diff categorical/synthetic.html @ 2:b4de894a1e2e

initial import
author Robert McIntyre <rlm@mit.edu>
date Fri, 28 Oct 2011 00:03:05 -0700
parents
children
line wrap: on
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/categorical/synthetic.html	Fri Oct 28 00:03:05 2011 -0700
     1.3 @@ -0,0 +1,282 @@
     1.4 +<?xml version="1.0" encoding="utf-8"?>
     1.5 +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
     1.6 +               "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
     1.7 +<html xmlns="http://www.w3.org/1999/xhtml"
     1.8 +lang="en" xml:lang="en">
     1.9 +<head>
    1.10 +<title>Synthetic Differential Geometry</title>
    1.11 +<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
    1.12 +<meta name="generator" content="Org-mode"/>
    1.13 +<meta name="generated" content="2011-08-15 22:42:41 EDT"/>
    1.14 +<meta name="author" content="Dylan Holmes"/>
    1.15 +<meta name="description" content=""/>
    1.16 +<meta name="keywords" content=""/>
    1.17 +<style type="text/css">
    1.18 + <!--/*--><![CDATA[/*><!--*/
    1.19 +  html { font-family: Times, serif; font-size: 12pt; }
    1.20 +  .title  { text-align: center; }
    1.21 +  .todo   { color: red; }
    1.22 +  .done   { color: green; }
    1.23 +  .tag    { background-color: #add8e6; font-weight:normal }
    1.24 +  .target { }
    1.25 +  .timestamp { color: #bebebe; }
    1.26 +  .timestamp-kwd { color: #5f9ea0; }
    1.27 +  .right  {margin-left:auto; margin-right:0px;  text-align:right;}
    1.28 +  .left   {margin-left:0px;  margin-right:auto; text-align:left;}
    1.29 +  .center {margin-left:auto; margin-right:auto; text-align:center;}
    1.30 +  p.verse { margin-left: 3% }
    1.31 +  pre {
    1.32 +	border: 1pt solid #AEBDCC;
    1.33 +	background-color: #F3F5F7;
    1.34 +	padding: 5pt;
    1.35 +	font-family: courier, monospace;
    1.36 +        font-size: 90%;
    1.37 +        overflow:auto;
    1.38 +  }
    1.39 +  table { border-collapse: collapse; }
    1.40 +  td, th { vertical-align: top;  }
    1.41 +  th.right  { text-align:center;  }
    1.42 +  th.left   { text-align:center;   }
    1.43 +  th.center { text-align:center; }
    1.44 +  td.right  { text-align:right;  }
    1.45 +  td.left   { text-align:left;   }
    1.46 +  td.center { text-align:center; }
    1.47 +  dt { font-weight: bold; }
    1.48 +  div.figure { padding: 0.5em; }
    1.49 +  div.figure p { text-align: center; }
    1.50 +  textarea { overflow-x: auto; }
    1.51 +  .linenr { font-size:smaller }
    1.52 +  .code-highlighted {background-color:#ffff00;}
    1.53 +  .org-info-js_info-navigation { border-style:none; }
    1.54 +  #org-info-js_console-label { font-size:10px; font-weight:bold;
    1.55 +                               white-space:nowrap; }
    1.56 +  .org-info-js_search-highlight {background-color:#ffff00; color:#000000;
    1.57 +                                 font-weight:bold; }
    1.58 +  /*]]>*/-->
    1.59 +</style>
    1.60 +<link rel="stylesheet" type="text/css" href="../css/aurellem.css" />
    1.61 +<script type="text/javascript">
    1.62 +<!--/*--><![CDATA[/*><!--*/
    1.63 + function CodeHighlightOn(elem, id)
    1.64 + {
    1.65 +   var target = document.getElementById(id);
    1.66 +   if(null != target) {
    1.67 +     elem.cacheClassElem = elem.className;
    1.68 +     elem.cacheClassTarget = target.className;
    1.69 +     target.className = "code-highlighted";
    1.70 +     elem.className   = "code-highlighted";
    1.71 +   }
    1.72 + }
    1.73 + function CodeHighlightOff(elem, id)
    1.74 + {
    1.75 +   var target = document.getElementById(id);
    1.76 +   if(elem.cacheClassElem)
    1.77 +     elem.className = elem.cacheClassElem;
    1.78 +   if(elem.cacheClassTarget)
    1.79 +     target.className = elem.cacheClassTarget;
    1.80 + }
    1.81 +/*]]>*///-->
    1.82 +</script>
    1.83 +<script type="text/javascript" src="../MathJax/MathJax.js">
    1.84 +<!--/*--><![CDATA[/*><!--*/
    1.85 +    MathJax.Hub.Config({
    1.86 +        // Only one of the two following lines, depending on user settings
    1.87 +        // First allows browser-native MathML display, second forces HTML/CSS
    1.88 +            config: ["MMLorHTML.js"], jax: ["input/TeX"],
    1.89 +        //  jax: ["input/TeX", "output/HTML-CSS"],
    1.90 +        extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
    1.91 +                     "TeX/noUndefined.js"],
    1.92 +        tex2jax: {
    1.93 +            inlineMath: [ ["\\(","\\)"] ],
    1.94 +            displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
    1.95 +            skipTags: ["script","noscript","style","textarea","pre","code"],
    1.96 +            ignoreClass: "tex2jax_ignore",
    1.97 +            processEscapes: false,
    1.98 +            processEnvironments: true,
    1.99 +            preview: "TeX"
   1.100 +        },
   1.101 +        showProcessingMessages: true,
   1.102 +        displayAlign: "left",
   1.103 +        displayIndent: "2em",
   1.104 +
   1.105 +        "HTML-CSS": {
   1.106 +             scale: 100,
   1.107 +             availableFonts: ["STIX","TeX"],
   1.108 +             preferredFont: "TeX",
   1.109 +             webFont: "TeX",
   1.110 +             imageFont: "TeX",
   1.111 +             showMathMenu: true,
   1.112 +        },
   1.113 +        MMLorHTML: {
   1.114 +             prefer: {
   1.115 +                 MSIE:    "MML",
   1.116 +                 Firefox: "MML",
   1.117 +                 Opera:   "HTML",
   1.118 +                 other:   "HTML"
   1.119 +             }
   1.120 +        }
   1.121 +    });
   1.122 +/*]]>*///-->
   1.123 +</script>
   1.124 +</head>
   1.125 +<body>
   1.126 +
   1.127 +<div id="content">
   1.128 +
   1.129 +
   1.130 +
   1.131 +<div class="header">
   1.132 +  <div class="float-right">	
   1.133 +    <!-- 
   1.134 +    <form>
   1.135 +      <input type="text"/><input type="submit" value="search the blog &raquo;"/> 
   1.136 +    </form>
   1.137 +    -->
   1.138 +  </div>
   1.139 +
   1.140 +  <h1>aurellem <em>&#x2609;</em></h1>
   1.141 +  <ul class="nav">
   1.142 +    <li><a href="/">read the blog &raquo;</a></li>
   1.143 +    <!-- li><a href="#">learn about us &raquo;</a></li-->
   1.144 +  </ul>
   1.145 +</div>
   1.146 +
   1.147 +<h1 class="title">Synthetic Differential Geometry</h1>
   1.148 +<div class="author">Written by <author>Dylan Holmes</author></div>
   1.149 +
   1.150 +
   1.151 +
   1.152 +
   1.153 +
   1.154 +
   1.155 +<p>
   1.156 +(My notes on Anders Kock's <i>Synthetic Differential Geometry</i>)
   1.157 +</p>
   1.158 +
   1.159 +<div id="table-of-contents">
   1.160 +<h2>Table of Contents</h2>
   1.161 +<div id="text-table-of-contents">
   1.162 +<ul>
   1.163 +<li><a href="#sec-1">1 Revisiting the real line </a>
   1.164 +<ul>
   1.165 +<li><a href="#sec-1-1">1.1 The first anti-euclidean axiom </a></li>
   1.166 +<li><a href="#sec-1-2">1.2 The first axiom \(\ldots\) in terms of arrows </a></li>
   1.167 +<li><a href="#sec-1-3">1.3 Ex </a></li>
   1.168 +</ul>
   1.169 +</li>
   1.170 +</ul>
   1.171 +</div>
   1.172 +</div>
   1.173 +
   1.174 +<div id="outline-container-1" class="outline-2">
   1.175 +<h2 id="sec-1"><span class="section-number-2">1</span> Revisiting the real line </h2>
   1.176 +<div class="outline-text-2" id="text-1">
   1.177 +
   1.178 +
   1.179 +<p>
   1.180 +<b>Lines</b>, the kind which Euclid talked about, each constitute a commutative
   1.181 + ring: you choose any two points on the line to be 0 and 1, then add
   1.182 + and multiply as if you were dealing with real numbers \(\mathbb{R}\).
   1.183 +</p>
   1.184 +<p>
   1.185 +Euclid moreover uses the axiom that for any two points, <i>either</i> they are the
   1.186 +same point <i>or</i> there is a unique line between them. Algebraically,
   1.187 +this amounts to saying that each line is not only a commutative ring
   1.188 +but a <b>field</b>, as well. This marks our first departure from euclidean
   1.189 +geometry, as our first axiom denies that each line is a field.
   1.190 +</p>
   1.191 +
   1.192 +
   1.193 +</div>
   1.194 +
   1.195 +<div id="outline-container-1-1" class="outline-3">
   1.196 +<h3 id="sec-1-1"><span class="section-number-3">1.1</span> The first anti-euclidean axiom </h3>
   1.197 +<div class="outline-text-3" id="text-1-1">
   1.198 +
   1.199 +<p>A point in a ring is called <b>nilpotent</b> if its square is
   1.200 +zero. Normally (that is, in \(\mathbb{R}^n\)), only \(0\) is
   1.201 +nilpotent. Here, as a consequence of the following axiom, there will
   1.202 +exist other elements that are nilpotent. These elements will
   1.203 +encapsulate our intuitive idea of &ldquo;infinitesimally small&rdquo; numbers.
   1.204 +</p>
   1.205 +<blockquote>
   1.206 +
   1.207 +<p><b>Axiom 1:</b> Let \(R\) be the line, considered as a commutative ring, and
   1.208 + let \(D\subset R\) be the set of nilpotent elements on the line. Then for any
   1.209 + morphism \(g:D\rightarrow R\), there exists a unique \(b\in R\) such that
   1.210 +</p>
   1.211 +
   1.212 +
   1.213 +\(\forall d\in D, g(d) = g(0)+ b\cdot d\)
   1.214 +
   1.215 +<p>
   1.216 +Intuitively, this unique \(b\) is the slope of the function \(g\) near
   1.217 +zero. Because every morphism \(g\) has exactly one such \(b\), we have the
   1.218 +following results:
   1.219 +</p>
   1.220 +<ol>
   1.221 +<li>The set \(D\) of nilpotent elements contains more than
   1.222 +   just 0. Indeed, suppose the contrary: if \(D=\{0\}\), then for any \(g\), <i>every</i> \(b\in R\) has the
   1.223 +   property described above;&mdash;\(b\) isn't uniquely defined.
   1.224 +</li>
   1.225 +<li>Pick \(b_1\) and \(b_2\) in \(R\). If every nilpotent \(d\) satisfies \(d\cdot
   1.226 +   b_1 = d\cdot b_2\), then \(b_1\) and \(b_2\) are equal.
   1.227 +</li>
   1.228 +</ol>
   1.229 +
   1.230 +
   1.231 +</div>
   1.232 +
   1.233 +</div>
   1.234 +
   1.235 +<div id="outline-container-1-2" class="outline-3">
   1.236 +<h3 id="sec-1-2"><span class="section-number-3">1.2</span> The first axiom \(\ldots\) in terms of arrows </h3>
   1.237 +<div class="outline-text-3" id="text-1-2">
   1.238 +
   1.239 +
   1.240 +<p>
   1.241 +Define \(\xi:R\times R\rightarrow R^D\) by \(\xi:(a,b)\mapsto (d\mapsto
   1.242 +a+b\cdot d)\). The first axiom is equivalent to the statement
   1.243 +&ldquo;&xi; is invertible (i.e., a bijection)&rdquo;
   1.244 +</p>
   1.245 +<p>
   1.246 +We give \(R\times R\) the structure of an \(R\)-algebra by defining
   1.247 +multiplication: \( (a_1,b_1)\star(a_2,b_2) = (a_1\cdot a_2,\quad
   1.248 +a_1\cdot b_2 + a_2\cdot b_1)\). This is called <b>dual-numbers multiplication</b>, and is similar to muliplication of complex numbers.
   1.249 +</p>
   1.250 +
   1.251 +</div>
   1.252 +
   1.253 +</div>
   1.254 +
   1.255 +<div id="outline-container-1-3" class="outline-3">
   1.256 +<h3 id="sec-1-3"><span class="section-number-3">1.3</span> Ex </h3>
   1.257 +<div class="outline-text-3" id="text-1-3">
   1.258 +
   1.259 +<ol>
   1.260 +<li>If \(a\) and \(b\) are nilpotent, then \(ab\) is nilpotent.
   1.261 +</li>
   1.262 +<li>Even if \(a\) and \(b\) are nilpotent, the sum \(a+b\) may not be.
   1.263 +</li>
   1.264 +<li>Even if \(a+b\) is nilpotent, either summand \(a\), \(b\) may not be.
   1.265 +</li>
   1.266 +<li>
   1.267 +</li>
   1.268 +</ol>
   1.269 +
   1.270 +
   1.271 +
   1.272 +</blockquote>
   1.273 +
   1.274 +</div>
   1.275 +</div>
   1.276 +</div>
   1.277 +<div id="postamble">
   1.278 +<p class="date">Date: 2011-08-15 22:42:41 EDT</p>
   1.279 +<p class="author">Author: Dylan Holmes</p>
   1.280 +<p class="creator">Org version 7.6 with Emacs version 23</p>
   1.281 +<a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
   1.282 +</div>
   1.283 +</div>
   1.284 +</body>
   1.285 +</html>