Mercurial > dylan
comparison categorical/synthetic.html @ 2:b4de894a1e2e
initial import
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Fri, 28 Oct 2011 00:03:05 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:8d8278e09888 | 2:b4de894a1e2e |
---|---|
1 <?xml version="1.0" encoding="utf-8"?> | |
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" | |
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | |
4 <html xmlns="http://www.w3.org/1999/xhtml" | |
5 lang="en" xml:lang="en"> | |
6 <head> | |
7 <title>Synthetic Differential Geometry</title> | |
8 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"/> | |
9 <meta name="generator" content="Org-mode"/> | |
10 <meta name="generated" content="2011-08-15 22:42:41 EDT"/> | |
11 <meta name="author" content="Dylan Holmes"/> | |
12 <meta name="description" content=""/> | |
13 <meta name="keywords" content=""/> | |
14 <style type="text/css"> | |
15 <!--/*--><![CDATA[/*><!--*/ | |
16 html { font-family: Times, serif; font-size: 12pt; } | |
17 .title { text-align: center; } | |
18 .todo { color: red; } | |
19 .done { color: green; } | |
20 .tag { background-color: #add8e6; font-weight:normal } | |
21 .target { } | |
22 .timestamp { color: #bebebe; } | |
23 .timestamp-kwd { color: #5f9ea0; } | |
24 .right {margin-left:auto; margin-right:0px; text-align:right;} | |
25 .left {margin-left:0px; margin-right:auto; text-align:left;} | |
26 .center {margin-left:auto; margin-right:auto; text-align:center;} | |
27 p.verse { margin-left: 3% } | |
28 pre { | |
29 border: 1pt solid #AEBDCC; | |
30 background-color: #F3F5F7; | |
31 padding: 5pt; | |
32 font-family: courier, monospace; | |
33 font-size: 90%; | |
34 overflow:auto; | |
35 } | |
36 table { border-collapse: collapse; } | |
37 td, th { vertical-align: top; } | |
38 th.right { text-align:center; } | |
39 th.left { text-align:center; } | |
40 th.center { text-align:center; } | |
41 td.right { text-align:right; } | |
42 td.left { text-align:left; } | |
43 td.center { text-align:center; } | |
44 dt { font-weight: bold; } | |
45 div.figure { padding: 0.5em; } | |
46 div.figure p { text-align: center; } | |
47 textarea { overflow-x: auto; } | |
48 .linenr { font-size:smaller } | |
49 .code-highlighted {background-color:#ffff00;} | |
50 .org-info-js_info-navigation { border-style:none; } | |
51 #org-info-js_console-label { font-size:10px; font-weight:bold; | |
52 white-space:nowrap; } | |
53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000; | |
54 font-weight:bold; } | |
55 /*]]>*/--> | |
56 </style> | |
57 <link rel="stylesheet" type="text/css" href="../css/aurellem.css" /> | |
58 <script type="text/javascript"> | |
59 <!--/*--><![CDATA[/*><!--*/ | |
60 function CodeHighlightOn(elem, id) | |
61 { | |
62 var target = document.getElementById(id); | |
63 if(null != target) { | |
64 elem.cacheClassElem = elem.className; | |
65 elem.cacheClassTarget = target.className; | |
66 target.className = "code-highlighted"; | |
67 elem.className = "code-highlighted"; | |
68 } | |
69 } | |
70 function CodeHighlightOff(elem, id) | |
71 { | |
72 var target = document.getElementById(id); | |
73 if(elem.cacheClassElem) | |
74 elem.className = elem.cacheClassElem; | |
75 if(elem.cacheClassTarget) | |
76 target.className = elem.cacheClassTarget; | |
77 } | |
78 /*]]>*///--> | |
79 </script> | |
80 <script type="text/javascript" src="../MathJax/MathJax.js"> | |
81 <!--/*--><![CDATA[/*><!--*/ | |
82 MathJax.Hub.Config({ | |
83 // Only one of the two following lines, depending on user settings | |
84 // First allows browser-native MathML display, second forces HTML/CSS | |
85 config: ["MMLorHTML.js"], jax: ["input/TeX"], | |
86 // jax: ["input/TeX", "output/HTML-CSS"], | |
87 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js", | |
88 "TeX/noUndefined.js"], | |
89 tex2jax: { | |
90 inlineMath: [ ["\\(","\\)"] ], | |
91 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ], | |
92 skipTags: ["script","noscript","style","textarea","pre","code"], | |
93 ignoreClass: "tex2jax_ignore", | |
94 processEscapes: false, | |
95 processEnvironments: true, | |
96 preview: "TeX" | |
97 }, | |
98 showProcessingMessages: true, | |
99 displayAlign: "left", | |
100 displayIndent: "2em", | |
101 | |
102 "HTML-CSS": { | |
103 scale: 100, | |
104 availableFonts: ["STIX","TeX"], | |
105 preferredFont: "TeX", | |
106 webFont: "TeX", | |
107 imageFont: "TeX", | |
108 showMathMenu: true, | |
109 }, | |
110 MMLorHTML: { | |
111 prefer: { | |
112 MSIE: "MML", | |
113 Firefox: "MML", | |
114 Opera: "HTML", | |
115 other: "HTML" | |
116 } | |
117 } | |
118 }); | |
119 /*]]>*///--> | |
120 </script> | |
121 </head> | |
122 <body> | |
123 | |
124 <div id="content"> | |
125 | |
126 | |
127 | |
128 <div class="header"> | |
129 <div class="float-right"> | |
130 <!-- | |
131 <form> | |
132 <input type="text"/><input type="submit" value="search the blog »"/> | |
133 </form> | |
134 --> | |
135 </div> | |
136 | |
137 <h1>aurellem <em>☉</em></h1> | |
138 <ul class="nav"> | |
139 <li><a href="/">read the blog »</a></li> | |
140 <!-- li><a href="#">learn about us »</a></li--> | |
141 </ul> | |
142 </div> | |
143 | |
144 <h1 class="title">Synthetic Differential Geometry</h1> | |
145 <div class="author">Written by <author>Dylan Holmes</author></div> | |
146 | |
147 | |
148 | |
149 | |
150 | |
151 | |
152 <p> | |
153 (My notes on Anders Kock's <i>Synthetic Differential Geometry</i>) | |
154 </p> | |
155 | |
156 <div id="table-of-contents"> | |
157 <h2>Table of Contents</h2> | |
158 <div id="text-table-of-contents"> | |
159 <ul> | |
160 <li><a href="#sec-1">1 Revisiting the real line </a> | |
161 <ul> | |
162 <li><a href="#sec-1-1">1.1 The first anti-euclidean axiom </a></li> | |
163 <li><a href="#sec-1-2">1.2 The first axiom \(\ldots\) in terms of arrows </a></li> | |
164 <li><a href="#sec-1-3">1.3 Ex </a></li> | |
165 </ul> | |
166 </li> | |
167 </ul> | |
168 </div> | |
169 </div> | |
170 | |
171 <div id="outline-container-1" class="outline-2"> | |
172 <h2 id="sec-1"><span class="section-number-2">1</span> Revisiting the real line </h2> | |
173 <div class="outline-text-2" id="text-1"> | |
174 | |
175 | |
176 <p> | |
177 <b>Lines</b>, the kind which Euclid talked about, each constitute a commutative | |
178 ring: you choose any two points on the line to be 0 and 1, then add | |
179 and multiply as if you were dealing with real numbers \(\mathbb{R}\). | |
180 </p> | |
181 <p> | |
182 Euclid moreover uses the axiom that for any two points, <i>either</i> they are the | |
183 same point <i>or</i> there is a unique line between them. Algebraically, | |
184 this amounts to saying that each line is not only a commutative ring | |
185 but a <b>field</b>, as well. This marks our first departure from euclidean | |
186 geometry, as our first axiom denies that each line is a field. | |
187 </p> | |
188 | |
189 | |
190 </div> | |
191 | |
192 <div id="outline-container-1-1" class="outline-3"> | |
193 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> The first anti-euclidean axiom </h3> | |
194 <div class="outline-text-3" id="text-1-1"> | |
195 | |
196 <p>A point in a ring is called <b>nilpotent</b> if its square is | |
197 zero. Normally (that is, in \(\mathbb{R}^n\)), only \(0\) is | |
198 nilpotent. Here, as a consequence of the following axiom, there will | |
199 exist other elements that are nilpotent. These elements will | |
200 encapsulate our intuitive idea of “infinitesimally small” numbers. | |
201 </p> | |
202 <blockquote> | |
203 | |
204 <p><b>Axiom 1:</b> Let \(R\) be the line, considered as a commutative ring, and | |
205 let \(D\subset R\) be the set of nilpotent elements on the line. Then for any | |
206 morphism \(g:D\rightarrow R\), there exists a unique \(b\in R\) such that | |
207 </p> | |
208 | |
209 | |
210 \(\forall d\in D, g(d) = g(0)+ b\cdot d\) | |
211 | |
212 <p> | |
213 Intuitively, this unique \(b\) is the slope of the function \(g\) near | |
214 zero. Because every morphism \(g\) has exactly one such \(b\), we have the | |
215 following results: | |
216 </p> | |
217 <ol> | |
218 <li>The set \(D\) of nilpotent elements contains more than | |
219 just 0. Indeed, suppose the contrary: if \(D=\{0\}\), then for any \(g\), <i>every</i> \(b\in R\) has the | |
220 property described above;—\(b\) isn't uniquely defined. | |
221 </li> | |
222 <li>Pick \(b_1\) and \(b_2\) in \(R\). If every nilpotent \(d\) satisfies \(d\cdot | |
223 b_1 = d\cdot b_2\), then \(b_1\) and \(b_2\) are equal. | |
224 </li> | |
225 </ol> | |
226 | |
227 | |
228 </div> | |
229 | |
230 </div> | |
231 | |
232 <div id="outline-container-1-2" class="outline-3"> | |
233 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> The first axiom \(\ldots\) in terms of arrows </h3> | |
234 <div class="outline-text-3" id="text-1-2"> | |
235 | |
236 | |
237 <p> | |
238 Define \(\xi:R\times R\rightarrow R^D\) by \(\xi:(a,b)\mapsto (d\mapsto | |
239 a+b\cdot d)\). The first axiom is equivalent to the statement | |
240 “ξ is invertible (i.e., a bijection)” | |
241 </p> | |
242 <p> | |
243 We give \(R\times R\) the structure of an \(R\)-algebra by defining | |
244 multiplication: \( (a_1,b_1)\star(a_2,b_2) = (a_1\cdot a_2,\quad | |
245 a_1\cdot b_2 + a_2\cdot b_1)\). This is called <b>dual-numbers multiplication</b>, and is similar to muliplication of complex numbers. | |
246 </p> | |
247 | |
248 </div> | |
249 | |
250 </div> | |
251 | |
252 <div id="outline-container-1-3" class="outline-3"> | |
253 <h3 id="sec-1-3"><span class="section-number-3">1.3</span> Ex </h3> | |
254 <div class="outline-text-3" id="text-1-3"> | |
255 | |
256 <ol> | |
257 <li>If \(a\) and \(b\) are nilpotent, then \(ab\) is nilpotent. | |
258 </li> | |
259 <li>Even if \(a\) and \(b\) are nilpotent, the sum \(a+b\) may not be. | |
260 </li> | |
261 <li>Even if \(a+b\) is nilpotent, either summand \(a\), \(b\) may not be. | |
262 </li> | |
263 <li> | |
264 </li> | |
265 </ol> | |
266 | |
267 | |
268 | |
269 </blockquote> | |
270 | |
271 </div> | |
272 </div> | |
273 </div> | |
274 <div id="postamble"> | |
275 <p class="date">Date: 2011-08-15 22:42:41 EDT</p> | |
276 <p class="author">Author: Dylan Holmes</p> | |
277 <p class="creator">Org version 7.6 with Emacs version 23</p> | |
278 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a> | |
279 </div> | |
280 </div> | |
281 </body> | |
282 </html> |