rlm@99
|
156 (declare joint-create)
|
rlm@108
|
157 (use 'clojure.contrib.def)
|
rlm@73
|
158
|
rlm@100
|
159 (defn points->image
|
rlm@100
|
160 "Take a sparse collection of points and visuliaze it as a
|
rlm@100
|
161 BufferedImage."
|
rlm@102
|
162
|
rlm@102
|
163 ;; TODO maybe parallelize this since it's easy
|
rlm@102
|
164
|
rlm@100
|
165 [points]
|
rlm@106
|
166 (if (empty? points)
|
rlm@106
|
167 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
|
rlm@106
|
168 (let [xs (vec (map first points))
|
rlm@106
|
169 ys (vec (map second points))
|
rlm@106
|
170 x0 (apply min xs)
|
rlm@106
|
171 y0 (apply min ys)
|
rlm@106
|
172 width (- (apply max xs) x0)
|
rlm@106
|
173 height (- (apply max ys) y0)
|
rlm@106
|
174 image (BufferedImage. (inc width) (inc height)
|
rlm@119
|
175 BufferedImage/TYPE_INT_RGB)]
|
rlm@118
|
176 (dorun
|
rlm@118
|
177 (for [x (range (.getWidth image))
|
rlm@118
|
178 y (range (.getHeight image))]
|
rlm@119
|
179 (.setRGB image x y 0xFF0000)))
|
rlm@106
|
180 (dorun
|
rlm@106
|
181 (for [index (range (count points))]
|
rlm@106
|
182 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
|
rlm@106
|
183
|
rlm@106
|
184 image)))
|
rlm@100
|
185
|
rlm@101
|
186 (defn average [coll]
|
rlm@101
|
187 (/ (reduce + coll) (count coll)))
|
rlm@101
|
188
|
rlm@101
|
189 (defn collapse-1d
|
rlm@101
|
190 "One dimensional analogue of collapse"
|
rlm@101
|
191 [center line]
|
rlm@101
|
192 (let [length (count line)
|
rlm@101
|
193 num-above (count (filter (partial < center) line))
|
rlm@101
|
194 num-below (- length num-above)]
|
rlm@101
|
195 (range (- center num-below)
|
rlm@115
|
196 (+ center num-above))))
|
rlm@99
|
197
|
rlm@99
|
198 (defn collapse
|
rlm@99
|
199 "Take a set of pairs of integers and collapse them into a
|
rlm@99
|
200 contigous bitmap."
|
rlm@99
|
201 [points]
|
rlm@108
|
202 (if (empty? points) []
|
rlm@108
|
203 (let
|
rlm@108
|
204 [num-points (count points)
|
rlm@108
|
205 center (vector
|
rlm@108
|
206 (int (average (map first points)))
|
rlm@108
|
207 (int (average (map first points))))
|
rlm@108
|
208 flattened
|
rlm@108
|
209 (reduce
|
rlm@108
|
210 concat
|
rlm@108
|
211 (map
|
rlm@108
|
212 (fn [column]
|
rlm@108
|
213 (map vector
|
rlm@108
|
214 (map first column)
|
rlm@108
|
215 (collapse-1d (second center)
|
rlm@108
|
216 (map second column))))
|
rlm@108
|
217 (partition-by first (sort-by first points))))
|
rlm@108
|
218 squeezed
|
rlm@108
|
219 (reduce
|
rlm@108
|
220 concat
|
rlm@108
|
221 (map
|
rlm@108
|
222 (fn [row]
|
rlm@108
|
223 (map vector
|
rlm@108
|
224 (collapse-1d (first center)
|
rlm@108
|
225 (map first row))
|
rlm@108
|
226 (map second row)))
|
rlm@108
|
227 (partition-by second (sort-by second flattened))))
|
rlm@108
|
228 relocate
|
rlm@108
|
229 (let [min-x (apply min (map first squeezed))
|
rlm@108
|
230 min-y (apply min (map second squeezed))]
|
rlm@108
|
231 (map (fn [[x y]]
|
rlm@108
|
232 [(- x min-x)
|
rlm@108
|
233 (- y min-y)])
|
rlm@108
|
234 squeezed))]
|
rlm@115
|
235 relocate)))
|
rlm@83
|
236
|
rlm@83
|
237 (defn load-bullet []
|
rlm@84
|
238 (let [sim (world (Node.) {} no-op no-op)]
|
rlm@102
|
239 (doto sim
|
rlm@102
|
240 (.enqueue
|
rlm@102
|
241 (fn []
|
rlm@102
|
242 (.stop sim)))
|
rlm@102
|
243 (.start))))
|
rlm@83
|
244
|
rlm@73
|
245 (defn load-blender-model
|
rlm@73
|
246 "Load a .blend file using an asset folder relative path."
|
rlm@73
|
247 [^String model]
|
rlm@73
|
248 (.loadModel
|
rlm@73
|
249 (doto (asset-manager)
|
rlm@73
|
250 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
|
rlm@73
|
251 model))
|
rlm@73
|
252
|
rlm@74
|
253 (defn meta-data [blender-node key]
|
rlm@74
|
254 (if-let [data (.getUserData blender-node "properties")]
|
rlm@74
|
255 (.findValue data key)
|
rlm@74
|
256 nil))
|
rlm@73
|
257
|
rlm@78
|
258 (defn blender-to-jme
|
rlm@78
|
259 "Convert from Blender coordinates to JME coordinates"
|
rlm@78
|
260 [#^Vector3f in]
|
rlm@78
|
261 (Vector3f. (.getX in)
|
rlm@78
|
262 (.getZ in)
|
rlm@78
|
263 (- (.getY in))))
|
rlm@74
|
264
|
rlm@79
|
265 (defn jme-to-blender
|
rlm@79
|
266 "Convert from JME coordinates to Blender coordinates"
|
rlm@79
|
267 [#^Vector3f in]
|
rlm@79
|
268 (Vector3f. (.getX in)
|
rlm@79
|
269 (- (.getZ in))
|
rlm@79
|
270 (.getY in)))
|
rlm@79
|
271
|
rlm@78
|
272 (defn joint-targets
|
rlm@78
|
273 "Return the two closest two objects to the joint object, ordered
|
rlm@78
|
274 from bottom to top according to the joint's rotation."
|
rlm@78
|
275 [#^Node parts #^Node joint]
|
rlm@78
|
276 (loop [radius (float 0.01)]
|
rlm@78
|
277 (let [results (CollisionResults.)]
|
rlm@78
|
278 (.collideWith
|
rlm@78
|
279 parts
|
rlm@78
|
280 (BoundingBox. (.getWorldTranslation joint)
|
rlm@78
|
281 radius radius radius)
|
rlm@78
|
282 results)
|
rlm@78
|
283 (let [targets
|
rlm@78
|
284 (distinct
|
rlm@78
|
285 (map #(.getGeometry %) results))]
|
rlm@78
|
286 (if (>= (count targets) 2)
|
rlm@78
|
287 (sort-by
|
rlm@79
|
288 #(let [v
|
rlm@79
|
289 (jme-to-blender
|
rlm@79
|
290 (.mult
|
rlm@79
|
291 (.inverse (.getWorldRotation joint))
|
rlm@79
|
292 (.subtract (.getWorldTranslation %)
|
rlm@79
|
293 (.getWorldTranslation joint))))]
|
rlm@79
|
294 (println-repl (.getName %) ":" v)
|
rlm@79
|
295 (.dot (Vector3f. 1 1 1)
|
rlm@79
|
296 v))
|
rlm@78
|
297 (take 2 targets))
|
rlm@78
|
298 (recur (float (* radius 2))))))))
|
rlm@74
|
299
|
rlm@87
|
300 (defn world-to-local
|
rlm@87
|
301 "Convert the world coordinates into coordinates relative to the
|
rlm@87
|
302 object (i.e. local coordinates), taking into account the rotation
|
rlm@87
|
303 of object."
|
rlm@87
|
304 [#^Spatial object world-coordinate]
|
rlm@87
|
305 (let [out (Vector3f.)]
|
rlm@88
|
306 (.worldToLocal object world-coordinate out) out))
|
rlm@87
|
307
|
rlm@96
|
308 (defn local-to-world
|
rlm@96
|
309 "Convert the local coordinates into coordinates into world relative
|
rlm@96
|
310 coordinates"
|
rlm@96
|
311 [#^Spatial object local-coordinate]
|
rlm@96
|
312 (let [world-coordinate (Vector3f.)]
|
rlm@96
|
313 (.localToWorld object local-coordinate world-coordinate)
|
rlm@96
|
314 world-coordinate))
|
rlm@96
|
315
|
rlm@87
|
316 (defmulti joint-dispatch
|
rlm@87
|
317 "Translate blender pseudo-joints into real JME joints."
|
rlm@88
|
318 (fn [constraints & _]
|
rlm@87
|
319 (:type constraints)))
|
rlm@87
|
320
|
rlm@87
|
321 (defmethod joint-dispatch :point
|
rlm@87
|
322 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
323 (println-repl "creating POINT2POINT joint")
|
rlm@130
|
324 ;; bullet's point2point joints are BROKEN, so we must use the
|
rlm@130
|
325 ;; generic 6DOF joint instead of an actual Point2Point joint!
|
rlm@130
|
326
|
rlm@130
|
327 ;; should be able to do this:
|
rlm@130
|
328 (comment
|
rlm@130
|
329 (Point2PointJoint.
|
rlm@130
|
330 control-a
|
rlm@130
|
331 control-b
|
rlm@130
|
332 pivot-a
|
rlm@130
|
333 pivot-b))
|
rlm@130
|
334
|
rlm@130
|
335 ;; but instead we must do this:
|
rlm@130
|
336 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
|
rlm@130
|
337 (doto
|
rlm@130
|
338 (SixDofJoint.
|
rlm@130
|
339 control-a
|
rlm@130
|
340 control-b
|
rlm@130
|
341 pivot-a
|
rlm@130
|
342 pivot-b
|
rlm@130
|
343 false)
|
rlm@130
|
344 (.setLinearLowerLimit Vector3f/ZERO)
|
rlm@130
|
345 (.setLinearUpperLimit Vector3f/ZERO)
|
rlm@130
|
346 ;;(.setAngularLowerLimit (Vector3f. 1 1 1))
|
rlm@130
|
347 ;;(.setAngularUpperLimit (Vector3f. 0 0 0))
|
rlm@130
|
348
|
rlm@130
|
349 ))
|
rlm@130
|
350
|
rlm@87
|
351
|
rlm@87
|
352 (defmethod joint-dispatch :hinge
|
rlm@87
|
353 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
354 (println-repl "creating HINGE joint")
|
rlm@87
|
355 (let [axis
|
rlm@87
|
356 (if-let
|
rlm@87
|
357 [axis (:axis constraints)]
|
rlm@87
|
358 axis
|
rlm@87
|
359 Vector3f/UNIT_X)
|
rlm@87
|
360 [limit-1 limit-2] (:limit constraints)
|
rlm@87
|
361 hinge-axis
|
rlm@87
|
362 (.mult
|
rlm@87
|
363 rotation
|
rlm@87
|
364 (blender-to-jme axis))]
|
rlm@87
|
365 (doto
|
rlm@87
|
366 (HingeJoint.
|
rlm@87
|
367 control-a
|
rlm@87
|
368 control-b
|
rlm@87
|
369 pivot-a
|
rlm@87
|
370 pivot-b
|
rlm@87
|
371 hinge-axis
|
rlm@87
|
372 hinge-axis)
|
rlm@87
|
373 (.setLimit limit-1 limit-2))))
|
rlm@87
|
374
|
rlm@87
|
375 (defmethod joint-dispatch :cone
|
rlm@87
|
376 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@87
|
377 (let [limit-xz (:limit-xz constraints)
|
rlm@87
|
378 limit-xy (:limit-xy constraints)
|
rlm@87
|
379 twist (:twist constraints)]
|
rlm@87
|
380
|
rlm@87
|
381 (println-repl "creating CONE joint")
|
rlm@87
|
382 (println-repl rotation)
|
rlm@87
|
383 (println-repl
|
rlm@87
|
384 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
|
rlm@87
|
385 (println-repl
|
rlm@87
|
386 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
|
rlm@87
|
387 (println-repl
|
rlm@87
|
388 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
|
rlm@87
|
389 (doto
|
rlm@87
|
390 (ConeJoint.
|
rlm@87
|
391 control-a
|
rlm@87
|
392 control-b
|
rlm@87
|
393 pivot-a
|
rlm@87
|
394 pivot-b
|
rlm@87
|
395 rotation
|
rlm@87
|
396 rotation)
|
rlm@87
|
397 (.setLimit (float limit-xz)
|
rlm@87
|
398 (float limit-xy)
|
rlm@87
|
399 (float twist)))))
|
rlm@87
|
400
|
rlm@88
|
401 (defn connect
|
rlm@87
|
402 "here are some examples:
|
rlm@87
|
403 {:type :point}
|
rlm@87
|
404 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
|
rlm@87
|
405 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
|
rlm@87
|
406
|
rlm@89
|
407 {:type :cone :limit-xz 0]
|
rlm@89
|
408 :limit-xy 0]
|
rlm@89
|
409 :twist 0]} (use XZY rotation mode in blender!)"
|
rlm@87
|
410 [#^Node obj-a #^Node obj-b #^Node joint]
|
rlm@87
|
411 (let [control-a (.getControl obj-a RigidBodyControl)
|
rlm@87
|
412 control-b (.getControl obj-b RigidBodyControl)
|
rlm@87
|
413 joint-center (.getWorldTranslation joint)
|
rlm@87
|
414 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
|
rlm@87
|
415 pivot-a (world-to-local obj-a joint-center)
|
rlm@87
|
416 pivot-b (world-to-local obj-b joint-center)]
|
rlm@89
|
417
|
rlm@87
|
418 (if-let [constraints
|
rlm@87
|
419 (map-vals
|
rlm@87
|
420 eval
|
rlm@87
|
421 (read-string
|
rlm@87
|
422 (meta-data joint "joint")))]
|
rlm@89
|
423 ;; A side-effect of creating a joint registers
|
rlm@89
|
424 ;; it with both physics objects which in turn
|
rlm@89
|
425 ;; will register the joint with the physics system
|
rlm@89
|
426 ;; when the simulation is started.
|
rlm@87
|
427 (do
|
rlm@87
|
428 (println-repl "creating joint between"
|
rlm@87
|
429 (.getName obj-a) "and" (.getName obj-b))
|
rlm@87
|
430 (joint-dispatch constraints
|
rlm@87
|
431 control-a control-b
|
rlm@87
|
432 pivot-a pivot-b
|
rlm@87
|
433 joint-rotation))
|
rlm@87
|
434 (println-repl "could not find joint meta-data!"))))
|
rlm@87
|
435
|
rlm@130
|
436
|
rlm@130
|
437
|
rlm@130
|
438
|
rlm@78
|
439 (defn assemble-creature [#^Node pieces joints]
|
rlm@78
|
440 (dorun
|
rlm@78
|
441 (map
|
rlm@78
|
442 (fn [geom]
|
rlm@78
|
443 (let [physics-control
|
rlm@78
|
444 (RigidBodyControl.
|
rlm@78
|
445 (HullCollisionShape.
|
rlm@78
|
446 (.getMesh geom))
|
rlm@78
|
447 (if-let [mass (meta-data geom "mass")]
|
rlm@78
|
448 (do
|
rlm@78
|
449 (println-repl
|
rlm@78
|
450 "setting" (.getName geom) "mass to" (float mass))
|
rlm@78
|
451 (float mass))
|
rlm@78
|
452 (float 1)))]
|
rlm@78
|
453
|
rlm@78
|
454 (.addControl geom physics-control)))
|
rlm@78
|
455 (filter #(isa? (class %) Geometry )
|
rlm@78
|
456 (node-seq pieces))))
|
rlm@78
|
457 (dorun
|
rlm@78
|
458 (map
|
rlm@78
|
459 (fn [joint]
|
rlm@78
|
460 (let [[obj-a obj-b]
|
rlm@78
|
461 (joint-targets pieces joint)]
|
rlm@88
|
462 (connect obj-a obj-b joint)))
|
rlm@78
|
463 joints))
|
rlm@78
|
464 pieces)
|
rlm@74
|
465
|
rlm@116
|
466 (declare blender-creature)
|
rlm@74
|
467
|
rlm@78
|
468 (def hand "Models/creature1/one.blend")
|
rlm@74
|
469
|
rlm@78
|
470 (def worm "Models/creature1/try-again.blend")
|
rlm@78
|
471
|
rlm@90
|
472 (def touch "Models/creature1/touch.blend")
|
rlm@90
|
473
|
rlm@90
|
474 (defn worm-model [] (load-blender-model worm))
|
rlm@90
|
475
|
rlm@80
|
476 (defn x-ray [#^ColorRGBA color]
|
rlm@80
|
477 (doto (Material. (asset-manager)
|
rlm@80
|
478 "Common/MatDefs/Misc/Unshaded.j3md")
|
rlm@80
|
479 (.setColor "Color" color)
|
rlm@80
|
480 (-> (.getAdditionalRenderState)
|
rlm@80
|
481 (.setDepthTest false))))
|
rlm@80
|
482
|
rlm@91
|
483 (defn colorful []
|
rlm@91
|
484 (.getChild (worm-model) "worm-21"))
|
rlm@90
|
485
|
rlm@90
|
486 (import jme3tools.converters.ImageToAwt)
|
rlm@90
|
487
|
rlm@90
|
488 (import ij.ImagePlus)
|
rlm@90
|
489
|
rlm@108
|
490 ;; Every Mesh has many triangles, each with its own index.
|
rlm@108
|
491 ;; Every vertex has its own index as well.
|
rlm@90
|
492
|
rlm@108
|
493 (defn tactile-sensor-image
|
rlm@110
|
494 "Return the touch-sensor distribution image in BufferedImage format,
|
rlm@110
|
495 or nil if it does not exist."
|
rlm@91
|
496 [#^Geometry obj]
|
rlm@110
|
497 (if-let [image-path (meta-data obj "touch")]
|
rlm@110
|
498 (ImageToAwt/convert
|
rlm@110
|
499 (.getImage
|
rlm@110
|
500 (.loadTexture
|
rlm@110
|
501 (asset-manager)
|
rlm@110
|
502 image-path))
|
rlm@110
|
503 false false 0)))
|
rlm@110
|
504
|
rlm@91
|
505 (import ij.process.ImageProcessor)
|
rlm@91
|
506 (import java.awt.image.BufferedImage)
|
rlm@91
|
507
|
rlm@92
|
508 (def white -1)
|
rlm@94
|
509
|
rlm@91
|
510 (defn filter-pixels
|
rlm@108
|
511 "List the coordinates of all pixels matching pred, within the bounds
|
rlm@108
|
512 provided. Bounds -> [x0 y0 width height]"
|
rlm@92
|
513 {:author "Dylan Holmes"}
|
rlm@108
|
514 ([pred #^BufferedImage image]
|
rlm@108
|
515 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
|
rlm@108
|
516 ([pred #^BufferedImage image [x0 y0 width height]]
|
rlm@108
|
517 ((fn accumulate [x y matches]
|
rlm@108
|
518 (cond
|
rlm@108
|
519 (>= y (+ height y0)) matches
|
rlm@108
|
520 (>= x (+ width x0)) (recur 0 (inc y) matches)
|
rlm@108
|
521 (pred (.getRGB image x y))
|
rlm@108
|
522 (recur (inc x) y (conj matches [x y]))
|
rlm@108
|
523 :else (recur (inc x) y matches)))
|
rlm@108
|
524 x0 y0 [])))
|
rlm@91
|
525
|
rlm@91
|
526 (defn white-coordinates
|
rlm@108
|
527 "Coordinates of all the white pixels in a subset of the image."
|
rlm@112
|
528 ([#^BufferedImage image bounds]
|
rlm@112
|
529 (filter-pixels #(= % white) image bounds))
|
rlm@112
|
530 ([#^BufferedImage image]
|
rlm@112
|
531 (filter-pixels #(= % white) image)))
|
rlm@108
|
532
|
rlm@108
|
533 (defn triangle
|
rlm@112
|
534 "Get the triangle specified by triangle-index from the mesh within
|
rlm@112
|
535 bounds."
|
rlm@108
|
536 [#^Mesh mesh triangle-index]
|
rlm@108
|
537 (let [scratch (Triangle.)]
|
rlm@108
|
538 (.getTriangle mesh triangle-index scratch)
|
rlm@108
|
539 scratch))
|
rlm@108
|
540
|
rlm@108
|
541 (defn triangle-vertex-indices
|
rlm@108
|
542 "Get the triangle vertex indices of a given triangle from a given
|
rlm@108
|
543 mesh."
|
rlm@108
|
544 [#^Mesh mesh triangle-index]
|
rlm@108
|
545 (let [indices (int-array 3)]
|
rlm@108
|
546 (.getTriangle mesh triangle-index indices)
|
rlm@108
|
547 (vec indices)))
|
rlm@108
|
548
|
rlm@108
|
549 (defn vertex-UV-coord
|
rlm@108
|
550 "Get the uv-coordinates of the vertex named by vertex-index"
|
rlm@108
|
551 [#^Mesh mesh vertex-index]
|
rlm@108
|
552 (let [UV-buffer
|
rlm@108
|
553 (.getData
|
rlm@108
|
554 (.getBuffer
|
rlm@108
|
555 mesh
|
rlm@108
|
556 VertexBuffer$Type/TexCoord))]
|
rlm@108
|
557 [(.get UV-buffer (* vertex-index 2))
|
rlm@108
|
558 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
|
rlm@108
|
559
|
rlm@108
|
560 (defn triangle-UV-coord
|
rlm@108
|
561 "Get the uv-cooridnates of the triangle's verticies."
|
rlm@108
|
562 [#^Mesh mesh width height triangle-index]
|
rlm@108
|
563 (map (fn [[u v]] (vector (* width u) (* height v)))
|
rlm@108
|
564 (map (partial vertex-UV-coord mesh)
|
rlm@108
|
565 (triangle-vertex-indices mesh triangle-index))))
|
rlm@91
|
566
|
rlm@102
|
567 (defn same-side?
|
rlm@102
|
568 "Given the points p1 and p2 and the reference point ref, is point p
|
rlm@102
|
569 on the same side of the line that goes through p1 and p2 as ref is?"
|
rlm@102
|
570 [p1 p2 ref p]
|
rlm@91
|
571 (<=
|
rlm@91
|
572 0
|
rlm@91
|
573 (.dot
|
rlm@91
|
574 (.cross (.subtract p2 p1) (.subtract p p1))
|
rlm@91
|
575 (.cross (.subtract p2 p1) (.subtract ref p1)))))
|
rlm@91
|
576
|
rlm@108
|
577 (defn triangle-seq [#^Triangle tri]
|
rlm@108
|
578 [(.get1 tri) (.get2 tri) (.get3 tri)])
|
rlm@108
|
579
|
rlm@108
|
580 (defn vector3f-seq [#^Vector3f v]
|
rlm@108
|
581 [(.getX v) (.getY v) (.getZ v)])
|
rlm@108
|
582
|
rlm@108
|
583 (defn inside-triangle?
|
rlm@108
|
584 "Is the point inside the triangle?"
|
rlm@108
|
585 {:author "Dylan Holmes"}
|
rlm@108
|
586 [#^Triangle tri #^Vector3f p]
|
rlm@108
|
587 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
|
rlm@108
|
588 (and
|
rlm@108
|
589 (same-side? vert-1 vert-2 vert-3 p)
|
rlm@108
|
590 (same-side? vert-2 vert-3 vert-1 p)
|
rlm@108
|
591 (same-side? vert-3 vert-1 vert-2 p))))
|
rlm@108
|
592
|
rlm@94
|
593 (defn triangle->matrix4f
|
rlm@108
|
594 "Converts the triangle into a 4x4 matrix: The first three columns
|
rlm@108
|
595 contain the vertices of the triangle; the last contains the unit
|
rlm@108
|
596 normal of the triangle. The bottom row is filled with 1s."
|
rlm@94
|
597 [#^Triangle t]
|
rlm@94
|
598 (let [mat (Matrix4f.)
|
rlm@94
|
599 [vert-1 vert-2 vert-3]
|
rlm@94
|
600 ((comp vec map) #(.get t %) (range 3))
|
rlm@94
|
601 unit-normal (do (.calculateNormal t)(.getNormal t))
|
rlm@94
|
602 vertices [vert-1 vert-2 vert-3 unit-normal]]
|
rlm@94
|
603 (dorun
|
rlm@94
|
604 (for [row (range 4) col (range 3)]
|
rlm@94
|
605 (do
|
rlm@94
|
606 (.set mat col row (.get (vertices row)col))
|
rlm@94
|
607 (.set mat 3 row 1))))
|
rlm@94
|
608 mat))
|
rlm@94
|
609
|
rlm@94
|
610 (defn triangle-transformation
|
rlm@94
|
611 "Returns the affine transformation that converts each vertex in the
|
rlm@94
|
612 first triangle into the corresponding vertex in the second
|
rlm@94
|
613 triangle."
|
rlm@94
|
614 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@94
|
615 (.mult
|
rlm@94
|
616 (triangle->matrix4f tri-2)
|
rlm@94
|
617 (.invert (triangle->matrix4f tri-1))))
|
rlm@94
|
618
|
rlm@108
|
619 (defn point->vector2f [[u v]]
|
rlm@108
|
620 (Vector2f. u v))
|
rlm@94
|
621
|
rlm@94
|
622 (defn vector2f->vector3f [v]
|
rlm@94
|
623 (Vector3f. (.getX v) (.getY v) 0))
|
rlm@94
|
624
|
rlm@94
|
625 (defn map-triangle [f #^Triangle tri]
|
rlm@94
|
626 (Triangle.
|
rlm@94
|
627 (f 0 (.get1 tri))
|
rlm@94
|
628 (f 1 (.get2 tri))
|
rlm@94
|
629 (f 2 (.get3 tri))))
|
rlm@94
|
630
|
rlm@108
|
631 (defn points->triangle
|
rlm@108
|
632 "Convert a list of points into a triangle."
|
rlm@108
|
633 [points]
|
rlm@108
|
634 (apply #(Triangle. %1 %2 %3)
|
rlm@108
|
635 (map (fn [point]
|
rlm@108
|
636 (let [point (vec point)]
|
rlm@108
|
637 (Vector3f. (get point 0 0)
|
rlm@108
|
638 (get point 1 0)
|
rlm@108
|
639 (get point 2 0))))
|
rlm@108
|
640 (take 3 points))))
|
rlm@94
|
641
|
rlm@108
|
642 (defn convex-bounds
|
rlm@128
|
643 ;;dylan
|
rlm@128
|
644 "Returns the smallest square containing the given
|
rlm@128
|
645 vertices, as a vector of integers [left top width height]."
|
rlm@128
|
646 ;; "Dimensions of the smallest integer bounding square of the list of
|
rlm@128
|
647 ;; 2D verticies in the form: [x y width height]."
|
rlm@108
|
648 [uv-verts]
|
rlm@108
|
649 (let [xs (map first uv-verts)
|
rlm@108
|
650 ys (map second uv-verts)
|
rlm@108
|
651 x0 (Math/floor (apply min xs))
|
rlm@108
|
652 y0 (Math/floor (apply min ys))
|
rlm@108
|
653 x1 (Math/ceil (apply max xs))
|
rlm@108
|
654 y1 (Math/ceil (apply max ys))]
|
rlm@108
|
655 [x0 y0 (- x1 x0) (- y1 y0)]))
|
rlm@93
|
656
|
rlm@106
|
657 (defn sensors-in-triangle
|
rlm@128
|
658 ;;dylan
|
rlm@128
|
659 "Locate the touch sensors in the triangle, returning a map of their UV and geometry-relative coordinates."
|
rlm@128
|
660 ;;"Find the locations of the touch sensors within a triangle in both
|
rlm@128
|
661 ;; UV and gemoetry relative coordinates."
|
rlm@107
|
662 [image mesh tri-index]
|
rlm@107
|
663 (let [width (.getWidth image)
|
rlm@108
|
664 height (.getHeight image)
|
rlm@108
|
665 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
|
rlm@108
|
666 bounds (convex-bounds UV-vertex-coords)
|
rlm@108
|
667
|
rlm@108
|
668 cutout-triangle (points->triangle UV-vertex-coords)
|
rlm@108
|
669 UV-sensor-coords
|
rlm@108
|
670 (filter (comp (partial inside-triangle? cutout-triangle)
|
rlm@108
|
671 (fn [[u v]] (Vector3f. u v 0)))
|
rlm@108
|
672 (white-coordinates image bounds))
|
rlm@108
|
673 UV->geometry (triangle-transformation
|
rlm@108
|
674 cutout-triangle
|
rlm@108
|
675 (triangle mesh tri-index))
|
rlm@108
|
676 geometry-sensor-coords
|
rlm@108
|
677 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
|
rlm@108
|
678 UV-sensor-coords)]
|
rlm@108
|
679 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
|
rlm@107
|
680
|
rlm@108
|
681 (defn-memo locate-feelers
|
rlm@94
|
682 "Search the geometry's tactile UV image for touch sensors, returning
|
rlm@94
|
683 their positions in geometry-relative coordinates."
|
rlm@94
|
684 [#^Geometry geo]
|
rlm@108
|
685 (let [mesh (.getMesh geo)
|
rlm@108
|
686 num-triangles (.getTriangleCount mesh)]
|
rlm@108
|
687 (if-let [image (tactile-sensor-image geo)]
|
rlm@108
|
688 (map
|
rlm@108
|
689 (partial sensors-in-triangle image mesh)
|
rlm@108
|
690 (range num-triangles))
|
rlm@108
|
691 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
|
rlm@102
|
692
|
rlm@102
|
693 (use 'clojure.contrib.def)
|
rlm@102
|
694
|
rlm@102
|
695 (defn-memo touch-topology [#^Gemoetry geo]
|
rlm@108
|
696 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
|
rlm@108
|
697
|
rlm@108
|
698 (defn-memo feeler-coordinates [#^Geometry geo]
|
rlm@108
|
699 (vec (map :geometry (locate-feelers geo))))
|
rlm@102
|
700
|
rlm@97
|
701 (defn enable-touch [#^Geometry geo]
|
rlm@108
|
702 (let [feeler-coords (feeler-coordinates geo)
|
rlm@96
|
703 tris (triangles geo)
|
rlm@109
|
704 limit 0.1
|
rlm@109
|
705 ;;results (CollisionResults.)
|
rlm@109
|
706 ]
|
rlm@111
|
707 (if (empty? (touch-topology geo))
|
rlm@111
|
708 nil
|
rlm@111
|
709 (fn [node]
|
rlm@111
|
710 (let [sensor-origins
|
rlm@111
|
711 (map
|
rlm@111
|
712 #(map (partial local-to-world geo) %)
|
rlm@111
|
713 feeler-coords)
|
rlm@111
|
714 triangle-normals
|
rlm@111
|
715 (map (partial get-ray-direction geo)
|
rlm@111
|
716 tris)
|
rlm@111
|
717 rays
|
rlm@111
|
718 (flatten
|
rlm@111
|
719 (map (fn [origins norm]
|
rlm@111
|
720 (map #(doto (Ray. % norm)
|
rlm@97
|
721 (.setLimit limit)) origins))
|
rlm@111
|
722 sensor-origins triangle-normals))]
|
rlm@111
|
723 (vector
|
rlm@111
|
724 (touch-topology geo)
|
rlm@111
|
725 (vec
|
rlm@111
|
726 (for [ray rays]
|
rlm@111
|
727 (do
|
rlm@111
|
728 (let [results (CollisionResults.)]
|
rlm@111
|
729 (.collideWith node ray results)
|
rlm@111
|
730 (let [touch-objects
|
rlm@126
|
731 (filter #(not (= geo (.getGeometry %)))
|
rlm@126
|
732 results)]
|
rlm@126
|
733 (- 255
|
rlm@126
|
734 (if (empty? touch-objects) 255
|
rlm@126
|
735 (rem
|
rlm@126
|
736 (int
|
rlm@126
|
737 (* 255 (/ (.getDistance
|
rlm@126
|
738 (first touch-objects)) limit)))
|
rlm@126
|
739 256))))))))))))))
|
rlm@126
|
740
|
rlm@111
|
741
|
rlm@111
|
742 (defn touch [#^Node pieces]
|
rlm@111
|
743 (filter (comp not nil?)
|
rlm@111
|
744 (map enable-touch
|
rlm@111
|
745 (filter #(isa? (class %) Geometry)
|
rlm@111
|
746 (node-seq pieces)))))
|
rlm@94
|
747
|
rlm@109
|
748
|
rlm@111
|
749 ;; human eye transmits 62kb/s to brain Bandwidth is 8.75 Mb/s
|
rlm@111
|
750 ;; http://en.wikipedia.org/wiki/Retina
|
rlm@109
|
751
|
rlm@111
|
752 (defn test-eye []
|
rlm@117
|
753 (.getChild
|
rlm@117
|
754 (.getChild (worm-model) "eyes")
|
rlm@117
|
755 "eye"))
|
rlm@111
|
756
|
rlm@111
|
757
|
rlm@111
|
758 (defn retina-sensor-image
|
rlm@111
|
759 "Return a map of pixel selection functions to BufferedImages
|
rlm@111
|
760 describing the distribution of light-sensitive components on this
|
rlm@111
|
761 geometry's surface. Each function creates an integer from the rgb
|
rlm@111
|
762 values found in the pixel. :red, :green, :blue, :gray are already
|
rlm@111
|
763 defined as extracting the red green blue and average components
|
rlm@111
|
764 respectively."
|
rlm@117
|
765 [#^Spatial eye]
|
rlm@111
|
766 (if-let [eye-map (meta-data eye "eye")]
|
rlm@111
|
767 (map-vals
|
rlm@111
|
768 #(ImageToAwt/convert
|
rlm@111
|
769 (.getImage (.loadTexture (asset-manager) %))
|
rlm@111
|
770 false false 0)
|
rlm@120
|
771 (eval (read-string eye-map)))))
|
rlm@111
|
772
|
rlm@117
|
773 (defn eye-dimensions
|
rlm@117
|
774 "returns the width and height specified in the metadata of the eye"
|
rlm@117
|
775 [#^Spatial eye]
|
rlm@117
|
776 (let [dimensions
|
rlm@117
|
777 (map #(vector (.getWidth %) (.getHeight %))
|
rlm@117
|
778 (vals (retina-sensor-image eye)))]
|
rlm@117
|
779 [(apply max (map first dimensions))
|
rlm@117
|
780 (apply max (map second dimensions))]))
|
rlm@117
|
781
|
rlm@116
|
782 (defn creature-eyes
|
rlm@128
|
783 ;;dylan
|
rlm@128
|
784 "Return the children of the creature's \"eyes\" node."
|
rlm@128
|
785 ;;"The eye nodes which are children of the \"eyes\" node in the
|
rlm@128
|
786 ;;creature."
|
rlm@116
|
787 [#^Node creature]
|
rlm@116
|
788 (if-let [eye-node (.getChild creature "eyes")]
|
rlm@116
|
789 (seq (.getChildren eye-node))
|
rlm@116
|
790 (do (println-repl "could not find eyes node") [])))
|
rlm@111
|
791
|
rlm@123
|
792 ;; Here's how vision will work.
|
rlm@112
|
793
|
rlm@123
|
794 ;; Make the continuation in scene-processor take FrameBuffer,
|
rlm@123
|
795 ;; byte-buffer, BufferedImage already sized to the correct
|
rlm@123
|
796 ;; dimensions. the continuation will decide wether to "mix" them
|
rlm@123
|
797 ;; into the BufferedImage, lazily ignore them, or mix them halfway
|
rlm@123
|
798 ;; and call c/graphics card routines.
|
rlm@112
|
799
|
rlm@123
|
800 ;; (vision creature) will take an optional :skip argument which will
|
rlm@123
|
801 ;; inform the continuations in scene processor to skip the given
|
rlm@123
|
802 ;; number of cycles; 0 means that no cycles will be skipped.
|
rlm@112
|
803
|
rlm@123
|
804 ;; (vision creature) will return [init-functions sensor-functions].
|
rlm@123
|
805 ;; The init-functions are each single-arg functions that take the
|
rlm@123
|
806 ;; world and register the cameras and must each be called before the
|
rlm@123
|
807 ;; corresponding sensor-functions. Each init-function returns the
|
rlm@123
|
808 ;; viewport for that eye which can be manipulated, saved, etc. Each
|
rlm@123
|
809 ;; sensor-function is a thunk and will return data in the same
|
rlm@123
|
810 ;; format as the tactile-sensor functions; the structure is
|
rlm@123
|
811 ;; [topology, sensor-data]. Internally, these sensor-functions
|
rlm@123
|
812 ;; maintain a reference to sensor-data which is periodically updated
|
rlm@123
|
813 ;; by the continuation function established by its init-function.
|
rlm@123
|
814 ;; They can be queried every cycle, but their information may not
|
rlm@123
|
815 ;; necessairly be different every cycle.
|
rlm@112
|
816
|
rlm@123
|
817 ;; Each eye in the creature in blender will work the same way as
|
rlm@123
|
818 ;; joints -- a zero dimensional object with no geometry whose local
|
rlm@123
|
819 ;; coordinate system determines the orientation of the resulting
|
rlm@123
|
820 ;; eye. All eyes will have a parent named "eyes" just as all joints
|
rlm@123
|
821 ;; have a parent named "joints". The resulting camera will be a
|
rlm@123
|
822 ;; ChaseCamera or a CameraNode bound to the geo that is closest to
|
rlm@123
|
823 ;; the eye marker. The eye marker will contain the metadata for the
|
rlm@123
|
824 ;; eye, and will be moved by it's bound geometry. The dimensions of
|
rlm@123
|
825 ;; the eye's camera are equal to the dimensions of the eye's "UV"
|
rlm@123
|
826 ;; map.
|
rlm@116
|
827
|
rlm@123
|
828
|
rlm@123
|
829 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
rlm@123
|
830
|
rlm@123
|
831 ;; Ears work the same way as vision.
|
rlm@123
|
832
|
rlm@123
|
833 ;; (hearing creature) will return [init-functions
|
rlm@123
|
834 ;; sensor-functions]. The init functions each take the world and
|
rlm@123
|
835 ;; register a SoundProcessor that does foureier transforms on the
|
rlm@123
|
836 ;; incommong sound data, making it available to each sensor function.
|
rlm@123
|
837
|
rlm@123
|
838 (defn creature-ears
|
rlm@128
|
839 "Return the children of the creature's \"ears\" node."
|
rlm@128
|
840 ;;dylan
|
rlm@128
|
841 ;;"The ear nodes which are children of the \"ears\" node in the
|
rlm@128
|
842 ;;creature."
|
rlm@123
|
843 [#^Node creature]
|
rlm@123
|
844 (if-let [ear-node (.getChild creature "ears")]
|
rlm@123
|
845 (seq (.getChildren ear-node))
|
rlm@123
|
846 (do (println-repl "could not find ears node") [])))
|
rlm@123
|
847
|
rlm@123
|
848 (defn closest-node
|
rlm@128
|
849 "Return the object in creature which is closest to the given node."
|
rlm@128
|
850 ;;dylan"The closest object in creature to the given node."
|
rlm@116
|
851 [#^Node creature #^Node eye]
|
rlm@116
|
852 (loop [radius (float 0.01)]
|
rlm@116
|
853 (let [results (CollisionResults.)]
|
rlm@116
|
854 (.collideWith
|
rlm@116
|
855 creature
|
rlm@116
|
856 (BoundingBox. (.getWorldTranslation eye)
|
rlm@116
|
857 radius radius radius)
|
rlm@116
|
858 results)
|
rlm@116
|
859 (if-let [target (first results)]
|
rlm@116
|
860 (.getGeometry target)
|
rlm@116
|
861 (recur (float (* 2 radius)))))))
|
rlm@116
|
862
|
rlm@128
|
863 ;;dylan (defn follow-sense, adjoin-sense, attach-stimuli,
|
rlm@128
|
864 ;;anchor-qualia, augment-organ, with-organ
|
rlm@123
|
865 (defn bind-sense
|
rlm@123
|
866 "Bind the sense to the Spatial such that it will maintain its
|
rlm@117
|
867 current position relative to the Spatial no matter how the spatial
|
rlm@123
|
868 moves. 'sense can be either a Camera or Listener object."
|
rlm@123
|
869 [#^Spatial obj sense]
|
rlm@123
|
870 (let [sense-offset (.subtract (.getLocation sense)
|
rlm@123
|
871 (.getWorldTranslation obj))
|
rlm@123
|
872 initial-sense-rotation (Quaternion. (.getRotation sense))
|
rlm@117
|
873 base-anti-rotation (.inverse (.getWorldRotation obj))]
|
rlm@117
|
874 (.addControl
|
rlm@117
|
875 obj
|
rlm@117
|
876 (proxy [AbstractControl] []
|
rlm@117
|
877 (controlUpdate [tpf]
|
rlm@117
|
878 (let [total-rotation
|
rlm@117
|
879 (.mult base-anti-rotation (.getWorldRotation obj))]
|
rlm@123
|
880 (.setLocation sense
|
rlm@117
|
881 (.add
|
rlm@123
|
882 (.mult total-rotation sense-offset)
|
rlm@117
|
883 (.getWorldTranslation obj)))
|
rlm@123
|
884 (.setRotation sense
|
rlm@123
|
885 (.mult total-rotation initial-sense-rotation))))
|
rlm@117
|
886 (controlRender [_ _])))))
|
rlm@117
|
887
|
rlm@117
|
888
|
rlm@123
|
889 (defn update-listener-velocity
|
rlm@123
|
890 "Update the listener's velocity every update loop."
|
rlm@123
|
891 [#^Spatial obj #^Listener lis]
|
rlm@123
|
892 (let [old-position (atom (.getLocation lis))]
|
rlm@123
|
893 (.addControl
|
rlm@123
|
894 obj
|
rlm@123
|
895 (proxy [AbstractControl] []
|
rlm@123
|
896 (controlUpdate [tpf]
|
rlm@123
|
897 (let [new-position (.getLocation lis)]
|
rlm@123
|
898 (.setVelocity
|
rlm@123
|
899 lis
|
rlm@123
|
900 (.mult (.subtract new-position @old-position)
|
rlm@123
|
901 (float (/ tpf))))
|
rlm@123
|
902 (reset! old-position new-position)))
|
rlm@123
|
903 (controlRender [_ _])))))
|
rlm@123
|
904
|
rlm@123
|
905 (import com.aurellem.capture.audio.AudioSendRenderer)
|
rlm@123
|
906
|
rlm@123
|
907 (defn attach-ear
|
rlm@123
|
908 [#^Application world #^Node creature #^Spatial ear continuation]
|
rlm@123
|
909 (let [target (closest-node creature ear)
|
rlm@123
|
910 lis (Listener.)
|
rlm@123
|
911 audio-renderer (.getAudioRenderer world)
|
rlm@123
|
912 sp (sound-processor continuation)]
|
rlm@123
|
913 (.setLocation lis (.getWorldTranslation ear))
|
rlm@123
|
914 (.setRotation lis (.getWorldRotation ear))
|
rlm@123
|
915 (bind-sense target lis)
|
rlm@123
|
916 (update-listener-velocity target lis)
|
rlm@123
|
917 (.addListener audio-renderer lis)
|
rlm@123
|
918 (.registerSoundProcessor audio-renderer lis sp)))
|
rlm@123
|
919
|
rlm@123
|
920 (defn enable-hearing
|
rlm@123
|
921 [#^Node creature #^Spatial ear]
|
rlm@123
|
922 (let [hearing-data (atom [])]
|
rlm@123
|
923 [(fn [world]
|
rlm@123
|
924 (attach-ear world creature ear
|
rlm@123
|
925 (fn [data]
|
rlm@123
|
926 (reset! hearing-data (vec data)))))
|
rlm@123
|
927 [(fn []
|
rlm@123
|
928 (let [data @hearing-data
|
rlm@123
|
929 topology
|
rlm@123
|
930 (vec (map #(vector % 0) (range 0 (count data))))
|
rlm@123
|
931 scaled-data
|
rlm@123
|
932 (vec
|
rlm@123
|
933 (map
|
rlm@123
|
934 #(rem (int (* 255 (/ (+ 1 %) 2))) 256)
|
rlm@123
|
935 data))]
|
rlm@123
|
936 [topology scaled-data]))
|
rlm@123
|
937 ]]))
|
rlm@123
|
938
|
rlm@123
|
939 (defn hearing
|
rlm@123
|
940 [#^Node creature]
|
rlm@123
|
941 (reduce
|
rlm@123
|
942 (fn [[init-a senses-a]
|
rlm@123
|
943 [init-b senses-b]]
|
rlm@123
|
944 [(conj init-a init-b)
|
rlm@123
|
945 (into senses-a senses-b)])
|
rlm@123
|
946 [[][]]
|
rlm@123
|
947 (for [ear (creature-ears creature)]
|
rlm@123
|
948 (enable-hearing creature ear))))
|
rlm@123
|
949
|
rlm@118
|
950 (defn attach-eye
|
rlm@118
|
951 "Attach a Camera to the appropiate area and return the Camera."
|
rlm@118
|
952 [#^Node creature #^Spatial eye]
|
rlm@123
|
953 (let [target (closest-node creature eye)
|
rlm@118
|
954 [cam-width cam-height] (eye-dimensions eye)
|
rlm@118
|
955 cam (Camera. cam-width cam-height)]
|
rlm@118
|
956 (.setLocation cam (.getWorldTranslation eye))
|
rlm@118
|
957 (.setRotation cam (.getWorldRotation eye))
|
rlm@119
|
958 (.setFrustumPerspective
|
rlm@119
|
959 cam 45 (/ (.getWidth cam) (.getHeight cam))
|
rlm@119
|
960 1 1000)
|
rlm@123
|
961 (bind-sense target cam)
|
rlm@118
|
962 cam))
|
rlm@118
|
963
|
rlm@118
|
964 (def presets
|
rlm@121
|
965 {:all 0xFFFFFF
|
rlm@119
|
966 :red 0xFF0000
|
rlm@119
|
967 :blue 0x0000FF
|
rlm@119
|
968 :green 0x00FF00})
|
rlm@119
|
969
|
rlm@118
|
970 (defn enable-vision
|
rlm@118
|
971 "return [init-function sensor-functions] for a particular eye"
|
rlm@118
|
972 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
|
rlm@118
|
973 (let [retinal-map (retina-sensor-image eye)
|
rlm@123
|
974 camera (attach-eye creature eye)
|
rlm@123
|
975 vision-image
|
rlm@123
|
976 (atom
|
rlm@123
|
977 (BufferedImage. (.getWidth camera)
|
rlm@123
|
978 (.getHeight camera)
|
rlm@123
|
979 BufferedImage/TYPE_BYTE_BINARY))]
|
rlm@123
|
980 [(fn [world]
|
rlm@123
|
981 (add-eye
|
rlm@123
|
982 world camera
|
rlm@123
|
983 (let [counter (atom 0)]
|
rlm@123
|
984 (fn [r fb bb bi]
|
rlm@123
|
985 (if (zero? (rem (swap! counter inc) (inc skip)))
|
rlm@123
|
986 (reset! vision-image (BufferedImage! r fb bb bi)))))))
|
rlm@123
|
987 (vec
|
rlm@123
|
988 (map
|
rlm@123
|
989 (fn [[key image]]
|
rlm@123
|
990 (let [whites (white-coordinates image)
|
rlm@123
|
991 topology (vec (collapse whites))
|
rlm@123
|
992 mask (presets key)]
|
rlm@123
|
993 (fn []
|
rlm@123
|
994 (vector
|
rlm@123
|
995 topology
|
rlm@123
|
996 (vec
|
rlm@123
|
997 (for [[x y] whites]
|
rlm@123
|
998 (bit-and
|
rlm@123
|
999 mask (.getRGB @vision-image x y))))))))
|
rlm@123
|
1000 retinal-map))]))
|
rlm@118
|
1001
|
rlm@116
|
1002 (defn vision
|
rlm@121
|
1003 [#^Node creature & {skip :skip :or {skip 0}}]
|
rlm@121
|
1004 (reduce
|
rlm@121
|
1005 (fn [[init-a senses-a]
|
rlm@121
|
1006 [init-b senses-b]]
|
rlm@121
|
1007 [(conj init-a init-b)
|
rlm@121
|
1008 (into senses-a senses-b)])
|
rlm@121
|
1009 [[][]]
|
rlm@121
|
1010 (for [eye (creature-eyes creature)]
|
rlm@121
|
1011 (enable-vision creature eye))))
|
rlm@128
|
1012
|
rlm@128
|
1013
|
rlm@128
|
1014
|
rlm@128
|
1015
|
rlm@128
|
1016
|
rlm@128
|
1017 ;; lower level --- nodes
|
rlm@128
|
1018 ;; closest-node "parse/compile-x" -> makes organ, which is spatial, fn pair
|
rlm@128
|
1019
|
rlm@128
|
1020 ;; higher level -- organs
|
rlm@128
|
1021 ;;
|
rlm@128
|
1022
|
rlm@128
|
1023 ;; higher level --- sense/effector
|
rlm@128
|
1024 ;; these are the functions that provide world i/o, chinese-room style
|
rlm@128
|
1025
|
rlm@128
|
1026
|
rlm@116
|
1027
|
rlm@116
|
1028 (defn blender-creature
|
rlm@116
|
1029 "Return a creature with all joints in place."
|
rlm@116
|
1030 [blender-path]
|
rlm@116
|
1031 (let [model (load-blender-model blender-path)
|
rlm@116
|
1032 joints
|
rlm@116
|
1033 (if-let [joint-node (.getChild model "joints")]
|
rlm@116
|
1034 (seq (.getChildren joint-node))
|
rlm@116
|
1035 (do (println-repl "could not find joints node") []))]
|
rlm@116
|
1036 (assemble-creature model joints)))
|
rlm@116
|
1037
|
rlm@126
|
1038 (defn gray-scale [num]
|
rlm@126
|
1039 (+ num
|
rlm@126
|
1040 (bit-shift-left num 8)
|
rlm@126
|
1041 (bit-shift-left num 16)))
|
rlm@126
|
1042
|
rlm@130
|
1043 (defn debug-touch-window
|
rlm@103
|
1044 "creates function that offers a debug view of sensor data"
|
rlm@103
|
1045 []
|
rlm@103
|
1046 (let [vi (view-image)]
|
rlm@103
|
1047 (fn
|
rlm@103
|
1048 [[coords sensor-data]]
|
rlm@103
|
1049 (let [image (points->image coords)]
|
rlm@103
|
1050 (dorun
|
rlm@103
|
1051 (for [i (range (count coords))]
|
rlm@103
|
1052 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@126
|
1053 (gray-scale (sensor-data i)))))
|
rlm@126
|
1054
|
rlm@126
|
1055
|
rlm@103
|
1056 (vi image)))))
|
rlm@103
|
1057
|
rlm@118
|
1058 (defn debug-vision-window
|
rlm@118
|
1059 "creates function that offers a debug view of sensor data"
|
rlm@118
|
1060 []
|
rlm@118
|
1061 (let [vi (view-image)]
|
rlm@118
|
1062 (fn
|
rlm@118
|
1063 [[coords sensor-data]]
|
rlm@118
|
1064 (let [image (points->image coords)]
|
rlm@118
|
1065 (dorun
|
rlm@118
|
1066 (for [i (range (count coords))]
|
rlm@118
|
1067 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@118
|
1068 (sensor-data i))))
|
rlm@118
|
1069 (vi image)))))
|
rlm@118
|
1070
|
rlm@123
|
1071 (defn debug-hearing-window
|
rlm@123
|
1072 "view audio data"
|
rlm@123
|
1073 [height]
|
rlm@123
|
1074 (let [vi (view-image)]
|
rlm@123
|
1075 (fn [[coords sensor-data]]
|
rlm@123
|
1076 (let [image (BufferedImage. (count coords) height
|
rlm@123
|
1077 BufferedImage/TYPE_INT_RGB)]
|
rlm@123
|
1078 (dorun
|
rlm@123
|
1079 (for [x (range (count coords))]
|
rlm@123
|
1080 (dorun
|
rlm@123
|
1081 (for [y (range height)]
|
rlm@123
|
1082 (let [raw-sensor (sensor-data x)]
|
rlm@126
|
1083 (.setRGB image x y (gray-scale raw-sensor)))))))
|
rlm@126
|
1084
|
rlm@123
|
1085 (vi image)))))
|
rlm@123
|
1086
|
rlm@123
|
1087
|
rlm@123
|
1088
|
rlm@106
|
1089 ;;(defn test-touch [world creature]
|
rlm@83
|
1090
|
rlm@78
|
1091
|
rlm@123
|
1092
|
rlm@123
|
1093
|
rlm@130
|
1094 ;; here's how motor-control/ proprioception will work: Each muscle is
|
rlm@130
|
1095 ;; defined by a 1-D array of numbers (the "motor pool") each of which
|
rlm@130
|
1096 ;; represent muscle fibers. A muscle also has a scalar :strength
|
rlm@130
|
1097 ;; factor which determines how strong the muscle as a whole is.
|
rlm@130
|
1098 ;; The effector function for a muscle takes a number < (count
|
rlm@130
|
1099 ;; motor-pool) and that number is said to "activate" all the muscle
|
rlm@130
|
1100 ;; fibers whose index is lower than the number. Each fiber will apply
|
rlm@130
|
1101 ;; force in proportion to its value in the array. Lower values cause
|
rlm@130
|
1102 ;; less force. The lower values can be put at the "beginning" of the
|
rlm@130
|
1103 ;; 1-D array to simulate the layout of actual human muscles, which are
|
rlm@130
|
1104 ;; capable of more percise movements when exerting less force.
|
rlm@129
|
1105
|
rlm@130
|
1106 ;; I don't know how to encode proprioception, so for now, just return
|
rlm@130
|
1107 ;; a function for each joint that returns a triplet of floats which
|
rlm@130
|
1108 ;; represent relative roll, pitch, and yaw. Write display code for
|
rlm@130
|
1109 ;; this though.
|
rlm@130
|
1110
|
rlm@130
|
1111 (defn muscle-fibre-values
|
rlm@130
|
1112 "Take the first row of the image and return the low-order bytes."
|
rlm@130
|
1113 [#^BufferedImage image]
|
rlm@130
|
1114 (let [width (.getWidth image)]
|
rlm@130
|
1115 (for [x (range width)]
|
rlm@130
|
1116 (bit-and
|
rlm@130
|
1117 0xFF
|
rlm@130
|
1118 (.getRGB image x 0)))))
|
rlm@130
|
1119
|
rlm@130
|
1120
|
rlm@130
|
1121 (defn rad->deg [rad]
|
rlm@130
|
1122 (* 180 (/ Math/PI) rad))
|
rlm@130
|
1123
|
rlm@130
|
1124
|
rlm@130
|
1125 (defn debug-prop-window
|
rlm@130
|
1126 "create a debug view for proprioception"
|
rlm@130
|
1127 []
|
rlm@130
|
1128 (let [vi (view-image)]
|
rlm@130
|
1129 (fn [sensor-data]
|
rlm@130
|
1130 (println-repl
|
rlm@130
|
1131 (map
|
rlm@130
|
1132 (fn [[yaw pitch roll]]
|
rlm@130
|
1133 [(rad->deg yaw)
|
rlm@130
|
1134 (rad->deg pitch)
|
rlm@130
|
1135 (rad->deg roll)])
|
rlm@130
|
1136 sensor-data)))))
|
rlm@129
|
1137
|
rlm@129
|
1138
|
rlm@129
|
1139
|
rlm@129
|
1140
|
rlm@123
|
1141
|
rlm@123
|
1142
|
rlm@106
|
1143 (defn test-creature [thing]
|
rlm@106
|
1144 (let [x-axis
|
rlm@106
|
1145 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red)
|
rlm@106
|
1146 y-axis
|
rlm@106
|
1147 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green)
|
rlm@106
|
1148 z-axis
|
rlm@106
|
1149 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue)
|
rlm@106
|
1150 creature (blender-creature thing)
|
rlm@106
|
1151 touch-nerves (touch creature)
|
rlm@130
|
1152 touch-debug-windows (map (fn [_] (debug-touch-window)) touch-nerves)
|
rlm@121
|
1153 [init-vision-fns vision-data] (vision creature)
|
rlm@121
|
1154 vision-debug (map (fn [_] (debug-vision-window)) vision-data)
|
rlm@118
|
1155 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
|
rlm@123
|
1156 [init-hearing-fns hearing-senses] (hearing creature)
|
rlm@123
|
1157 hearing-windows (map (fn [_] (debug-hearing-window 50))
|
rlm@123
|
1158 hearing-senses)
|
rlm@124
|
1159 bell (AudioNode. (asset-manager)
|
rlm@128
|
1160 "Sounds/pure.wav" false)
|
rlm@130
|
1161 prop (proprioception creature)
|
rlm@130
|
1162 prop-debug (debug-prop-window)
|
rlm@123
|
1163 ;; dream
|
rlm@123
|
1164
|
rlm@106
|
1165 ]
|
rlm@106
|
1166 (world
|
rlm@106
|
1167 (nodify [creature
|
rlm@106
|
1168 (box 10 2 10 :position (Vector3f. 0 -9 0)
|
rlm@106
|
1169 :color ColorRGBA/Gray :mass 0)
|
rlm@106
|
1170 x-axis y-axis z-axis
|
rlm@118
|
1171 me
|
rlm@106
|
1172 ])
|
rlm@123
|
1173 (merge standard-debug-controls
|
rlm@123
|
1174 {"key-return"
|
rlm@123
|
1175 (fn [_ value]
|
rlm@123
|
1176 (if value
|
rlm@123
|
1177 (do
|
rlm@123
|
1178 (println-repl "play-sound")
|
rlm@124
|
1179 (.play bell))))})
|
rlm@106
|
1180 (fn [world]
|
rlm@106
|
1181 (light-up-everything world)
|
rlm@106
|
1182 (enable-debug world)
|
rlm@122
|
1183 (dorun (map #(% world) init-vision-fns))
|
rlm@123
|
1184 (dorun (map #(% world) init-hearing-fns))
|
rlm@118
|
1185
|
rlm@118
|
1186 (add-eye world
|
rlm@118
|
1187 (attach-eye creature (test-eye))
|
rlm@118
|
1188 (comp (view-image) BufferedImage!))
|
rlm@118
|
1189
|
rlm@118
|
1190 (add-eye world (.getCamera world) no-op)
|
rlm@118
|
1191
|
rlm@106
|
1192 ;;(com.aurellem.capture.Capture/captureVideo
|
rlm@106
|
1193 ;; world (file-str "/home/r/proj/ai-videos/hand"))
|
rlm@110
|
1194 ;;(.setTimer world (RatchetTimer. 60))
|
rlm@119
|
1195 (speed-up world)
|
rlm@106
|
1196 ;;(set-gravity world (Vector3f. 0 0 0))
|
rlm@106
|
1197 )
|
rlm@106
|
1198 (fn [world tpf]
|
rlm@109
|
1199 ;;(dorun
|
rlm@109
|
1200 ;; (map #(%1 %2) touch-nerves (repeat (.getRootNode world))))
|
rlm@123
|
1201
|
rlm@130
|
1202 (prop-debug (prop))
|
rlm@123
|
1203
|
rlm@106
|
1204 (dorun
|
rlm@109
|
1205 (map #(%1 (%2 (.getRootNode world)))
|
rlm@121
|
1206 touch-debug-windows touch-nerves))
|
rlm@123
|
1207
|
rlm@121
|
1208 (dorun
|
rlm@121
|
1209 (map #(%1 (%2))
|
rlm@121
|
1210 vision-debug vision-data))
|
rlm@123
|
1211 (dorun
|
rlm@123
|
1212 (map #(%1 (%2)) hearing-windows hearing-senses))
|
rlm@123
|
1213
|
rlm@123
|
1214
|
rlm@118
|
1215 ;;(println-repl (vision-data))
|
rlm@118
|
1216 (.setLocalTranslation me (.getLocation (.getCamera world)))
|
rlm@118
|
1217
|
rlm@121
|
1218
|
rlm@106
|
1219 )
|
rlm@106
|
1220 ;;(let [timer (atom 0)]
|
rlm@106
|
1221 ;; (fn [_ _]
|
rlm@106
|
1222 ;; (swap! timer inc)
|
rlm@106
|
1223 ;; (if (= (rem @timer 60) 0)
|
rlm@106
|
1224 ;; (println-repl (float (/ @timer 60))))))
|
rlm@106
|
1225 )))
|
rlm@83
|
1226
|
rlm@109
|
1227
|
rlm@109
|
1228
|
rlm@109
|
1229
|
rlm@109
|
1230
|
rlm@109
|
1231
|
rlm@109
|
1232
|
rlm@109
|
1233
|
rlm@109
|
1234
|
rlm@109
|
1235 ;;; experiments in collisions
|
rlm@109
|
1236
|
rlm@109
|
1237
|
rlm@109
|
1238
|
rlm@109
|
1239 (defn collision-test []
|
rlm@110
|
1240 (let [b-radius 1
|
rlm@110
|
1241 b-position (Vector3f. 0 0 0)
|
rlm@109
|
1242 obj-b (box 1 1 1 :color ColorRGBA/Blue
|
rlm@109
|
1243 :position b-position
|
rlm@110
|
1244 :mass 0)
|
rlm@110
|
1245 node (nodify [obj-b])
|
rlm@110
|
1246 bounds-b
|
rlm@110
|
1247 (doto (Picture.)
|
rlm@110
|
1248 (.setHeight 50)
|
rlm@110
|
1249 (.setWidth 50)
|
rlm@110
|
1250 (.setImage (asset-manager)
|
rlm@110
|
1251 "Models/creature1/hand.png"
|
rlm@110
|
1252 false
|
rlm@110
|
1253 ))
|
rlm@110
|
1254
|
rlm@110
|
1255 ;;(Ray. (Vector3f. 0 -5 0) (.normalize (Vector3f. 0 1 0)))
|
rlm@110
|
1256
|
rlm@110
|
1257 collisions
|
rlm@110
|
1258 (let [cr (CollisionResults.)]
|
rlm@110
|
1259 (.collideWith node bounds-b cr)
|
rlm@110
|
1260 (println (map #(.getContactPoint %) cr))
|
rlm@110
|
1261 cr)
|
rlm@110
|
1262
|
rlm@110
|
1263 ;;collision-points
|
rlm@110
|
1264 ;;(map #(sphere 0.1 :position (.getContactPoint %))
|
rlm@110
|
1265 ;; collisions)
|
rlm@110
|
1266
|
rlm@110
|
1267 ;;node (nodify (conj collision-points obj-b))
|
rlm@110
|
1268
|
rlm@109
|
1269 sim
|
rlm@109
|
1270 (world node
|
rlm@110
|
1271 {"key-space"
|
rlm@130
|
1272 (fn [_ value]
|
rlm@110
|
1273 (if value
|
rlm@110
|
1274 (let [cr (CollisionResults.)]
|
rlm@110
|
1275 (.collideWith node bounds-b cr)
|
rlm@110
|
1276 (println-repl (map #(.getContactPoint %) cr))
|
rlm@110
|
1277 cr)))}
|
rlm@109
|
1278 no-op
|
rlm@109
|
1279 no-op)
|
rlm@109
|
1280
|
rlm@109
|
1281 ]
|
rlm@110
|
1282 sim
|
rlm@109
|
1283
|
rlm@109
|
1284 ))
|
rlm@109
|
1285
|
rlm@116
|
1286
|
rlm@116
|
1287 ;; the camera will stay in its initial position/rotation with relation
|
rlm@116
|
1288 ;; to the spatial.
|
rlm@116
|
1289
|
rlm@116
|
1290
|
rlm@117
|
1291 (defn follow-test
|
rlm@117
|
1292 "show a camera that stays in the same relative position to a blue cube."
|
rlm@117
|
1293 []
|
rlm@116
|
1294 (let [camera-pos (Vector3f. 0 30 0)
|
rlm@116
|
1295 rock (box 1 1 1 :color ColorRGBA/Blue
|
rlm@116
|
1296 :position (Vector3f. 0 10 0)
|
rlm@116
|
1297 :mass 30
|
rlm@116
|
1298 )
|
rlm@118
|
1299 rot (.getWorldRotation rock)
|
rlm@116
|
1300
|
rlm@116
|
1301 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
|
rlm@116
|
1302 :position (Vector3f. 0 -3 0))]
|
rlm@116
|
1303
|
rlm@116
|
1304 (world
|
rlm@116
|
1305 (nodify [rock table])
|
rlm@116
|
1306 standard-debug-controls
|
rlm@116
|
1307 (fn [world]
|
rlm@116
|
1308 (let
|
rlm@116
|
1309 [cam (doto (.clone (.getCamera world))
|
rlm@116
|
1310 (.setLocation camera-pos)
|
rlm@116
|
1311 (.lookAt Vector3f/ZERO
|
rlm@116
|
1312 Vector3f/UNIT_X))]
|
rlm@123
|
1313 (bind-sense rock cam)
|
rlm@116
|
1314
|
rlm@116
|
1315 (.setTimer world (RatchetTimer. 60))
|
rlm@116
|
1316 (add-eye world cam (comp (view-image) BufferedImage!))
|
rlm@116
|
1317 (add-eye world (.getCamera world) no-op))
|
rlm@116
|
1318 )
|
rlm@118
|
1319 (fn [_ _] (println-repl rot)))))
|
rlm@116
|
1320
|
rlm@118
|
1321
|
rlm@123
|
1322
|
rlm@87
|
1323 #+end_src
|
rlm@83
|
1324
|
rlm@87
|
1325 #+results: body-1
|
rlm@109
|
1326 : #'cortex.silly/test-creature
|
rlm@78
|
1327
|
rlm@78
|
1328
|
rlm@78
|
1329 * COMMENT purgatory
|
rlm@78
|
1330 #+begin_src clojure
|
rlm@77
|
1331 (defn bullet-trans []
|
rlm@77
|
1332 (let [obj-a (sphere 0.5 :color ColorRGBA/Red
|
rlm@77
|
1333 :position (Vector3f. -10 5 0))
|
rlm@77
|
1334 obj-b (sphere 0.5 :color ColorRGBA/Blue
|
rlm@77
|
1335 :position (Vector3f. -10 -5 0)
|
rlm@77
|
1336 :mass 0)
|
rlm@77
|
1337 control-a (.getControl obj-a RigidBodyControl)
|
rlm@77
|
1338 control-b (.getControl obj-b RigidBodyControl)
|
rlm@77
|
1339 swivel
|
rlm@77
|
1340 (.toRotationMatrix
|
rlm@77
|
1341 (doto (Quaternion.)
|
rlm@77
|
1342 (.fromAngleAxis (/ Math/PI 2)
|
rlm@77
|
1343 Vector3f/UNIT_X)))]
|
rlm@77
|
1344 (doto
|
rlm@77
|
1345 (ConeJoint.
|
rlm@77
|
1346 control-a control-b
|
rlm@77
|
1347 (Vector3f. 0 5 0)
|
rlm@77
|
1348 (Vector3f. 0 -5 0)
|
rlm@77
|
1349 swivel swivel)
|
rlm@77
|
1350 (.setLimit (* 0.6 (/ Math/PI 4))
|
rlm@77
|
1351 (/ Math/PI 4)
|
rlm@77
|
1352 (* Math/PI 0.8)))
|
rlm@77
|
1353 (world (nodify
|
rlm@77
|
1354 [obj-a obj-b])
|
rlm@77
|
1355 standard-debug-controls
|
rlm@77
|
1356 enable-debug
|
rlm@77
|
1357 no-op)))
|
rlm@74
|
1358
|
rlm@74
|
1359
|
rlm@77
|
1360 (defn bullet-trans* []
|
rlm@77
|
1361 (let [obj-a (box 1.5 0.5 0.5 :color ColorRGBA/Red
|
rlm@77
|
1362 :position (Vector3f. 5 0 0)
|
rlm@77
|
1363 :mass 90)
|
rlm@77
|
1364 obj-b (sphere 0.5 :color ColorRGBA/Blue
|
rlm@77
|
1365 :position (Vector3f. -5 0 0)
|
rlm@77
|
1366 :mass 0)
|
rlm@77
|
1367 control-a (.getControl obj-a RigidBodyControl)
|
rlm@77
|
1368 control-b (.getControl obj-b RigidBodyControl)
|
rlm@77
|
1369 move-up? (atom nil)
|
rlm@77
|
1370 move-down? (atom nil)
|
rlm@77
|
1371 move-left? (atom nil)
|
rlm@77
|
1372 move-right? (atom nil)
|
rlm@77
|
1373 roll-left? (atom nil)
|
rlm@77
|
1374 roll-right? (atom nil)
|
rlm@77
|
1375 force 100
|
rlm@77
|
1376 swivel
|
rlm@77
|
1377 (.toRotationMatrix
|
rlm@77
|
1378 (doto (Quaternion.)
|
rlm@77
|
1379 (.fromAngleAxis (/ Math/PI 2)
|
rlm@77
|
1380 Vector3f/UNIT_X)))
|
rlm@77
|
1381 x-move
|
rlm@77
|
1382 (doto (Matrix3f.)
|
rlm@77
|
1383 (.fromStartEndVectors Vector3f/UNIT_X
|
rlm@77
|
1384 (.normalize (Vector3f. 1 1 0))))
|
rlm@77
|
1385
|
rlm@77
|
1386 timer (atom 0)]
|
rlm@77
|
1387 (doto
|
rlm@77
|
1388 (ConeJoint.
|
rlm@77
|
1389 control-a control-b
|
rlm@77
|
1390 (Vector3f. -8 0 0)
|
rlm@77
|
1391 (Vector3f. 2 0 0)
|
rlm@77
|
1392 ;;swivel swivel
|
rlm@77
|
1393 ;;Matrix3f/IDENTITY Matrix3f/IDENTITY
|
rlm@77
|
1394 x-move Matrix3f/IDENTITY
|
rlm@77
|
1395 )
|
rlm@77
|
1396 (.setCollisionBetweenLinkedBodys false)
|
rlm@77
|
1397 (.setLimit (* 1 (/ Math/PI 4)) ;; twist
|
rlm@77
|
1398 (* 1 (/ Math/PI 4)) ;; swing span in X-Y plane
|
rlm@77
|
1399 (* 0 (/ Math/PI 4)))) ;; swing span in Y-Z plane
|
rlm@77
|
1400 (world (nodify
|
rlm@77
|
1401 [obj-a obj-b])
|
rlm@77
|
1402 (merge standard-debug-controls
|
rlm@77
|
1403 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
|
rlm@77
|
1404 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
|
rlm@77
|
1405 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
|
rlm@77
|
1406 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
|
rlm@77
|
1407 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
|
rlm@77
|
1408 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
|
rlm@77
|
1409
|
rlm@77
|
1410 (fn [world]
|
rlm@77
|
1411 (enable-debug world)
|
rlm@77
|
1412 (set-gravity world Vector3f/ZERO)
|
rlm@77
|
1413 )
|
rlm@77
|
1414
|
rlm@77
|
1415 (fn [world _]
|
rlm@77
|
1416
|
rlm@77
|
1417 (if @move-up?
|
rlm@77
|
1418 (.applyForce control-a
|
rlm@77
|
1419 (Vector3f. force 0 0)
|
rlm@77
|
1420 (Vector3f. 0 0 0)))
|
rlm@77
|
1421 (if @move-down?
|
rlm@77
|
1422 (.applyForce control-a
|
rlm@77
|
1423 (Vector3f. (- force) 0 0)
|
rlm@77
|
1424 (Vector3f. 0 0 0)))
|
rlm@77
|
1425 (if @move-left?
|
rlm@77
|
1426 (.applyForce control-a
|
rlm@77
|
1427 (Vector3f. 0 force 0)
|
rlm@77
|
1428 (Vector3f. 0 0 0)))
|
rlm@77
|
1429 (if @move-right?
|
rlm@77
|
1430 (.applyForce control-a
|
rlm@77
|
1431 (Vector3f. 0 (- force) 0)
|
rlm@77
|
1432 (Vector3f. 0 0 0)))
|
rlm@77
|
1433
|
rlm@77
|
1434 (if @roll-left?
|
rlm@77
|
1435 (.applyForce control-a
|
rlm@77
|
1436 (Vector3f. 0 0 force)
|
rlm@77
|
1437 (Vector3f. 0 0 0)))
|
rlm@77
|
1438 (if @roll-right?
|
rlm@77
|
1439 (.applyForce control-a
|
rlm@77
|
1440 (Vector3f. 0 0 (- force))
|
rlm@77
|
1441 (Vector3f. 0 0 0)))
|
rlm@77
|
1442
|
rlm@77
|
1443 (if (zero? (rem (swap! timer inc) 100))
|
rlm@77
|
1444 (.attachChild
|
rlm@77
|
1445 (.getRootNode world)
|
rlm@77
|
1446 (sphere 0.05 :color ColorRGBA/Yellow
|
rlm@77
|
1447 :physical? false :position
|
rlm@77
|
1448 (.getWorldTranslation obj-a)))))
|
rlm@77
|
1449 )
|
rlm@77
|
1450 ))
|
rlm@77
|
1451
|
rlm@94
|
1452 (defn transform-trianglesdsd
|
rlm@94
|
1453 "Transform that converts each vertex in the first triangle
|
rlm@94
|
1454 into the corresponding vertex in the second triangle."
|
rlm@94
|
1455 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@94
|
1456 (let [in [(.get1 tri-1)
|
rlm@94
|
1457 (.get2 tri-1)
|
rlm@94
|
1458 (.get3 tri-1)]
|
rlm@94
|
1459 out [(.get1 tri-2)
|
rlm@94
|
1460 (.get2 tri-2)
|
rlm@94
|
1461 (.get3 tri-2)]]
|
rlm@94
|
1462 (let [translate (doto (Matrix4f.) (.setTranslation (.negate (in 0))))
|
rlm@94
|
1463 in* [(.mult translate (in 0))
|
rlm@94
|
1464 (.mult translate (in 1))
|
rlm@94
|
1465 (.mult translate (in 2))]
|
rlm@94
|
1466 final-translation
|
rlm@94
|
1467 (doto (Matrix4f.)
|
rlm@94
|
1468 (.setTranslation (out 1)))
|
rlm@94
|
1469
|
rlm@94
|
1470 rotate-1
|
rlm@94
|
1471 (doto (Matrix3f.)
|
rlm@94
|
1472 (.fromStartEndVectors
|
rlm@94
|
1473 (.normalize
|
rlm@94
|
1474 (.subtract
|
rlm@94
|
1475 (in* 1) (in* 0)))
|
rlm@94
|
1476 (.normalize
|
rlm@94
|
1477 (.subtract
|
rlm@94
|
1478 (out 1) (out 0)))))
|
rlm@94
|
1479 in** [(.mult rotate-1 (in* 0))
|
rlm@94
|
1480 (.mult rotate-1 (in* 1))
|
rlm@94
|
1481 (.mult rotate-1 (in* 2))]
|
rlm@94
|
1482 scale-factor-1
|
rlm@94
|
1483 (.mult
|
rlm@94
|
1484 (.normalize
|
rlm@94
|
1485 (.subtract
|
rlm@94
|
1486 (out 1)
|
rlm@94
|
1487 (out 0)))
|
rlm@94
|
1488 (/ (.length
|
rlm@94
|
1489 (.subtract (out 1)
|
rlm@94
|
1490 (out 0)))
|
rlm@94
|
1491 (.length
|
rlm@94
|
1492 (.subtract (in** 1)
|
rlm@94
|
1493 (in** 0)))))
|
rlm@94
|
1494 scale-1 (doto (Matrix4f.) (.setScale scale-factor-1))
|
rlm@94
|
1495 in*** [(.mult scale-1 (in** 0))
|
rlm@94
|
1496 (.mult scale-1 (in** 1))
|
rlm@94
|
1497 (.mult scale-1 (in** 2))]
|
rlm@94
|
1498
|
rlm@94
|
1499
|
rlm@94
|
1500
|
rlm@94
|
1501
|
rlm@94
|
1502
|
rlm@94
|
1503 ]
|
rlm@94
|
1504
|
rlm@94
|
1505 (dorun (map println in))
|
rlm@94
|
1506 (println)
|
rlm@94
|
1507 (dorun (map println in*))
|
rlm@94
|
1508 (println)
|
rlm@94
|
1509 (dorun (map println in**))
|
rlm@94
|
1510 (println)
|
rlm@94
|
1511 (dorun (map println in***))
|
rlm@94
|
1512 (println)
|
rlm@94
|
1513
|
rlm@99
|
1514 ))))
|
rlm@94
|
1515
|
rlm@94
|
1516
|
rlm@106
|
1517 (defn world-setup [joint]
|
rlm@106
|
1518 (let [joint-position (Vector3f. 0 0 0)
|
rlm@106
|
1519 joint-rotation
|
rlm@106
|
1520 (.toRotationMatrix
|
rlm@106
|
1521 (.mult
|
rlm@106
|
1522 (doto (Quaternion.)
|
rlm@106
|
1523 (.fromAngleAxis
|
rlm@106
|
1524 (* 1 (/ Math/PI 4))
|
rlm@106
|
1525 (Vector3f. -1 0 0)))
|
rlm@106
|
1526 (doto (Quaternion.)
|
rlm@106
|
1527 (.fromAngleAxis
|
rlm@106
|
1528 (* 1 (/ Math/PI 2))
|
rlm@106
|
1529 (Vector3f. 0 0 1)))))
|
rlm@106
|
1530 top-position (.mult joint-rotation (Vector3f. 8 0 0))
|
rlm@106
|
1531
|
rlm@106
|
1532 origin (doto
|
rlm@106
|
1533 (sphere 0.1 :physical? false :color ColorRGBA/Cyan
|
rlm@106
|
1534 :position top-position))
|
rlm@106
|
1535 top (doto
|
rlm@106
|
1536 (sphere 0.1 :physical? false :color ColorRGBA/Yellow
|
rlm@106
|
1537 :position top-position)
|
rlm@106
|
1538
|
rlm@106
|
1539 (.addControl
|
rlm@106
|
1540 (RigidBodyControl.
|
rlm@106
|
1541 (CapsuleCollisionShape. 0.5 1.5 1) (float 20))))
|
rlm@106
|
1542 bottom (doto
|
rlm@106
|
1543 (sphere 0.1 :physical? false :color ColorRGBA/DarkGray
|
rlm@106
|
1544 :position (Vector3f. 0 0 0))
|
rlm@106
|
1545 (.addControl
|
rlm@106
|
1546 (RigidBodyControl.
|
rlm@106
|
1547 (CapsuleCollisionShape. 0.5 1.5 1) (float 0))))
|
rlm@106
|
1548 table (box 10 2 10 :position (Vector3f. 0 -20 0)
|
rlm@106
|
1549 :color ColorRGBA/Gray :mass 0)
|
rlm@106
|
1550 a (.getControl top RigidBodyControl)
|
rlm@106
|
1551 b (.getControl bottom RigidBodyControl)]
|
rlm@106
|
1552
|
rlm@106
|
1553 (cond
|
rlm@106
|
1554 (= joint :cone)
|
rlm@106
|
1555
|
rlm@106
|
1556 (doto (ConeJoint.
|
rlm@106
|
1557 a b
|
rlm@106
|
1558 (world-to-local top joint-position)
|
rlm@106
|
1559 (world-to-local bottom joint-position)
|
rlm@106
|
1560 joint-rotation
|
rlm@106
|
1561 joint-rotation
|
rlm@106
|
1562 )
|
rlm@106
|
1563
|
rlm@106
|
1564
|
rlm@106
|
1565 (.setLimit (* (/ 10) Math/PI)
|
rlm@106
|
1566 (* (/ 4) Math/PI)
|
rlm@106
|
1567 0)))
|
rlm@106
|
1568 [origin top bottom table]))
|
rlm@106
|
1569
|
rlm@106
|
1570 (defn test-joint [joint]
|
rlm@106
|
1571 (let [[origin top bottom floor] (world-setup joint)
|
rlm@106
|
1572 control (.getControl top RigidBodyControl)
|
rlm@106
|
1573 move-up? (atom false)
|
rlm@106
|
1574 move-down? (atom false)
|
rlm@106
|
1575 move-left? (atom false)
|
rlm@106
|
1576 move-right? (atom false)
|
rlm@106
|
1577 roll-left? (atom false)
|
rlm@106
|
1578 roll-right? (atom false)
|
rlm@106
|
1579 timer (atom 0)]
|
rlm@106
|
1580
|
rlm@106
|
1581 (world
|
rlm@106
|
1582 (nodify [top bottom floor origin])
|
rlm@106
|
1583 (merge standard-debug-controls
|
rlm@106
|
1584 {"key-r" (fn [_ pressed?] (reset! move-up? pressed?))
|
rlm@106
|
1585 "key-t" (fn [_ pressed?] (reset! move-down? pressed?))
|
rlm@106
|
1586 "key-f" (fn [_ pressed?] (reset! move-left? pressed?))
|
rlm@106
|
1587 "key-g" (fn [_ pressed?] (reset! move-right? pressed?))
|
rlm@106
|
1588 "key-v" (fn [_ pressed?] (reset! roll-left? pressed?))
|
rlm@106
|
1589 "key-b" (fn [_ pressed?] (reset! roll-right? pressed?))})
|
rlm@106
|
1590
|
rlm@106
|
1591 (fn [world]
|
rlm@106
|
1592 (light-up-everything world)
|
rlm@106
|
1593 (enable-debug world)
|
rlm@106
|
1594 (set-gravity world (Vector3f. 0 0 0))
|
rlm@106
|
1595 )
|
rlm@106
|
1596
|
rlm@106
|
1597 (fn [world _]
|
rlm@106
|
1598 (if (zero? (rem (swap! timer inc) 100))
|
rlm@106
|
1599 (do
|
rlm@106
|
1600 ;; (println-repl @timer)
|
rlm@106
|
1601 (.attachChild (.getRootNode world)
|
rlm@106
|
1602 (sphere 0.05 :color ColorRGBA/Yellow
|
rlm@106
|
1603 :position (.getWorldTranslation top)
|
rlm@106
|
1604 :physical? false))
|
rlm@106
|
1605 (.attachChild (.getRootNode world)
|
rlm@106
|
1606 (sphere 0.05 :color ColorRGBA/LightGray
|
rlm@106
|
1607 :position (.getWorldTranslation bottom)
|
rlm@106
|
1608 :physical? false))))
|
rlm@106
|
1609
|
rlm@106
|
1610 (if @move-up?
|
rlm@106
|
1611 (.applyTorque control
|
rlm@106
|
1612 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1613 (Vector3f. 0 0 10))))
|
rlm@106
|
1614 (if @move-down?
|
rlm@106
|
1615 (.applyTorque control
|
rlm@106
|
1616 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1617 (Vector3f. 0 0 -10))))
|
rlm@106
|
1618 (if @move-left?
|
rlm@106
|
1619 (.applyTorque control
|
rlm@106
|
1620 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1621 (Vector3f. 0 10 0))))
|
rlm@106
|
1622 (if @move-right?
|
rlm@106
|
1623 (.applyTorque control
|
rlm@106
|
1624 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1625 (Vector3f. 0 -10 0))))
|
rlm@106
|
1626 (if @roll-left?
|
rlm@106
|
1627 (.applyTorque control
|
rlm@106
|
1628 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1629 (Vector3f. -1 0 0))))
|
rlm@106
|
1630 (if @roll-right?
|
rlm@106
|
1631 (.applyTorque control
|
rlm@106
|
1632 (.mult (.getPhysicsRotation control)
|
rlm@106
|
1633 (Vector3f. 1 0 0))))))))
|
rlm@106
|
1634
|
rlm@99
|
1635
|
rlm@99
|
1636
|
rlm@107
|
1637 (defprotocol Frame
|
rlm@107
|
1638 (frame [this]))
|
rlm@107
|
1639
|
rlm@107
|
1640 (extend-type BufferedImage
|
rlm@107
|
1641 Frame
|
rlm@107
|
1642 (frame [image]
|
rlm@107
|
1643 (merge
|
rlm@107
|
1644 (apply
|
rlm@107
|
1645 hash-map
|
rlm@107
|
1646 (interleave
|
rlm@107
|
1647 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
|
rlm@107
|
1648 (vector x y)))
|
rlm@107
|
1649 (doall (for [x (range (.getWidth image)) y (range (.getHeight image))]
|
rlm@107
|
1650 (let [data (.getRGB image x y)]
|
rlm@107
|
1651 (hash-map :r (bit-shift-right (bit-and 0xff0000 data) 16)
|
rlm@107
|
1652 :g (bit-shift-right (bit-and 0x00ff00 data) 8)
|
rlm@107
|
1653 :b (bit-and 0x0000ff data)))))))
|
rlm@107
|
1654 {:width (.getWidth image) :height (.getHeight image)})))
|
rlm@107
|
1655
|
rlm@107
|
1656
|
rlm@107
|
1657 (extend-type ImagePlus
|
rlm@107
|
1658 Frame
|
rlm@107
|
1659 (frame [image+]
|
rlm@107
|
1660 (frame (.getBufferedImage image+))))
|
rlm@107
|
1661
|
rlm@107
|
1662
|
rlm@99
|
1663 #+end_src
|
rlm@99
|
1664
|
rlm@99
|
1665
|
rlm@99
|
1666 * COMMENT generate source
|
rlm@99
|
1667 #+begin_src clojure :tangle ../src/cortex/silly.clj
|
rlm@99
|
1668 <<body-1>>
|
rlm@99
|
1669 #+end_src
|
rlm@99
|
1670
|
rlm@99
|
1671
|
rlm@94
|
1672
|
rlm@94
|
1673
|