annotate clojure/com/aurellem/run/image.clj @ 517:bc24e4d605e9

switched tile and pallette assembly.
author Robert McIntyre <rlm@mit.edu>
date Fri, 22 Jun 2012 21:25:47 -0500
parents 7eac27143ab9
children bb4434c5a8f3
rev   line source
rlm@488 1 (ns com.aurellem.run.image
rlm@486 2 (:use (com.aurellem.gb saves gb-driver util constants
rlm@486 3 items vbm characters money
rlm@486 4 rlm-assembly))
rlm@492 5 (:use (com.aurellem.run util music title save-corruption
rlm@486 6 bootstrap-0 bootstrap-1))
rlm@486 7 (:require clojure.string)
rlm@486 8 (:import [com.aurellem.gb.gb_driver SaveState])
rlm@486 9 (:import java.io.File))
rlm@486 10
rlm@486 11 ;; want to display an image onto the screen.
rlm@486 12 ;; probably will be the six ponies, possibly with scrolling.
rlm@486 13
rlm@486 14 ;; probably don't need hi-color mode since the images shuld be
rlm@486 15 ;; simple.
rlm@486 16
rlm@486 17 ;; use background tiles? they provide greater color depth than
rlm@486 18 ;; sprites, and can still be scrolled, so why not?
rlm@486 19
rlm@490 20 ;; could also use sprites to get 3 more colors per tile for a total of
rlm@490 21 ;; 7 colors per tile, although not for all tiles...
rlm@486 22
rlm@486 23
rlm@486 24
rlm@490 25 ;; want a function to
rlm@486 26
rlm@490 27 ;; 1. read an image
rlm@490 28 ;; 2. split into a grid of 8x8 pixels
rlm@490 29 ;; 3. convert all RGB colors to gb-RGB colors
rlm@490 30 ;; 4. determine efficient color palletes for the image
rlm@490 31 ;; 5. output efficient assembly code to draw the image to the gb
rlm@490 32 ;; screen.
rlm@486 33
rlm@488 34
rlm@491 35 (def image-program-target 0xB000)
rlm@486 36
rlm@491 37 (def display-width 160)
rlm@491 38 (def display-height 144)
rlm@491 39
rlm@491 40
rlm@491 41
rlm@491 42 ;{:r :g :b }
rlm@491 43
rlm@491 44 (def character-data 0x8000)
rlm@491 45 (def character-data-end 0x97FF)
rlm@491 46
rlm@491 47
rlm@491 48
rlm@491 49
rlm@491 50 (def BG-data-1 0x9800)
rlm@491 51
rlm@491 52 (def BG-data-2 0x9C00)
rlm@491 53
rlm@491 54 (def OAM 0xFE00)
rlm@491 55
rlm@491 56
rlm@491 57
rlm@491 58 (def video-bank-select-register 0xFF4F)
rlm@491 59
rlm@492 60 (defn gb-rgb->bits [[r g b]]
rlm@492 61 (assert (<= 0 r 31))
rlm@492 62 (assert (<= 0 g 31))
rlm@492 63 (assert (<= 0 b 31))
rlm@491 64 [(bit-and
rlm@491 65 0xFF
rlm@491 66 (+
rlm@491 67 r
rlm@491 68 (bit-shift-left g 5)))
rlm@491 69 (+
rlm@491 70 (bit-shift-right g 3)
rlm@491 71 (bit-shift-left b 2))])
rlm@491 72
rlm@492 73
rlm@492 74 (def bg-palette-select 0xFF68)
rlm@492 75 (def bg-palette-data 0xFF69)
rlm@492 76
rlm@492 77 (def obj-palette-select 0xFF6A)
rlm@492 78 (def obj-palette-data 0xFF6B)
rlm@492 79
rlm@492 80 (def max-palettes 8)
rlm@492 81
rlm@511 82 (defn write-byte [target data]
rlm@492 83 (flatten
rlm@492 84 [0x3E ;; load literal to A
rlm@492 85 data
rlm@492 86 0xEA ;; load A into target
rlm@493 87 (reverse (disect-bytes-2 target))]))
rlm@492 88
rlm@492 89 (defn begin-sequential-palette-write
rlm@492 90 [palette-num palette-select-address]
rlm@492 91 (assert (<= 0 palette-num max-palettes))
rlm@492 92 (assert
rlm@492 93 (or (= palette-select-address bg-palette-select)
rlm@492 94 (= palette-select-address obj-palette-select)))
rlm@492 95 (let [palette-write-data
rlm@492 96 (Integer/parseInt
rlm@492 97 (str "1" ;; auto increment
rlm@492 98 "0" ;; not used
rlm@492 99 (format
rlm@492 100 "%03d"
rlm@492 101 (Integer/parseInt
rlm@492 102 (Integer/toBinaryString palette-num) 10))
rlm@492 103 "00" ;; color num
rlm@492 104 "0" ;; H/L
rlm@492 105 ) 2)]
rlm@511 106 (write-byte palette-select-address palette-write-data)))
rlm@492 107
rlm@492 108 (defn set-palettes [palette-select palette-data palettes]
rlm@492 109 (assert (<= (count palettes)) max-palettes)
rlm@492 110 (flatten
rlm@492 111 [(begin-sequential-palette-write 0 palette-select)
rlm@511 112
rlm@511 113 0x21 ;; target address to HL
rlm@511 114 (reverse (disect-bytes-2 palette-data))
rlm@511 115
rlm@511 116
rlm@511 117 (for [palette palettes]
rlm@511 118 (map (fn [byte]
rlm@511 119 [0x3E ;; literal to A
rlm@511 120 byte
rlm@511 121 0x77]) ;; A -> (HL)
rlm@511 122
rlm@511 123 (flatten
rlm@511 124 (map #(gb-rgb->bits (get palette % [0 0 0]))
rlm@511 125 (range 4)))))]))
rlm@511 126
rlm@492 127
rlm@491 128 (defn display-one-color
rlm@507 129 "Displayes a single color onto the gameboy screen. Input rgb in
rlm@491 130 gameboy rgb."
rlm@498 131 ([state [r g b]]
rlm@498 132 ;; construct a kernel that displays a single color
rlm@498 133 (let
rlm@511 134 [palettes (repeat 8 [[r g b] [r g b] [r g b] [r g b]])
rlm@498 135 kernel-address 0xC000
rlm@498 136 kernel
rlm@498 137 [0xF3 ;; disable interrupts
rlm@498 138 (clear-music-registers)
rlm@498 139 (frame-metronome)
rlm@511 140 ;;(set-palettes
rlm@511 141 ;; obj-palette-select obj-palette-data palettes)
rlm@511 142 (set-palettes
rlm@511 143 bg-palette-select bg-palette-data palettes)
rlm@498 144 (infinite-loop)]]
rlm@498 145 (-> (set-memory-range state
rlm@498 146 kernel-address (flatten kernel))
rlm@498 147 (PC! kernel-address))))
rlm@498 148 ([[r g b]]
rlm@498 149 (display-one-color @current-state [r g b])))
rlm@492 150
rlm@505 151 ;;(require 'cortex.sense)
rlm@496 152 (import java.awt.image.BufferedImage)
rlm@492 153
rlm@505 154 ;; (defn show-screenshot []
rlm@505 155 ;; (let [im (BufferedImage. 160 144 BufferedImage/TYPE_INT_RGB)
rlm@505 156 ;; pix (vec (pixels))
rlm@505 157 ;; view (cortex.sense/view-image)]
rlm@505 158 ;; (dorun (for [x (range 160) y (range 144)]
rlm@505 159 ;; (.setRGB im x y (pix (+ x (* 160 y))))))
rlm@505 160 ;; (view im)))
rlm@496 161
rlm@500 162 (defn gb-rgb->vga-rgb [[r g b]]
rlm@498 163 (let [vga-rgb
rlm@498 164 (first (pixels
rlm@498 165 (run-moves
rlm@498 166 (display-one-color
rlm@498 167 (tick @current-state)
rlm@498 168 [r g b])
rlm@498 169 [[][]])))]
rlm@498 170 [(bit-shift-right (bit-and vga-rgb 0xFF0000) 16)
rlm@498 171 (bit-shift-right (bit-and vga-rgb 0xFF00) 8)
rlm@498 172 (bit-and vga-rgb 0xFF)]))
rlm@491 173
rlm@498 174 (defn generate-gb-color-map []
rlm@498 175 (set-state! (mid-game))
rlm@498 176 (let [gb-colors
rlm@498 177 (for [r (range 32)
rlm@498 178 g (range 32)
rlm@498 179 b (range 32)]
rlm@498 180 [r g b])]
rlm@498 181 (zipmap gb-colors
rlm@498 182 (map gb-rgb->vga-rgb
rlm@498 183 gb-colors))))
rlm@491 184
rlm@498 185 (import java.io.FileWriter)
rlm@491 186
rlm@498 187 (def gb-color-map-file
rlm@498 188 (File. user-home "proj/vba-clojure/gb-color-map"))
rlm@495 189
rlm@498 190 (defn write-gb-color-map! []
rlm@498 191 (binding [*out*(FileWriter. gb-color-map-file)]
rlm@498 192 (let [out-str
rlm@498 193 (.replace
rlm@498 194 (str
rlm@498 195 (into (sorted-map) (generate-gb-color-map)))
rlm@498 196 "," ",\n")]
rlm@498 197 (println out-str))))
rlm@498 198
rlm@499 199 (def gb-color-map
rlm@499 200 (read-string (slurp gb-color-map-file)))
rlm@499 201
rlm@499 202 (import javax.imageio.stream.FileImageOutputStream)
rlm@499 203 (import '(javax.imageio ImageWriteParam IIOImage ImageIO))
rlm@499 204
rlm@499 205
rlm@499 206 (defn gen-gb-color-image! []
rlm@500 207 (let [im (BufferedImage. 68 69 BufferedImage/TYPE_INT_RGB)
rlm@499 208 pix (vec
rlm@499 209
rlm@499 210 (reduce
rlm@499 211 concat
rlm@499 212 (map (partial
rlm@499 213 sort-by
rlm@499 214 (fn [[r g b]]
rlm@499 215 (let [s (max r g b)
rlm@499 216 det
rlm@499 217 (cond
rlm@499 218 (= s r)
rlm@499 219 (+ -1000 (- g) b)
rlm@499 220 (= s b)
rlm@499 221 (+ (- r) g)
rlm@499 222 (= s g)
rlm@499 223 (+ 1000 (- b) r))]
rlm@499 224 det)))
rlm@499 225 (partition
rlm@500 226 68 68 []
rlm@499 227 (sort-by
rlm@499 228 (fn euclidean-distance [[r g b]]
rlm@499 229 (Math/sqrt (+ (* r r) (* g g) (* b b))))
rlm@501 230 (filter
rlm@501 231 (fn [[r g b]]
rlm@501 232 (= (max r g b) b ))
rlm@501 233
rlm@501 234 (seq (set (vals gb-color-map)))))))))
rlm@505 235 ;;view (cortex.sense/view-image)
rlm@515 236 target
rlm@515 237 (File. user-home "proj/vba-clojure/gb-color-map-unique.png")]
rlm@500 238 (dorun (for [x (range 68) y (range 69)]
rlm@500 239 (let [[r g b] (get pix (+ x (* 68 y)) [0 0 0])
rlm@499 240 rgb (+ (bit-shift-left r 16)
rlm@499 241 (bit-shift-left g 8)
rlm@499 242 b)]
rlm@505 243 (.setRGB im x y rgb))))
rlm@505 244 ;;(view im)
rlm@499 245 (doto
rlm@499 246 (.next (ImageIO/getImageWritersByFormatName "png"))
rlm@499 247 (.setOutput (FileImageOutputStream. target))
rlm@499 248 (.write (IIOImage. im nil nil))
rlm@499 249 (.dispose))
rlm@499 250 im))
rlm@499 251
rlm@499 252 (defn gen-gb-color-image*! []
rlm@499 253 (let [im (BufferedImage. 213 213 BufferedImage/TYPE_INT_RGB)
rlm@499 254 squares
rlm@499 255 (vec
rlm@499 256 (for [r (range 32)]
rlm@499 257 (vec
rlm@499 258 (for [b (range 32) g (range 32)]
rlm@499 259 (gb-color-map [r g b])))))
rlm@505 260 ;;view (cortex.sense/view-image)
rlm@499 261 target (File. user-home "proj/vba-clojure/gb-color-map.png")]
rlm@499 262
rlm@499 263 (dorun
rlm@499 264 (for [s-index (range 32)]
rlm@499 265 (dorun
rlm@499 266 (for [x (range 32) y (range 32)]
rlm@499 267
rlm@499 268 (let [[r g b] ((squares s-index) (+ x (* 32 y)))
rlm@499 269 rgb (+ (bit-shift-left r 16)
rlm@499 270 (bit-shift-left g 8)
rlm@499 271 b)]
rlm@499 272 (.setRGB im
rlm@499 273 (+ 3 (* 35 (rem s-index 6)) x)
rlm@499 274 (+ 3 (* 35 (int (/ s-index 6))) y)
rlm@499 275 rgb))))))
rlm@505 276 ;;(view im)
rlm@499 277 (doto
rlm@499 278 (.next (ImageIO/getImageWritersByFormatName "png"))
rlm@499 279 (.setOutput (FileImageOutputStream. target))
rlm@499 280 (.write (IIOImage. im nil nil))
rlm@499 281 (.dispose))
rlm@499 282 im))
rlm@501 283
rlm@502 284 (def test-image
rlm@502 285 (ImageIO/read
rlm@502 286 (File. user-home "/proj/vba-clojure/images/test-gb-image.png")))
rlm@502 287
rlm@514 288 (def test-image-2
rlm@514 289 (ImageIO/read
rlm@514 290 (File. user-home "/proj/vba-clojure/images/test-gb-image-2.png")))
rlm@514 291
rlm@515 292 (def test-image-color
rlm@515 293 (ImageIO/read
rlm@515 294 (File. user-home "/proj/vba-clojure/images/colors-test.png")))
rlm@515 295
rlm@515 296
rlm@514 297
rlm@514 298
rlm@502 299 (defn rgb->triplet [rgb]
rlm@502 300 (let [r (bit-shift-right (bit-and rgb 0xFF0000) 16)
rlm@502 301 g (bit-shift-right (bit-and rgb 0xFF00) 8)
rlm@502 302 b (bit-and rgb 0xFF)]
rlm@502 303 [r g b]))
rlm@502 304
rlm@502 305 (def reverse-gb-color-map
rlm@502 306 (zipmap (vals gb-color-map)
rlm@502 307 (keys gb-color-map)))
rlm@502 308
rlm@502 309 (defn vga-rgb->gb-rgb [[r g b]]
rlm@502 310 (reverse-gb-color-map [r g b]))
rlm@502 311
rlm@502 312 (defn gb-tiles [^BufferedImage image]
rlm@502 313 (for [tile (range 360)]
rlm@514 314 (for [y (range 8) x (range 8)]
rlm@502 315 (vga-rgb->gb-rgb
rlm@502 316 (rgb->triplet
rlm@503 317 (.getRGB image (+ x (* 8 (rem tile 20)))
rlm@503 318 (+ y (* 8 (int (/ tile 20))))))))))
rlm@503 319
rlm@503 320 (defn tile->palette [tile]
rlm@506 321 (vec (sort (set tile))))
rlm@503 322
rlm@503 323 (require 'clojure.set)
rlm@503 324
rlm@503 325 (defn absorb-contract [objs]
rlm@503 326 (reduce
rlm@503 327 (fn [accepted new-element]
rlm@503 328 (if (some
rlm@503 329 (fn [obj]
rlm@503 330 (clojure.set/subset? (set new-element) (set obj)))
rlm@503 331 accepted)
rlm@503 332 accepted
rlm@503 333 (conj accepted new-element)))
rlm@503 334 []
rlm@503 335 (sort-by (comp - count) objs)))
rlm@503 336
rlm@503 337 (defn palettes [^BufferedImage image]
rlm@503 338 (let [palettes (map tile->palette (gb-tiles image))
rlm@503 339 unique-palettes (absorb-contract (set palettes))]
rlm@503 340 unique-palettes))
rlm@505 341
rlm@506 342 (defn tile-pallete
rlm@506 343 "find the first appropirate palette for the tile in the
rlm@506 344 provided list of palettes."
rlm@506 345 [tile palettes]
rlm@506 346 (let [tile-colors (set tile)]
rlm@506 347 (swank.util/find-first
rlm@506 348 #(clojure.set/subset? tile-colors (set %))
rlm@506 349 palettes)))
rlm@506 350
rlm@506 351
rlm@506 352 (defn image->gb-image
rlm@506 353 "Returns the image in a format amenable to the gameboy's
rlm@506 354 internal representation. The format is:
rlm@506 355 {:width -- width of the image
rlm@506 356 :height -- height of the image
rlm@506 357 :palettes -- vector of all the palettes the image
rlm@506 358 needs, in proper order
rlm@506 359 :tiles -- vector of all the tiles the image needs,
rlm@506 360 in proper order. A tile is 64 palette
rlm@506 361 indices.
rlm@506 362 :data -- vector of pairs of the format:
rlm@506 363 [tile-index, palette-index]
rlm@506 364 in row-oriented order}"
rlm@506 365 [^BufferedImage image]
rlm@506 366 (let [image-palettes (palettes image)
rlm@506 367 palette-index (zipmap
rlm@506 368 image-palettes
rlm@506 369 (range (count image-palettes)))
rlm@506 370 tiles (gb-tiles image)
rlm@506 371 unique-tiles (vec (distinct tiles))
rlm@506 372 tile-index (zipmap unique-tiles
rlm@506 373 (range (count unique-tiles)))]
rlm@506 374 {:width (.getWidth image)
rlm@506 375 :height (.getHeight image)
rlm@506 376 :palettes image-palettes
rlm@506 377 :tiles
rlm@506 378 (vec
rlm@506 379 (for [tile unique-tiles]
rlm@506 380 (let [colors
rlm@506 381 (vec (tile-pallete tile image-palettes))
rlm@506 382 color-index
rlm@506 383 (zipmap colors (range (count colors)))]
rlm@506 384 (mapv color-index tile))))
rlm@506 385 :data
rlm@506 386 (vec
rlm@506 387 (for [tile tiles]
rlm@506 388 (let [tile-colors (set (tile->palette tile))]
rlm@506 389 [(tile-index tile)
rlm@506 390 (palette-index
rlm@506 391 (tile-pallete tile image-palettes))])))}))
rlm@506 392
rlm@505 393 (defn wait-until-v-blank
rlm@505 394 "Modified version of frame-metronome. waits untill LY == 144,
rlm@505 395 indicating start of v-blank period."
rlm@505 396 []
rlm@505 397 (let [timing-loop
rlm@505 398 [0x01 ; \
rlm@505 399 0x44 ; | load 0xFF44 into BC
rlm@505 400 0xFF ; /
rlm@505 401 0x0A] ;; (BC) -> A, now A = LY (vertical line coord)
rlm@505 402 continue-if-144
rlm@505 403 [0xFE
rlm@505 404 144 ;; compare LY (in A) with 144
rlm@505 405 0x20 ;; jump back to beginning if LY != 144 (not-v-blank)
rlm@505 406 (->signed-8-bit
rlm@505 407 (+ -4 (- (count timing-loop))))]]
rlm@505 408 (concat timing-loop continue-if-144)))
rlm@503 409
rlm@507 410 (def bg-character-data 0x9000)
rlm@507 411
rlm@507 412 (defn gb-tile->bytes
rlm@507 413 "Tile is a vector of 64 numbers between 0 and 3 that
rlm@507 414 represent a single 8x8 color tile in the GB screen.
rlm@507 415 It gets bit-packed into to 16 8-bit numbers in the following
rlm@507 416 form:
rlm@507 417
rlm@507 418 0-low 1-low ... 7-low
rlm@507 419 0-high 1-high ... 7-high
rlm@507 420 .
rlm@507 421 .
rlm@507 422 .
rlm@507 423 55-low ........ 63-low
rlm@507 424 55-high ........ 63-high"
rlm@507 425 [tile]
rlm@507 426 (let [row->bits
rlm@507 427 (fn [row]
rlm@507 428 (mapv
rlm@507 429 (fn [row*]
rlm@507 430 (Integer/parseInt (apply str row*) 2))
rlm@507 431 [(map #(bit-and 0x01 %) row)
rlm@507 432 (map #(bit-shift-right (bit-and 0x02 %) 1)
rlm@507 433 row)]))]
rlm@507 434 (vec
rlm@507 435 (flatten
rlm@507 436 (map row->bits
rlm@507 437 (partition 8 tile))))))
rlm@507 438
rlm@508 439 (defn write-data
rlm@508 440 "Efficient assembly to write a sequence of values to
rlm@508 441 memory, starting at a target address."
rlm@508 442 [base-address target-address data]
rlm@510 443 (let [len (count data)
rlm@510 444 program-length 21] ;; change this if program length
rlm@510 445 ;; below changes!
rlm@508 446 (flatten
rlm@508 447 [0x21 ;; load data address start into HL
rlm@510 448 (reverse (disect-bytes-2 (+ base-address program-length)))
rlm@508 449
rlm@508 450 0x01 ;; load target address into BC
rlm@508 451 (reverse (disect-bytes-2 target-address))
rlm@508 452
rlm@510 453 0x11 ;; load len into DE
rlm@510 454 (reverse (disect-bytes-2 len))
rlm@508 455
rlm@508 456
rlm@508 457 ;; data x-fer loop start
rlm@508 458 0x2A ;; (HL) -> A; HL++;
rlm@508 459 0x02 ;; A -> (BC);
rlm@508 460 0x03 ;; INC BC;
rlm@510 461 0x1B ;; DEC DE
rlm@508 462
rlm@510 463 0xAF
rlm@510 464 0xB2 ;; (OR D E) -> A
rlm@510 465 0xB3
rlm@510 466
rlm@508 467
rlm@510 468 0x20 ;; if DE is not now 0,
rlm@510 469 (->signed-8-bit -9) ;; GOTO start
rlm@508 470
rlm@510 471 0xC3
rlm@510 472 (reverse
rlm@510 473 (disect-bytes-2
rlm@510 474 (+ len base-address program-length)))
rlm@510 475 data])))
rlm@510 476
rlm@512 477 (defn write-image
rlm@514 478 "Assume the image data is specified as 360 blocks."
rlm@512 479 [base-address target-address image-data]
rlm@512 480
rlm@512 481 (let [len (count image-data)
rlm@512 482 gen-program
rlm@512 483 (fn [program-length]
rlm@512 484 (flatten
rlm@513 485 [0x01 ;; load data address start into BC
rlm@512 486 (reverse
rlm@512 487 (disect-bytes-2 (+ base-address program-length)))
rlm@512 488
rlm@513 489 0x21 ;; load target address into HL
rlm@512 490 (reverse (disect-bytes-2 target-address))
rlm@512 491
rlm@512 492 0x1E ;; total-rows (18) -> E
rlm@513 493 18
rlm@512 494
rlm@512 495 0x16 ;; total columns (20) -> D
rlm@512 496 20
rlm@512 497
rlm@513 498 ;; data x-fer loop start
rlm@513 499 0x0A ;; (BC) -> A;
rlm@513 500 0x03 ;; INC BC;
rlm@513 501 0x22 ;; A -> (HL); HL++;
rlm@512 502
rlm@512 503
rlm@512 504
rlm@512 505 0x15 ;; dec D
rlm@512 506 0x20
rlm@513 507 (->signed-8-bit -6) ;; continue writing row
rlm@512 508
rlm@512 509 ;; row is complete, advance to next row
rlm@513 510 ;; HL += 12
rlm@512 511
rlm@512 512 0xC5 ;; push BC
rlm@512 513
rlm@512 514 0x06 ;; 0 -> B
rlm@512 515 0
rlm@512 516
rlm@512 517 0x0E
rlm@513 518 12 ;; 12 -> C
rlm@512 519
rlm@512 520 0x09 ;; HL + BC -> HL
rlm@512 521
rlm@512 522 0xC1 ;; pop BC
rlm@512 523
rlm@512 524 0x1D ;; dec E
rlm@512 525 0x20
rlm@514 526 (->signed-8-bit -18) ;; contunue writing image
rlm@512 527
rlm@512 528 0xC3
rlm@512 529 (reverse
rlm@512 530 (disect-bytes-2
rlm@512 531 (+ len base-address program-length)))]))]
rlm@512 532 (flatten (concat
rlm@512 533 (gen-program (count (gen-program 0)))
rlm@512 534 image-data))))
rlm@508 535
rlm@508 536 (defn test-write-data []
rlm@510 537 (let [test-data (concat (range 256)
rlm@510 538 (reverse (range 256)))
rlm@510 539 base-address 0xC000
rlm@510 540 target-address 0xD000
rlm@508 541
rlm@508 542 test-kernel
rlm@508 543 (flatten
rlm@508 544 [0xF3 ;; disable interrupts
rlm@508 545 (write-data (+ 1 base-address)
rlm@508 546 target-address test-data)
rlm@508 547 (infinite-loop)])]
rlm@509 548 (assert
rlm@509 549 (= test-data
rlm@509 550 (-> (mid-game)
rlm@509 551 tick tick tick
rlm@509 552 (set-memory-range base-address test-kernel)
rlm@509 553 (PC! base-address)
rlm@509 554 (run-moves (repeat 100 []))
rlm@509 555 (memory)
rlm@509 556 vec
rlm@509 557 (subvec target-address
rlm@509 558 (+ target-address
rlm@509 559 (count test-data))))))))
rlm@508 560
rlm@511 561 (def LCD-bank-select-address 0xFF4F)
rlm@511 562
rlm@511 563 (def BG-1-address 0x9800)
rlm@511 564 (def BG-2-address 0x9C00)
rlm@511 565 (def character-data-address 0x8000)
rlm@511 566
rlm@511 567 (def LCD-control-register 0xFF40)
rlm@511 568 (def STAT-register 0xFF41)
rlm@511 569
rlm@511 570 (def SCX-register 0xFF42)
rlm@511 571 (def SCY-register 0xFF43)
rlm@511 572
rlm@511 573 (defn select-LCD-bank [n]
rlm@511 574 (assert (or (= n 0) (= n 1)))
rlm@511 575 (write-byte LCD-bank-select-address n))
rlm@511 576
rlm@512 577 (defn write-image* [_ _ _] [])
rlm@512 578
rlm@508 579 (defn display-image-kernel [base-address ^BufferedImage image]
rlm@511 580 (let [gb-image (image->gb-image image)
rlm@511 581
rlm@511 582 A [(clear-music-registers)
rlm@512 583
rlm@511 584 ;; [X] disable LCD protection circuit.
rlm@511 585 (write-byte LCD-control-register 0x00)
rlm@511 586 ;; now we can write to all video RAM anytime with
rlm@511 587 ;; impunity.
rlm@511 588
rlm@512 589 ;; [ ] We're only using background palettes; just set the
rlm@512 590 ;; minimum required bg palettes for this image, starting
rlm@512 591 ;; with palette #0.
rlm@502 592
rlm@511 593 (set-palettes bg-palette-select bg-palette-data
rlm@511 594 (:palettes gb-image))
rlm@507 595
rlm@511 596 ;; [X] switch to bank 0 to set BG character data.
rlm@511 597 (select-LCD-bank 0)
rlm@511 598 ;; [X] set SCX and SCY to 0
rlm@511 599 (write-byte SCX-register 0)
rlm@511 600 (write-byte SCY-register 0)
rlm@511 601 ]
rlm@511 602 A (flatten A)
rlm@507 603
rlm@511 604 B [;; [X] write minimum amount of tiles to BG character
rlm@511 605 ;; section
rlm@511 606 (write-data
rlm@511 607 (+ base-address (count A))
rlm@511 608 character-data-address
rlm@511 609 (flatten
rlm@515 610 (map gb-tile->bytes (:tiles gb-image))))
rlm@517 611 (select-LCD-bank 0)]
rlm@511 612 B (flatten B)
rlm@507 613
rlm@511 614
rlm@517 615 C [;; [X] write image to the screen in terms of tiles
rlm@512 616 (write-image
rlm@511 617 (+ base-address (+ (count A) (count B)))
rlm@511 618 BG-1-address
rlm@517 619 (map first (:data gb-image)))
rlm@517 620 (select-LCD-bank 1)]
rlm@507 621
rlm@511 622 C (flatten C)
rlm@507 623
rlm@517 624 D [;; [X] specifiy pallets for each character
rlm@515 625 (write-image
rlm@515 626 (+ base-address (+ (count A) (count B) (count C)))
rlm@515 627 BG-1-address
rlm@517 628 (map second (:data gb-image)))
rlm@515 629
rlm@505 630
rlm@511 631 ;; [X] reactivate the LCD display
rlm@511 632 ;; we're using only BG images, located at
rlm@511 633 ;; BG-1 (0x9800), with background character data
rlm@511 634 ;; stored starting at 0x8000
rlm@505 635
rlm@511 636 (write-byte
rlm@511 637 LCD-control-register
rlm@511 638 (Integer/parseInt
rlm@511 639 (str
rlm@511 640 "1" ;; LCDC on/off
rlm@511 641 "0" ;; Window code area
rlm@511 642 "0" ;; Windowing on?
rlm@511 643 "1" ;; BG tile base (1 = 0x8000)
rlm@511 644 "0" ;; BG-1 or BG-2 ?
rlm@511 645 "0" ;; OBJ-block composition
rlm@511 646 "0" ;; OBJ-on flag
rlm@511 647 "1") ;; no-effect
rlm@511 648 2))
rlm@505 649
rlm@511 650 (infinite-loop)]
rlm@511 651 D (flatten D)]
rlm@511 652
rlm@511 653 (concat A B C D)))
rlm@511 654
rlm@511 655 (defn display-image [#^BufferedImage image]
rlm@511 656 (let [kernel-address 0xB000]
rlm@511 657 (-> (tick (tick (tick (mid-game))))
rlm@511 658 (set-memory-range
rlm@511 659 kernel-address
rlm@511 660 (display-image-kernel kernel-address image))
rlm@511 661 (PC! kernel-address))))