rlm@1
|
1 // Blip_Buffer 0.4.1. http://www.slack.net/~ant/
|
rlm@1
|
2
|
rlm@1
|
3 #include "Blip_Buffer.h"
|
rlm@1
|
4
|
rlm@1
|
5 #include <assert.h>
|
rlm@1
|
6 #include <limits.h>
|
rlm@1
|
7 #include <string.h>
|
rlm@1
|
8 #include <stdlib.h>
|
rlm@1
|
9 #include <math.h>
|
rlm@1
|
10
|
rlm@1
|
11 /* Copyright (C) 2003-2007 Shay Green. This module is free software; you
|
rlm@1
|
12 can redistribute it and/or modify it under the terms of the GNU Lesser
|
rlm@1
|
13 General Public License as published by the Free Software Foundation; either
|
rlm@1
|
14 version 2.1 of the License, or (at your option) any later version. This
|
rlm@1
|
15 module is distributed in the hope that it will be useful, but WITHOUT ANY
|
rlm@1
|
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
rlm@1
|
17 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
rlm@1
|
18 details. You should have received a copy of the GNU Lesser General Public
|
rlm@1
|
19 License along with this module; if not, write to the Free Software Foundation,
|
rlm@1
|
20 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
|
rlm@1
|
21
|
rlm@1
|
22 // TODO: use scoped for variables in treble_eq()
|
rlm@1
|
23
|
rlm@1
|
24 #ifdef BLARGG_ENABLE_OPTIMIZER
|
rlm@1
|
25 #include BLARGG_ENABLE_OPTIMIZER
|
rlm@1
|
26 #endif
|
rlm@1
|
27
|
rlm@1
|
28 int const silent_buf_size = 1; // size used for Silent_Blip_Buffer
|
rlm@1
|
29
|
rlm@1
|
30 Blip_Buffer::Blip_Buffer()
|
rlm@1
|
31 {
|
rlm@1
|
32 factor_ = LONG_MAX;
|
rlm@1
|
33 buffer_ = 0;
|
rlm@1
|
34 buffer_size_ = 0;
|
rlm@1
|
35 sample_rate_ = 0;
|
rlm@1
|
36 bass_shift_ = 0;
|
rlm@1
|
37 clock_rate_ = 0;
|
rlm@1
|
38 bass_freq_ = 16;
|
rlm@1
|
39 length_ = 0;
|
rlm@1
|
40
|
rlm@1
|
41 // assumptions code makes about implementation-defined features
|
rlm@1
|
42 #ifndef NDEBUG
|
rlm@1
|
43 // right shift of negative value preserves sign
|
rlm@1
|
44 buf_t_ i = -0x7FFFFFFE;
|
rlm@1
|
45 assert( (i >> 1) == -0x3FFFFFFF );
|
rlm@1
|
46
|
rlm@1
|
47 // casting to short truncates to 16 bits and sign-extends
|
rlm@1
|
48 i = 0x18000;
|
rlm@1
|
49 assert( (short) i == -0x8000 );
|
rlm@1
|
50 #endif
|
rlm@1
|
51
|
rlm@1
|
52 clear();
|
rlm@1
|
53 }
|
rlm@1
|
54
|
rlm@1
|
55 Blip_Buffer::~Blip_Buffer()
|
rlm@1
|
56 {
|
rlm@1
|
57 if ( buffer_size_ != silent_buf_size )
|
rlm@1
|
58 free( buffer_ );
|
rlm@1
|
59 }
|
rlm@1
|
60
|
rlm@1
|
61 Silent_Blip_Buffer::Silent_Blip_Buffer()
|
rlm@1
|
62 {
|
rlm@1
|
63 factor_ = 0;
|
rlm@1
|
64 buffer_ = buf;
|
rlm@1
|
65 buffer_size_ = silent_buf_size;
|
rlm@1
|
66 clear();
|
rlm@1
|
67 }
|
rlm@1
|
68
|
rlm@1
|
69 void Blip_Buffer::clear( int entire_buffer )
|
rlm@1
|
70 {
|
rlm@1
|
71 offset_ = 0;
|
rlm@1
|
72 reader_accum_ = 0;
|
rlm@1
|
73 modified_ = 0;
|
rlm@1
|
74 if ( buffer_ )
|
rlm@1
|
75 {
|
rlm@1
|
76 long count = (entire_buffer ? buffer_size_ : samples_avail());
|
rlm@1
|
77 memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) );
|
rlm@1
|
78 }
|
rlm@1
|
79 }
|
rlm@1
|
80
|
rlm@1
|
81 Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec )
|
rlm@1
|
82 {
|
rlm@1
|
83 if ( buffer_size_ == silent_buf_size )
|
rlm@1
|
84 {
|
rlm@1
|
85 assert( 0 );
|
rlm@1
|
86 return "Internal (tried to resize Silent_Blip_Buffer)";
|
rlm@1
|
87 }
|
rlm@1
|
88
|
rlm@1
|
89 // start with maximum length that resampled time can represent
|
rlm@1
|
90 long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64;
|
rlm@1
|
91 if ( msec != blip_max_length )
|
rlm@1
|
92 {
|
rlm@1
|
93 long s = (new_rate * (msec + 1) + 999) / 1000;
|
rlm@1
|
94 if ( s < new_size )
|
rlm@1
|
95 new_size = s;
|
rlm@1
|
96 else
|
rlm@1
|
97 assert( 0 ); // fails if requested buffer length exceeds limit
|
rlm@1
|
98 }
|
rlm@1
|
99
|
rlm@1
|
100 if ( buffer_size_ != new_size )
|
rlm@1
|
101 {
|
rlm@1
|
102 void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ );
|
rlm@1
|
103 if ( !p )
|
rlm@1
|
104 return "Out of memory";
|
rlm@1
|
105 buffer_ = (buf_t_*) p;
|
rlm@1
|
106 }
|
rlm@1
|
107
|
rlm@1
|
108 buffer_size_ = new_size;
|
rlm@1
|
109 assert( buffer_size_ != silent_buf_size ); // size should never happen to match this
|
rlm@1
|
110
|
rlm@1
|
111 // update things based on the sample rate
|
rlm@1
|
112 sample_rate_ = new_rate;
|
rlm@1
|
113 length_ = new_size * 1000 / new_rate - 1;
|
rlm@1
|
114 if ( msec )
|
rlm@1
|
115 assert( length_ == msec ); // ensure length is same as that passed in
|
rlm@1
|
116
|
rlm@1
|
117 // update these since they depend on sample rate
|
rlm@1
|
118 if ( clock_rate_ )
|
rlm@1
|
119 clock_rate( clock_rate_ );
|
rlm@1
|
120 bass_freq( bass_freq_ );
|
rlm@1
|
121
|
rlm@1
|
122 clear();
|
rlm@1
|
123
|
rlm@1
|
124 return 0; // success
|
rlm@1
|
125 }
|
rlm@1
|
126
|
rlm@1
|
127 blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const
|
rlm@1
|
128 {
|
rlm@1
|
129 double ratio = (double) sample_rate_ / rate;
|
rlm@1
|
130 blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 );
|
rlm@1
|
131 assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large
|
rlm@1
|
132 return (blip_resampled_time_t) factor;
|
rlm@1
|
133 }
|
rlm@1
|
134
|
rlm@1
|
135 void Blip_Buffer::bass_freq( int freq )
|
rlm@1
|
136 {
|
rlm@1
|
137 bass_freq_ = freq;
|
rlm@1
|
138 int shift = 31;
|
rlm@1
|
139 if ( freq > 0 )
|
rlm@1
|
140 {
|
rlm@1
|
141 shift = 13;
|
rlm@1
|
142 long f = (freq << 16) / sample_rate_;
|
rlm@1
|
143 while ( (f >>= 1) && --shift ) { }
|
rlm@1
|
144 }
|
rlm@1
|
145 bass_shift_ = shift;
|
rlm@1
|
146 }
|
rlm@1
|
147
|
rlm@1
|
148 void Blip_Buffer::end_frame( blip_time_t t )
|
rlm@1
|
149 {
|
rlm@1
|
150 offset_ += t * factor_;
|
rlm@1
|
151 assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer
|
rlm@1
|
152 }
|
rlm@1
|
153
|
rlm@1
|
154 long Blip_Buffer::count_samples( blip_time_t t ) const
|
rlm@1
|
155 {
|
rlm@1
|
156 blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY;
|
rlm@1
|
157 blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY;
|
rlm@1
|
158 return long (last_sample - first_sample);
|
rlm@1
|
159 }
|
rlm@1
|
160
|
rlm@1
|
161 blip_time_t Blip_Buffer::count_clocks( long count ) const
|
rlm@1
|
162 {
|
rlm@1
|
163 if ( !factor_ )
|
rlm@1
|
164 {
|
rlm@1
|
165 assert( 0 ); // sample rate and clock rates must be set first
|
rlm@1
|
166 return 0;
|
rlm@1
|
167 }
|
rlm@1
|
168
|
rlm@1
|
169 if ( count > buffer_size_ )
|
rlm@1
|
170 count = buffer_size_;
|
rlm@1
|
171 blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
|
rlm@1
|
172 return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_);
|
rlm@1
|
173 }
|
rlm@1
|
174
|
rlm@1
|
175 void Blip_Buffer::remove_samples( long count )
|
rlm@1
|
176 {
|
rlm@1
|
177 if ( count )
|
rlm@1
|
178 {
|
rlm@1
|
179 remove_silence( count );
|
rlm@1
|
180
|
rlm@1
|
181 // copy remaining samples to beginning and clear old samples
|
rlm@1
|
182 long remain = samples_avail() + blip_buffer_extra_;
|
rlm@1
|
183 memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ );
|
rlm@1
|
184 memset( buffer_ + remain, 0, count * sizeof *buffer_ );
|
rlm@1
|
185 }
|
rlm@1
|
186 }
|
rlm@1
|
187
|
rlm@1
|
188 // Blip_Synth_
|
rlm@1
|
189
|
rlm@1
|
190 Blip_Synth_Fast_::Blip_Synth_Fast_()
|
rlm@1
|
191 {
|
rlm@1
|
192 buf = 0;
|
rlm@1
|
193 last_amp = 0;
|
rlm@1
|
194 delta_factor = 0;
|
rlm@1
|
195 }
|
rlm@1
|
196
|
rlm@1
|
197 void Blip_Synth_Fast_::volume_unit( double new_unit )
|
rlm@1
|
198 {
|
rlm@1
|
199 delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5);
|
rlm@1
|
200 }
|
rlm@1
|
201
|
rlm@1
|
202 #if !BLIP_BUFFER_FAST
|
rlm@1
|
203
|
rlm@1
|
204 Blip_Synth_::Blip_Synth_( short* p, int w ) :
|
rlm@1
|
205 impulses( p ),
|
rlm@1
|
206 width( w )
|
rlm@1
|
207 {
|
rlm@1
|
208 volume_unit_ = 0.0;
|
rlm@1
|
209 kernel_unit = 0;
|
rlm@1
|
210 buf = 0;
|
rlm@1
|
211 last_amp = 0;
|
rlm@1
|
212 delta_factor = 0;
|
rlm@1
|
213 }
|
rlm@1
|
214
|
rlm@1
|
215 #undef PI
|
rlm@1
|
216 #define PI 3.1415926535897932384626433832795029
|
rlm@1
|
217
|
rlm@1
|
218 static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff )
|
rlm@1
|
219 {
|
rlm@1
|
220 if ( cutoff >= 0.999 )
|
rlm@1
|
221 cutoff = 0.999;
|
rlm@1
|
222
|
rlm@1
|
223 if ( treble < -300.0 )
|
rlm@1
|
224 treble = -300.0;
|
rlm@1
|
225 if ( treble > 5.0 )
|
rlm@1
|
226 treble = 5.0;
|
rlm@1
|
227
|
rlm@1
|
228 double const maxh = 4096.0;
|
rlm@1
|
229 double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) );
|
rlm@1
|
230 double const pow_a_n = pow( rolloff, maxh - maxh * cutoff );
|
rlm@1
|
231 double const to_angle = PI / 2 / maxh / oversample;
|
rlm@1
|
232 for ( int i = 0; i < count; i++ )
|
rlm@1
|
233 {
|
rlm@1
|
234 double angle = ((i - count) * 2 + 1) * to_angle;
|
rlm@1
|
235 double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle );
|
rlm@1
|
236 double cos_nc_angle = cos( maxh * cutoff * angle );
|
rlm@1
|
237 double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle );
|
rlm@1
|
238 double cos_angle = cos( angle );
|
rlm@1
|
239
|
rlm@1
|
240 c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle;
|
rlm@1
|
241 double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle);
|
rlm@1
|
242 double b = 2.0 - cos_angle - cos_angle;
|
rlm@1
|
243 double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle;
|
rlm@1
|
244
|
rlm@1
|
245 out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d
|
rlm@1
|
246 }
|
rlm@1
|
247 }
|
rlm@1
|
248
|
rlm@1
|
249 void blip_eq_t::generate( float* out, int count ) const
|
rlm@1
|
250 {
|
rlm@1
|
251 // lower cutoff freq for narrow kernels with their wider transition band
|
rlm@1
|
252 // (8 points->1.49, 16 points->1.15)
|
rlm@1
|
253 double oversample = blip_res * 2.25 / count + 0.85;
|
rlm@1
|
254 double half_rate = sample_rate * 0.5;
|
rlm@1
|
255 if ( cutoff_freq )
|
rlm@1
|
256 oversample = half_rate / cutoff_freq;
|
rlm@1
|
257 double cutoff = rolloff_freq * oversample / half_rate;
|
rlm@1
|
258
|
rlm@1
|
259 gen_sinc( out, count, blip_res * oversample, treble, cutoff );
|
rlm@1
|
260
|
rlm@1
|
261 // apply (half of) hamming window
|
rlm@1
|
262 double to_fraction = PI / (count - 1);
|
rlm@1
|
263 for ( int i = count; i--; )
|
rlm@1
|
264 out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction );
|
rlm@1
|
265 }
|
rlm@1
|
266
|
rlm@1
|
267 void Blip_Synth_::adjust_impulse()
|
rlm@1
|
268 {
|
rlm@1
|
269 // sum pairs for each phase and add error correction to end of first half
|
rlm@1
|
270 int const size = impulses_size();
|
rlm@1
|
271 for ( int p = blip_res; p-- >= blip_res / 2; )
|
rlm@1
|
272 {
|
rlm@1
|
273 int p2 = blip_res - 2 - p;
|
rlm@1
|
274 long error = kernel_unit;
|
rlm@1
|
275 for ( int i = 1; i < size; i += blip_res )
|
rlm@1
|
276 {
|
rlm@1
|
277 error -= impulses [i + p ];
|
rlm@1
|
278 error -= impulses [i + p2];
|
rlm@1
|
279 }
|
rlm@1
|
280 if ( p == p2 )
|
rlm@1
|
281 error /= 2; // phase = 0.5 impulse uses same half for both sides
|
rlm@1
|
282 impulses [size - blip_res + p] += (short) error;
|
rlm@1
|
283 //printf( "error: %ld\n", error );
|
rlm@1
|
284 }
|
rlm@1
|
285
|
rlm@1
|
286 //for ( int i = blip_res; i--; printf( "\n" ) )
|
rlm@1
|
287 // for ( int j = 0; j < width / 2; j++ )
|
rlm@1
|
288 // printf( "%5ld,", impulses [j * blip_res + i + 1] );
|
rlm@1
|
289 }
|
rlm@1
|
290
|
rlm@1
|
291 void Blip_Synth_::treble_eq( blip_eq_t const& eq )
|
rlm@1
|
292 {
|
rlm@1
|
293 float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2];
|
rlm@1
|
294
|
rlm@1
|
295 int const half_size = blip_res / 2 * (width - 1);
|
rlm@1
|
296 eq.generate( &fimpulse [blip_res], half_size );
|
rlm@1
|
297
|
rlm@1
|
298 int i;
|
rlm@1
|
299
|
rlm@1
|
300 // need mirror slightly past center for calculation
|
rlm@1
|
301 for ( i = blip_res; i--; )
|
rlm@1
|
302 fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i];
|
rlm@1
|
303
|
rlm@1
|
304 // starts at 0
|
rlm@1
|
305 for ( i = 0; i < blip_res; i++ )
|
rlm@1
|
306 fimpulse [i] = 0.0f;
|
rlm@1
|
307
|
rlm@1
|
308 // find rescale factor
|
rlm@1
|
309 double total = 0.0;
|
rlm@1
|
310 for ( i = 0; i < half_size; i++ )
|
rlm@1
|
311 total += fimpulse [blip_res + i];
|
rlm@1
|
312
|
rlm@1
|
313 //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB
|
rlm@1
|
314 //double const base_unit = 37888.0; // allows treble to +5 dB
|
rlm@1
|
315 double const base_unit = 32768.0; // necessary for blip_unscaled to work
|
rlm@1
|
316 double rescale = base_unit / 2 / total;
|
rlm@1
|
317 kernel_unit = (long) base_unit;
|
rlm@1
|
318
|
rlm@1
|
319 // integrate, first difference, rescale, convert to int
|
rlm@1
|
320 double sum = 0.0;
|
rlm@1
|
321 double next = 0.0;
|
rlm@1
|
322 int const size = this->impulses_size();
|
rlm@1
|
323 for ( i = 0; i < size; i++ )
|
rlm@1
|
324 {
|
rlm@1
|
325 impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 );
|
rlm@1
|
326 sum += fimpulse [i];
|
rlm@1
|
327 next += fimpulse [i + blip_res];
|
rlm@1
|
328 }
|
rlm@1
|
329 adjust_impulse();
|
rlm@1
|
330
|
rlm@1
|
331 // volume might require rescaling
|
rlm@1
|
332 double vol = volume_unit_;
|
rlm@1
|
333 if ( vol )
|
rlm@1
|
334 {
|
rlm@1
|
335 volume_unit_ = 0.0;
|
rlm@1
|
336 volume_unit( vol );
|
rlm@1
|
337 }
|
rlm@1
|
338 }
|
rlm@1
|
339
|
rlm@1
|
340 void Blip_Synth_::volume_unit( double new_unit )
|
rlm@1
|
341 {
|
rlm@1
|
342 if ( new_unit != volume_unit_ )
|
rlm@1
|
343 {
|
rlm@1
|
344 // use default eq if it hasn't been set yet
|
rlm@1
|
345 if ( !kernel_unit )
|
rlm@1
|
346 treble_eq( -8.0 );
|
rlm@1
|
347
|
rlm@1
|
348 volume_unit_ = new_unit;
|
rlm@1
|
349 double factor = new_unit * (1L << blip_sample_bits) / kernel_unit;
|
rlm@1
|
350
|
rlm@1
|
351 if ( factor > 0.0 )
|
rlm@1
|
352 {
|
rlm@1
|
353 int shift = 0;
|
rlm@1
|
354
|
rlm@1
|
355 // if unit is really small, might need to attenuate kernel
|
rlm@1
|
356 while ( factor < 2.0 )
|
rlm@1
|
357 {
|
rlm@1
|
358 shift++;
|
rlm@1
|
359 factor *= 2.0;
|
rlm@1
|
360 }
|
rlm@1
|
361
|
rlm@1
|
362 if ( shift )
|
rlm@1
|
363 {
|
rlm@1
|
364 kernel_unit >>= shift;
|
rlm@1
|
365 assert( kernel_unit > 0 ); // fails if volume unit is too low
|
rlm@1
|
366
|
rlm@1
|
367 // keep values positive to avoid round-towards-zero of sign-preserving
|
rlm@1
|
368 // right shift for negative values
|
rlm@1
|
369 long offset = 0x8000 + (1 << (shift - 1));
|
rlm@1
|
370 long offset2 = 0x8000 >> shift;
|
rlm@1
|
371 for ( int i = impulses_size(); i--; )
|
rlm@1
|
372 impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2);
|
rlm@1
|
373 adjust_impulse();
|
rlm@1
|
374 }
|
rlm@1
|
375 }
|
rlm@1
|
376 delta_factor = (int) floor( factor + 0.5 );
|
rlm@1
|
377 //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit );
|
rlm@1
|
378 }
|
rlm@1
|
379 }
|
rlm@1
|
380 #endif
|
rlm@1
|
381
|
rlm@1
|
382 long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo )
|
rlm@1
|
383 {
|
rlm@1
|
384 long count = samples_avail();
|
rlm@1
|
385 if ( count > max_samples )
|
rlm@1
|
386 count = max_samples;
|
rlm@1
|
387
|
rlm@1
|
388 if ( count )
|
rlm@1
|
389 {
|
rlm@1
|
390 int const bass = BLIP_READER_BASS( *this );
|
rlm@1
|
391 BLIP_READER_BEGIN( reader, *this );
|
rlm@1
|
392 BLIP_READER_ADJ_( reader, count );
|
rlm@1
|
393 blip_sample_t* BLIP_RESTRICT out = out_ + count;
|
rlm@1
|
394 blip_long offset = (blip_long) -count;
|
rlm@1
|
395
|
rlm@1
|
396 if ( !stereo )
|
rlm@1
|
397 {
|
rlm@1
|
398 do
|
rlm@1
|
399 {
|
rlm@1
|
400 blip_long s = BLIP_READER_READ( reader );
|
rlm@1
|
401 BLIP_READER_NEXT_IDX_( reader, bass, offset );
|
rlm@1
|
402 BLIP_CLAMP( s, s );
|
rlm@1
|
403 out [offset] = (blip_sample_t) s;
|
rlm@1
|
404 }
|
rlm@1
|
405 while ( ++offset );
|
rlm@1
|
406 }
|
rlm@1
|
407 else
|
rlm@1
|
408 {
|
rlm@1
|
409 do
|
rlm@1
|
410 {
|
rlm@1
|
411 blip_long s = BLIP_READER_READ( reader );
|
rlm@1
|
412 BLIP_READER_NEXT_IDX_( reader, bass, offset );
|
rlm@1
|
413 BLIP_CLAMP( s, s );
|
rlm@1
|
414 out [offset * 2] = (blip_sample_t) s;
|
rlm@1
|
415 }
|
rlm@1
|
416 while ( ++offset );
|
rlm@1
|
417 }
|
rlm@1
|
418
|
rlm@1
|
419 BLIP_READER_END( reader, *this );
|
rlm@1
|
420
|
rlm@1
|
421 remove_samples( count );
|
rlm@1
|
422 }
|
rlm@1
|
423 return count;
|
rlm@1
|
424 }
|
rlm@1
|
425
|
rlm@1
|
426 void Blip_Buffer::mix_samples( blip_sample_t const* in, long count )
|
rlm@1
|
427 {
|
rlm@1
|
428 if ( buffer_size_ == silent_buf_size )
|
rlm@1
|
429 {
|
rlm@1
|
430 assert( 0 );
|
rlm@1
|
431 return;
|
rlm@1
|
432 }
|
rlm@1
|
433
|
rlm@1
|
434 buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2;
|
rlm@1
|
435
|
rlm@1
|
436 int const sample_shift = blip_sample_bits - 16;
|
rlm@1
|
437 int prev = 0;
|
rlm@1
|
438 while ( count-- )
|
rlm@1
|
439 {
|
rlm@1
|
440 blip_long s = (blip_long) *in++ << sample_shift;
|
rlm@1
|
441 *out += s - prev;
|
rlm@1
|
442 prev = s;
|
rlm@1
|
443 ++out;
|
rlm@1
|
444 }
|
rlm@1
|
445 *out -= prev;
|
rlm@1
|
446 }
|
rlm@1
|
447
|
rlm@1
|
448 blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1;
|
rlm@1
|
449
|
rlm@1
|
450 void Blip_Buffer::save_state( blip_buffer_state_t* out )
|
rlm@1
|
451 {
|
rlm@1
|
452 assert( samples_avail() == 0 );
|
rlm@1
|
453 out->offset_ = offset_;
|
rlm@1
|
454 out->reader_accum_ = reader_accum_;
|
rlm@1
|
455 memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf );
|
rlm@1
|
456 }
|
rlm@1
|
457
|
rlm@1
|
458 void Blip_Buffer::load_state( blip_buffer_state_t const& in )
|
rlm@1
|
459 {
|
rlm@1
|
460 clear( false );
|
rlm@1
|
461
|
rlm@1
|
462 offset_ = in.offset_;
|
rlm@1
|
463 reader_accum_ = in.reader_accum_;
|
rlm@1
|
464 memcpy( buffer_, in.buf, sizeof in.buf );
|
rlm@1
|
465 }
|