Mercurial > vba-linux
diff src/apu/Blip_Buffer.cpp @ 1:f9f4f1b99eed
importing src directory
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Sat, 03 Mar 2012 10:31:27 -0600 |
parents | |
children | b05d00f19d80 |
line wrap: on
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/src/apu/Blip_Buffer.cpp Sat Mar 03 10:31:27 2012 -0600 1.3 @@ -0,0 +1,465 @@ 1.4 +// Blip_Buffer 0.4.1. http://www.slack.net/~ant/ 1.5 + 1.6 +#include "Blip_Buffer.h" 1.7 + 1.8 +#include <assert.h> 1.9 +#include <limits.h> 1.10 +#include <string.h> 1.11 +#include <stdlib.h> 1.12 +#include <math.h> 1.13 + 1.14 +/* Copyright (C) 2003-2007 Shay Green. This module is free software; you 1.15 +can redistribute it and/or modify it under the terms of the GNU Lesser 1.16 +General Public License as published by the Free Software Foundation; either 1.17 +version 2.1 of the License, or (at your option) any later version. This 1.18 +module is distributed in the hope that it will be useful, but WITHOUT ANY 1.19 +WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 1.20 +FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more 1.21 +details. You should have received a copy of the GNU Lesser General Public 1.22 +License along with this module; if not, write to the Free Software Foundation, 1.23 +Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ 1.24 + 1.25 +// TODO: use scoped for variables in treble_eq() 1.26 + 1.27 +#ifdef BLARGG_ENABLE_OPTIMIZER 1.28 + #include BLARGG_ENABLE_OPTIMIZER 1.29 +#endif 1.30 + 1.31 +int const silent_buf_size = 1; // size used for Silent_Blip_Buffer 1.32 + 1.33 +Blip_Buffer::Blip_Buffer() 1.34 +{ 1.35 + factor_ = LONG_MAX; 1.36 + buffer_ = 0; 1.37 + buffer_size_ = 0; 1.38 + sample_rate_ = 0; 1.39 + bass_shift_ = 0; 1.40 + clock_rate_ = 0; 1.41 + bass_freq_ = 16; 1.42 + length_ = 0; 1.43 + 1.44 + // assumptions code makes about implementation-defined features 1.45 + #ifndef NDEBUG 1.46 + // right shift of negative value preserves sign 1.47 + buf_t_ i = -0x7FFFFFFE; 1.48 + assert( (i >> 1) == -0x3FFFFFFF ); 1.49 + 1.50 + // casting to short truncates to 16 bits and sign-extends 1.51 + i = 0x18000; 1.52 + assert( (short) i == -0x8000 ); 1.53 + #endif 1.54 + 1.55 + clear(); 1.56 +} 1.57 + 1.58 +Blip_Buffer::~Blip_Buffer() 1.59 +{ 1.60 + if ( buffer_size_ != silent_buf_size ) 1.61 + free( buffer_ ); 1.62 +} 1.63 + 1.64 +Silent_Blip_Buffer::Silent_Blip_Buffer() 1.65 +{ 1.66 + factor_ = 0; 1.67 + buffer_ = buf; 1.68 + buffer_size_ = silent_buf_size; 1.69 + clear(); 1.70 +} 1.71 + 1.72 +void Blip_Buffer::clear( int entire_buffer ) 1.73 +{ 1.74 + offset_ = 0; 1.75 + reader_accum_ = 0; 1.76 + modified_ = 0; 1.77 + if ( buffer_ ) 1.78 + { 1.79 + long count = (entire_buffer ? buffer_size_ : samples_avail()); 1.80 + memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) ); 1.81 + } 1.82 +} 1.83 + 1.84 +Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec ) 1.85 +{ 1.86 + if ( buffer_size_ == silent_buf_size ) 1.87 + { 1.88 + assert( 0 ); 1.89 + return "Internal (tried to resize Silent_Blip_Buffer)"; 1.90 + } 1.91 + 1.92 + // start with maximum length that resampled time can represent 1.93 + long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64; 1.94 + if ( msec != blip_max_length ) 1.95 + { 1.96 + long s = (new_rate * (msec + 1) + 999) / 1000; 1.97 + if ( s < new_size ) 1.98 + new_size = s; 1.99 + else 1.100 + assert( 0 ); // fails if requested buffer length exceeds limit 1.101 + } 1.102 + 1.103 + if ( buffer_size_ != new_size ) 1.104 + { 1.105 + void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ ); 1.106 + if ( !p ) 1.107 + return "Out of memory"; 1.108 + buffer_ = (buf_t_*) p; 1.109 + } 1.110 + 1.111 + buffer_size_ = new_size; 1.112 + assert( buffer_size_ != silent_buf_size ); // size should never happen to match this 1.113 + 1.114 + // update things based on the sample rate 1.115 + sample_rate_ = new_rate; 1.116 + length_ = new_size * 1000 / new_rate - 1; 1.117 + if ( msec ) 1.118 + assert( length_ == msec ); // ensure length is same as that passed in 1.119 + 1.120 + // update these since they depend on sample rate 1.121 + if ( clock_rate_ ) 1.122 + clock_rate( clock_rate_ ); 1.123 + bass_freq( bass_freq_ ); 1.124 + 1.125 + clear(); 1.126 + 1.127 + return 0; // success 1.128 +} 1.129 + 1.130 +blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const 1.131 +{ 1.132 + double ratio = (double) sample_rate_ / rate; 1.133 + blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 ); 1.134 + assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large 1.135 + return (blip_resampled_time_t) factor; 1.136 +} 1.137 + 1.138 +void Blip_Buffer::bass_freq( int freq ) 1.139 +{ 1.140 + bass_freq_ = freq; 1.141 + int shift = 31; 1.142 + if ( freq > 0 ) 1.143 + { 1.144 + shift = 13; 1.145 + long f = (freq << 16) / sample_rate_; 1.146 + while ( (f >>= 1) && --shift ) { } 1.147 + } 1.148 + bass_shift_ = shift; 1.149 +} 1.150 + 1.151 +void Blip_Buffer::end_frame( blip_time_t t ) 1.152 +{ 1.153 + offset_ += t * factor_; 1.154 + assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer 1.155 +} 1.156 + 1.157 +long Blip_Buffer::count_samples( blip_time_t t ) const 1.158 +{ 1.159 + blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY; 1.160 + blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY; 1.161 + return long (last_sample - first_sample); 1.162 +} 1.163 + 1.164 +blip_time_t Blip_Buffer::count_clocks( long count ) const 1.165 +{ 1.166 + if ( !factor_ ) 1.167 + { 1.168 + assert( 0 ); // sample rate and clock rates must be set first 1.169 + return 0; 1.170 + } 1.171 + 1.172 + if ( count > buffer_size_ ) 1.173 + count = buffer_size_; 1.174 + blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY; 1.175 + return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_); 1.176 +} 1.177 + 1.178 +void Blip_Buffer::remove_samples( long count ) 1.179 +{ 1.180 + if ( count ) 1.181 + { 1.182 + remove_silence( count ); 1.183 + 1.184 + // copy remaining samples to beginning and clear old samples 1.185 + long remain = samples_avail() + blip_buffer_extra_; 1.186 + memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ ); 1.187 + memset( buffer_ + remain, 0, count * sizeof *buffer_ ); 1.188 + } 1.189 +} 1.190 + 1.191 +// Blip_Synth_ 1.192 + 1.193 +Blip_Synth_Fast_::Blip_Synth_Fast_() 1.194 +{ 1.195 + buf = 0; 1.196 + last_amp = 0; 1.197 + delta_factor = 0; 1.198 +} 1.199 + 1.200 +void Blip_Synth_Fast_::volume_unit( double new_unit ) 1.201 +{ 1.202 + delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5); 1.203 +} 1.204 + 1.205 +#if !BLIP_BUFFER_FAST 1.206 + 1.207 +Blip_Synth_::Blip_Synth_( short* p, int w ) : 1.208 + impulses( p ), 1.209 + width( w ) 1.210 +{ 1.211 + volume_unit_ = 0.0; 1.212 + kernel_unit = 0; 1.213 + buf = 0; 1.214 + last_amp = 0; 1.215 + delta_factor = 0; 1.216 +} 1.217 + 1.218 +#undef PI 1.219 +#define PI 3.1415926535897932384626433832795029 1.220 + 1.221 +static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff ) 1.222 +{ 1.223 + if ( cutoff >= 0.999 ) 1.224 + cutoff = 0.999; 1.225 + 1.226 + if ( treble < -300.0 ) 1.227 + treble = -300.0; 1.228 + if ( treble > 5.0 ) 1.229 + treble = 5.0; 1.230 + 1.231 + double const maxh = 4096.0; 1.232 + double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) ); 1.233 + double const pow_a_n = pow( rolloff, maxh - maxh * cutoff ); 1.234 + double const to_angle = PI / 2 / maxh / oversample; 1.235 + for ( int i = 0; i < count; i++ ) 1.236 + { 1.237 + double angle = ((i - count) * 2 + 1) * to_angle; 1.238 + double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle ); 1.239 + double cos_nc_angle = cos( maxh * cutoff * angle ); 1.240 + double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle ); 1.241 + double cos_angle = cos( angle ); 1.242 + 1.243 + c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle; 1.244 + double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle); 1.245 + double b = 2.0 - cos_angle - cos_angle; 1.246 + double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle; 1.247 + 1.248 + out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d 1.249 + } 1.250 +} 1.251 + 1.252 +void blip_eq_t::generate( float* out, int count ) const 1.253 +{ 1.254 + // lower cutoff freq for narrow kernels with their wider transition band 1.255 + // (8 points->1.49, 16 points->1.15) 1.256 + double oversample = blip_res * 2.25 / count + 0.85; 1.257 + double half_rate = sample_rate * 0.5; 1.258 + if ( cutoff_freq ) 1.259 + oversample = half_rate / cutoff_freq; 1.260 + double cutoff = rolloff_freq * oversample / half_rate; 1.261 + 1.262 + gen_sinc( out, count, blip_res * oversample, treble, cutoff ); 1.263 + 1.264 + // apply (half of) hamming window 1.265 + double to_fraction = PI / (count - 1); 1.266 + for ( int i = count; i--; ) 1.267 + out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction ); 1.268 +} 1.269 + 1.270 +void Blip_Synth_::adjust_impulse() 1.271 +{ 1.272 + // sum pairs for each phase and add error correction to end of first half 1.273 + int const size = impulses_size(); 1.274 + for ( int p = blip_res; p-- >= blip_res / 2; ) 1.275 + { 1.276 + int p2 = blip_res - 2 - p; 1.277 + long error = kernel_unit; 1.278 + for ( int i = 1; i < size; i += blip_res ) 1.279 + { 1.280 + error -= impulses [i + p ]; 1.281 + error -= impulses [i + p2]; 1.282 + } 1.283 + if ( p == p2 ) 1.284 + error /= 2; // phase = 0.5 impulse uses same half for both sides 1.285 + impulses [size - blip_res + p] += (short) error; 1.286 + //printf( "error: %ld\n", error ); 1.287 + } 1.288 + 1.289 + //for ( int i = blip_res; i--; printf( "\n" ) ) 1.290 + // for ( int j = 0; j < width / 2; j++ ) 1.291 + // printf( "%5ld,", impulses [j * blip_res + i + 1] ); 1.292 +} 1.293 + 1.294 +void Blip_Synth_::treble_eq( blip_eq_t const& eq ) 1.295 +{ 1.296 + float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2]; 1.297 + 1.298 + int const half_size = blip_res / 2 * (width - 1); 1.299 + eq.generate( &fimpulse [blip_res], half_size ); 1.300 + 1.301 + int i; 1.302 + 1.303 + // need mirror slightly past center for calculation 1.304 + for ( i = blip_res; i--; ) 1.305 + fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i]; 1.306 + 1.307 + // starts at 0 1.308 + for ( i = 0; i < blip_res; i++ ) 1.309 + fimpulse [i] = 0.0f; 1.310 + 1.311 + // find rescale factor 1.312 + double total = 0.0; 1.313 + for ( i = 0; i < half_size; i++ ) 1.314 + total += fimpulse [blip_res + i]; 1.315 + 1.316 + //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB 1.317 + //double const base_unit = 37888.0; // allows treble to +5 dB 1.318 + double const base_unit = 32768.0; // necessary for blip_unscaled to work 1.319 + double rescale = base_unit / 2 / total; 1.320 + kernel_unit = (long) base_unit; 1.321 + 1.322 + // integrate, first difference, rescale, convert to int 1.323 + double sum = 0.0; 1.324 + double next = 0.0; 1.325 + int const size = this->impulses_size(); 1.326 + for ( i = 0; i < size; i++ ) 1.327 + { 1.328 + impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 ); 1.329 + sum += fimpulse [i]; 1.330 + next += fimpulse [i + blip_res]; 1.331 + } 1.332 + adjust_impulse(); 1.333 + 1.334 + // volume might require rescaling 1.335 + double vol = volume_unit_; 1.336 + if ( vol ) 1.337 + { 1.338 + volume_unit_ = 0.0; 1.339 + volume_unit( vol ); 1.340 + } 1.341 +} 1.342 + 1.343 +void Blip_Synth_::volume_unit( double new_unit ) 1.344 +{ 1.345 + if ( new_unit != volume_unit_ ) 1.346 + { 1.347 + // use default eq if it hasn't been set yet 1.348 + if ( !kernel_unit ) 1.349 + treble_eq( -8.0 ); 1.350 + 1.351 + volume_unit_ = new_unit; 1.352 + double factor = new_unit * (1L << blip_sample_bits) / kernel_unit; 1.353 + 1.354 + if ( factor > 0.0 ) 1.355 + { 1.356 + int shift = 0; 1.357 + 1.358 + // if unit is really small, might need to attenuate kernel 1.359 + while ( factor < 2.0 ) 1.360 + { 1.361 + shift++; 1.362 + factor *= 2.0; 1.363 + } 1.364 + 1.365 + if ( shift ) 1.366 + { 1.367 + kernel_unit >>= shift; 1.368 + assert( kernel_unit > 0 ); // fails if volume unit is too low 1.369 + 1.370 + // keep values positive to avoid round-towards-zero of sign-preserving 1.371 + // right shift for negative values 1.372 + long offset = 0x8000 + (1 << (shift - 1)); 1.373 + long offset2 = 0x8000 >> shift; 1.374 + for ( int i = impulses_size(); i--; ) 1.375 + impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2); 1.376 + adjust_impulse(); 1.377 + } 1.378 + } 1.379 + delta_factor = (int) floor( factor + 0.5 ); 1.380 + //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit ); 1.381 + } 1.382 +} 1.383 +#endif 1.384 + 1.385 +long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo ) 1.386 +{ 1.387 + long count = samples_avail(); 1.388 + if ( count > max_samples ) 1.389 + count = max_samples; 1.390 + 1.391 + if ( count ) 1.392 + { 1.393 + int const bass = BLIP_READER_BASS( *this ); 1.394 + BLIP_READER_BEGIN( reader, *this ); 1.395 + BLIP_READER_ADJ_( reader, count ); 1.396 + blip_sample_t* BLIP_RESTRICT out = out_ + count; 1.397 + blip_long offset = (blip_long) -count; 1.398 + 1.399 + if ( !stereo ) 1.400 + { 1.401 + do 1.402 + { 1.403 + blip_long s = BLIP_READER_READ( reader ); 1.404 + BLIP_READER_NEXT_IDX_( reader, bass, offset ); 1.405 + BLIP_CLAMP( s, s ); 1.406 + out [offset] = (blip_sample_t) s; 1.407 + } 1.408 + while ( ++offset ); 1.409 + } 1.410 + else 1.411 + { 1.412 + do 1.413 + { 1.414 + blip_long s = BLIP_READER_READ( reader ); 1.415 + BLIP_READER_NEXT_IDX_( reader, bass, offset ); 1.416 + BLIP_CLAMP( s, s ); 1.417 + out [offset * 2] = (blip_sample_t) s; 1.418 + } 1.419 + while ( ++offset ); 1.420 + } 1.421 + 1.422 + BLIP_READER_END( reader, *this ); 1.423 + 1.424 + remove_samples( count ); 1.425 + } 1.426 + return count; 1.427 +} 1.428 + 1.429 +void Blip_Buffer::mix_samples( blip_sample_t const* in, long count ) 1.430 +{ 1.431 + if ( buffer_size_ == silent_buf_size ) 1.432 + { 1.433 + assert( 0 ); 1.434 + return; 1.435 + } 1.436 + 1.437 + buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2; 1.438 + 1.439 + int const sample_shift = blip_sample_bits - 16; 1.440 + int prev = 0; 1.441 + while ( count-- ) 1.442 + { 1.443 + blip_long s = (blip_long) *in++ << sample_shift; 1.444 + *out += s - prev; 1.445 + prev = s; 1.446 + ++out; 1.447 + } 1.448 + *out -= prev; 1.449 +} 1.450 + 1.451 +blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1; 1.452 + 1.453 +void Blip_Buffer::save_state( blip_buffer_state_t* out ) 1.454 +{ 1.455 + assert( samples_avail() == 0 ); 1.456 + out->offset_ = offset_; 1.457 + out->reader_accum_ = reader_accum_; 1.458 + memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf ); 1.459 +} 1.460 + 1.461 +void Blip_Buffer::load_state( blip_buffer_state_t const& in ) 1.462 +{ 1.463 + clear( false ); 1.464 + 1.465 + offset_ = in.offset_; 1.466 + reader_accum_ = in.reader_accum_; 1.467 + memcpy( buffer_, in.buf, sizeof in.buf ); 1.468 +}