annotate sicm/deriv.org @ 11:1f112b4f9e8f tip

Fixed what was baroque.
author Dylan Holmes <ocsenave@gmail.com>
date Tue, 01 Nov 2011 02:30:49 -0500
parents b4de894a1e2e
children
rev   line source
rlm@2 1 #+TITLE:An Unambiguous Notation for Derivatives
rlm@2 2 #+author: Dylan Holmes
rlm@2 3 #+EMAIL: rlm@mit.edu
rlm@2 4 #+MATHJAX: align:"left" mathml:t path:"../MathJax/MathJax.js"
rlm@2 5 #+STYLE: <link rel="stylesheet" type="text/css" href="../css/aurellem.css" />
rlm@2 6 #+OPTIONS: H:3 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
rlm@2 7 #+SETUPFILE: ../templates/level-0.org
rlm@2 8 #+INCLUDE: ../templates/level-0.org
rlm@2 9 #+BABEL: :noweb yes
rlm@2 10
rlm@2 11 * Calculus of Infinitesimals
rlm@2 12 ** Differential Objects
rlm@2 13
rlm@2 14 A *differential object* is a pair $[x,\,dx]$ consisting of a variable
rlm@2 15 and an infinitely small increment of it. We want differential objects
rlm@2 16 to enable us to compute derivatives of functions.
rlm@2 17
rlm@2 18 Differential objects are for
rlm@2 19 calculating derivatives of functions: the derivative of $f$ with
rlm@2 20 respect to $x$
rlm@2 21
rlm@2 22 You can \ldquo{}apply\rdquo{}
rlm@2 23 functions to differential objects; the result is:
rlm@2 24
rlm@2 25 \([x,dx]\xrightarrow{\quad f \quad}[f(x), Df(x)\cdot dx].\)
rlm@2 26
rlm@2 27 Loosely speaking, the interaction of $f$ and a differential object
rlm@2 28 of $x$ is a differential object of $f$.
rlm@2 29
rlm@2 30 #As a linguistic convention, we'll call this interaction /applying f
rlm@2 31 #to the differential object/. This is not to be confused with the
rlm@2 32 #=apply= function in Clojure.
rlm@2 33
rlm@2 34 ** Interactions obey the chain rule
rlm@2 35
rlm@2 36 The interaction of $f$ and the differential object $[x, dx]$ is
rlm@2 37 a differential object $[f(x), Df(x)\cdot dx]$. Because of the rule for
rlm@2 38 interactions, if you apply another function $g$, you get the
rlm@2 39 chain-rule answer you expect:
rlm@2 40
rlm@2 41 \([f(x), Df(x)\cdot dx]\xrightarrow{\quad g\quad}\left[g(f(x)),\,
rlm@2 42 Dg(f(x))\cdot Df(x)\cdot dx\right]\)
rlm@2 43
rlm@2 44
rlm@2 45 #+begin_src clojure :tangle deriv.clj
rlm@2 46
rlm@2 47 #+end_src
rlm@2 48
rlm@2 49 #+results:
rlm@2 50 : nil
rlm@2 51
rlm@2 52
rlm@2 53