rlm@1
|
1 /**
|
rlm@1
|
2 * @file SFMT.c
|
rlm@1
|
3 * @brief SIMD oriented Fast Mersenne Twister(SFMT)
|
rlm@1
|
4 *
|
rlm@1
|
5 * @author Mutsuo Saito (Hiroshima University)
|
rlm@1
|
6 * @author Makoto Matsumoto (Hiroshima University)
|
rlm@1
|
7 *
|
rlm@1
|
8 * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
rlm@1
|
9 * University. All rights reserved.
|
rlm@1
|
10 *
|
rlm@1
|
11 * The new BSD License is applied to this software, see LICENSE.txt
|
rlm@1
|
12 */
|
rlm@1
|
13 #include <string.h>
|
rlm@1
|
14 #include <assert.h>
|
rlm@1
|
15 #include "SFMT.h"
|
rlm@1
|
16 #include "SFMT-params.h"
|
rlm@1
|
17
|
rlm@1
|
18 #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
|
rlm@1
|
19 #define BIG_ENDIAN64 1
|
rlm@1
|
20 #endif
|
rlm@1
|
21 #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
|
rlm@1
|
22 #define BIG_ENDIAN64 1
|
rlm@1
|
23 #endif
|
rlm@1
|
24 #if defined(ONLY64) && !defined(BIG_ENDIAN64)
|
rlm@1
|
25 #if defined(__GNUC__)
|
rlm@1
|
26 #error "-DONLY64 must be specified with -DBIG_ENDIAN64"
|
rlm@1
|
27 #endif
|
rlm@1
|
28 #undef ONLY64
|
rlm@1
|
29 #endif
|
rlm@1
|
30 /*------------------------------------------------------
|
rlm@1
|
31 128-bit SIMD data type for Altivec, SSE2 or standard C
|
rlm@1
|
32 ------------------------------------------------------*/
|
rlm@1
|
33 #if defined(HAVE_ALTIVEC)
|
rlm@1
|
34 #if !defined(__APPLE__)
|
rlm@1
|
35 #include <altivec.h>
|
rlm@1
|
36 #endif
|
rlm@1
|
37 /** 128-bit data structure */
|
rlm@1
|
38 union W128_T {
|
rlm@1
|
39 vector unsigned int s;
|
rlm@1
|
40 uint32_t u[4];
|
rlm@1
|
41 };
|
rlm@1
|
42 /** 128-bit data type */
|
rlm@1
|
43 typedef union W128_T w128_t;
|
rlm@1
|
44
|
rlm@1
|
45 #elif defined(HAVE_SSE2)
|
rlm@1
|
46 #include <emmintrin.h>
|
rlm@1
|
47
|
rlm@1
|
48 /** 128-bit data structure */
|
rlm@1
|
49 union W128_T {
|
rlm@1
|
50 __m128i si;
|
rlm@1
|
51 uint32_t u[4];
|
rlm@1
|
52 };
|
rlm@1
|
53 /** 128-bit data type */
|
rlm@1
|
54 typedef union W128_T w128_t;
|
rlm@1
|
55
|
rlm@1
|
56 #else
|
rlm@1
|
57
|
rlm@1
|
58 /** 128-bit data structure */
|
rlm@1
|
59 struct W128_T {
|
rlm@1
|
60 uint32_t u[4];
|
rlm@1
|
61 };
|
rlm@1
|
62 /** 128-bit data type */
|
rlm@1
|
63 typedef struct W128_T w128_t;
|
rlm@1
|
64
|
rlm@1
|
65 #endif
|
rlm@1
|
66
|
rlm@1
|
67 /*--------------------------------------
|
rlm@1
|
68 FILE GLOBAL VARIABLES
|
rlm@1
|
69 internal state, index counter and flag
|
rlm@1
|
70 --------------------------------------*/
|
rlm@1
|
71 /** the 128-bit internal state array */
|
rlm@1
|
72 static w128_t sfmt[N];
|
rlm@1
|
73 /** the 32bit integer pointer to the 128-bit internal state array */
|
rlm@1
|
74 static uint32_t *psfmt32 = &sfmt[0].u[0];
|
rlm@1
|
75 #if !defined(BIG_ENDIAN64) || defined(ONLY64)
|
rlm@1
|
76 /** the 64bit integer pointer to the 128-bit internal state array */
|
rlm@1
|
77 static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];
|
rlm@1
|
78 #endif
|
rlm@1
|
79 /** index counter to the 32-bit internal state array */
|
rlm@1
|
80 static int idx;
|
rlm@1
|
81 /** a flag: it is 0 if and only if the internal state is not yet
|
rlm@1
|
82 * initialized. */
|
rlm@1
|
83 static int initialized = 0;
|
rlm@1
|
84 /** a parity check vector which certificate the period of 2^{MEXP} */
|
rlm@1
|
85 static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
|
rlm@1
|
86
|
rlm@1
|
87 /*----------------
|
rlm@1
|
88 STATIC FUNCTIONS
|
rlm@1
|
89 ----------------*/
|
rlm@1
|
90 inline static int idxof(int i);
|
rlm@1
|
91 inline static void rshift128(w128_t *out, w128_t const *in, int shift);
|
rlm@1
|
92 inline static void lshift128(w128_t *out, w128_t const *in, int shift);
|
rlm@1
|
93 inline static void gen_rand_all(void);
|
rlm@1
|
94 inline static void gen_rand_array(w128_t *array, int size);
|
rlm@1
|
95 inline static uint32_t func1(uint32_t x);
|
rlm@1
|
96 inline static uint32_t func2(uint32_t x);
|
rlm@1
|
97 static void period_certification(void);
|
rlm@1
|
98 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
rlm@1
|
99 inline static void swap(w128_t *array, int size);
|
rlm@1
|
100 #endif
|
rlm@1
|
101
|
rlm@1
|
102 #if defined(HAVE_ALTIVEC)
|
rlm@1
|
103 #include "SFMT-alti.h"
|
rlm@1
|
104 #elif defined(HAVE_SSE2)
|
rlm@1
|
105 #include "SFMT-sse2.h"
|
rlm@1
|
106 #endif
|
rlm@1
|
107
|
rlm@1
|
108 /**
|
rlm@1
|
109 * This function simulate a 64-bit index of LITTLE ENDIAN
|
rlm@1
|
110 * in BIG ENDIAN machine.
|
rlm@1
|
111 */
|
rlm@1
|
112 #ifdef ONLY64
|
rlm@1
|
113 inline static int idxof(int i) {
|
rlm@1
|
114 return i ^ 1;
|
rlm@1
|
115 }
|
rlm@1
|
116 #else
|
rlm@1
|
117 inline static int idxof(int i) {
|
rlm@1
|
118 return i;
|
rlm@1
|
119 }
|
rlm@1
|
120 #endif
|
rlm@1
|
121 /**
|
rlm@1
|
122 * This function simulates SIMD 128-bit right shift by the standard C.
|
rlm@1
|
123 * The 128-bit integer given in in is shifted by (shift * 8) bits.
|
rlm@1
|
124 * This function simulates the LITTLE ENDIAN SIMD.
|
rlm@1
|
125 * @param out the output of this function
|
rlm@1
|
126 * @param in the 128-bit data to be shifted
|
rlm@1
|
127 * @param shift the shift value
|
rlm@1
|
128 */
|
rlm@1
|
129 #ifdef ONLY64
|
rlm@1
|
130 inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
|
rlm@1
|
131 uint64_t th, tl, oh, ol;
|
rlm@1
|
132
|
rlm@1
|
133 th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
|
rlm@1
|
134 tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
|
rlm@1
|
135
|
rlm@1
|
136 oh = th >> (shift * 8);
|
rlm@1
|
137 ol = tl >> (shift * 8);
|
rlm@1
|
138 ol |= th << (64 - shift * 8);
|
rlm@1
|
139 out->u[0] = (uint32_t)(ol >> 32);
|
rlm@1
|
140 out->u[1] = (uint32_t)(ol & 0xffffffff);
|
rlm@1
|
141 out->u[2] = (uint32_t)(oh >> 32);
|
rlm@1
|
142 out->u[3] = (uint32_t)(oh & 0xffffffff);
|
rlm@1
|
143 }
|
rlm@1
|
144 #else
|
rlm@1
|
145 inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
|
rlm@1
|
146 uint64_t th, tl, oh, ol;
|
rlm@1
|
147
|
rlm@1
|
148 th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
|
rlm@1
|
149 tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
|
rlm@1
|
150
|
rlm@1
|
151 oh = th >> (shift * 8);
|
rlm@1
|
152 ol = tl >> (shift * 8);
|
rlm@1
|
153 ol |= th << (64 - shift * 8);
|
rlm@1
|
154 out->u[1] = (uint32_t)(ol >> 32);
|
rlm@1
|
155 out->u[0] = (uint32_t)(ol & 0xffffffff);
|
rlm@1
|
156 out->u[3] = (uint32_t)(oh >> 32);
|
rlm@1
|
157 out->u[2] = (uint32_t)(oh & 0xffffffff);
|
rlm@1
|
158 }
|
rlm@1
|
159 #endif
|
rlm@1
|
160 /**
|
rlm@1
|
161 * This function simulates SIMD 128-bit left shift by the standard C.
|
rlm@1
|
162 * The 128-bit integer given in in is shifted by (shift * 8) bits.
|
rlm@1
|
163 * This function simulates the LITTLE ENDIAN SIMD.
|
rlm@1
|
164 * @param out the output of this function
|
rlm@1
|
165 * @param in the 128-bit data to be shifted
|
rlm@1
|
166 * @param shift the shift value
|
rlm@1
|
167 */
|
rlm@1
|
168 #ifdef ONLY64
|
rlm@1
|
169 inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
|
rlm@1
|
170 uint64_t th, tl, oh, ol;
|
rlm@1
|
171
|
rlm@1
|
172 th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
|
rlm@1
|
173 tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
|
rlm@1
|
174
|
rlm@1
|
175 oh = th << (shift * 8);
|
rlm@1
|
176 ol = tl << (shift * 8);
|
rlm@1
|
177 oh |= tl >> (64 - shift * 8);
|
rlm@1
|
178 out->u[0] = (uint32_t)(ol >> 32);
|
rlm@1
|
179 out->u[1] = (uint32_t)(ol & 0xffffffff);
|
rlm@1
|
180 out->u[2] = (uint32_t)(oh >> 32);
|
rlm@1
|
181 out->u[3] = (uint32_t)(oh & 0xffffffff);
|
rlm@1
|
182 }
|
rlm@1
|
183 #else
|
rlm@1
|
184 inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
|
rlm@1
|
185 uint64_t th, tl, oh, ol;
|
rlm@1
|
186
|
rlm@1
|
187 th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
|
rlm@1
|
188 tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
|
rlm@1
|
189
|
rlm@1
|
190 oh = th << (shift * 8);
|
rlm@1
|
191 ol = tl << (shift * 8);
|
rlm@1
|
192 oh |= tl >> (64 - shift * 8);
|
rlm@1
|
193 out->u[1] = (uint32_t)(ol >> 32);
|
rlm@1
|
194 out->u[0] = (uint32_t)(ol & 0xffffffff);
|
rlm@1
|
195 out->u[3] = (uint32_t)(oh >> 32);
|
rlm@1
|
196 out->u[2] = (uint32_t)(oh & 0xffffffff);
|
rlm@1
|
197 }
|
rlm@1
|
198 #endif
|
rlm@1
|
199
|
rlm@1
|
200 /**
|
rlm@1
|
201 * This function represents the recursion formula.
|
rlm@1
|
202 * @param r output
|
rlm@1
|
203 * @param a a 128-bit part of the internal state array
|
rlm@1
|
204 * @param b a 128-bit part of the internal state array
|
rlm@1
|
205 * @param c a 128-bit part of the internal state array
|
rlm@1
|
206 * @param d a 128-bit part of the internal state array
|
rlm@1
|
207 */
|
rlm@1
|
208 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
|
rlm@1
|
209 #ifdef ONLY64
|
rlm@1
|
210 inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
|
rlm@1
|
211 w128_t *d) {
|
rlm@1
|
212 w128_t x;
|
rlm@1
|
213 w128_t y;
|
rlm@1
|
214
|
rlm@1
|
215 lshift128(&x, a, SL2);
|
rlm@1
|
216 rshift128(&y, c, SR2);
|
rlm@1
|
217 r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
|
rlm@1
|
218 ^ (d->u[0] << SL1);
|
rlm@1
|
219 r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
|
rlm@1
|
220 ^ (d->u[1] << SL1);
|
rlm@1
|
221 r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
|
rlm@1
|
222 ^ (d->u[2] << SL1);
|
rlm@1
|
223 r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
|
rlm@1
|
224 ^ (d->u[3] << SL1);
|
rlm@1
|
225 }
|
rlm@1
|
226 #else
|
rlm@1
|
227 inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
|
rlm@1
|
228 w128_t *d) {
|
rlm@1
|
229 w128_t x;
|
rlm@1
|
230 w128_t y;
|
rlm@1
|
231
|
rlm@1
|
232 lshift128(&x, a, SL2);
|
rlm@1
|
233 rshift128(&y, c, SR2);
|
rlm@1
|
234 r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
|
rlm@1
|
235 ^ (d->u[0] << SL1);
|
rlm@1
|
236 r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
|
rlm@1
|
237 ^ (d->u[1] << SL1);
|
rlm@1
|
238 r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
|
rlm@1
|
239 ^ (d->u[2] << SL1);
|
rlm@1
|
240 r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
|
rlm@1
|
241 ^ (d->u[3] << SL1);
|
rlm@1
|
242 }
|
rlm@1
|
243 #endif
|
rlm@1
|
244 #endif
|
rlm@1
|
245
|
rlm@1
|
246 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
|
rlm@1
|
247 /**
|
rlm@1
|
248 * This function fills the internal state array with pseudorandom
|
rlm@1
|
249 * integers.
|
rlm@1
|
250 */
|
rlm@1
|
251 inline static void gen_rand_all(void) {
|
rlm@1
|
252 int i;
|
rlm@1
|
253 w128_t *r1, *r2;
|
rlm@1
|
254
|
rlm@1
|
255 r1 = &sfmt[N - 2];
|
rlm@1
|
256 r2 = &sfmt[N - 1];
|
rlm@1
|
257 for (i = 0; i < N - POS1; i++) {
|
rlm@1
|
258 do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
|
rlm@1
|
259 r1 = r2;
|
rlm@1
|
260 r2 = &sfmt[i];
|
rlm@1
|
261 }
|
rlm@1
|
262 for (; i < N; i++) {
|
rlm@1
|
263 do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
|
rlm@1
|
264 r1 = r2;
|
rlm@1
|
265 r2 = &sfmt[i];
|
rlm@1
|
266 }
|
rlm@1
|
267 }
|
rlm@1
|
268
|
rlm@1
|
269 /**
|
rlm@1
|
270 * This function fills the user-specified array with pseudorandom
|
rlm@1
|
271 * integers.
|
rlm@1
|
272 *
|
rlm@1
|
273 * @param array an 128-bit array to be filled by pseudorandom numbers.
|
rlm@1
|
274 * @param size number of 128-bit pseudorandom numbers to be generated.
|
rlm@1
|
275 */
|
rlm@1
|
276 inline static void gen_rand_array(w128_t *array, int size) {
|
rlm@1
|
277 int i, j;
|
rlm@1
|
278 w128_t *r1, *r2;
|
rlm@1
|
279
|
rlm@1
|
280 r1 = &sfmt[N - 2];
|
rlm@1
|
281 r2 = &sfmt[N - 1];
|
rlm@1
|
282 for (i = 0; i < N - POS1; i++) {
|
rlm@1
|
283 do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
|
rlm@1
|
284 r1 = r2;
|
rlm@1
|
285 r2 = &array[i];
|
rlm@1
|
286 }
|
rlm@1
|
287 for (; i < N; i++) {
|
rlm@1
|
288 do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
|
rlm@1
|
289 r1 = r2;
|
rlm@1
|
290 r2 = &array[i];
|
rlm@1
|
291 }
|
rlm@1
|
292 for (; i < size - N; i++) {
|
rlm@1
|
293 do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
|
rlm@1
|
294 r1 = r2;
|
rlm@1
|
295 r2 = &array[i];
|
rlm@1
|
296 }
|
rlm@1
|
297 for (j = 0; j < 2 * N - size; j++) {
|
rlm@1
|
298 sfmt[j] = array[j + size - N];
|
rlm@1
|
299 }
|
rlm@1
|
300 for (; i < size; i++, j++) {
|
rlm@1
|
301 do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
|
rlm@1
|
302 r1 = r2;
|
rlm@1
|
303 r2 = &array[i];
|
rlm@1
|
304 sfmt[j] = array[i];
|
rlm@1
|
305 }
|
rlm@1
|
306 }
|
rlm@1
|
307 #endif
|
rlm@1
|
308
|
rlm@1
|
309 #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
|
rlm@1
|
310 inline static void swap(w128_t *array, int size) {
|
rlm@1
|
311 int i;
|
rlm@1
|
312 uint32_t x, y;
|
rlm@1
|
313
|
rlm@1
|
314 for (i = 0; i < size; i++) {
|
rlm@1
|
315 x = array[i].u[0];
|
rlm@1
|
316 y = array[i].u[2];
|
rlm@1
|
317 array[i].u[0] = array[i].u[1];
|
rlm@1
|
318 array[i].u[2] = array[i].u[3];
|
rlm@1
|
319 array[i].u[1] = x;
|
rlm@1
|
320 array[i].u[3] = y;
|
rlm@1
|
321 }
|
rlm@1
|
322 }
|
rlm@1
|
323 #endif
|
rlm@1
|
324 /**
|
rlm@1
|
325 * This function represents a function used in the initialization
|
rlm@1
|
326 * by init_by_array
|
rlm@1
|
327 * @param x 32-bit integer
|
rlm@1
|
328 * @return 32-bit integer
|
rlm@1
|
329 */
|
rlm@1
|
330 static uint32_t func1(uint32_t x) {
|
rlm@1
|
331 return (x ^ (x >> 27)) * (uint32_t)1664525UL;
|
rlm@1
|
332 }
|
rlm@1
|
333
|
rlm@1
|
334 /**
|
rlm@1
|
335 * This function represents a function used in the initialization
|
rlm@1
|
336 * by init_by_array
|
rlm@1
|
337 * @param x 32-bit integer
|
rlm@1
|
338 * @return 32-bit integer
|
rlm@1
|
339 */
|
rlm@1
|
340 static uint32_t func2(uint32_t x) {
|
rlm@1
|
341 return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
|
rlm@1
|
342 }
|
rlm@1
|
343
|
rlm@1
|
344 /**
|
rlm@1
|
345 * This function certificate the period of 2^{MEXP}
|
rlm@1
|
346 */
|
rlm@1
|
347 static void period_certification(void) {
|
rlm@1
|
348 int inner = 0;
|
rlm@1
|
349 int i, j;
|
rlm@1
|
350 uint32_t work;
|
rlm@1
|
351
|
rlm@1
|
352 for (i = 0; i < 4; i++)
|
rlm@1
|
353 inner ^= psfmt32[idxof(i)] & parity[i];
|
rlm@1
|
354 for (i = 16; i > 0; i >>= 1)
|
rlm@1
|
355 inner ^= inner >> i;
|
rlm@1
|
356 inner &= 1;
|
rlm@1
|
357 /* check OK */
|
rlm@1
|
358 if (inner == 1) {
|
rlm@1
|
359 return;
|
rlm@1
|
360 }
|
rlm@1
|
361 /* check NG, and modification */
|
rlm@1
|
362 for (i = 0; i < 4; i++) {
|
rlm@1
|
363 work = 1;
|
rlm@1
|
364 for (j = 0; j < 32; j++) {
|
rlm@1
|
365 if ((work & parity[i]) != 0) {
|
rlm@1
|
366 psfmt32[idxof(i)] ^= work;
|
rlm@1
|
367 return;
|
rlm@1
|
368 }
|
rlm@1
|
369 work = work << 1;
|
rlm@1
|
370 }
|
rlm@1
|
371 }
|
rlm@1
|
372 }
|
rlm@1
|
373
|
rlm@1
|
374 /*----------------
|
rlm@1
|
375 PUBLIC FUNCTIONS
|
rlm@1
|
376 ----------------*/
|
rlm@1
|
377 /**
|
rlm@1
|
378 * This function returns the identification string.
|
rlm@1
|
379 * The string shows the word size, the Mersenne exponent,
|
rlm@1
|
380 * and all parameters of this generator.
|
rlm@1
|
381 */
|
rlm@1
|
382 const char *get_idstring(void) {
|
rlm@1
|
383 return IDSTR;
|
rlm@1
|
384 }
|
rlm@1
|
385
|
rlm@1
|
386 /**
|
rlm@1
|
387 * This function returns the minimum size of array used for \b
|
rlm@1
|
388 * fill_array32() function.
|
rlm@1
|
389 * @return minimum size of array used for fill_array32() function.
|
rlm@1
|
390 */
|
rlm@1
|
391 int get_min_array_size32(void) {
|
rlm@1
|
392 return N32;
|
rlm@1
|
393 }
|
rlm@1
|
394
|
rlm@1
|
395 /**
|
rlm@1
|
396 * This function returns the minimum size of array used for \b
|
rlm@1
|
397 * fill_array64() function.
|
rlm@1
|
398 * @return minimum size of array used for fill_array64() function.
|
rlm@1
|
399 */
|
rlm@1
|
400 int get_min_array_size64(void) {
|
rlm@1
|
401 return N64;
|
rlm@1
|
402 }
|
rlm@1
|
403
|
rlm@1
|
404 #ifndef ONLY64
|
rlm@1
|
405 /**
|
rlm@1
|
406 * This function generates and returns 32-bit pseudorandom number.
|
rlm@1
|
407 * init_gen_rand or init_by_array must be called before this function.
|
rlm@1
|
408 * @return 32-bit pseudorandom number
|
rlm@1
|
409 */
|
rlm@1
|
410 uint32_t gen_rand32(void) {
|
rlm@1
|
411 uint32_t r;
|
rlm@1
|
412
|
rlm@1
|
413 assert(initialized);
|
rlm@1
|
414 if (idx >= N32) {
|
rlm@1
|
415 gen_rand_all();
|
rlm@1
|
416 idx = 0;
|
rlm@1
|
417 }
|
rlm@1
|
418 r = psfmt32[idx++];
|
rlm@1
|
419 return r;
|
rlm@1
|
420 }
|
rlm@1
|
421 #endif
|
rlm@1
|
422 /**
|
rlm@1
|
423 * This function generates and returns 64-bit pseudorandom number.
|
rlm@1
|
424 * init_gen_rand or init_by_array must be called before this function.
|
rlm@1
|
425 * The function gen_rand64 should not be called after gen_rand32,
|
rlm@1
|
426 * unless an initialization is again executed.
|
rlm@1
|
427 * @return 64-bit pseudorandom number
|
rlm@1
|
428 */
|
rlm@1
|
429 uint64_t gen_rand64(void) {
|
rlm@1
|
430 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
rlm@1
|
431 uint32_t r1, r2;
|
rlm@1
|
432 #else
|
rlm@1
|
433 uint64_t r;
|
rlm@1
|
434 #endif
|
rlm@1
|
435
|
rlm@1
|
436 assert(initialized);
|
rlm@1
|
437 assert(idx % 2 == 0);
|
rlm@1
|
438
|
rlm@1
|
439 if (idx >= N32) {
|
rlm@1
|
440 gen_rand_all();
|
rlm@1
|
441 idx = 0;
|
rlm@1
|
442 }
|
rlm@1
|
443 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
rlm@1
|
444 r1 = psfmt32[idx];
|
rlm@1
|
445 r2 = psfmt32[idx + 1];
|
rlm@1
|
446 idx += 2;
|
rlm@1
|
447 return ((uint64_t)r2 << 32) | r1;
|
rlm@1
|
448 #else
|
rlm@1
|
449 r = psfmt64[idx / 2];
|
rlm@1
|
450 idx += 2;
|
rlm@1
|
451 return r;
|
rlm@1
|
452 #endif
|
rlm@1
|
453 }
|
rlm@1
|
454
|
rlm@1
|
455 #ifndef ONLY64
|
rlm@1
|
456 /**
|
rlm@1
|
457 * This function generates pseudorandom 32-bit integers in the
|
rlm@1
|
458 * specified array[] by one call. The number of pseudorandom integers
|
rlm@1
|
459 * is specified by the argument size, which must be at least 624 and a
|
rlm@1
|
460 * multiple of four. The generation by this function is much faster
|
rlm@1
|
461 * than the following gen_rand function.
|
rlm@1
|
462 *
|
rlm@1
|
463 * For initialization, init_gen_rand or init_by_array must be called
|
rlm@1
|
464 * before the first call of this function. This function can not be
|
rlm@1
|
465 * used after calling gen_rand function, without initialization.
|
rlm@1
|
466 *
|
rlm@1
|
467 * @param array an array where pseudorandom 32-bit integers are filled
|
rlm@1
|
468 * by this function. The pointer to the array must be \b "aligned"
|
rlm@1
|
469 * (namely, must be a multiple of 16) in the SIMD version, since it
|
rlm@1
|
470 * refers to the address of a 128-bit integer. In the standard C
|
rlm@1
|
471 * version, the pointer is arbitrary.
|
rlm@1
|
472 *
|
rlm@1
|
473 * @param size the number of 32-bit pseudorandom integers to be
|
rlm@1
|
474 * generated. size must be a multiple of 4, and greater than or equal
|
rlm@1
|
475 * to (MEXP / 128 + 1) * 4.
|
rlm@1
|
476 *
|
rlm@1
|
477 * @note \b memalign or \b posix_memalign is available to get aligned
|
rlm@1
|
478 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
|
rlm@1
|
479 * returns the pointer to the aligned memory block.
|
rlm@1
|
480 */
|
rlm@1
|
481 void fill_array32(uint32_t *array, int size) {
|
rlm@1
|
482 assert(initialized);
|
rlm@1
|
483 assert(idx == N32);
|
rlm@1
|
484 assert(size % 4 == 0);
|
rlm@1
|
485 assert(size >= N32);
|
rlm@1
|
486
|
rlm@1
|
487 gen_rand_array((w128_t *)array, size / 4);
|
rlm@1
|
488 idx = N32;
|
rlm@1
|
489 }
|
rlm@1
|
490 #endif
|
rlm@1
|
491
|
rlm@1
|
492 /**
|
rlm@1
|
493 * This function generates pseudorandom 64-bit integers in the
|
rlm@1
|
494 * specified array[] by one call. The number of pseudorandom integers
|
rlm@1
|
495 * is specified by the argument size, which must be at least 312 and a
|
rlm@1
|
496 * multiple of two. The generation by this function is much faster
|
rlm@1
|
497 * than the following gen_rand function.
|
rlm@1
|
498 *
|
rlm@1
|
499 * For initialization, init_gen_rand or init_by_array must be called
|
rlm@1
|
500 * before the first call of this function. This function can not be
|
rlm@1
|
501 * used after calling gen_rand function, without initialization.
|
rlm@1
|
502 *
|
rlm@1
|
503 * @param array an array where pseudorandom 64-bit integers are filled
|
rlm@1
|
504 * by this function. The pointer to the array must be "aligned"
|
rlm@1
|
505 * (namely, must be a multiple of 16) in the SIMD version, since it
|
rlm@1
|
506 * refers to the address of a 128-bit integer. In the standard C
|
rlm@1
|
507 * version, the pointer is arbitrary.
|
rlm@1
|
508 *
|
rlm@1
|
509 * @param size the number of 64-bit pseudorandom integers to be
|
rlm@1
|
510 * generated. size must be a multiple of 2, and greater than or equal
|
rlm@1
|
511 * to (MEXP / 128 + 1) * 2
|
rlm@1
|
512 *
|
rlm@1
|
513 * @note \b memalign or \b posix_memalign is available to get aligned
|
rlm@1
|
514 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
|
rlm@1
|
515 * returns the pointer to the aligned memory block.
|
rlm@1
|
516 */
|
rlm@1
|
517 void fill_array64(uint64_t *array, int size) {
|
rlm@1
|
518 assert(initialized);
|
rlm@1
|
519 assert(idx == N32);
|
rlm@1
|
520 assert(size % 2 == 0);
|
rlm@1
|
521 assert(size >= N64);
|
rlm@1
|
522
|
rlm@1
|
523 gen_rand_array((w128_t *)array, size / 2);
|
rlm@1
|
524 idx = N32;
|
rlm@1
|
525
|
rlm@1
|
526 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
rlm@1
|
527 swap((w128_t *)array, size /2);
|
rlm@1
|
528 #endif
|
rlm@1
|
529 }
|
rlm@1
|
530
|
rlm@1
|
531 /**
|
rlm@1
|
532 * This function initializes the internal state array with a 32-bit
|
rlm@1
|
533 * integer seed.
|
rlm@1
|
534 *
|
rlm@1
|
535 * @param seed a 32-bit integer used as the seed.
|
rlm@1
|
536 */
|
rlm@1
|
537 void init_gen_rand(uint32_t seed) {
|
rlm@1
|
538 int i;
|
rlm@1
|
539
|
rlm@1
|
540 psfmt32[idxof(0)] = seed;
|
rlm@1
|
541 for (i = 1; i < N32; i++) {
|
rlm@1
|
542 psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
|
rlm@1
|
543 ^ (psfmt32[idxof(i - 1)] >> 30))
|
rlm@1
|
544 + i;
|
rlm@1
|
545 }
|
rlm@1
|
546 idx = N32;
|
rlm@1
|
547 period_certification();
|
rlm@1
|
548 initialized = 1;
|
rlm@1
|
549 }
|
rlm@1
|
550
|
rlm@1
|
551 /**
|
rlm@1
|
552 * This function initializes the internal state array,
|
rlm@1
|
553 * with an array of 32-bit integers used as the seeds
|
rlm@1
|
554 * @param init_key the array of 32-bit integers, used as a seed.
|
rlm@1
|
555 * @param key_length the length of init_key.
|
rlm@1
|
556 */
|
rlm@1
|
557 void init_by_array(uint32_t *init_key, int key_length) {
|
rlm@1
|
558 int i, j, count;
|
rlm@1
|
559 uint32_t r;
|
rlm@1
|
560 int lag;
|
rlm@1
|
561 int mid;
|
rlm@1
|
562 int size = N * 4;
|
rlm@1
|
563
|
rlm@1
|
564 if (size >= 623) {
|
rlm@1
|
565 lag = 11;
|
rlm@1
|
566 } else if (size >= 68) {
|
rlm@1
|
567 lag = 7;
|
rlm@1
|
568 } else if (size >= 39) {
|
rlm@1
|
569 lag = 5;
|
rlm@1
|
570 } else {
|
rlm@1
|
571 lag = 3;
|
rlm@1
|
572 }
|
rlm@1
|
573 mid = (size - lag) / 2;
|
rlm@1
|
574
|
rlm@1
|
575 memset(sfmt, 0x8b, sizeof(sfmt));
|
rlm@1
|
576 if (key_length + 1 > N32) {
|
rlm@1
|
577 count = key_length + 1;
|
rlm@1
|
578 } else {
|
rlm@1
|
579 count = N32;
|
rlm@1
|
580 }
|
rlm@1
|
581 r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
|
rlm@1
|
582 ^ psfmt32[idxof(N32 - 1)]);
|
rlm@1
|
583 psfmt32[idxof(mid)] += r;
|
rlm@1
|
584 r += key_length;
|
rlm@1
|
585 psfmt32[idxof(mid + lag)] += r;
|
rlm@1
|
586 psfmt32[idxof(0)] = r;
|
rlm@1
|
587
|
rlm@1
|
588 count--;
|
rlm@1
|
589 for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
|
rlm@1
|
590 r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
|
rlm@1
|
591 ^ psfmt32[idxof((i + N32 - 1) % N32)]);
|
rlm@1
|
592 psfmt32[idxof((i + mid) % N32)] += r;
|
rlm@1
|
593 r += init_key[j] + i;
|
rlm@1
|
594 psfmt32[idxof((i + mid + lag) % N32)] += r;
|
rlm@1
|
595 psfmt32[idxof(i)] = r;
|
rlm@1
|
596 i = (i + 1) % N32;
|
rlm@1
|
597 }
|
rlm@1
|
598 for (; j < count; j++) {
|
rlm@1
|
599 r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
|
rlm@1
|
600 ^ psfmt32[idxof((i + N32 - 1) % N32)]);
|
rlm@1
|
601 psfmt32[idxof((i + mid) % N32)] += r;
|
rlm@1
|
602 r += i;
|
rlm@1
|
603 psfmt32[idxof((i + mid + lag) % N32)] += r;
|
rlm@1
|
604 psfmt32[idxof(i)] = r;
|
rlm@1
|
605 i = (i + 1) % N32;
|
rlm@1
|
606 }
|
rlm@1
|
607 for (j = 0; j < N32; j++) {
|
rlm@1
|
608 r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
|
rlm@1
|
609 + psfmt32[idxof((i + N32 - 1) % N32)]);
|
rlm@1
|
610 psfmt32[idxof((i + mid) % N32)] ^= r;
|
rlm@1
|
611 r -= i;
|
rlm@1
|
612 psfmt32[idxof((i + mid + lag) % N32)] ^= r;
|
rlm@1
|
613 psfmt32[idxof(i)] = r;
|
rlm@1
|
614 i = (i + 1) % N32;
|
rlm@1
|
615 }
|
rlm@1
|
616
|
rlm@1
|
617 idx = N32;
|
rlm@1
|
618 period_certification();
|
rlm@1
|
619 initialized = 1;
|
rlm@1
|
620 }
|