Mercurial > dylan
view sicm/deriv.org @ 2:b4de894a1e2e
initial import
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Fri, 28 Oct 2011 00:03:05 -0700 |
parents | |
children |
line wrap: on
line source
1 #+TITLE:An Unambiguous Notation for Derivatives2 #+author: Dylan Holmes3 #+EMAIL: rlm@mit.edu4 #+MATHJAX: align:"left" mathml:t path:"../MathJax/MathJax.js"5 #+STYLE: <link rel="stylesheet" type="text/css" href="../css/aurellem.css" />6 #+OPTIONS: H:3 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t7 #+SETUPFILE: ../templates/level-0.org8 #+INCLUDE: ../templates/level-0.org9 #+BABEL: :noweb yes11 * Calculus of Infinitesimals12 ** Differential Objects14 A *differential object* is a pair $[x,\,dx]$ consisting of a variable15 and an infinitely small increment of it. We want differential objects16 to enable us to compute derivatives of functions.18 Differential objects are for19 calculating derivatives of functions: the derivative of $f$ with20 respect to $x$22 You can \ldquo{}apply\rdquo{}23 functions to differential objects; the result is:25 \([x,dx]\xrightarrow{\quad f \quad}[f(x), Df(x)\cdot dx].\)27 Loosely speaking, the interaction of $f$ and a differential object28 of $x$ is a differential object of $f$.30 #As a linguistic convention, we'll call this interaction /applying f31 #to the differential object/. This is not to be confused with the32 #=apply= function in Clojure.34 ** Interactions obey the chain rule36 The interaction of $f$ and the differential object $[x, dx]$ is37 a differential object $[f(x), Df(x)\cdot dx]$. Because of the rule for38 interactions, if you apply another function $g$, you get the39 chain-rule answer you expect:41 \([f(x), Df(x)\cdot dx]\xrightarrow{\quad g\quad}\left[g(f(x)),\,42 Dg(f(x))\cdot Df(x)\cdot dx\right]\)45 #+begin_src clojure :tangle deriv.clj47 #+end_src49 #+results:50 : nil