rlm@202
|
1 #+title: Building a Body
|
rlm@0
|
2 #+author: Robert McIntyre
|
rlm@0
|
3 #+email: rlm@mit.edu
|
rlm@4
|
4 #+description: Simulating a body (movement, touch, propioception) in jMonkeyEngine3.
|
rlm@4
|
5 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@4
|
6 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@4
|
7
|
rlm@202
|
8 * Design Constraints
|
rlm@202
|
9
|
rlm@202
|
10 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
|
rlm@202
|
11 determined by the requirements of the AI that will use them. The
|
rlm@202
|
12 bodies must be easy for an AI to sense and control, and they must be
|
rlm@202
|
13 relatively simple for jMonkeyEngine to compute.
|
rlm@202
|
14
|
rlm@202
|
15 ** Bag of Bones
|
rlm@202
|
16
|
rlm@202
|
17 How to create such a body? One option I ultimately rejected is to use
|
rlm@202
|
18 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
|
rlm@202
|
19 which describes the creature's entire body. To this you add an
|
rlm@202
|
20 (skeleton) which deforms this mesh. This technique is used extensively
|
rlm@202
|
21 to model humans and create realistic animations. It is hard to use for
|
rlm@202
|
22 my purposes because it is difficult to update the creature's Physics
|
rlm@202
|
23 Collision Mesh in tandem with its Geometric Mesh under the influence
|
rlm@202
|
24 of the armature. Withouth this the creature will not be able to grab
|
rlm@202
|
25 things in its environment, and it won't be able to tell where its
|
rlm@202
|
26 physical body is by using its eyes. Also, armatures do not specify
|
rlm@202
|
27 any rotational limits for a joint, making it hard to model elbows,
|
rlm@202
|
28 shoulders, etc.
|
rlm@202
|
29
|
rlm@202
|
30 ** EVE
|
rlm@202
|
31
|
rlm@202
|
32 Instead of using the human-like "deformable bag of bones" approach, I
|
rlm@202
|
33 decided to base my body plans on the robot EVE from the movie wall-E.
|
rlm@202
|
34
|
rlm@202
|
35 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
|
rlm@202
|
36 [[../images/Eve.jpg]]
|
rlm@202
|
37
|
rlm@204
|
38 EVE's body is composed of several rigid components that are held
|
rlm@204
|
39 together by invisible joint constraints. This is what I mean by
|
rlm@204
|
40 "eve-like". The main reason that I use eve-style bodies is so that
|
rlm@204
|
41 there will be correspondence between the AI's vision and the physical
|
rlm@204
|
42 presence of its body. Each individual section is simulated by a
|
rlm@204
|
43 separate rigid body that corresponds exactly with its visual
|
rlm@204
|
44 representation and does not change. Sections are connected by
|
rlm@204
|
45 invisible joints that are well supported in jMonkyeEngine. Bullet, the
|
rlm@204
|
46 physics backend for jMonkeyEngine, can efficiently simulate hundreds
|
rlm@204
|
47 of rigid bodies connected by joints. Sections do not have to stay as
|
rlm@204
|
48 one piece forever; they can be dynamically replaced with multiple
|
rlm@204
|
49 sections to simulate splitting in two. This could be used to simulate
|
rlm@209
|
50 retractable claws or EVE's hands, which are able to coalece into one
|
rlm@209
|
51 object in the movie.
|
rlm@202
|
52
|
rlm@202
|
53 * Solidifying the Body
|
rlm@202
|
54
|
rlm@202
|
55 Here is a hand designed eve-style in blender.
|
rlm@202
|
56
|
rlm@203
|
57 #+attr_html: width="755"
|
rlm@202
|
58 [[../images/hand-screenshot0.png]]
|
rlm@202
|
59
|
rlm@202
|
60 If we load it directly into jMonkeyEngine, we get this:
|
rlm@202
|
61
|
rlm@205
|
62 #+name: test-1
|
rlm@202
|
63 #+begin_src clojure
|
rlm@202
|
64 (def hand-path "Models/test-creature/hand.blend")
|
rlm@202
|
65
|
rlm@202
|
66 (defn hand [] (load-blender-model hand-path))
|
rlm@202
|
67
|
rlm@202
|
68 (defn setup [world]
|
rlm@202
|
69 (let [cam (.getCamera world)]
|
rlm@202
|
70 (println-repl cam)
|
rlm@202
|
71 (.setLocation
|
rlm@202
|
72 cam (Vector3f.
|
rlm@202
|
73 -6.9015837, 8.644911, 5.6043186))
|
rlm@202
|
74 (.setRotation
|
rlm@202
|
75 cam
|
rlm@202
|
76 (Quaternion.
|
rlm@202
|
77 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
|
rlm@202
|
78 (light-up-everything world)
|
rlm@202
|
79 (.setTimer world (RatchetTimer. 60))
|
rlm@202
|
80 world)
|
rlm@202
|
81
|
rlm@202
|
82 (defn test-one []
|
rlm@202
|
83 (world (hand)
|
rlm@202
|
84 standard-debug-controls
|
rlm@202
|
85 (comp
|
rlm@202
|
86 #(Capture/captureVideo
|
rlm@202
|
87 % (File. "/home/r/proj/cortex/render/body/1"))
|
rlm@202
|
88 setup)
|
rlm@202
|
89 no-op))
|
rlm@202
|
90 #+end_src
|
rlm@202
|
91
|
rlm@202
|
92
|
rlm@202
|
93 #+begin_src clojure :results silent
|
rlm@202
|
94 (.start (cortex.test.body/test-one))
|
rlm@202
|
95 #+end_src
|
rlm@202
|
96
|
rlm@202
|
97 #+begin_html
|
rlm@203
|
98 <div class="figure">
|
rlm@203
|
99 <center>
|
rlm@203
|
100 <video controls="controls" width="640">
|
rlm@202
|
101 <source src="../video/ghost-hand.ogg" type="video/ogg"
|
rlm@202
|
102 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@202
|
103 </video>
|
rlm@203
|
104 </center>
|
rlm@203
|
105 <p>The hand model directly loaded from blender. It has no physical
|
rlm@203
|
106 presense in the simulation. </p>
|
rlm@203
|
107 </div>
|
rlm@202
|
108 #+end_html
|
rlm@202
|
109
|
rlm@202
|
110 You will notice that the hand has no physical presence -- it's a
|
rlm@204
|
111 hologram through which everything passes. Therefore, the first thing
|
rlm@202
|
112 to do is to make it solid. Blender has physics simulation on par with
|
rlm@202
|
113 jMonkeyEngine (they both use bullet as their physics backend), but it
|
rlm@202
|
114 can be difficult to translate between the two systems, so for now I
|
rlm@209
|
115 specify the mass of each object as meta-data in blender and construct
|
rlm@209
|
116 the physics shape based on the mesh in jMonkeyEngine.
|
rlm@202
|
117
|
rlm@203
|
118 #+name: body-1
|
rlm@202
|
119 #+begin_src clojure
|
rlm@202
|
120 (defn physical!
|
rlm@202
|
121 "Iterate through the nodes in creature and make them real physical
|
rlm@202
|
122 objects in the simulation."
|
rlm@202
|
123 [#^Node creature]
|
rlm@202
|
124 (dorun
|
rlm@202
|
125 (map
|
rlm@202
|
126 (fn [geom]
|
rlm@202
|
127 (let [physics-control
|
rlm@202
|
128 (RigidBodyControl.
|
rlm@202
|
129 (HullCollisionShape.
|
rlm@202
|
130 (.getMesh geom))
|
rlm@202
|
131 (if-let [mass (meta-data geom "mass")]
|
rlm@202
|
132 (do
|
rlm@202
|
133 (println-repl
|
rlm@202
|
134 "setting" (.getName geom) "mass to" (float mass))
|
rlm@202
|
135 (float mass))
|
rlm@202
|
136 (float 1)))]
|
rlm@202
|
137 (.addControl geom physics-control)))
|
rlm@202
|
138 (filter #(isa? (class %) Geometry )
|
rlm@202
|
139 (node-seq creature)))))
|
rlm@202
|
140 #+end_src
|
rlm@202
|
141
|
rlm@202
|
142 =(physical!)= iterates through a creature's node structure, creating
|
rlm@202
|
143 CollisionShapes for each geometry with the mass specified in that
|
rlm@202
|
144 geometry's meta-data.
|
rlm@202
|
145
|
rlm@205
|
146 #+name: test-2
|
rlm@0
|
147 #+begin_src clojure
|
rlm@202
|
148 (in-ns 'cortex.test.body)
|
rlm@160
|
149
|
rlm@209
|
150 (def gravity-control
|
rlm@202
|
151 {"key-g" (fn [world _]
|
rlm@209
|
152 (set-gravity world (Vector3f. 0 -9.81 0)))
|
rlm@209
|
153 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
|
rlm@209
|
154
|
rlm@202
|
155
|
rlm@202
|
156 (defn floor []
|
rlm@202
|
157 (box 10 3 10 :position (Vector3f. 0 -10 0)
|
rlm@202
|
158 :color ColorRGBA/Gray :mass 0))
|
rlm@202
|
159
|
rlm@202
|
160 (defn test-two []
|
rlm@202
|
161 (world (nodify
|
rlm@202
|
162 [(doto (hand)
|
rlm@202
|
163 (physical!))
|
rlm@202
|
164 (floor)])
|
rlm@209
|
165 (merge standard-debug-controls gravity-control)
|
rlm@202
|
166 (comp
|
rlm@202
|
167 #(Capture/captureVideo
|
rlm@202
|
168 % (File. "/home/r/proj/cortex/render/body/2"))
|
rlm@202
|
169 #(do (set-gravity % Vector3f/ZERO) %)
|
rlm@202
|
170 setup)
|
rlm@202
|
171 no-op))
|
rlm@202
|
172 #+end_src
|
rlm@202
|
173
|
rlm@202
|
174 #+begin_html
|
rlm@203
|
175 <div class="figure">
|
rlm@203
|
176 <center>
|
rlm@203
|
177 <video controls="controls" width="640">
|
rlm@202
|
178 <source src="../video/crumbly-hand.ogg" type="video/ogg"
|
rlm@202
|
179 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@202
|
180 </video>
|
rlm@203
|
181 </center>
|
rlm@203
|
182 <p>The hand now has a physical presence, but there is nothing to hold
|
rlm@203
|
183 it together.</p>
|
rlm@203
|
184 </div>
|
rlm@202
|
185 #+end_html
|
rlm@202
|
186
|
rlm@202
|
187 Now that's some progress.
|
rlm@202
|
188
|
rlm@202
|
189 * Joints
|
rlm@202
|
190
|
rlm@209
|
191 Obviously, an AI is not going to be doing much while lying in pieces
|
rlm@209
|
192 on the floor. So, the next step to making a proper body is to connect
|
rlm@202
|
193 those pieces together with joints. jMonkeyEngine has a large array of
|
rlm@202
|
194 joints available via bullet, such as Point2Point, Cone, Hinge, and a
|
rlm@202
|
195 generic Six Degree of Freedom joint, with or without spring
|
rlm@202
|
196 restitution.
|
rlm@202
|
197
|
rlm@202
|
198 Although it should be possible to specify the joints using blender's
|
rlm@202
|
199 physics system, and then automatically import them with jMonkeyEngine,
|
rlm@202
|
200 the support isn't there yet, and there are a few problems with bullet
|
rlm@202
|
201 itself that need to be solved before it can happen.
|
rlm@202
|
202
|
rlm@202
|
203 So, I will use the same system for specifying joints as I will do for
|
rlm@202
|
204 some senses. Each joint is specified by an empty node whose parent
|
rlm@202
|
205 has the name "joints". Their orientation and meta-data determine what
|
rlm@202
|
206 joint is created.
|
rlm@202
|
207
|
rlm@203
|
208 #+attr_html: width="755"
|
rlm@209
|
209 #+caption: Joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
|
rlm@202
|
210 [[../images/hand-screenshot1.png]]
|
rlm@202
|
211
|
rlm@203
|
212 The empty node in the upper right, highlighted in yellow, is the
|
rlm@203
|
213 parent node of all the emptys which represent joints. The following
|
rlm@203
|
214 functions must do three things to translate these into real joints:
|
rlm@202
|
215
|
rlm@203
|
216 - Find the children of the "joints" node.
|
rlm@203
|
217 - Determine the two spatials the joint it meant to connect.
|
rlm@203
|
218 - Create the joint based on the meta-data of the empty node.
|
rlm@202
|
219
|
rlm@203
|
220 ** Finding the Joints
|
rlm@209
|
221
|
rlm@209
|
222 The higher order function =(sense-nodes)= from =cortex.sense= simplifies
|
rlm@209
|
223 the first task.
|
rlm@209
|
224
|
rlm@203
|
225 #+name: joints-2
|
rlm@203
|
226 #+begin_src clojure
|
rlm@203
|
227 (defvar
|
rlm@203
|
228 ^{:arglists '([creature])}
|
rlm@203
|
229 joints
|
rlm@203
|
230 (sense-nodes "joints")
|
rlm@203
|
231 "Return the children of the creature's \"joints\" node.")
|
rlm@203
|
232 #+end_src
|
rlm@202
|
233
|
rlm@203
|
234
|
rlm@203
|
235 ** Joint Targets and Orientation
|
rlm@203
|
236
|
rlm@203
|
237 This technique for finding a joint's targets is very similiar to
|
rlm@203
|
238 =(cortex.sense/closest-node)=. A small cube, centered around the
|
rlm@203
|
239 empty-node, grows exponentially until it intersects two /physical/
|
rlm@203
|
240 objects. The objects are ordered according to the joint's rotation,
|
rlm@203
|
241 with the first one being the object that has more negative coordinates
|
rlm@203
|
242 in the joint's reference frame. Since the objects must be physical,
|
rlm@203
|
243 the empty-node itself escapes detection. Because the objects must be
|
rlm@203
|
244 physical, =(joint-targets)= must be called /after/ =(physical!)= is
|
rlm@203
|
245 called.
|
rlm@203
|
246
|
rlm@203
|
247 #+name: joints-3
|
rlm@202
|
248 #+begin_src clojure
|
rlm@135
|
249 (defn joint-targets
|
rlm@135
|
250 "Return the two closest two objects to the joint object, ordered
|
rlm@135
|
251 from bottom to top according to the joint's rotation."
|
rlm@135
|
252 [#^Node parts #^Node joint]
|
rlm@135
|
253 (loop [radius (float 0.01)]
|
rlm@135
|
254 (let [results (CollisionResults.)]
|
rlm@135
|
255 (.collideWith
|
rlm@135
|
256 parts
|
rlm@135
|
257 (BoundingBox. (.getWorldTranslation joint)
|
rlm@209
|
258 radius radius radius) results)
|
rlm@135
|
259 (let [targets
|
rlm@135
|
260 (distinct
|
rlm@135
|
261 (map #(.getGeometry %) results))]
|
rlm@135
|
262 (if (>= (count targets) 2)
|
rlm@135
|
263 (sort-by
|
rlm@209
|
264 #(let [joint-ref-frame-position
|
rlm@135
|
265 (jme-to-blender
|
rlm@135
|
266 (.mult
|
rlm@135
|
267 (.inverse (.getWorldRotation joint))
|
rlm@135
|
268 (.subtract (.getWorldTranslation %)
|
rlm@135
|
269 (.getWorldTranslation joint))))]
|
rlm@209
|
270 (.dot (Vector3f. 1 1 1) joint-ref-frame-position))
|
rlm@135
|
271 (take 2 targets))
|
rlm@135
|
272 (recur (float (* radius 2))))))))
|
rlm@203
|
273 #+end_src
|
rlm@135
|
274
|
rlm@203
|
275 ** Generating Joints
|
rlm@203
|
276
|
rlm@209
|
277 This section of code iterates through all the different ways of
|
rlm@203
|
278 specifying joints using blender meta-data and converts each one to the
|
rlm@203
|
279 appropriate jMonkyeEngine joint.
|
rlm@203
|
280
|
rlm@203
|
281 #+name: joints-4
|
rlm@203
|
282 #+begin_src clojure
|
rlm@160
|
283 (defmulti joint-dispatch
|
rlm@160
|
284 "Translate blender pseudo-joints into real JME joints."
|
rlm@160
|
285 (fn [constraints & _]
|
rlm@160
|
286 (:type constraints)))
|
rlm@141
|
287
|
rlm@160
|
288 (defmethod joint-dispatch :point
|
rlm@160
|
289 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@160
|
290 (println-repl "creating POINT2POINT joint")
|
rlm@160
|
291 ;; bullet's point2point joints are BROKEN, so we must use the
|
rlm@160
|
292 ;; generic 6DOF joint instead of an actual Point2Point joint!
|
rlm@141
|
293
|
rlm@160
|
294 ;; should be able to do this:
|
rlm@160
|
295 (comment
|
rlm@160
|
296 (Point2PointJoint.
|
rlm@160
|
297 control-a
|
rlm@160
|
298 control-b
|
rlm@160
|
299 pivot-a
|
rlm@160
|
300 pivot-b))
|
rlm@141
|
301
|
rlm@160
|
302 ;; but instead we must do this:
|
rlm@160
|
303 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
|
rlm@160
|
304 (doto
|
rlm@160
|
305 (SixDofJoint.
|
rlm@160
|
306 control-a
|
rlm@160
|
307 control-b
|
rlm@160
|
308 pivot-a
|
rlm@160
|
309 pivot-b
|
rlm@160
|
310 false)
|
rlm@160
|
311 (.setLinearLowerLimit Vector3f/ZERO)
|
rlm@203
|
312 (.setLinearUpperLimit Vector3f/ZERO)))
|
rlm@160
|
313
|
rlm@160
|
314 (defmethod joint-dispatch :hinge
|
rlm@160
|
315 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@160
|
316 (println-repl "creating HINGE joint")
|
rlm@160
|
317 (let [axis
|
rlm@160
|
318 (if-let
|
rlm@160
|
319 [axis (:axis constraints)]
|
rlm@160
|
320 axis
|
rlm@160
|
321 Vector3f/UNIT_X)
|
rlm@160
|
322 [limit-1 limit-2] (:limit constraints)
|
rlm@160
|
323 hinge-axis
|
rlm@160
|
324 (.mult
|
rlm@160
|
325 rotation
|
rlm@160
|
326 (blender-to-jme axis))]
|
rlm@160
|
327 (doto
|
rlm@160
|
328 (HingeJoint.
|
rlm@160
|
329 control-a
|
rlm@160
|
330 control-b
|
rlm@160
|
331 pivot-a
|
rlm@160
|
332 pivot-b
|
rlm@160
|
333 hinge-axis
|
rlm@160
|
334 hinge-axis)
|
rlm@160
|
335 (.setLimit limit-1 limit-2))))
|
rlm@160
|
336
|
rlm@160
|
337 (defmethod joint-dispatch :cone
|
rlm@160
|
338 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@160
|
339 (let [limit-xz (:limit-xz constraints)
|
rlm@160
|
340 limit-xy (:limit-xy constraints)
|
rlm@160
|
341 twist (:twist constraints)]
|
rlm@160
|
342
|
rlm@160
|
343 (println-repl "creating CONE joint")
|
rlm@160
|
344 (println-repl rotation)
|
rlm@160
|
345 (println-repl
|
rlm@160
|
346 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
|
rlm@160
|
347 (println-repl
|
rlm@160
|
348 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
|
rlm@160
|
349 (println-repl
|
rlm@160
|
350 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
|
rlm@160
|
351 (doto
|
rlm@160
|
352 (ConeJoint.
|
rlm@160
|
353 control-a
|
rlm@160
|
354 control-b
|
rlm@160
|
355 pivot-a
|
rlm@160
|
356 pivot-b
|
rlm@160
|
357 rotation
|
rlm@160
|
358 rotation)
|
rlm@160
|
359 (.setLimit (float limit-xz)
|
rlm@160
|
360 (float limit-xy)
|
rlm@160
|
361 (float twist)))))
|
rlm@160
|
362
|
rlm@160
|
363 (defn connect
|
rlm@175
|
364 "Create a joint between 'obj-a and 'obj-b at the location of
|
rlm@175
|
365 'joint. The type of joint is determined by the metadata on 'joint.
|
rlm@175
|
366
|
rlm@175
|
367 Here are some examples:
|
rlm@160
|
368 {:type :point}
|
rlm@160
|
369 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
|
rlm@160
|
370 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
|
rlm@160
|
371
|
rlm@160
|
372 {:type :cone :limit-xz 0]
|
rlm@160
|
373 :limit-xy 0]
|
rlm@160
|
374 :twist 0]} (use XZY rotation mode in blender!)"
|
rlm@160
|
375 [#^Node obj-a #^Node obj-b #^Node joint]
|
rlm@160
|
376 (let [control-a (.getControl obj-a RigidBodyControl)
|
rlm@160
|
377 control-b (.getControl obj-b RigidBodyControl)
|
rlm@160
|
378 joint-center (.getWorldTranslation joint)
|
rlm@160
|
379 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
|
rlm@160
|
380 pivot-a (world-to-local obj-a joint-center)
|
rlm@160
|
381 pivot-b (world-to-local obj-b joint-center)]
|
rlm@160
|
382
|
rlm@160
|
383 (if-let [constraints
|
rlm@160
|
384 (map-vals
|
rlm@160
|
385 eval
|
rlm@160
|
386 (read-string
|
rlm@160
|
387 (meta-data joint "joint")))]
|
rlm@160
|
388 ;; A side-effect of creating a joint registers
|
rlm@160
|
389 ;; it with both physics objects which in turn
|
rlm@160
|
390 ;; will register the joint with the physics system
|
rlm@160
|
391 ;; when the simulation is started.
|
rlm@160
|
392 (do
|
rlm@160
|
393 (println-repl "creating joint between"
|
rlm@160
|
394 (.getName obj-a) "and" (.getName obj-b))
|
rlm@160
|
395 (joint-dispatch constraints
|
rlm@160
|
396 control-a control-b
|
rlm@160
|
397 pivot-a pivot-b
|
rlm@160
|
398 joint-rotation))
|
rlm@160
|
399 (println-repl "could not find joint meta-data!"))))
|
rlm@203
|
400 #+end_src
|
rlm@160
|
401
|
rlm@209
|
402 Creating joints is now a matter of applying =(connect)= to each joint
|
rlm@203
|
403 node.
|
rlm@160
|
404
|
rlm@205
|
405 #+name: joints-5
|
rlm@203
|
406 #+begin_src clojure
|
rlm@175
|
407 (defn joints!
|
rlm@175
|
408 "Connect the solid parts of the creature with physical joints. The
|
rlm@175
|
409 joints are taken from the \"joints\" node in the creature."
|
rlm@175
|
410 [#^Node creature]
|
rlm@160
|
411 (dorun
|
rlm@160
|
412 (map
|
rlm@160
|
413 (fn [joint]
|
rlm@175
|
414 (let [[obj-a obj-b] (joint-targets creature joint)]
|
rlm@160
|
415 (connect obj-a obj-b joint)))
|
rlm@175
|
416 (joints creature))))
|
rlm@203
|
417 #+end_src
|
rlm@160
|
418
|
rlm@203
|
419
|
rlm@203
|
420 ** Round 3
|
rlm@203
|
421
|
rlm@203
|
422 Now we can test the hand in all its glory.
|
rlm@203
|
423
|
rlm@205
|
424 #+name: test-3
|
rlm@203
|
425 #+begin_src clojure
|
rlm@203
|
426 (in-ns 'cortex.test.body)
|
rlm@203
|
427
|
rlm@203
|
428 (def debug-control
|
rlm@203
|
429 {"key-h" (fn [world val]
|
rlm@209
|
430 (if val (enable-debug world)))})
|
rlm@203
|
431
|
rlm@203
|
432 (defn test-three []
|
rlm@203
|
433 (world (nodify
|
rlm@203
|
434 [(doto (hand)
|
rlm@205
|
435 (physical!)
|
rlm@205
|
436 (joints!))
|
rlm@203
|
437 (floor)])
|
rlm@203
|
438 (merge standard-debug-controls debug-control
|
rlm@209
|
439 gravity-control)
|
rlm@203
|
440 (comp
|
rlm@203
|
441 #(Capture/captureVideo
|
rlm@203
|
442 % (File. "/home/r/proj/cortex/render/body/3"))
|
rlm@203
|
443 #(do (set-gravity % Vector3f/ZERO) %)
|
rlm@203
|
444 setup)
|
rlm@203
|
445 no-op))
|
rlm@203
|
446 #+end_src
|
rlm@203
|
447
|
rlm@203
|
448 =(physical!)= makes the hand solid, then =(joints!)= connects each
|
rlm@203
|
449 piece together.
|
rlm@203
|
450
|
rlm@203
|
451 #+begin_html
|
rlm@203
|
452 <div class="figure">
|
rlm@203
|
453 <center>
|
rlm@203
|
454 <video controls="controls" width="640">
|
rlm@203
|
455 <source src="../video/full-hand.ogg" type="video/ogg"
|
rlm@203
|
456 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@203
|
457 </video>
|
rlm@203
|
458 </center>
|
rlm@203
|
459 <p>Now the hand is physical and has joints.</p>
|
rlm@203
|
460 </div>
|
rlm@203
|
461 #+end_html
|
rlm@203
|
462
|
rlm@203
|
463 The joints are visualized as green connections between each segment
|
rlm@203
|
464 for debug purposes. You can see that they correspond to the empty
|
rlm@203
|
465 nodes in the blender file.
|
rlm@203
|
466
|
rlm@203
|
467 * Wrap-Up!
|
rlm@203
|
468
|
rlm@203
|
469 It is convienent to combine =(physical!)= and =(joints!)= into one
|
rlm@203
|
470 function that completely creates the creature's physical body.
|
rlm@203
|
471
|
rlm@205
|
472 #+name: joints-6
|
rlm@203
|
473 #+begin_src clojure
|
rlm@175
|
474 (defn body!
|
rlm@175
|
475 "Endow the creature with a physical body connected with joints. The
|
rlm@175
|
476 particulars of the joints and the masses of each pody part are
|
rlm@175
|
477 determined in blender."
|
rlm@175
|
478 [#^Node creature]
|
rlm@175
|
479 (physical! creature)
|
rlm@175
|
480 (joints! creature))
|
rlm@64
|
481 #+end_src
|
rlm@63
|
482
|
rlm@205
|
483 * The Worm
|
rlm@205
|
484
|
rlm@205
|
485 Going forward, I will use a model that is less complicated than the
|
rlm@205
|
486 hand. It has two segments and one joint, and I call it the worm. All
|
rlm@205
|
487 of the senses described in the following posts will be applied to this
|
rlm@205
|
488 worm.
|
rlm@205
|
489
|
rlm@205
|
490 #+name: test-4
|
rlm@205
|
491 #+begin_src clojure
|
rlm@205
|
492 (in-ns 'cortex.test.body)
|
rlm@205
|
493
|
rlm@205
|
494 (defn worm-1 []
|
rlm@205
|
495 (let [timer (RatchetTimer. 60)]
|
rlm@205
|
496 (world
|
rlm@205
|
497 (nodify
|
rlm@205
|
498 [(doto
|
rlm@205
|
499 (load-blender-model
|
rlm@205
|
500 "Models/test-creature/worm.blend")
|
rlm@205
|
501 (body!))
|
rlm@205
|
502 (floor)])
|
rlm@205
|
503 (merge standard-debug-controls debug-control)
|
rlm@205
|
504 #(do
|
rlm@205
|
505 (speed-up %)
|
rlm@205
|
506 (light-up-everything %)
|
rlm@205
|
507 (.setTimer % timer)
|
rlm@205
|
508 (cortex.util/display-dialated-time % timer)
|
rlm@205
|
509 (Capture/captureVideo
|
rlm@205
|
510 % (File. "/home/r/proj/cortex/render/body/4")))
|
rlm@205
|
511 no-op)))
|
rlm@205
|
512 #+end_src
|
rlm@205
|
513
|
rlm@205
|
514 #+begin_html
|
rlm@205
|
515 <div class="figure">
|
rlm@205
|
516 <center>
|
rlm@205
|
517 <video controls="controls" width="640">
|
rlm@205
|
518 <source src="../video/worm-1.ogg" type="video/ogg"
|
rlm@205
|
519 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@205
|
520 </video>
|
rlm@205
|
521 </center>
|
rlm@205
|
522 <p>This worm model will be the platform onto which future senses will
|
rlm@205
|
523 be grafted.</p>
|
rlm@205
|
524 </div>
|
rlm@205
|
525 #+end_html
|
rlm@205
|
526
|
rlm@209
|
527 * Headers
|
rlm@205
|
528 #+name: body-header
|
rlm@202
|
529 #+begin_src clojure
|
rlm@202
|
530 (ns cortex.body
|
rlm@202
|
531 "Assemble a physical creature using the definitions found in a
|
rlm@202
|
532 specially prepared blender file. Creates rigid bodies and joints so
|
rlm@202
|
533 that a creature can have a physical presense in the simulation."
|
rlm@202
|
534 {:author "Robert McIntyre"}
|
rlm@202
|
535 (:use (cortex world util sense))
|
rlm@202
|
536 (:use clojure.contrib.def)
|
rlm@202
|
537 (:import
|
rlm@202
|
538 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
|
rlm@202
|
539 (com.jme3.bullet.joints
|
rlm@202
|
540 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
|
rlm@202
|
541 com.jme3.bullet.control.RigidBodyControl
|
rlm@202
|
542 com.jme3.collision.CollisionResults
|
rlm@202
|
543 com.jme3.bounding.BoundingBox
|
rlm@202
|
544 com.jme3.scene.Node
|
rlm@202
|
545 com.jme3.scene.Geometry
|
rlm@202
|
546 com.jme3.bullet.collision.shapes.HullCollisionShape))
|
rlm@202
|
547 #+end_src
|
rlm@133
|
548
|
rlm@205
|
549 #+name: test-header
|
rlm@205
|
550 #+begin_src clojure
|
rlm@205
|
551 (ns cortex.test.body
|
rlm@205
|
552 (:use (cortex world util body))
|
rlm@205
|
553 (:import
|
rlm@205
|
554 (com.aurellem.capture Capture RatchetTimer)
|
rlm@205
|
555 (com.jme3.math Quaternion Vector3f ColorRGBA)
|
rlm@205
|
556 java.io.File))
|
rlm@205
|
557 #+end_src
|
rlm@205
|
558
|
rlm@202
|
559 * Source
|
rlm@207
|
560 - [[../src/cortex/body.clj][cortex.body]]
|
rlm@207
|
561 - [[../src/cortex/test/body.clj][cortex.test.body]]
|
rlm@207
|
562 - [[../assets/Models/test-creature/hand.blend][hand.blend]]
|
rlm@209
|
563 - [[../assets/Models/test-creature/palm.png][UV-map-1]]
|
rlm@207
|
564 - [[../assets/Models/test-creature/worm.blend][worm.blend]]
|
rlm@207
|
565 - [[../assets/Models/test-creature/retina-small.png][UV-map-1]]
|
rlm@207
|
566 - [[../assets/Models/test-creature/tip.png][UV-map-2]]
|
rlm@63
|
567
|
rlm@206
|
568 * COMMENT Generate Source
|
rlm@44
|
569 #+begin_src clojure :tangle ../src/cortex/body.clj
|
rlm@205
|
570 <<body-header>>
|
rlm@205
|
571 <<body-1>>
|
rlm@205
|
572 <<joints-2>>
|
rlm@205
|
573 <<joints-3>>
|
rlm@205
|
574 <<joints-4>>
|
rlm@205
|
575 <<joints-5>>
|
rlm@205
|
576 <<joints-6>>
|
rlm@0
|
577 #+end_src
|
rlm@64
|
578
|
rlm@69
|
579 #+begin_src clojure :tangle ../src/cortex/test/body.clj
|
rlm@205
|
580 <<test-header>>
|
rlm@205
|
581 <<test-1>>
|
rlm@205
|
582 <<test-2>>
|
rlm@205
|
583 <<test-3>>
|
rlm@205
|
584 <<test-4>>
|
rlm@64
|
585 #+end_src
|
rlm@64
|
586
|
rlm@64
|
587
|
rlm@0
|
588
|
rlm@206
|
589
|