Mercurial > vba-clojure
view src/SFMT/SFMT.c @ 467:ac0ed5c1a1c4
working on drums.
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Fri, 04 May 2012 05:17:18 -0500 |
parents | f9f4f1b99eed |
children |
line wrap: on
line source
1 /**2 * @file SFMT.c3 * @brief SIMD oriented Fast Mersenne Twister(SFMT)4 *5 * @author Mutsuo Saito (Hiroshima University)6 * @author Makoto Matsumoto (Hiroshima University)7 *8 * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima9 * University. All rights reserved.10 *11 * The new BSD License is applied to this software, see LICENSE.txt12 */13 #include <string.h>14 #include <assert.h>15 #include "SFMT.h"16 #include "SFMT-params.h"18 #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)19 #define BIG_ENDIAN64 120 #endif21 #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)22 #define BIG_ENDIAN64 123 #endif24 #if defined(ONLY64) && !defined(BIG_ENDIAN64)25 #if defined(__GNUC__)26 #error "-DONLY64 must be specified with -DBIG_ENDIAN64"27 #endif28 #undef ONLY6429 #endif30 /*------------------------------------------------------31 128-bit SIMD data type for Altivec, SSE2 or standard C32 ------------------------------------------------------*/33 #if defined(HAVE_ALTIVEC)34 #if !defined(__APPLE__)35 #include <altivec.h>36 #endif37 /** 128-bit data structure */38 union W128_T {39 vector unsigned int s;40 uint32_t u[4];41 };42 /** 128-bit data type */43 typedef union W128_T w128_t;45 #elif defined(HAVE_SSE2)46 #include <emmintrin.h>48 /** 128-bit data structure */49 union W128_T {50 __m128i si;51 uint32_t u[4];52 };53 /** 128-bit data type */54 typedef union W128_T w128_t;56 #else58 /** 128-bit data structure */59 struct W128_T {60 uint32_t u[4];61 };62 /** 128-bit data type */63 typedef struct W128_T w128_t;65 #endif67 /*--------------------------------------68 FILE GLOBAL VARIABLES69 internal state, index counter and flag70 --------------------------------------*/71 /** the 128-bit internal state array */72 static w128_t sfmt[N];73 /** the 32bit integer pointer to the 128-bit internal state array */74 static uint32_t *psfmt32 = &sfmt[0].u[0];75 #if !defined(BIG_ENDIAN64) || defined(ONLY64)76 /** the 64bit integer pointer to the 128-bit internal state array */77 static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];78 #endif79 /** index counter to the 32-bit internal state array */80 static int idx;81 /** a flag: it is 0 if and only if the internal state is not yet82 * initialized. */83 static int initialized = 0;84 /** a parity check vector which certificate the period of 2^{MEXP} */85 static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};87 /*----------------88 STATIC FUNCTIONS89 ----------------*/90 inline static int idxof(int i);91 inline static void rshift128(w128_t *out, w128_t const *in, int shift);92 inline static void lshift128(w128_t *out, w128_t const *in, int shift);93 inline static void gen_rand_all(void);94 inline static void gen_rand_array(w128_t *array, int size);95 inline static uint32_t func1(uint32_t x);96 inline static uint32_t func2(uint32_t x);97 static void period_certification(void);98 #if defined(BIG_ENDIAN64) && !defined(ONLY64)99 inline static void swap(w128_t *array, int size);100 #endif102 #if defined(HAVE_ALTIVEC)103 #include "SFMT-alti.h"104 #elif defined(HAVE_SSE2)105 #include "SFMT-sse2.h"106 #endif108 /**109 * This function simulate a 64-bit index of LITTLE ENDIAN110 * in BIG ENDIAN machine.111 */112 #ifdef ONLY64113 inline static int idxof(int i) {114 return i ^ 1;115 }116 #else117 inline static int idxof(int i) {118 return i;119 }120 #endif121 /**122 * This function simulates SIMD 128-bit right shift by the standard C.123 * The 128-bit integer given in in is shifted by (shift * 8) bits.124 * This function simulates the LITTLE ENDIAN SIMD.125 * @param out the output of this function126 * @param in the 128-bit data to be shifted127 * @param shift the shift value128 */129 #ifdef ONLY64130 inline static void rshift128(w128_t *out, w128_t const *in, int shift) {131 uint64_t th, tl, oh, ol;133 th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);134 tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);136 oh = th >> (shift * 8);137 ol = tl >> (shift * 8);138 ol |= th << (64 - shift * 8);139 out->u[0] = (uint32_t)(ol >> 32);140 out->u[1] = (uint32_t)(ol & 0xffffffff);141 out->u[2] = (uint32_t)(oh >> 32);142 out->u[3] = (uint32_t)(oh & 0xffffffff);143 }144 #else145 inline static void rshift128(w128_t *out, w128_t const *in, int shift) {146 uint64_t th, tl, oh, ol;148 th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);149 tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);151 oh = th >> (shift * 8);152 ol = tl >> (shift * 8);153 ol |= th << (64 - shift * 8);154 out->u[1] = (uint32_t)(ol >> 32);155 out->u[0] = (uint32_t)(ol & 0xffffffff);156 out->u[3] = (uint32_t)(oh >> 32);157 out->u[2] = (uint32_t)(oh & 0xffffffff);158 }159 #endif160 /**161 * This function simulates SIMD 128-bit left shift by the standard C.162 * The 128-bit integer given in in is shifted by (shift * 8) bits.163 * This function simulates the LITTLE ENDIAN SIMD.164 * @param out the output of this function165 * @param in the 128-bit data to be shifted166 * @param shift the shift value167 */168 #ifdef ONLY64169 inline static void lshift128(w128_t *out, w128_t const *in, int shift) {170 uint64_t th, tl, oh, ol;172 th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);173 tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);175 oh = th << (shift * 8);176 ol = tl << (shift * 8);177 oh |= tl >> (64 - shift * 8);178 out->u[0] = (uint32_t)(ol >> 32);179 out->u[1] = (uint32_t)(ol & 0xffffffff);180 out->u[2] = (uint32_t)(oh >> 32);181 out->u[3] = (uint32_t)(oh & 0xffffffff);182 }183 #else184 inline static void lshift128(w128_t *out, w128_t const *in, int shift) {185 uint64_t th, tl, oh, ol;187 th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);188 tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);190 oh = th << (shift * 8);191 ol = tl << (shift * 8);192 oh |= tl >> (64 - shift * 8);193 out->u[1] = (uint32_t)(ol >> 32);194 out->u[0] = (uint32_t)(ol & 0xffffffff);195 out->u[3] = (uint32_t)(oh >> 32);196 out->u[2] = (uint32_t)(oh & 0xffffffff);197 }198 #endif200 /**201 * This function represents the recursion formula.202 * @param r output203 * @param a a 128-bit part of the internal state array204 * @param b a 128-bit part of the internal state array205 * @param c a 128-bit part of the internal state array206 * @param d a 128-bit part of the internal state array207 */208 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))209 #ifdef ONLY64210 inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,211 w128_t *d) {212 w128_t x;213 w128_t y;215 lshift128(&x, a, SL2);216 rshift128(&y, c, SR2);217 r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]218 ^ (d->u[0] << SL1);219 r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]220 ^ (d->u[1] << SL1);221 r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]222 ^ (d->u[2] << SL1);223 r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]224 ^ (d->u[3] << SL1);225 }226 #else227 inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,228 w128_t *d) {229 w128_t x;230 w128_t y;232 lshift128(&x, a, SL2);233 rshift128(&y, c, SR2);234 r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]235 ^ (d->u[0] << SL1);236 r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]237 ^ (d->u[1] << SL1);238 r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]239 ^ (d->u[2] << SL1);240 r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]241 ^ (d->u[3] << SL1);242 }243 #endif244 #endif246 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))247 /**248 * This function fills the internal state array with pseudorandom249 * integers.250 */251 inline static void gen_rand_all(void) {252 int i;253 w128_t *r1, *r2;255 r1 = &sfmt[N - 2];256 r2 = &sfmt[N - 1];257 for (i = 0; i < N - POS1; i++) {258 do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);259 r1 = r2;260 r2 = &sfmt[i];261 }262 for (; i < N; i++) {263 do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);264 r1 = r2;265 r2 = &sfmt[i];266 }267 }269 /**270 * This function fills the user-specified array with pseudorandom271 * integers.272 *273 * @param array an 128-bit array to be filled by pseudorandom numbers.274 * @param size number of 128-bit pseudorandom numbers to be generated.275 */276 inline static void gen_rand_array(w128_t *array, int size) {277 int i, j;278 w128_t *r1, *r2;280 r1 = &sfmt[N - 2];281 r2 = &sfmt[N - 1];282 for (i = 0; i < N - POS1; i++) {283 do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);284 r1 = r2;285 r2 = &array[i];286 }287 for (; i < N; i++) {288 do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);289 r1 = r2;290 r2 = &array[i];291 }292 for (; i < size - N; i++) {293 do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);294 r1 = r2;295 r2 = &array[i];296 }297 for (j = 0; j < 2 * N - size; j++) {298 sfmt[j] = array[j + size - N];299 }300 for (; i < size; i++, j++) {301 do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);302 r1 = r2;303 r2 = &array[i];304 sfmt[j] = array[i];305 }306 }307 #endif309 #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)310 inline static void swap(w128_t *array, int size) {311 int i;312 uint32_t x, y;314 for (i = 0; i < size; i++) {315 x = array[i].u[0];316 y = array[i].u[2];317 array[i].u[0] = array[i].u[1];318 array[i].u[2] = array[i].u[3];319 array[i].u[1] = x;320 array[i].u[3] = y;321 }322 }323 #endif324 /**325 * This function represents a function used in the initialization326 * by init_by_array327 * @param x 32-bit integer328 * @return 32-bit integer329 */330 static uint32_t func1(uint32_t x) {331 return (x ^ (x >> 27)) * (uint32_t)1664525UL;332 }334 /**335 * This function represents a function used in the initialization336 * by init_by_array337 * @param x 32-bit integer338 * @return 32-bit integer339 */340 static uint32_t func2(uint32_t x) {341 return (x ^ (x >> 27)) * (uint32_t)1566083941UL;342 }344 /**345 * This function certificate the period of 2^{MEXP}346 */347 static void period_certification(void) {348 int inner = 0;349 int i, j;350 uint32_t work;352 for (i = 0; i < 4; i++)353 inner ^= psfmt32[idxof(i)] & parity[i];354 for (i = 16; i > 0; i >>= 1)355 inner ^= inner >> i;356 inner &= 1;357 /* check OK */358 if (inner == 1) {359 return;360 }361 /* check NG, and modification */362 for (i = 0; i < 4; i++) {363 work = 1;364 for (j = 0; j < 32; j++) {365 if ((work & parity[i]) != 0) {366 psfmt32[idxof(i)] ^= work;367 return;368 }369 work = work << 1;370 }371 }372 }374 /*----------------375 PUBLIC FUNCTIONS376 ----------------*/377 /**378 * This function returns the identification string.379 * The string shows the word size, the Mersenne exponent,380 * and all parameters of this generator.381 */382 const char *get_idstring(void) {383 return IDSTR;384 }386 /**387 * This function returns the minimum size of array used for \b388 * fill_array32() function.389 * @return minimum size of array used for fill_array32() function.390 */391 int get_min_array_size32(void) {392 return N32;393 }395 /**396 * This function returns the minimum size of array used for \b397 * fill_array64() function.398 * @return minimum size of array used for fill_array64() function.399 */400 int get_min_array_size64(void) {401 return N64;402 }404 #ifndef ONLY64405 /**406 * This function generates and returns 32-bit pseudorandom number.407 * init_gen_rand or init_by_array must be called before this function.408 * @return 32-bit pseudorandom number409 */410 uint32_t gen_rand32(void) {411 uint32_t r;413 assert(initialized);414 if (idx >= N32) {415 gen_rand_all();416 idx = 0;417 }418 r = psfmt32[idx++];419 return r;420 }421 #endif422 /**423 * This function generates and returns 64-bit pseudorandom number.424 * init_gen_rand or init_by_array must be called before this function.425 * The function gen_rand64 should not be called after gen_rand32,426 * unless an initialization is again executed.427 * @return 64-bit pseudorandom number428 */429 uint64_t gen_rand64(void) {430 #if defined(BIG_ENDIAN64) && !defined(ONLY64)431 uint32_t r1, r2;432 #else433 uint64_t r;434 #endif436 assert(initialized);437 assert(idx % 2 == 0);439 if (idx >= N32) {440 gen_rand_all();441 idx = 0;442 }443 #if defined(BIG_ENDIAN64) && !defined(ONLY64)444 r1 = psfmt32[idx];445 r2 = psfmt32[idx + 1];446 idx += 2;447 return ((uint64_t)r2 << 32) | r1;448 #else449 r = psfmt64[idx / 2];450 idx += 2;451 return r;452 #endif453 }455 #ifndef ONLY64456 /**457 * This function generates pseudorandom 32-bit integers in the458 * specified array[] by one call. The number of pseudorandom integers459 * is specified by the argument size, which must be at least 624 and a460 * multiple of four. The generation by this function is much faster461 * than the following gen_rand function.462 *463 * For initialization, init_gen_rand or init_by_array must be called464 * before the first call of this function. This function can not be465 * used after calling gen_rand function, without initialization.466 *467 * @param array an array where pseudorandom 32-bit integers are filled468 * by this function. The pointer to the array must be \b "aligned"469 * (namely, must be a multiple of 16) in the SIMD version, since it470 * refers to the address of a 128-bit integer. In the standard C471 * version, the pointer is arbitrary.472 *473 * @param size the number of 32-bit pseudorandom integers to be474 * generated. size must be a multiple of 4, and greater than or equal475 * to (MEXP / 128 + 1) * 4.476 *477 * @note \b memalign or \b posix_memalign is available to get aligned478 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX479 * returns the pointer to the aligned memory block.480 */481 void fill_array32(uint32_t *array, int size) {482 assert(initialized);483 assert(idx == N32);484 assert(size % 4 == 0);485 assert(size >= N32);487 gen_rand_array((w128_t *)array, size / 4);488 idx = N32;489 }490 #endif492 /**493 * This function generates pseudorandom 64-bit integers in the494 * specified array[] by one call. The number of pseudorandom integers495 * is specified by the argument size, which must be at least 312 and a496 * multiple of two. The generation by this function is much faster497 * than the following gen_rand function.498 *499 * For initialization, init_gen_rand or init_by_array must be called500 * before the first call of this function. This function can not be501 * used after calling gen_rand function, without initialization.502 *503 * @param array an array where pseudorandom 64-bit integers are filled504 * by this function. The pointer to the array must be "aligned"505 * (namely, must be a multiple of 16) in the SIMD version, since it506 * refers to the address of a 128-bit integer. In the standard C507 * version, the pointer is arbitrary.508 *509 * @param size the number of 64-bit pseudorandom integers to be510 * generated. size must be a multiple of 2, and greater than or equal511 * to (MEXP / 128 + 1) * 2512 *513 * @note \b memalign or \b posix_memalign is available to get aligned514 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX515 * returns the pointer to the aligned memory block.516 */517 void fill_array64(uint64_t *array, int size) {518 assert(initialized);519 assert(idx == N32);520 assert(size % 2 == 0);521 assert(size >= N64);523 gen_rand_array((w128_t *)array, size / 2);524 idx = N32;526 #if defined(BIG_ENDIAN64) && !defined(ONLY64)527 swap((w128_t *)array, size /2);528 #endif529 }531 /**532 * This function initializes the internal state array with a 32-bit533 * integer seed.534 *535 * @param seed a 32-bit integer used as the seed.536 */537 void init_gen_rand(uint32_t seed) {538 int i;540 psfmt32[idxof(0)] = seed;541 for (i = 1; i < N32; i++) {542 psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]543 ^ (psfmt32[idxof(i - 1)] >> 30))544 + i;545 }546 idx = N32;547 period_certification();548 initialized = 1;549 }551 /**552 * This function initializes the internal state array,553 * with an array of 32-bit integers used as the seeds554 * @param init_key the array of 32-bit integers, used as a seed.555 * @param key_length the length of init_key.556 */557 void init_by_array(uint32_t *init_key, int key_length) {558 int i, j, count;559 uint32_t r;560 int lag;561 int mid;562 int size = N * 4;564 if (size >= 623) {565 lag = 11;566 } else if (size >= 68) {567 lag = 7;568 } else if (size >= 39) {569 lag = 5;570 } else {571 lag = 3;572 }573 mid = (size - lag) / 2;575 memset(sfmt, 0x8b, sizeof(sfmt));576 if (key_length + 1 > N32) {577 count = key_length + 1;578 } else {579 count = N32;580 }581 r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]582 ^ psfmt32[idxof(N32 - 1)]);583 psfmt32[idxof(mid)] += r;584 r += key_length;585 psfmt32[idxof(mid + lag)] += r;586 psfmt32[idxof(0)] = r;588 count--;589 for (i = 1, j = 0; (j < count) && (j < key_length); j++) {590 r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]591 ^ psfmt32[idxof((i + N32 - 1) % N32)]);592 psfmt32[idxof((i + mid) % N32)] += r;593 r += init_key[j] + i;594 psfmt32[idxof((i + mid + lag) % N32)] += r;595 psfmt32[idxof(i)] = r;596 i = (i + 1) % N32;597 }598 for (; j < count; j++) {599 r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]600 ^ psfmt32[idxof((i + N32 - 1) % N32)]);601 psfmt32[idxof((i + mid) % N32)] += r;602 r += i;603 psfmt32[idxof((i + mid + lag) % N32)] += r;604 psfmt32[idxof(i)] = r;605 i = (i + 1) % N32;606 }607 for (j = 0; j < N32; j++) {608 r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]609 + psfmt32[idxof((i + N32 - 1) % N32)]);610 psfmt32[idxof((i + mid) % N32)] ^= r;611 r -= i;612 psfmt32[idxof((i + mid + lag) % N32)] ^= r;613 psfmt32[idxof(i)] = r;614 i = (i + 1) % N32;615 }617 idx = N32;618 period_certification();619 initialized = 1;620 }