annotate org/touch.org @ 243:f33fec68f775

touch has been restored, with some very slight speed improvements, and now with much less code
author Robert McIntyre <rlm@mit.edu>
date Sun, 12 Feb 2012 14:14:57 -0700
parents a7f26a074071
children f23217324f72
rev   line source
rlm@37 1 #+title: Simulated Sense of Touch
rlm@0 2 #+author: Robert McIntyre
rlm@0 3 #+email: rlm@mit.edu
rlm@37 4 #+description: Simulated touch for AI research using JMonkeyEngine and clojure.
rlm@37 5 #+keywords: simulation, tactile sense, jMonkeyEngine3, clojure
rlm@4 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@0 8
rlm@229 9
rlm@229 10
rlm@37 11 * Touch
rlm@0 12
rlm@226 13 Touch is critical to navigation and spatial reasoning and as such I
rlm@226 14 need a simulated version of it to give to my AI creatures.
rlm@0 15
rlm@228 16 However, touch in my virtual can not exactly correspond to human touch
rlm@228 17 because my creatures are made out of completely rigid segments that
rlm@228 18 don't deform like human skin.
rlm@228 19
rlm@228 20 Human skin has a wide array of touch sensors, each of which speciliaze
rlm@228 21 in detecting different vibrational modes and pressures. These sensors
rlm@228 22 can integrate a vast expanse of skin (i.e. your entire palm), or a
rlm@228 23 tiny patch of skin at the tip of your finger. The hairs of the skin
rlm@228 24 help detect objects before they even come into contact with the skin
rlm@228 25 proper.
rlm@228 26
rlm@228 27 Instead of measuring deformation or vibration, I surround each rigid
rlm@228 28 part with a plenitude of hair-like objects which do not interact with
rlm@228 29 the physical world. Physical objects can pass through them with no
rlm@228 30 effect. The hairs are able to measure contact with other objects, and
rlm@228 31 constantly report how much of their extent is covered. So, even though
rlm@228 32 the creature's body parts do not deform, the hairs create a margin
rlm@228 33 around those body parts which achieves a sense of touch which is a
rlm@228 34 hybrid between a human's sense of deformation and sense from hairs.
rlm@228 35
rlm@228 36 Implementing touch in jMonkeyEngine follows a different techinal route
rlm@228 37 than vision and hearing. Those two senses piggybacked off
rlm@228 38 jMonkeyEngine's 3D audio and video rendering subsystems. To simulate
rlm@228 39 Touch, I use jMonkeyEngine's physics system to execute many small
rlm@229 40 collision detections, one for each "hair". The placement of the
rlm@229 41 "hairs" is determined by a UV-mapped image which shows where each hair
rlm@229 42 should be on the 3D surface of the body.
rlm@228 43
rlm@229 44
rlm@229 45 * Defining Touch Meta-Data in Blender
rlm@229 46
rlm@229 47 Each geometry can have a single UV map which describes the position
rlm@229 48 and length of the "hairs" which will constitute its sense of
rlm@229 49 touch. This image path is stored under the "touch" key. The image
rlm@229 50 itself is grayscale, with black meaning a hair length of 0 (no hair is
rlm@229 51 present) and white meaning a hair length of =scale=, which is a float
rlm@229 52 stored under the key "scale". If the pixel is gray then the resultant
rlm@238 53 hair length is linearly interpolated between 0 and =scale=. I call
rlm@238 54 these "hairs" /feelers/.
rlm@229 55
rlm@231 56 #+name: meta-data
rlm@0 57 #+begin_src clojure
rlm@229 58 (defn tactile-sensor-profile
rlm@229 59 "Return the touch-sensor distribution image in BufferedImage format,
rlm@229 60 or nil if it does not exist."
rlm@229 61 [#^Geometry obj]
rlm@229 62 (if-let [image-path (meta-data obj "touch")]
rlm@229 63 (load-image image-path)))
rlm@233 64
rlm@233 65 (defn tactile-scale
rlm@233 66 "Return the maximum length of a hair. All hairs are scalled between
rlm@233 67 0.0 and this length, depending on their color. Black is 0, and
rlm@233 68 white is maximum length, and everything in between is scalled
rlm@233 69 linearlly. Default scale is 0.01 jMonkeyEngine units."
rlm@233 70 [#^Geometry obj]
rlm@233 71 (if-let [scale (meta-data obj "scale")]
rlm@233 72 scale 0.1))
rlm@228 73 #+end_src
rlm@156 74
rlm@229 75 ** TODO add image showing example touch-uv map
rlm@229 76 ** TODO add metadata display for worm
rlm@229 77
rlm@234 78
rlm@233 79 * Skin Creation
rlm@243 80 * TODO get the actual lengths for each feeler
rlm@234 81
rlm@238 82
rlm@238 83 =(touch-kernel)= generates the functions which implement the sense of
rlm@238 84 touch for a creature. These functions must do 6 things to obtain touch
rlm@238 85 data.
rlm@238 86
rlm@238 87 - Get the tactile profile image and scale paramaters which describe
rlm@238 88 the layout of feelers along the object's surface.
rlm@239 89 =(tactile-sensor-profile)=, =(tactile-scale)=
rlm@239 90
rlm@238 91 - Get the lengths of each feeler by analyzing the color of the
rlm@238 92 pixels in the tactile profile image.
rlm@239 93 NOT IMPLEMENTED YET
rlm@239 94
rlm@238 95 - Find the triangles which make up the mesh in pixel-space and in
rlm@238 96 world-space.
rlm@239 97 =(triangles)= =(pixel-triangles)=
rlm@239 98
rlm@239 99 - Find the coordinates of each pixel in pixel space. These
rlm@239 100 coordinates are used to make the touch-topology.
rlm@240 101 =(feeler-pixel-coords)=
rlm@239 102
rlm@238 103 - Find the coordinates of each pixel in world-space. These
rlm@240 104 coordinates are the origins of the feelers. =(feeler-origins)=
rlm@239 105
rlm@238 106 - Calculate the normals of the triangles in world space, and add
rlm@238 107 them to each of the origins of the feelers. These are the
rlm@238 108 normalized coordinates of the tips of the feelers.
rlm@240 109 For both of these, =(feeler-tips)=
rlm@239 110
rlm@238 111 - Generate some sort of topology for the sensors.
rlm@239 112 =(touch-topology)=
rlm@239 113
rlm@238 114
rlm@233 115 #+name: kernel
rlm@233 116 #+begin_src clojure
rlm@233 117 (in-ns 'cortex.touch)
rlm@233 118
rlm@239 119 (declare touch-topology feelers set-ray)
rlm@234 120
rlm@243 121 (defn set-ray [#^Ray ray #^Matrix4f transform #^Vector3f origin
rlm@243 122 #^Vector3f tip length]
rlm@243 123 ;; Doing everything locally recduces garbage collection by enough to
rlm@243 124 ;; be worth it.
rlm@243 125 (.mult transform origin (.getOrigin ray))
rlm@243 126
rlm@243 127 (.mult transform tip (.getDirection ray))
rlm@243 128 (.subtractLocal (.getDirection ray) (.getOrigin ray))
rlm@243 129 (.setLimit ray length))
rlm@242 130
rlm@233 131 (defn touch-kernel
rlm@234 132 "Constructs a function which will return tactile sensory data from
rlm@234 133 'geo when called from inside a running simulation"
rlm@234 134 [#^Geometry geo]
rlm@243 135 (if-let
rlm@243 136 [profile (tactile-sensor-profile geo)]
rlm@243 137 (let [ray-reference-origins (feeler-origins geo profile)
rlm@243 138 ray-reference-tips (feeler-tips geo profile)
rlm@243 139 ray-lengths (repeat 9000 0.1)
rlm@243 140 current-rays (map (fn [_] (Ray.)) ray-reference-origins)
rlm@243 141 topology (touch-topology geo profile)]
rlm@233 142 (fn [node]
rlm@243 143 (let [transform (.getWorldMatrix geo)]
rlm@243 144 (dorun
rlm@243 145 (map (fn [ray ref-origin ref-tip length]
rlm@243 146 (set-ray ray transform ref-origin ref-tip length))
rlm@243 147 current-rays ray-reference-origins
rlm@243 148 ray-reference-tips ray-lengths))
rlm@233 149 (vector
rlm@243 150 topology
rlm@233 151 (vec
rlm@243 152 (for [ray current-rays]
rlm@233 153 (do
rlm@233 154 (let [results (CollisionResults.)]
rlm@233 155 (.collideWith node ray results)
rlm@233 156 (let [touch-objects
rlm@233 157 (filter #(not (= geo (.getGeometry %)))
rlm@233 158 results)]
rlm@233 159 [(if (empty? touch-objects)
rlm@243 160 (.getLimit ray)
rlm@243 161 (.getDistance (first touch-objects)))
rlm@243 162 (.getLimit ray)])))))))))))
rlm@233 163
rlm@233 164 (defn touch!
rlm@233 165 "Endow the creature with the sense of touch. Returns a sequence of
rlm@233 166 functions, one for each body part with a tactile-sensor-proile,
rlm@233 167 each of which when called returns sensory data for that body part."
rlm@233 168 [#^Node creature]
rlm@233 169 (filter
rlm@233 170 (comp not nil?)
rlm@233 171 (map touch-kernel
rlm@233 172 (filter #(isa? (class %) Geometry)
rlm@233 173 (node-seq creature)))))
rlm@233 174 #+end_src
rlm@233 175
rlm@243 176 #+results: kernel
rlm@243 177 : #'cortex.touch/touch!
rlm@243 178
rlm@238 179 * Sensor Related Functions
rlm@238 180
rlm@238 181 These functions analyze the touch-sensor-profile image convert the
rlm@238 182 location of each touch sensor from pixel coordinates to UV-coordinates
rlm@238 183 and XYZ-coordinates.
rlm@238 184
rlm@238 185 #+name: sensors
rlm@238 186 #+begin_src clojure
rlm@240 187 (in-ns 'cortex.touch)
rlm@240 188
rlm@240 189 (defn feeler-pixel-coords
rlm@239 190 "Returns the coordinates of the feelers in pixel space in lists, one
rlm@239 191 list for each triangle, ordered in the same way as (triangles) and
rlm@239 192 (pixel-triangles)."
rlm@239 193 [#^Geometry geo image]
rlm@240 194 (map
rlm@240 195 (fn [pixel-triangle]
rlm@240 196 (filter
rlm@240 197 (fn [coord]
rlm@240 198 (inside-triangle? (->triangle pixel-triangle)
rlm@240 199 (->vector3f coord)))
rlm@240 200 (white-coordinates image (convex-bounds pixel-triangle))))
rlm@240 201 (pixel-triangles geo image)))
rlm@239 202
rlm@242 203 (defn feeler-world-coords [#^Geometry geo image]
rlm@240 204 (let [transforms
rlm@240 205 (map #(triangles->affine-transform
rlm@240 206 (->triangle %1) (->triangle %2))
rlm@240 207 (pixel-triangles geo image)
rlm@240 208 (triangles geo))]
rlm@242 209 (map (fn [transform coords]
rlm@240 210 (map #(.mult transform (->vector3f %)) coords))
rlm@240 211 transforms (feeler-pixel-coords geo image))))
rlm@239 212
rlm@242 213 (defn feeler-origins [#^Geometry geo image]
rlm@242 214 (reduce concat (feeler-world-coords geo image)))
rlm@242 215
rlm@240 216 (defn feeler-tips [#^Geometry geo image]
rlm@242 217 (let [world-coords (feeler-world-coords geo image)
rlm@241 218 normals
rlm@241 219 (map
rlm@241 220 (fn [triangle]
rlm@241 221 (.calculateNormal triangle)
rlm@241 222 (.clone (.getNormal triangle)))
rlm@241 223 (map ->triangle (triangles geo)))]
rlm@242 224
rlm@242 225 (mapcat (fn [origins normal]
rlm@242 226 (map #(.add % normal) origins))
rlm@242 227 world-coords normals)))
rlm@242 228
rlm@241 229
rlm@241 230 (defn touch-topology [#^Geometry geo image]
rlm@243 231 (collapse (reduce concat (feeler-pixel-coords geo image))))
rlm@238 232 #+end_src
rlm@238 233
rlm@233 234 * Visualizing Touch
rlm@233 235 #+name: visualization
rlm@233 236 #+begin_src clojure
rlm@233 237 (in-ns 'cortex.touch)
rlm@233 238
rlm@233 239 (defn touch->gray
rlm@233 240 "Convert a pair of [distance, max-distance] into a grayscale pixel"
rlm@233 241 [distance max-distance]
rlm@233 242 (gray
rlm@233 243 (- 255
rlm@233 244 (rem
rlm@233 245 (int
rlm@233 246 (* 255 (/ distance max-distance)))
rlm@233 247 256))))
rlm@233 248
rlm@233 249 (defn view-touch
rlm@233 250 "Creates a function which accepts a list of touch sensor-data and
rlm@233 251 displays each element to the screen."
rlm@233 252 []
rlm@233 253 (view-sense
rlm@233 254 (fn
rlm@233 255 [[coords sensor-data]]
rlm@233 256 (let [image (points->image coords)]
rlm@233 257 (dorun
rlm@233 258 (for [i (range (count coords))]
rlm@233 259 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@233 260 (apply touch->gray (sensor-data i)))))
rlm@233 261 image))))
rlm@233 262 #+end_src
rlm@233 263
rlm@233 264
rlm@233 265
rlm@228 266 * Triangle Manipulation Functions
rlm@228 267
rlm@229 268 The rigid bodies which make up a creature have an underlying
rlm@229 269 =Geometry=, which is a =Mesh= plus a =Material= and other important
rlm@229 270 data involved with displaying the body.
rlm@229 271
rlm@229 272 A =Mesh= is composed of =Triangles=, and each =Triangle= has three
rlm@229 273 verticies which have coordinates in XYZ space and UV space.
rlm@229 274
rlm@229 275 Here, =(triangles)= gets all the triangles which compose a mesh, and
rlm@229 276 =(triangle-UV-coord)= returns the the UV coordinates of the verticies
rlm@229 277 of a triangle.
rlm@229 278
rlm@231 279 #+name: triangles-1
rlm@228 280 #+begin_src clojure
rlm@239 281 (in-ns 'cortex.touch)
rlm@239 282
rlm@239 283 (defn vector3f-seq [#^Vector3f v]
rlm@239 284 [(.getX v) (.getY v) (.getZ v)])
rlm@239 285
rlm@239 286 (defn triangle-seq [#^Triangle tri]
rlm@239 287 [(vector3f-seq (.get1 tri))
rlm@239 288 (vector3f-seq (.get2 tri))
rlm@239 289 (vector3f-seq (.get3 tri))])
rlm@239 290
rlm@240 291 (defn ->vector3f
rlm@240 292 ([coords] (Vector3f. (nth coords 0 0)
rlm@240 293 (nth coords 1 0)
rlm@240 294 (nth coords 2 0))))
rlm@239 295
rlm@239 296 (defn ->triangle [points]
rlm@239 297 (apply #(Triangle. %1 %2 %3) (map ->vector3f points)))
rlm@239 298
rlm@239 299 (defn triangle
rlm@239 300 "Get the triangle specified by triangle-index from the mesh within
rlm@239 301 bounds."
rlm@239 302 [#^Geometry geo triangle-index]
rlm@239 303 (triangle-seq
rlm@239 304 (let [scratch (Triangle.)]
rlm@239 305 (.getTriangle (.getMesh geo) triangle-index scratch) scratch)))
rlm@239 306
rlm@228 307 (defn triangles
rlm@228 308 "Return a sequence of all the Triangles which compose a given
rlm@228 309 Geometry."
rlm@239 310 [#^Geometry geo]
rlm@239 311 (map (partial triangle geo) (range (.getTriangleCount (.getMesh geo)))))
rlm@228 312
rlm@228 313 (defn triangle-vertex-indices
rlm@228 314 "Get the triangle vertex indices of a given triangle from a given
rlm@228 315 mesh."
rlm@228 316 [#^Mesh mesh triangle-index]
rlm@228 317 (let [indices (int-array 3)]
rlm@228 318 (.getTriangle mesh triangle-index indices)
rlm@228 319 (vec indices)))
rlm@228 320
rlm@228 321 (defn vertex-UV-coord
rlm@228 322 "Get the UV-coordinates of the vertex named by vertex-index"
rlm@228 323 [#^Mesh mesh vertex-index]
rlm@228 324 (let [UV-buffer
rlm@228 325 (.getData
rlm@228 326 (.getBuffer
rlm@228 327 mesh
rlm@228 328 VertexBuffer$Type/TexCoord))]
rlm@228 329 [(.get UV-buffer (* vertex-index 2))
rlm@228 330 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
rlm@228 331
rlm@239 332 (defn pixel-triangle [#^Geometry geo image index]
rlm@239 333 (let [mesh (.getMesh geo)
rlm@239 334 width (.getWidth image)
rlm@239 335 height (.getHeight image)]
rlm@239 336 (vec (map (fn [[u v]] (vector (* width u) (* height v)))
rlm@239 337 (map (partial vertex-UV-coord mesh)
rlm@239 338 (triangle-vertex-indices mesh index))))))
rlm@228 339
rlm@239 340 (defn pixel-triangles [#^Geometry geo image]
rlm@239 341 (let [height (.getHeight image)
rlm@239 342 width (.getWidth image)]
rlm@239 343 (map (partial pixel-triangle geo image)
rlm@239 344 (range (.getTriangleCount (.getMesh geo))))))
rlm@229 345
rlm@228 346 #+end_src
rlm@228 347
rlm@228 348 * Triangle Affine Transforms
rlm@228 349
rlm@229 350 The position of each hair is stored in a 2D image in UV
rlm@229 351 coordinates. To place the hair in 3D space we must convert from UV
rlm@229 352 coordinates to XYZ coordinates. Each =Triangle= has coordinates in
rlm@229 353 both UV-space and XYZ-space, which defines a unique [[http://mathworld.wolfram.com/AffineTransformation.html ][Affine Transform]]
rlm@229 354 for translating any coordinate within the UV triangle to the
rlm@229 355 cooresponding coordinate in the XYZ triangle.
rlm@229 356
rlm@231 357 #+name: triangles-3
rlm@228 358 #+begin_src clojure
rlm@243 359 (in-ns 'cortex.touch)
rlm@243 360
rlm@228 361 (defn triangle->matrix4f
rlm@228 362 "Converts the triangle into a 4x4 matrix: The first three columns
rlm@228 363 contain the vertices of the triangle; the last contains the unit
rlm@228 364 normal of the triangle. The bottom row is filled with 1s."
rlm@228 365 [#^Triangle t]
rlm@228 366 (let [mat (Matrix4f.)
rlm@228 367 [vert-1 vert-2 vert-3]
rlm@228 368 ((comp vec map) #(.get t %) (range 3))
rlm@228 369 unit-normal (do (.calculateNormal t)(.getNormal t))
rlm@228 370 vertices [vert-1 vert-2 vert-3 unit-normal]]
rlm@228 371 (dorun
rlm@228 372 (for [row (range 4) col (range 3)]
rlm@228 373 (do
rlm@228 374 (.set mat col row (.get (vertices row)col))
rlm@228 375 (.set mat 3 row 1))))
rlm@228 376 mat))
rlm@228 377
rlm@240 378 (defn triangles->affine-transform
rlm@228 379 "Returns the affine transformation that converts each vertex in the
rlm@228 380 first triangle into the corresponding vertex in the second
rlm@228 381 triangle."
rlm@228 382 [#^Triangle tri-1 #^Triangle tri-2]
rlm@228 383 (.mult
rlm@228 384 (triangle->matrix4f tri-2)
rlm@228 385 (.invert (triangle->matrix4f tri-1))))
rlm@228 386 #+end_src
rlm@228 387
rlm@239 388
rlm@239 389 * Schrapnel Conversion Functions
rlm@239 390
rlm@239 391 It is convienent to treat a =Triangle= as a sequence of verticies, and
rlm@239 392 a =Vector2f= and =Vector3f= as a sequence of floats. These conversion
rlm@239 393 functions make this easy. If these classes implemented =Iterable= then
rlm@239 394 this code would not be necessary. Hopefully they will in the future.
rlm@239 395
rlm@239 396
rlm@229 397 * Triangle Boundaries
rlm@229 398
rlm@229 399 For efficiency's sake I will divide the UV-image into small squares
rlm@229 400 which inscribe each UV-triangle, then extract the points which lie
rlm@229 401 inside the triangle and map them to 3D-space using
rlm@229 402 =(triangle-transform)= above. To do this I need a function,
rlm@229 403 =(inside-triangle?)=, which determines whether a point is inside a
rlm@229 404 triangle in 2D UV-space.
rlm@228 405
rlm@231 406 #+name: triangles-4
rlm@228 407 #+begin_src clojure
rlm@229 408 (defn convex-bounds
rlm@229 409 "Returns the smallest square containing the given vertices, as a
rlm@229 410 vector of integers [left top width height]."
rlm@240 411 [verts]
rlm@240 412 (let [xs (map first verts)
rlm@240 413 ys (map second verts)
rlm@229 414 x0 (Math/floor (apply min xs))
rlm@229 415 y0 (Math/floor (apply min ys))
rlm@229 416 x1 (Math/ceil (apply max xs))
rlm@229 417 y1 (Math/ceil (apply max ys))]
rlm@229 418 [x0 y0 (- x1 x0) (- y1 y0)]))
rlm@229 419
rlm@229 420 (defn same-side?
rlm@229 421 "Given the points p1 and p2 and the reference point ref, is point p
rlm@229 422 on the same side of the line that goes through p1 and p2 as ref is?"
rlm@229 423 [p1 p2 ref p]
rlm@229 424 (<=
rlm@229 425 0
rlm@229 426 (.dot
rlm@229 427 (.cross (.subtract p2 p1) (.subtract p p1))
rlm@229 428 (.cross (.subtract p2 p1) (.subtract ref p1)))))
rlm@229 429
rlm@229 430 (defn inside-triangle?
rlm@229 431 "Is the point inside the triangle?"
rlm@229 432 {:author "Dylan Holmes"}
rlm@229 433 [#^Triangle tri #^Vector3f p]
rlm@240 434 (let [[vert-1 vert-2 vert-3] [(.get1 tri) (.get2 tri) (.get3 tri)]]
rlm@229 435 (and
rlm@229 436 (same-side? vert-1 vert-2 vert-3 p)
rlm@229 437 (same-side? vert-2 vert-3 vert-1 p)
rlm@229 438 (same-side? vert-3 vert-1 vert-2 p))))
rlm@229 439 #+end_src
rlm@229 440
rlm@228 441 * Physics Collision Objects
rlm@230 442
rlm@234 443 The "hairs" are actually =Rays= which extend from a point on a
rlm@230 444 =Triangle= in the =Mesh= normal to the =Triangle's= surface.
rlm@230 445
rlm@226 446 * Headers
rlm@231 447
rlm@231 448 #+name: touch-header
rlm@226 449 #+begin_src clojure
rlm@226 450 (ns cortex.touch
rlm@226 451 "Simulate the sense of touch in jMonkeyEngine3. Enables any Geometry
rlm@226 452 to be outfitted with touch sensors with density determined by a UV
rlm@226 453 image. In this way a Geometry can know what parts of itself are
rlm@226 454 touching nearby objects. Reads specially prepared blender files to
rlm@226 455 construct this sense automatically."
rlm@226 456 {:author "Robert McIntyre"}
rlm@226 457 (:use (cortex world util sense))
rlm@226 458 (:use clojure.contrib.def)
rlm@226 459 (:import (com.jme3.scene Geometry Node Mesh))
rlm@226 460 (:import com.jme3.collision.CollisionResults)
rlm@226 461 (:import com.jme3.scene.VertexBuffer$Type)
rlm@226 462 (:import (com.jme3.math Triangle Vector3f Vector2f Ray Matrix4f)))
rlm@226 463 #+end_src
rlm@37 464
rlm@232 465 * Adding Touch to the Worm
rlm@232 466
rlm@232 467 #+name: test-touch
rlm@232 468 #+begin_src clojure
rlm@232 469 (ns cortex.test.touch
rlm@232 470 (:use (cortex world util sense body touch))
rlm@232 471 (:use cortex.test.body))
rlm@232 472
rlm@232 473 (cortex.import/mega-import-jme3)
rlm@232 474
rlm@232 475 (defn test-touch []
rlm@232 476 (let [the-worm (doto (worm) (body!))
rlm@232 477 touch (touch! the-worm)
rlm@232 478 touch-display (view-touch)]
rlm@232 479 (world (nodify [the-worm (floor)])
rlm@232 480 standard-debug-controls
rlm@232 481
rlm@232 482 (fn [world]
rlm@232 483 (light-up-everything world))
rlm@232 484
rlm@232 485 (fn [world tpf]
rlm@243 486
rlm@243 487
rlm@243 488 (dorun (map #(% (.getRootNode world)) touch))
rlm@243 489
rlm@243 490
rlm@243 491 ))))
rlm@232 492 #+end_src
rlm@228 493 * Source Listing
rlm@228 494 * Next
rlm@228 495
rlm@228 496
rlm@226 497 * COMMENT Code Generation
rlm@39 498 #+begin_src clojure :tangle ../src/cortex/touch.clj
rlm@231 499 <<touch-header>>
rlm@231 500 <<meta-data>>
rlm@231 501 <<triangles-1>>
rlm@231 502 <<triangles-3>>
rlm@231 503 <<triangles-4>>
rlm@231 504 <<sensors>>
rlm@231 505 <<kernel>>
rlm@231 506 <<visualization>>
rlm@0 507 #+end_src
rlm@0 508
rlm@232 509
rlm@68 510 #+begin_src clojure :tangle ../src/cortex/test/touch.clj
rlm@232 511 <<test-touch>>
rlm@39 512 #+end_src
rlm@39 513
rlm@0 514
rlm@0 515
rlm@0 516
rlm@32 517
rlm@32 518
rlm@226 519