annotate org/body.org @ 203:0e5d5ee5a914

first draft of body.org complete
author Robert McIntyre <rlm@mit.edu>
date Wed, 08 Feb 2012 08:53:12 -0700
parents d5c597a7aed4
children 162b24a82712
rev   line source
rlm@202 1 #+title: Building a Body
rlm@0 2 #+author: Robert McIntyre
rlm@0 3 #+email: rlm@mit.edu
rlm@4 4 #+description: Simulating a body (movement, touch, propioception) in jMonkeyEngine3.
rlm@4 5 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 6 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@4 7
rlm@202 8
rlm@202 9 * Design Constraints
rlm@202 10
rlm@202 11 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
rlm@202 12 determined by the requirements of the AI that will use them. The
rlm@202 13 bodies must be easy for an AI to sense and control, and they must be
rlm@202 14 relatively simple for jMonkeyEngine to compute.
rlm@202 15
rlm@202 16 ** Bag of Bones
rlm@202 17
rlm@202 18 How to create such a body? One option I ultimately rejected is to use
rlm@202 19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
rlm@202 20 which describes the creature's entire body. To this you add an
rlm@202 21 (skeleton) which deforms this mesh. This technique is used extensively
rlm@202 22 to model humans and create realistic animations. It is hard to use for
rlm@202 23 my purposes because it is difficult to update the creature's Physics
rlm@202 24 Collision Mesh in tandem with its Geometric Mesh under the influence
rlm@202 25 of the armature. Withouth this the creature will not be able to grab
rlm@202 26 things in its environment, and it won't be able to tell where its
rlm@202 27 physical body is by using its eyes. Also, armatures do not specify
rlm@202 28 any rotational limits for a joint, making it hard to model elbows,
rlm@202 29 shoulders, etc.
rlm@202 30
rlm@202 31 ** EVE
rlm@202 32
rlm@202 33 Instead of using the human-like "deformable bag of bones" approach, I
rlm@202 34 decided to base my body plans on the robot EVE from the movie wall-E.
rlm@202 35
rlm@202 36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
rlm@202 37 [[../images/Eve.jpg]]
rlm@202 38
rlm@202 39 The main reason that I use eve-style bodies is so that there will be
rlm@202 40 correspondence between the AI's vision and the physical presence of
rlm@203 41 its body. Each individual section is simulated by a separate rigid
rlm@203 42 body that corresponds exactly with its visual representation and does
rlm@203 43 not change. Sections are connected by invisible joints that are well
rlm@203 44 supported in jMonkyeEngine. Bullet, the physics backend for
rlm@203 45 jMonkeyEngine, can efficiently simulate hundreds of rigid bodies
rlm@203 46 connected by joints. Sections do not have to stay as one piece
rlm@203 47 forever; they can be dynamically replaced with multiple sections to
rlm@203 48 simulate splitting in two. This could be used to simulate retractable
rlm@203 49 claws or EVE's hands, which could coalece into one object in the
rlm@203 50 movie.
rlm@202 51
rlm@202 52 * Solidifying the Body
rlm@202 53
rlm@202 54 Here is a hand designed eve-style in blender.
rlm@202 55
rlm@203 56 #+attr_html: width="755"
rlm@202 57 [[../images/hand-screenshot0.png]]
rlm@202 58
rlm@202 59 If we load it directly into jMonkeyEngine, we get this:
rlm@202 60
rlm@202 61 #+name: test-0
rlm@202 62 #+begin_src clojure
rlm@202 63 (ns cortex.test.body
rlm@202 64 (:use (cortex world util body))
rlm@202 65 (:import (com.aurellem.capture Capture RatchetTimer)
rlm@202 66 (com.jme3.math Quaternion Vector3f)
rlm@202 67 java.io.File))
rlm@202 68
rlm@202 69 (def hand-path "Models/test-creature/hand.blend")
rlm@202 70
rlm@202 71 (defn hand [] (load-blender-model hand-path))
rlm@202 72
rlm@202 73 (defn setup [world]
rlm@202 74 (let [cam (.getCamera world)]
rlm@202 75 (println-repl cam)
rlm@202 76 (.setLocation
rlm@202 77 cam (Vector3f.
rlm@202 78 -6.9015837, 8.644911, 5.6043186))
rlm@202 79 (.setRotation
rlm@202 80 cam
rlm@202 81 (Quaternion.
rlm@202 82 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
rlm@202 83 (light-up-everything world)
rlm@202 84 (.setTimer world (RatchetTimer. 60))
rlm@202 85 world)
rlm@202 86
rlm@202 87 (defn test-one []
rlm@202 88 (world (hand)
rlm@202 89 standard-debug-controls
rlm@202 90 (comp
rlm@202 91 #(Capture/captureVideo
rlm@202 92 % (File. "/home/r/proj/cortex/render/body/1"))
rlm@202 93 setup)
rlm@202 94 no-op))
rlm@202 95 #+end_src
rlm@202 96
rlm@202 97
rlm@202 98 #+begin_src clojure :results silent
rlm@202 99 (.start (cortex.test.body/test-one))
rlm@202 100 #+end_src
rlm@202 101
rlm@202 102 #+begin_html
rlm@203 103 <div class="figure">
rlm@203 104 <center>
rlm@203 105 <video controls="controls" width="640">
rlm@202 106 <source src="../video/ghost-hand.ogg" type="video/ogg"
rlm@202 107 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 108 </video>
rlm@203 109 </center>
rlm@203 110 <p>The hand model directly loaded from blender. It has no physical
rlm@203 111 presense in the simulation. </p>
rlm@203 112 </div>
rlm@202 113 #+end_html
rlm@202 114
rlm@202 115 You will notice that the hand has no physical presence -- it's a
rlm@202 116 hologram through witch everything passes. Therefore, the first thing
rlm@202 117 to do is to make it solid. Blender has physics simulation on par with
rlm@202 118 jMonkeyEngine (they both use bullet as their physics backend), but it
rlm@202 119 can be difficult to translate between the two systems, so for now I
rlm@202 120 specify the mass of each object in blender and construct the physics
rlm@202 121 shape based on the mesh in jMonkeyEngine.
rlm@202 122
rlm@203 123 #+name: body-1
rlm@202 124 #+begin_src clojure
rlm@202 125 (defn physical!
rlm@202 126 "Iterate through the nodes in creature and make them real physical
rlm@202 127 objects in the simulation."
rlm@202 128 [#^Node creature]
rlm@202 129 (dorun
rlm@202 130 (map
rlm@202 131 (fn [geom]
rlm@202 132 (let [physics-control
rlm@202 133 (RigidBodyControl.
rlm@202 134 (HullCollisionShape.
rlm@202 135 (.getMesh geom))
rlm@202 136 (if-let [mass (meta-data geom "mass")]
rlm@202 137 (do
rlm@202 138 (println-repl
rlm@202 139 "setting" (.getName geom) "mass to" (float mass))
rlm@202 140 (float mass))
rlm@202 141 (float 1)))]
rlm@202 142 (.addControl geom physics-control)))
rlm@202 143 (filter #(isa? (class %) Geometry )
rlm@202 144 (node-seq creature)))))
rlm@202 145 #+end_src
rlm@202 146
rlm@202 147 =(physical!)= iterates through a creature's node structure, creating
rlm@202 148 CollisionShapes for each geometry with the mass specified in that
rlm@202 149 geometry's meta-data.
rlm@202 150
rlm@203 151 #+name: test-1
rlm@0 152 #+begin_src clojure
rlm@202 153 (in-ns 'cortex.test.body)
rlm@160 154
rlm@202 155 (def normal-gravity
rlm@202 156 {"key-g" (fn [world _]
rlm@202 157 (set-gravity world (Vector3f. 0 -9.81 0)))})
rlm@202 158
rlm@202 159 (defn floor []
rlm@202 160 (box 10 3 10 :position (Vector3f. 0 -10 0)
rlm@202 161 :color ColorRGBA/Gray :mass 0))
rlm@202 162
rlm@202 163 (defn test-two []
rlm@202 164 (world (nodify
rlm@202 165 [(doto (hand)
rlm@202 166 (physical!))
rlm@202 167 (floor)])
rlm@202 168 (merge standard-debug-controls normal-gravity)
rlm@202 169 (comp
rlm@202 170 #(Capture/captureVideo
rlm@202 171 % (File. "/home/r/proj/cortex/render/body/2"))
rlm@202 172 #(do (set-gravity % Vector3f/ZERO) %)
rlm@202 173 setup)
rlm@202 174 no-op))
rlm@202 175 #+end_src
rlm@202 176
rlm@202 177 #+begin_html
rlm@203 178 <div class="figure">
rlm@203 179 <center>
rlm@203 180 <video controls="controls" width="640">
rlm@202 181 <source src="../video/crumbly-hand.ogg" type="video/ogg"
rlm@202 182 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 183 </video>
rlm@203 184 </center>
rlm@203 185 <p>The hand now has a physical presence, but there is nothing to hold
rlm@203 186 it together.</p>
rlm@203 187 </div>
rlm@202 188 #+end_html
rlm@202 189
rlm@202 190 Now that's some progress.
rlm@202 191
rlm@202 192
rlm@202 193 * Joints
rlm@202 194
rlm@202 195 Obviously, an AI is not going to be doing much just lying in pieces on
rlm@202 196 the floor. So, the next step to making a proper body is to connect
rlm@202 197 those pieces together with joints. jMonkeyEngine has a large array of
rlm@202 198 joints available via bullet, such as Point2Point, Cone, Hinge, and a
rlm@202 199 generic Six Degree of Freedom joint, with or without spring
rlm@202 200 restitution.
rlm@202 201
rlm@202 202 Although it should be possible to specify the joints using blender's
rlm@202 203 physics system, and then automatically import them with jMonkeyEngine,
rlm@202 204 the support isn't there yet, and there are a few problems with bullet
rlm@202 205 itself that need to be solved before it can happen.
rlm@202 206
rlm@202 207 So, I will use the same system for specifying joints as I will do for
rlm@202 208 some senses. Each joint is specified by an empty node whose parent
rlm@202 209 has the name "joints". Their orientation and meta-data determine what
rlm@202 210 joint is created.
rlm@202 211
rlm@203 212 #+attr_html: width="755"
rlm@203 213 #+caption: joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
rlm@202 214 [[../images/hand-screenshot1.png]]
rlm@202 215
rlm@203 216 The empty node in the upper right, highlighted in yellow, is the
rlm@203 217 parent node of all the emptys which represent joints. The following
rlm@203 218 functions must do three things to translate these into real joints:
rlm@202 219
rlm@203 220 - Find the children of the "joints" node.
rlm@203 221 - Determine the two spatials the joint it meant to connect.
rlm@203 222 - Create the joint based on the meta-data of the empty node.
rlm@202 223
rlm@203 224 ** Finding the Joints
rlm@203 225 #+name: joints-2
rlm@203 226 #+begin_src clojure
rlm@203 227 (defvar
rlm@203 228 ^{:arglists '([creature])}
rlm@203 229 joints
rlm@203 230 (sense-nodes "joints")
rlm@203 231 "Return the children of the creature's \"joints\" node.")
rlm@203 232 #+end_src
rlm@202 233
rlm@203 234 The higher order function =(sense-nodes)= from cortex.sense makes our
rlm@203 235 first task very easy.
rlm@203 236
rlm@203 237 ** Joint Targets and Orientation
rlm@203 238
rlm@203 239 This technique for finding a joint's targets is very similiar to
rlm@203 240 =(cortex.sense/closest-node)=. A small cube, centered around the
rlm@203 241 empty-node, grows exponentially until it intersects two /physical/
rlm@203 242 objects. The objects are ordered according to the joint's rotation,
rlm@203 243 with the first one being the object that has more negative coordinates
rlm@203 244 in the joint's reference frame. Since the objects must be physical,
rlm@203 245 the empty-node itself escapes detection. Because the objects must be
rlm@203 246 physical, =(joint-targets)= must be called /after/ =(physical!)= is
rlm@203 247 called.
rlm@203 248
rlm@203 249 #+name: joints-3
rlm@202 250 #+begin_src clojure
rlm@135 251 (defn joint-targets
rlm@135 252 "Return the two closest two objects to the joint object, ordered
rlm@135 253 from bottom to top according to the joint's rotation."
rlm@135 254 [#^Node parts #^Node joint]
rlm@135 255 (loop [radius (float 0.01)]
rlm@135 256 (let [results (CollisionResults.)]
rlm@135 257 (.collideWith
rlm@135 258 parts
rlm@135 259 (BoundingBox. (.getWorldTranslation joint)
rlm@135 260 radius radius radius)
rlm@135 261 results)
rlm@135 262 (let [targets
rlm@135 263 (distinct
rlm@135 264 (map #(.getGeometry %) results))]
rlm@135 265 (if (>= (count targets) 2)
rlm@135 266 (sort-by
rlm@135 267 #(let [v
rlm@135 268 (jme-to-blender
rlm@135 269 (.mult
rlm@135 270 (.inverse (.getWorldRotation joint))
rlm@135 271 (.subtract (.getWorldTranslation %)
rlm@135 272 (.getWorldTranslation joint))))]
rlm@135 273 (println-repl (.getName %) ":" v)
rlm@135 274 (.dot (Vector3f. 1 1 1)
rlm@135 275 v))
rlm@135 276 (take 2 targets))
rlm@135 277 (recur (float (* radius 2))))))))
rlm@203 278 #+end_src
rlm@135 279
rlm@203 280 ** Generating Joints
rlm@203 281
rlm@203 282 This long chunk of code iterates through all the different ways of
rlm@203 283 specifying joints using blender meta-data and converts each one to the
rlm@203 284 appropriate jMonkyeEngine joint.
rlm@203 285
rlm@203 286 #+name: joints-4
rlm@203 287 #+begin_src clojure
rlm@160 288 (defmulti joint-dispatch
rlm@160 289 "Translate blender pseudo-joints into real JME joints."
rlm@160 290 (fn [constraints & _]
rlm@160 291 (:type constraints)))
rlm@141 292
rlm@160 293 (defmethod joint-dispatch :point
rlm@160 294 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 295 (println-repl "creating POINT2POINT joint")
rlm@160 296 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@160 297 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@141 298
rlm@160 299 ;; should be able to do this:
rlm@160 300 (comment
rlm@160 301 (Point2PointJoint.
rlm@160 302 control-a
rlm@160 303 control-b
rlm@160 304 pivot-a
rlm@160 305 pivot-b))
rlm@141 306
rlm@160 307 ;; but instead we must do this:
rlm@160 308 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@160 309 (doto
rlm@160 310 (SixDofJoint.
rlm@160 311 control-a
rlm@160 312 control-b
rlm@160 313 pivot-a
rlm@160 314 pivot-b
rlm@160 315 false)
rlm@160 316 (.setLinearLowerLimit Vector3f/ZERO)
rlm@203 317 (.setLinearUpperLimit Vector3f/ZERO)))
rlm@160 318
rlm@160 319 (defmethod joint-dispatch :hinge
rlm@160 320 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 321 (println-repl "creating HINGE joint")
rlm@160 322 (let [axis
rlm@160 323 (if-let
rlm@160 324 [axis (:axis constraints)]
rlm@160 325 axis
rlm@160 326 Vector3f/UNIT_X)
rlm@160 327 [limit-1 limit-2] (:limit constraints)
rlm@160 328 hinge-axis
rlm@160 329 (.mult
rlm@160 330 rotation
rlm@160 331 (blender-to-jme axis))]
rlm@160 332 (doto
rlm@160 333 (HingeJoint.
rlm@160 334 control-a
rlm@160 335 control-b
rlm@160 336 pivot-a
rlm@160 337 pivot-b
rlm@160 338 hinge-axis
rlm@160 339 hinge-axis)
rlm@160 340 (.setLimit limit-1 limit-2))))
rlm@160 341
rlm@160 342 (defmethod joint-dispatch :cone
rlm@160 343 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 344 (let [limit-xz (:limit-xz constraints)
rlm@160 345 limit-xy (:limit-xy constraints)
rlm@160 346 twist (:twist constraints)]
rlm@160 347
rlm@160 348 (println-repl "creating CONE joint")
rlm@160 349 (println-repl rotation)
rlm@160 350 (println-repl
rlm@160 351 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@160 352 (println-repl
rlm@160 353 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@160 354 (println-repl
rlm@160 355 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@160 356 (doto
rlm@160 357 (ConeJoint.
rlm@160 358 control-a
rlm@160 359 control-b
rlm@160 360 pivot-a
rlm@160 361 pivot-b
rlm@160 362 rotation
rlm@160 363 rotation)
rlm@160 364 (.setLimit (float limit-xz)
rlm@160 365 (float limit-xy)
rlm@160 366 (float twist)))))
rlm@160 367
rlm@160 368 (defn connect
rlm@175 369 "Create a joint between 'obj-a and 'obj-b at the location of
rlm@175 370 'joint. The type of joint is determined by the metadata on 'joint.
rlm@175 371
rlm@175 372 Here are some examples:
rlm@160 373 {:type :point}
rlm@160 374 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@160 375 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@160 376
rlm@160 377 {:type :cone :limit-xz 0]
rlm@160 378 :limit-xy 0]
rlm@160 379 :twist 0]} (use XZY rotation mode in blender!)"
rlm@160 380 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@160 381 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@160 382 control-b (.getControl obj-b RigidBodyControl)
rlm@160 383 joint-center (.getWorldTranslation joint)
rlm@160 384 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@160 385 pivot-a (world-to-local obj-a joint-center)
rlm@160 386 pivot-b (world-to-local obj-b joint-center)]
rlm@160 387
rlm@160 388 (if-let [constraints
rlm@160 389 (map-vals
rlm@160 390 eval
rlm@160 391 (read-string
rlm@160 392 (meta-data joint "joint")))]
rlm@160 393 ;; A side-effect of creating a joint registers
rlm@160 394 ;; it with both physics objects which in turn
rlm@160 395 ;; will register the joint with the physics system
rlm@160 396 ;; when the simulation is started.
rlm@160 397 (do
rlm@160 398 (println-repl "creating joint between"
rlm@160 399 (.getName obj-a) "and" (.getName obj-b))
rlm@160 400 (joint-dispatch constraints
rlm@160 401 control-a control-b
rlm@160 402 pivot-a pivot-b
rlm@160 403 joint-rotation))
rlm@160 404 (println-repl "could not find joint meta-data!"))))
rlm@203 405 #+end_src
rlm@160 406
rlm@203 407 Creating joints is now a matter applying =(connect)= to each joint
rlm@203 408 node.
rlm@160 409
rlm@203 410 #+begin_src clojure
rlm@175 411 (defn joints!
rlm@175 412 "Connect the solid parts of the creature with physical joints. The
rlm@175 413 joints are taken from the \"joints\" node in the creature."
rlm@175 414 [#^Node creature]
rlm@160 415 (dorun
rlm@160 416 (map
rlm@160 417 (fn [joint]
rlm@175 418 (let [[obj-a obj-b] (joint-targets creature joint)]
rlm@160 419 (connect obj-a obj-b joint)))
rlm@175 420 (joints creature))))
rlm@203 421 #+end_src
rlm@160 422
rlm@203 423
rlm@203 424 ** Round 3
rlm@203 425
rlm@203 426 Now we can test the hand in all its glory.
rlm@203 427
rlm@203 428 #+begin_src clojure
rlm@203 429 (in-ns 'cortex.test.body)
rlm@203 430
rlm@203 431 (def debug-control
rlm@203 432 {"key-h" (fn [world val]
rlm@203 433 (if val (enable-debug world)))
rlm@203 434
rlm@203 435 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))
rlm@203 436 })
rlm@203 437
rlm@203 438 (defn test-three []
rlm@203 439 (world (nodify
rlm@203 440 [(doto (hand)
rlm@203 441 (physical!)
rlm@203 442 (joints!) )
rlm@203 443 (floor)])
rlm@203 444 (merge standard-debug-controls debug-control
rlm@203 445 normal-gravity)
rlm@203 446 (comp
rlm@203 447 #(Capture/captureVideo
rlm@203 448 % (File. "/home/r/proj/cortex/render/body/3"))
rlm@203 449 #(do (set-gravity % Vector3f/ZERO) %)
rlm@203 450 setup)
rlm@203 451 no-op))
rlm@203 452 #+end_src
rlm@203 453
rlm@203 454 =(physical!)= makes the hand solid, then =(joints!)= connects each
rlm@203 455 piece together.
rlm@203 456
rlm@203 457
rlm@203 458 #+begin_html
rlm@203 459 <div class="figure">
rlm@203 460 <center>
rlm@203 461 <video controls="controls" width="640">
rlm@203 462 <source src="../video/full-hand.ogg" type="video/ogg"
rlm@203 463 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@203 464 </video>
rlm@203 465 </center>
rlm@203 466 <p>Now the hand is physical and has joints.</p>
rlm@203 467 </div>
rlm@203 468 #+end_html
rlm@203 469
rlm@203 470 The joints are visualized as green connections between each segment
rlm@203 471 for debug purposes. You can see that they correspond to the empty
rlm@203 472 nodes in the blender file.
rlm@203 473
rlm@203 474 * Wrap-Up!
rlm@203 475
rlm@203 476 It is convienent to combine =(physical!)= and =(joints!)= into one
rlm@203 477 function that completely creates the creature's physical body.
rlm@203 478
rlm@203 479 #+name: joints-4
rlm@203 480 #+begin_src clojure
rlm@175 481 (defn body!
rlm@175 482 "Endow the creature with a physical body connected with joints. The
rlm@175 483 particulars of the joints and the masses of each pody part are
rlm@175 484 determined in blender."
rlm@175 485 [#^Node creature]
rlm@175 486 (physical! creature)
rlm@175 487 (joints! creature))
rlm@64 488 #+end_src
rlm@63 489
rlm@202 490 * Bookkeeping
rlm@175 491
rlm@203 492 Header; here for completeness.
rlm@203 493
rlm@202 494 #+name: body-0
rlm@202 495 #+begin_src clojure
rlm@202 496 (ns cortex.body
rlm@202 497 "Assemble a physical creature using the definitions found in a
rlm@202 498 specially prepared blender file. Creates rigid bodies and joints so
rlm@202 499 that a creature can have a physical presense in the simulation."
rlm@202 500 {:author "Robert McIntyre"}
rlm@202 501 (:use (cortex world util sense))
rlm@202 502 (:use clojure.contrib.def)
rlm@202 503 (:import
rlm@202 504 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
rlm@202 505 (com.jme3.bullet.joints
rlm@202 506 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
rlm@202 507 com.jme3.bullet.control.RigidBodyControl
rlm@202 508 com.jme3.collision.CollisionResults
rlm@202 509 com.jme3.bounding.BoundingBox
rlm@202 510 com.jme3.scene.Node
rlm@202 511 com.jme3.scene.Geometry
rlm@202 512 com.jme3.bullet.collision.shapes.HullCollisionShape))
rlm@202 513 #+end_src
rlm@133 514
rlm@202 515 * Source
rlm@202 516
rlm@203 517 Dylan -- I'll fill these in later
rlm@203 518 - cortex.body
rlm@203 519 - cortex.test.body
rlm@203 520 - blender files
rlm@203 521
rlm@202 522 * COMMENT Examples
rlm@63 523
rlm@69 524 #+name: test-body
rlm@64 525 #+begin_src clojure
rlm@69 526 (ns cortex.test.body
rlm@64 527 (:use (cortex world util body))
rlm@135 528 (:require cortex.silly)
rlm@64 529 (:import
rlm@64 530 com.jme3.math.Vector3f
rlm@64 531 com.jme3.math.ColorRGBA
rlm@64 532 com.jme3.bullet.joints.Point2PointJoint
rlm@64 533 com.jme3.bullet.control.RigidBodyControl
rlm@145 534 com.jme3.system.NanoTimer
rlm@145 535 com.jme3.math.Quaternion))
rlm@63 536
rlm@64 537 (defn worm-segments
rlm@64 538 "Create multiple evenly spaced box segments. They're fabulous!"
rlm@64 539 [segment-length num-segments interstitial-space radius]
rlm@64 540 (letfn [(nth-segment
rlm@64 541 [n]
rlm@64 542 (box segment-length radius radius :mass 0.1
rlm@64 543 :position
rlm@64 544 (Vector3f.
rlm@64 545 (* 2 n (+ interstitial-space segment-length)) 0 0)
rlm@64 546 :name (str "worm-segment" n)
rlm@64 547 :color (ColorRGBA/randomColor)))]
rlm@64 548 (map nth-segment (range num-segments))))
rlm@63 549
rlm@64 550 (defn connect-at-midpoint
rlm@64 551 "Connect two physics objects with a Point2Point joint constraint at
rlm@64 552 the point equidistant from both objects' centers."
rlm@64 553 [segmentA segmentB]
rlm@64 554 (let [centerA (.getWorldTranslation segmentA)
rlm@64 555 centerB (.getWorldTranslation segmentB)
rlm@64 556 midpoint (.mult (.add centerA centerB) (float 0.5))
rlm@64 557 pivotA (.subtract midpoint centerA)
rlm@64 558 pivotB (.subtract midpoint centerB)
rlm@64 559
rlm@64 560 ;; A side-effect of creating a joint registers
rlm@64 561 ;; it with both physics objects which in turn
rlm@64 562 ;; will register the joint with the physics system
rlm@64 563 ;; when the simulation is started.
rlm@64 564 joint (Point2PointJoint.
rlm@64 565 (.getControl segmentA RigidBodyControl)
rlm@64 566 (.getControl segmentB RigidBodyControl)
rlm@64 567 pivotA
rlm@64 568 pivotB)]
rlm@64 569 segmentB))
rlm@63 570
rlm@64 571 (defn eve-worm
rlm@72 572 "Create a worm-like body bound by invisible joint constraints."
rlm@64 573 []
rlm@64 574 (let [segments (worm-segments 0.2 5 0.1 0.1)]
rlm@64 575 (dorun (map (partial apply connect-at-midpoint)
rlm@64 576 (partition 2 1 segments)))
rlm@64 577 (nodify "worm" segments)))
rlm@63 578
rlm@64 579 (defn worm-pattern
rlm@64 580 "This is a simple, mindless motor control pattern that drives the
rlm@64 581 second segment of the worm's body at an offset angle with
rlm@64 582 sinusoidally varying strength."
rlm@64 583 [time]
rlm@64 584 (let [angle (* Math/PI (/ 9 20))
rlm@63 585 direction (Vector3f. 0 (Math/sin angle) (Math/cos angle))]
rlm@63 586 [Vector3f/ZERO
rlm@63 587 (.mult
rlm@63 588 direction
rlm@63 589 (float (* 2 (Math/sin (* Math/PI 2 (/ (rem time 300 ) 300))))))
rlm@63 590 Vector3f/ZERO
rlm@63 591 Vector3f/ZERO
rlm@63 592 Vector3f/ZERO]))
rlm@60 593
rlm@64 594 (defn test-motor-control
rlm@69 595 "Testing motor-control:
rlm@69 596 You should see a multi-segmented worm-like object fall onto the
rlm@64 597 table and begin writhing and moving."
rlm@60 598 []
rlm@64 599 (let [worm (eve-worm)
rlm@60 600 time (atom 0)
rlm@63 601 worm-motor-map (vector-motor-control worm)]
rlm@60 602 (world
rlm@60 603 (nodify [worm
rlm@60 604 (box 10 0.5 10 :position (Vector3f. 0 -5 0) :mass 0
rlm@60 605 :color ColorRGBA/Gray)])
rlm@60 606 standard-debug-controls
rlm@60 607 (fn [world]
rlm@60 608 (enable-debug world)
rlm@60 609 (light-up-everything world)
rlm@63 610 (comment
rlm@63 611 (com.aurellem.capture.Capture/captureVideo
rlm@63 612 world
rlm@63 613 (file-str "/home/r/proj/cortex/tmp/moving-worm")))
rlm@63 614 )
rlm@60 615
rlm@60 616 (fn [_ _]
rlm@60 617 (swap! time inc)
rlm@64 618 (Thread/sleep 20)
rlm@60 619 (dorun (worm-motor-map
rlm@60 620 (worm-pattern @time)))))))
rlm@60 621
rlm@130 622
rlm@135 623
rlm@130 624 (defn join-at-point [obj-a obj-b world-pivot]
rlm@130 625 (cortex.silly/joint-dispatch
rlm@130 626 {:type :point}
rlm@130 627 (.getControl obj-a RigidBodyControl)
rlm@130 628 (.getControl obj-b RigidBodyControl)
rlm@130 629 (cortex.silly/world-to-local obj-a world-pivot)
rlm@130 630 (cortex.silly/world-to-local obj-b world-pivot)
rlm@130 631 nil
rlm@130 632 ))
rlm@130 633
rlm@133 634 (import com.jme3.bullet.collision.PhysicsCollisionObject)
rlm@130 635
rlm@130 636 (defn blab-* []
rlm@130 637 (let [hand (box 0.5 0.2 0.2 :position (Vector3f. 0 0 0)
rlm@130 638 :mass 0 :color ColorRGBA/Green)
rlm@130 639 finger (box 0.5 0.2 0.2 :position (Vector3f. 2.4 0 0)
rlm@130 640 :mass 1 :color ColorRGBA/Red)
rlm@130 641 connection-point (Vector3f. 1.2 0 0)
rlm@130 642 root (nodify [hand finger])]
rlm@130 643
rlm@130 644 (join-at-point hand finger (Vector3f. 1.2 0 0))
rlm@130 645
rlm@130 646 (.setCollisionGroup
rlm@130 647 (.getControl hand RigidBodyControl)
rlm@130 648 PhysicsCollisionObject/COLLISION_GROUP_NONE)
rlm@130 649 (world
rlm@130 650 root
rlm@130 651 standard-debug-controls
rlm@130 652 (fn [world]
rlm@130 653 (enable-debug world)
rlm@130 654 (.setTimer world (com.aurellem.capture.RatchetTimer. 60))
rlm@130 655 (set-gravity world Vector3f/ZERO)
rlm@130 656 )
rlm@130 657 no-op)))
rlm@133 658 (comment
rlm@133 659
rlm@133 660 (defn proprioception-debug-window
rlm@133 661 []
rlm@133 662 (let [time (atom 0)]
rlm@133 663 (fn [prop-data]
rlm@133 664 (if (= 0 (rem (swap! time inc) 40))
rlm@133 665 (println-repl prop-data)))))
rlm@133 666 )
rlm@133 667
rlm@131 668 (comment
rlm@131 669 (dorun
rlm@131 670 (map
rlm@131 671 (comp
rlm@131 672 println-repl
rlm@131 673 (fn [[p y r]]
rlm@131 674 (format
rlm@131 675 "pitch: %1.2f\nyaw: %1.2f\nroll: %1.2f\n"
rlm@131 676 p y r)))
rlm@131 677 prop-data)))
rlm@131 678
rlm@130 679
rlm@130 680
rlm@137 681
rlm@64 682 (defn test-proprioception
rlm@69 683 "Testing proprioception:
rlm@69 684 You should see two foating bars, and a printout of pitch, yaw, and
rlm@64 685 roll. Pressing key-r/key-t should move the blue bar up and down and
rlm@64 686 change only the value of pitch. key-f/key-g moves it side to side
rlm@64 687 and changes yaw. key-v/key-b will spin the blue segment clockwise
rlm@64 688 and counterclockwise, and only affect roll."
rlm@60 689 []
rlm@145 690 (let [hand (box 0.2 1 0.2 :position (Vector3f. 0 0 0)
rlm@142 691 :mass 0 :color ColorRGBA/Green :name "hand")
rlm@145 692 finger (box 0.2 1 0.2 :position (Vector3f. 0 2.4 0)
rlm@132 693 :mass 1 :color ColorRGBA/Red :name "finger")
rlm@133 694 joint-node (box 0.1 0.05 0.05 :color ColorRGBA/Yellow
rlm@145 695 :position (Vector3f. 0 1.2 0)
rlm@145 696 :rotation (doto (Quaternion.)
rlm@145 697 (.fromAngleAxis
rlm@145 698 (/ Math/PI 2)
rlm@145 699 (Vector3f. 0 0 1)))
rlm@133 700 :physical? false)
rlm@145 701 joint (join-at-point hand finger (Vector3f. 0 1.2 0 ))
rlm@135 702 creature (nodify [hand finger joint-node])
rlm@145 703 finger-control (.getControl finger RigidBodyControl)
rlm@145 704 hand-control (.getControl hand RigidBodyControl)]
rlm@145 705
rlm@145 706
rlm@145 707 (let
rlm@135 708 ;; *******************************************
rlm@137 709
rlm@145 710 [floor (box 10 10 10 :position (Vector3f. 0 -15 0)
rlm@135 711 :mass 0 :color ColorRGBA/Gray)
rlm@137 712
rlm@137 713 root (nodify [creature floor])
rlm@133 714 prop (joint-proprioception creature joint-node)
rlm@139 715 prop-view (proprioception-debug-window)
rlm@139 716
rlm@139 717 controls
rlm@139 718 (merge standard-debug-controls
rlm@140 719 {"key-o"
rlm@139 720 (fn [_ _] (.setEnabled finger-control true))
rlm@140 721 "key-p"
rlm@139 722 (fn [_ _] (.setEnabled finger-control false))
rlm@140 723 "key-k"
rlm@140 724 (fn [_ _] (.setEnabled hand-control true))
rlm@140 725 "key-l"
rlm@140 726 (fn [_ _] (.setEnabled hand-control false))
rlm@139 727 "key-i"
rlm@139 728 (fn [world _] (set-gravity world (Vector3f. 0 0 0)))
rlm@142 729 "key-period"
rlm@142 730 (fn [world _]
rlm@142 731 (.setEnabled finger-control false)
rlm@142 732 (.setEnabled hand-control false)
rlm@142 733 (.rotate creature (doto (Quaternion.)
rlm@142 734 (.fromAngleAxis
rlm@142 735 (float (/ Math/PI 15))
rlm@142 736 (Vector3f. 0 0 -1))))
rlm@142 737
rlm@142 738 (.setEnabled finger-control true)
rlm@142 739 (.setEnabled hand-control true)
rlm@142 740 (set-gravity world (Vector3f. 0 0 0))
rlm@142 741 )
rlm@142 742
rlm@142 743
rlm@139 744 }
rlm@139 745 )
rlm@130 746
rlm@139 747 ]
rlm@139 748 (comment
rlm@139 749 (.setCollisionGroup
rlm@139 750 (.getControl hand RigidBodyControl)
rlm@139 751 PhysicsCollisionObject/COLLISION_GROUP_NONE)
rlm@139 752 )
rlm@140 753 (apply
rlm@140 754 world
rlm@140 755 (with-movement
rlm@140 756 hand
rlm@140 757 ["key-y" "key-u" "key-h" "key-j" "key-n" "key-m"]
rlm@140 758 [10 10 10 10 1 1]
rlm@140 759 (with-movement
rlm@140 760 finger
rlm@140 761 ["key-r" "key-t" "key-f" "key-g" "key-v" "key-b"]
rlm@145 762 [1 1 10 10 10 10]
rlm@140 763 [root
rlm@140 764 controls
rlm@140 765 (fn [world]
rlm@140 766 (.setTimer world (com.aurellem.capture.RatchetTimer. 60))
rlm@140 767 (set-gravity world (Vector3f. 0 0 0))
rlm@140 768 (light-up-everything world))
rlm@145 769 (fn [_ _] (prop-view (list (prop))))]))))))
rlm@138 770
rlm@64 771 #+end_src
rlm@56 772
rlm@130 773 #+results: test-body
rlm@130 774 : #'cortex.test.body/test-proprioception
rlm@130 775
rlm@60 776
rlm@63 777 * COMMENT code-limbo
rlm@61 778 #+begin_src clojure
rlm@61 779 ;;(.loadModel
rlm@61 780 ;; (doto (asset-manager)
rlm@61 781 ;; (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@61 782 ;; "Models/person/person.blend")
rlm@61 783
rlm@64 784
rlm@64 785 (defn load-blender-model
rlm@64 786 "Load a .blend file using an asset folder relative path."
rlm@64 787 [^String model]
rlm@64 788 (.loadModel
rlm@64 789 (doto (asset-manager)
rlm@64 790 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@64 791 model))
rlm@64 792
rlm@64 793
rlm@61 794 (defn view-model [^String model]
rlm@61 795 (view
rlm@61 796 (.loadModel
rlm@61 797 (doto (asset-manager)
rlm@61 798 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@61 799 model)))
rlm@61 800
rlm@61 801 (defn load-blender-scene [^String model]
rlm@61 802 (.loadModel
rlm@61 803 (doto (asset-manager)
rlm@61 804 (.registerLoader BlenderLoader (into-array String ["blend"])))
rlm@61 805 model))
rlm@61 806
rlm@61 807 (defn worm
rlm@61 808 []
rlm@61 809 (.loadModel (asset-manager) "Models/anim2/Cube.mesh.xml"))
rlm@61 810
rlm@61 811 (defn oto
rlm@61 812 []
rlm@61 813 (.loadModel (asset-manager) "Models/Oto/Oto.mesh.xml"))
rlm@61 814
rlm@61 815 (defn sinbad
rlm@61 816 []
rlm@61 817 (.loadModel (asset-manager) "Models/Sinbad/Sinbad.mesh.xml"))
rlm@61 818
rlm@61 819 (defn worm-blender
rlm@61 820 []
rlm@61 821 (first (seq (.getChildren (load-blender-model
rlm@61 822 "Models/anim2/simple-worm.blend")))))
rlm@61 823
rlm@61 824 (defn body
rlm@61 825 "given a node with a SkeletonControl, will produce a body sutiable
rlm@61 826 for AI control with movement and proprioception."
rlm@61 827 [node]
rlm@61 828 (let [skeleton-control (.getControl node SkeletonControl)
rlm@61 829 krc (KinematicRagdollControl.)]
rlm@61 830 (comment
rlm@61 831 (dorun
rlm@61 832 (map #(.addBoneName krc %)
rlm@61 833 ["mid2" "tail" "head" "mid1" "mid3" "mid4" "Dummy-Root" ""]
rlm@61 834 ;;"mid2" "mid3" "tail" "head"]
rlm@61 835 )))
rlm@61 836 (.addControl node krc)
rlm@61 837 (.setRagdollMode krc)
rlm@61 838 )
rlm@61 839 node
rlm@61 840 )
rlm@61 841 (defn show-skeleton [node]
rlm@61 842 (let [sd
rlm@61 843
rlm@61 844 (doto
rlm@61 845 (SkeletonDebugger. "aurellem-skel-debug"
rlm@61 846 (skel node))
rlm@61 847 (.setMaterial (green-x-ray)))]
rlm@61 848 (.attachChild node sd)
rlm@61 849 node))
rlm@61 850
rlm@61 851
rlm@61 852
rlm@61 853 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 854
rlm@61 855 ;; this could be a good way to give objects special properties like
rlm@61 856 ;; being eyes and the like
rlm@61 857
rlm@61 858 (.getUserData
rlm@61 859 (.getChild
rlm@61 860 (load-blender-model "Models/property/test.blend") 0)
rlm@61 861 "properties")
rlm@61 862
rlm@61 863 ;; the properties are saved along with the blender file.
rlm@61 864 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 865
rlm@61 866
rlm@61 867
rlm@61 868
rlm@61 869 (defn init-debug-skel-node
rlm@61 870 [f debug-node skeleton]
rlm@61 871 (let [bones
rlm@61 872 (map #(.getBone skeleton %)
rlm@61 873 (range (.getBoneCount skeleton)))]
rlm@61 874 (dorun (map #(.setUserControl % true) bones))
rlm@61 875 (dorun (map (fn [b]
rlm@61 876 (println (.getName b)
rlm@61 877 " -- " (f b)))
rlm@61 878 bones))
rlm@61 879 (dorun
rlm@61 880 (map #(.attachChild
rlm@61 881 debug-node
rlm@61 882 (doto
rlm@61 883 (sphere 0.1
rlm@61 884 :position (f %)
rlm@61 885 :physical? false)
rlm@61 886 (.setMaterial (green-x-ray))))
rlm@61 887 bones)))
rlm@61 888 debug-node)
rlm@61 889
rlm@61 890 (import jme3test.bullet.PhysicsTestHelper)
rlm@61 891
rlm@61 892
rlm@61 893 (defn test-zzz [the-worm world value]
rlm@61 894 (if (not value)
rlm@61 895 (let [skeleton (skel the-worm)]
rlm@61 896 (println-repl "enabling bones")
rlm@61 897 (dorun
rlm@61 898 (map
rlm@61 899 #(.setUserControl (.getBone skeleton %) true)
rlm@61 900 (range (.getBoneCount skeleton))))
rlm@61 901
rlm@61 902
rlm@61 903 (let [b (.getBone skeleton 2)]
rlm@61 904 (println-repl "moving " (.getName b))
rlm@61 905 (println-repl (.getLocalPosition b))
rlm@61 906 (.setUserTransforms b
rlm@61 907 Vector3f/UNIT_X
rlm@61 908 Quaternion/IDENTITY
rlm@61 909 ;;(doto (Quaternion.)
rlm@61 910 ;; (.fromAngles (/ Math/PI 2)
rlm@61 911 ;; 0
rlm@61 912 ;; 0
rlm@61 913
rlm@61 914 (Vector3f. 1 1 1))
rlm@61 915 )
rlm@61 916
rlm@61 917 (println-repl "hi! <3"))))
rlm@61 918
rlm@61 919
rlm@61 920 (defn test-ragdoll []
rlm@61 921
rlm@61 922 (let [the-worm
rlm@61 923
rlm@61 924 ;;(.loadModel (asset-manager) "Models/anim2/Cube.mesh.xml")
rlm@61 925 (doto (show-skeleton (worm-blender))
rlm@61 926 (.setLocalTranslation (Vector3f. 0 10 0))
rlm@61 927 ;;(worm)
rlm@61 928 ;;(oto)
rlm@61 929 ;;(sinbad)
rlm@61 930 )
rlm@61 931 ]
rlm@61 932
rlm@61 933
rlm@61 934 (.start
rlm@61 935 (world
rlm@61 936 (doto (Node.)
rlm@61 937 (.attachChild the-worm))
rlm@61 938 {"key-return" (fire-cannon-ball)
rlm@61 939 "key-space" (partial test-zzz the-worm)
rlm@61 940 }
rlm@61 941 (fn [world]
rlm@61 942 (light-up-everything world)
rlm@61 943 (PhysicsTestHelper/createPhysicsTestWorld
rlm@61 944 (.getRootNode world)
rlm@61 945 (asset-manager)
rlm@61 946 (.getPhysicsSpace
rlm@61 947 (.getState (.getStateManager world) BulletAppState)))
rlm@61 948 (set-gravity world Vector3f/ZERO)
rlm@61 949 ;;(.setTimer world (NanoTimer.))
rlm@61 950 ;;(org.lwjgl.input.Mouse/setGrabbed false)
rlm@61 951 )
rlm@61 952 no-op
rlm@61 953 )
rlm@61 954
rlm@61 955
rlm@61 956 )))
rlm@61 957
rlm@61 958
rlm@61 959 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 960 ;;; here is the ragdoll stuff
rlm@61 961
rlm@61 962 (def worm-mesh (.getMesh (.getChild (worm-blender) 0)))
rlm@61 963 (def mesh worm-mesh)
rlm@61 964
rlm@61 965 (.getFloatBuffer mesh VertexBuffer$Type/Position)
rlm@61 966 (.getFloatBuffer mesh VertexBuffer$Type/BoneWeight)
rlm@61 967 (.getData (.getBuffer mesh VertexBuffer$Type/BoneIndex))
rlm@61 968
rlm@61 969
rlm@61 970 (defn position [index]
rlm@61 971 (.get
rlm@61 972 (.getFloatBuffer worm-mesh VertexBuffer$Type/Position)
rlm@61 973 index))
rlm@61 974
rlm@61 975 (defn bones [index]
rlm@61 976 (.get
rlm@61 977 (.getData (.getBuffer mesh VertexBuffer$Type/BoneIndex))
rlm@61 978 index))
rlm@61 979
rlm@61 980 (defn bone-weights [index]
rlm@61 981 (.get
rlm@61 982 (.getFloatBuffer mesh VertexBuffer$Type/BoneWeight)
rlm@61 983 index))
rlm@61 984
rlm@61 985
rlm@61 986
rlm@61 987 (defn vertex-bones [vertex]
rlm@61 988 (vec (map (comp int bones) (range (* vertex 4) (+ (* vertex 4) 4)))))
rlm@61 989
rlm@61 990 (defn vertex-weights [vertex]
rlm@61 991 (vec (map (comp float bone-weights) (range (* vertex 4) (+ (* vertex 4) 4)))))
rlm@61 992
rlm@61 993 (defn vertex-position [index]
rlm@61 994 (let [offset (* index 3)]
rlm@61 995 (Vector3f. (position offset)
rlm@61 996 (position (inc offset))
rlm@61 997 (position (inc(inc offset))))))
rlm@61 998
rlm@61 999 (def vertex-info (juxt vertex-position vertex-bones vertex-weights))
rlm@61 1000
rlm@61 1001 (defn bone-control-color [index]
rlm@61 1002 (get {[1 0 0 0] ColorRGBA/Red
rlm@61 1003 [1 2 0 0] ColorRGBA/Magenta
rlm@61 1004 [2 0 0 0] ColorRGBA/Blue}
rlm@61 1005 (vertex-bones index)
rlm@61 1006 ColorRGBA/White))
rlm@61 1007
rlm@61 1008 (defn influence-color [index bone-num]
rlm@61 1009 (get
rlm@61 1010 {(float 0) ColorRGBA/Blue
rlm@61 1011 (float 0.5) ColorRGBA/Green
rlm@61 1012 (float 1) ColorRGBA/Red}
rlm@61 1013 ;; find the weight of the desired bone
rlm@61 1014 ((zipmap (vertex-bones index)(vertex-weights index))
rlm@61 1015 bone-num)
rlm@61 1016 ColorRGBA/Blue))
rlm@61 1017
rlm@61 1018 (def worm-vertices (set (map vertex-info (range 60))))
rlm@61 1019
rlm@61 1020
rlm@61 1021 (defn test-info []
rlm@61 1022 (let [points (Node.)]
rlm@61 1023 (dorun
rlm@61 1024 (map #(.attachChild points %)
rlm@61 1025 (map #(sphere 0.01
rlm@61 1026 :position (vertex-position %)
rlm@61 1027 :color (influence-color % 1)
rlm@61 1028 :physical? false)
rlm@61 1029 (range 60))))
rlm@61 1030 (view points)))
rlm@61 1031
rlm@61 1032
rlm@61 1033 (defrecord JointControl [joint physics-space]
rlm@61 1034 PhysicsControl
rlm@61 1035 (setPhysicsSpace [this space]
rlm@61 1036 (dosync
rlm@61 1037 (ref-set (:physics-space this) space))
rlm@61 1038 (.addJoint space (:joint this)))
rlm@61 1039 (update [this tpf])
rlm@61 1040 (setSpatial [this spatial])
rlm@61 1041 (render [this rm vp])
rlm@61 1042 (getPhysicsSpace [this] (deref (:physics-space this)))
rlm@61 1043 (isEnabled [this] true)
rlm@61 1044 (setEnabled [this state]))
rlm@61 1045
rlm@61 1046 (defn add-joint
rlm@61 1047 "Add a joint to a particular object. When the object is added to the
rlm@61 1048 PhysicsSpace of a simulation, the joint will also be added"
rlm@61 1049 [object joint]
rlm@61 1050 (let [control (JointControl. joint (ref nil))]
rlm@61 1051 (.addControl object control))
rlm@61 1052 object)
rlm@61 1053
rlm@61 1054
rlm@61 1055 (defn hinge-world
rlm@61 1056 []
rlm@61 1057 (let [sphere1 (sphere)
rlm@61 1058 sphere2 (sphere 1 :position (Vector3f. 3 3 3))
rlm@61 1059 joint (Point2PointJoint.
rlm@61 1060 (.getControl sphere1 RigidBodyControl)
rlm@61 1061 (.getControl sphere2 RigidBodyControl)
rlm@61 1062 Vector3f/ZERO (Vector3f. 3 3 3))]
rlm@61 1063 (add-joint sphere1 joint)
rlm@61 1064 (doto (Node. "hinge-world")
rlm@61 1065 (.attachChild sphere1)
rlm@61 1066 (.attachChild sphere2))))
rlm@61 1067
rlm@61 1068
rlm@61 1069 (defn test-joint []
rlm@61 1070 (view (hinge-world)))
rlm@61 1071
rlm@61 1072 ;; (defn copier-gen []
rlm@61 1073 ;; (let [count (atom 0)]
rlm@61 1074 ;; (fn [in]
rlm@61 1075 ;; (swap! count inc)
rlm@61 1076 ;; (clojure.contrib.duck-streams/copy
rlm@61 1077 ;; in (File. (str "/home/r/tmp/mao-test/clojure-images/"
rlm@61 1078 ;; ;;/home/r/tmp/mao-test/clojure-images
rlm@61 1079 ;; (format "%08d.png" @count)))))))
rlm@61 1080 ;; (defn decrease-framerate []
rlm@61 1081 ;; (map
rlm@61 1082 ;; (copier-gen)
rlm@61 1083 ;; (sort
rlm@61 1084 ;; (map first
rlm@61 1085 ;; (partition
rlm@61 1086 ;; 4
rlm@61 1087 ;; (filter #(re-matches #".*.png$" (.getCanonicalPath %))
rlm@61 1088 ;; (file-seq
rlm@61 1089 ;; (file-str
rlm@61 1090 ;; "/home/r/media/anime/mao-temp/images"))))))))
rlm@61 1091
rlm@61 1092
rlm@61 1093
rlm@61 1094 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 1095
rlm@61 1096 (defn proprioception
rlm@61 1097 "Create a proprioception map that reports the rotations of the
rlm@61 1098 various limbs of the creature's body"
rlm@61 1099 [creature]
rlm@61 1100 [#^Node creature]
rlm@61 1101 (let [
rlm@61 1102 nodes (node-seq creature)
rlm@61 1103 joints
rlm@61 1104 (map
rlm@61 1105 :joint
rlm@61 1106 (filter
rlm@61 1107 #(isa? (class %) JointControl)
rlm@61 1108 (reduce
rlm@61 1109 concat
rlm@61 1110 (map (fn [node]
rlm@61 1111 (map (fn [num] (.getControl node num))
rlm@61 1112 (range (.getNumControls node))))
rlm@61 1113 nodes))))]
rlm@61 1114 (fn []
rlm@61 1115 (reduce concat (map relative-positions (list (first joints)))))))
rlm@61 1116
rlm@61 1117
rlm@63 1118 (defn skel [node]
rlm@63 1119 (doto
rlm@63 1120 (.getSkeleton
rlm@63 1121 (.getControl node SkeletonControl))
rlm@63 1122 ;; this is necessary to force the skeleton to have accurate world
rlm@63 1123 ;; transforms before it is rendered to the screen.
rlm@63 1124 (.resetAndUpdate)))
rlm@63 1125
rlm@63 1126 (defn green-x-ray []
rlm@63 1127 (doto (Material. (asset-manager)
rlm@63 1128 "Common/MatDefs/Misc/Unshaded.j3md")
rlm@63 1129 (.setColor "Color" ColorRGBA/Green)
rlm@63 1130 (-> (.getAdditionalRenderState)
rlm@63 1131 (.setDepthTest false))))
rlm@63 1132
rlm@63 1133 (defn test-worm []
rlm@63 1134 (.start
rlm@63 1135 (world
rlm@63 1136 (doto (Node.)
rlm@63 1137 ;;(.attachChild (point-worm))
rlm@63 1138 (.attachChild (load-blender-model
rlm@63 1139 "Models/anim2/joint-worm.blend"))
rlm@63 1140
rlm@63 1141 (.attachChild (box 10 1 10
rlm@63 1142 :position (Vector3f. 0 -2 0) :mass 0
rlm@63 1143 :color (ColorRGBA/Gray))))
rlm@63 1144 {
rlm@63 1145 "key-space" (fire-cannon-ball)
rlm@63 1146 }
rlm@63 1147 (fn [world]
rlm@63 1148 (enable-debug world)
rlm@63 1149 (light-up-everything world)
rlm@63 1150 ;;(.setTimer world (NanoTimer.))
rlm@63 1151 )
rlm@63 1152 no-op)))
rlm@63 1153
rlm@63 1154
rlm@63 1155
rlm@63 1156 ;; defunct movement stuff
rlm@63 1157 (defn torque-controls [control]
rlm@63 1158 (let [torques
rlm@63 1159 (concat
rlm@63 1160 (map #(Vector3f. 0 (Math/sin %) (Math/cos %))
rlm@63 1161 (range 0 (* Math/PI 2) (/ (* Math/PI 2) 20)))
rlm@63 1162 [Vector3f/UNIT_X])]
rlm@63 1163 (map (fn [torque-axis]
rlm@63 1164 (fn [torque]
rlm@63 1165 (.applyTorque
rlm@63 1166 control
rlm@63 1167 (.mult (.mult (.getPhysicsRotation control)
rlm@63 1168 torque-axis)
rlm@63 1169 (float
rlm@63 1170 (* (.getMass control) torque))))))
rlm@63 1171 torques)))
rlm@63 1172
rlm@63 1173 (defn motor-map
rlm@63 1174 "Take a creature and generate a function that will enable fine
rlm@63 1175 grained control over all the creature's limbs."
rlm@63 1176 [#^Node creature]
rlm@63 1177 (let [controls (keep #(.getControl % RigidBodyControl)
rlm@63 1178 (node-seq creature))
rlm@63 1179 limb-controls (reduce concat (map torque-controls controls))
rlm@63 1180 body-control (partial map #(%1 %2) limb-controls)]
rlm@63 1181 body-control))
rlm@63 1182
rlm@63 1183 (defn test-motor-map
rlm@63 1184 "see how torque works."
rlm@63 1185 []
rlm@63 1186 (let [finger (box 3 0.5 0.5 :position (Vector3f. 0 2 0)
rlm@63 1187 :mass 1 :color ColorRGBA/Green)
rlm@63 1188 motor-map (motor-map finger)]
rlm@63 1189 (world
rlm@63 1190 (nodify [finger
rlm@63 1191 (box 10 0.5 10 :position (Vector3f. 0 -5 0) :mass 0
rlm@63 1192 :color ColorRGBA/Gray)])
rlm@63 1193 standard-debug-controls
rlm@63 1194 (fn [world]
rlm@63 1195 (set-gravity world Vector3f/ZERO)
rlm@63 1196 (light-up-everything world)
rlm@63 1197 (.setTimer world (NanoTimer.)))
rlm@63 1198 (fn [_ _]
rlm@145 1199 (dorun (motor-map [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
rlm@145 1200 0]))))))
rlm@145 1201
rlm@145 1202 (defn joint-proprioception [#^Node parts #^Node joint]
rlm@145 1203 (let [[obj-a obj-b] (joint-targets parts joint)
rlm@145 1204 joint-rot (.getWorldRotation joint)
rlm@145 1205 pre-inv-a (.inverse (.getWorldRotation obj-a))
rlm@145 1206 x (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_X))
rlm@145 1207 y (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_Y))
rlm@145 1208 z (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_Z))
rlm@145 1209
rlm@145 1210 x Vector3f/UNIT_Y
rlm@145 1211 y Vector3f/UNIT_Z
rlm@145 1212 z Vector3f/UNIT_X
rlm@145 1213
rlm@145 1214
rlm@145 1215 tmp-rot-a (.getWorldRotation obj-a)]
rlm@145 1216 (println-repl "x:" (.mult tmp-rot-a x))
rlm@145 1217 (println-repl "y:" (.mult tmp-rot-a y))
rlm@145 1218 (println-repl "z:" (.mult tmp-rot-a z))
rlm@145 1219 (println-repl "rot-a" (.getWorldRotation obj-a))
rlm@145 1220 (println-repl "rot-b" (.getWorldRotation obj-b))
rlm@145 1221 (println-repl "joint-rot" joint-rot)
rlm@145 1222 ;; this function will report proprioceptive information for the
rlm@145 1223 ;; joint.
rlm@145 1224 (fn []
rlm@145 1225 ;; x is the "twist" axis, y and z are the "bend" axes
rlm@145 1226 (let [rot-a (.getWorldRotation obj-a)
rlm@145 1227 ;;inv-a (.inverse rot-a)
rlm@145 1228 rot-b (.getWorldRotation obj-b)
rlm@145 1229 ;;relative (.mult rot-b inv-a)
rlm@145 1230 basis (doto (Matrix3f.)
rlm@145 1231 (.setColumn 0 (.mult rot-a x))
rlm@145 1232 (.setColumn 1 (.mult rot-a y))
rlm@145 1233 (.setColumn 2 (.mult rot-a z)))
rlm@145 1234 rotation-about-joint
rlm@145 1235 (doto (Quaternion.)
rlm@145 1236 (.fromRotationMatrix
rlm@145 1237 (.mult (.invert basis)
rlm@145 1238 (.toRotationMatrix rot-b))))
rlm@145 1239 [yaw roll pitch]
rlm@145 1240 (seq (.toAngles rotation-about-joint nil))]
rlm@145 1241 ;;return euler angles of the quaternion around the new basis
rlm@145 1242 [yaw roll pitch]))))
rlm@145 1243
rlm@61 1244 #+end_src
rlm@0 1245
rlm@0 1246
rlm@0 1247
rlm@0 1248
rlm@0 1249
rlm@0 1250
rlm@0 1251
rlm@73 1252 * COMMENT generate Source
rlm@44 1253 #+begin_src clojure :tangle ../src/cortex/body.clj
rlm@175 1254 <<joints>>
rlm@0 1255 #+end_src
rlm@64 1256
rlm@69 1257 #+begin_src clojure :tangle ../src/cortex/test/body.clj
rlm@202 1258 <<test-0>>
rlm@64 1259 #+end_src
rlm@64 1260
rlm@64 1261
rlm@0 1262