annotate org/body.org @ 292:e27a91b1f997

fixed termonology in movement.org
author Robert McIntyre <rlm@mit.edu>
date Thu, 16 Feb 2012 07:25:03 -0700
parents 23aadf376e9d
children 7e7f8d6d9ec5
rev   line source
rlm@202 1 #+title: Building a Body
rlm@0 2 #+author: Robert McIntyre
rlm@273 3 #+email: rlm@mit.edu
rlm@4 4 #+description: Simulating a body (movement, touch, propioception) in jMonkeyEngine3.
rlm@4 5 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 6 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@4 7
rlm@202 8 * Design Constraints
rlm@202 9
rlm@202 10 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
rlm@202 11 determined by the requirements of the AI that will use them. The
rlm@202 12 bodies must be easy for an AI to sense and control, and they must be
rlm@202 13 relatively simple for jMonkeyEngine to compute.
rlm@202 14
ocsenave@251 15 # I'm a secret test! :P
rlm@202 16 ** Bag of Bones
rlm@202 17
rlm@202 18 How to create such a body? One option I ultimately rejected is to use
rlm@202 19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
rlm@202 20 which describes the creature's entire body. To this you add an
rlm@273 21 skeleton which deforms this mesh. This technique is used extensively
rlm@202 22 to model humans and create realistic animations. It is hard to use for
rlm@202 23 my purposes because it is difficult to update the creature's Physics
rlm@202 24 Collision Mesh in tandem with its Geometric Mesh under the influence
rlm@202 25 of the armature. Withouth this the creature will not be able to grab
rlm@202 26 things in its environment, and it won't be able to tell where its
rlm@202 27 physical body is by using its eyes. Also, armatures do not specify
rlm@202 28 any rotational limits for a joint, making it hard to model elbows,
rlm@202 29 shoulders, etc.
rlm@202 30
rlm@202 31 ** EVE
rlm@202 32
rlm@202 33 Instead of using the human-like "deformable bag of bones" approach, I
rlm@202 34 decided to base my body plans on the robot EVE from the movie wall-E.
rlm@202 35
rlm@202 36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
rlm@202 37 [[../images/Eve.jpg]]
rlm@202 38
rlm@204 39 EVE's body is composed of several rigid components that are held
rlm@204 40 together by invisible joint constraints. This is what I mean by
rlm@204 41 "eve-like". The main reason that I use eve-style bodies is so that
rlm@204 42 there will be correspondence between the AI's vision and the physical
rlm@204 43 presence of its body. Each individual section is simulated by a
rlm@204 44 separate rigid body that corresponds exactly with its visual
rlm@204 45 representation and does not change. Sections are connected by
rlm@204 46 invisible joints that are well supported in jMonkyeEngine. Bullet, the
rlm@204 47 physics backend for jMonkeyEngine, can efficiently simulate hundreds
rlm@204 48 of rigid bodies connected by joints. Sections do not have to stay as
rlm@204 49 one piece forever; they can be dynamically replaced with multiple
rlm@204 50 sections to simulate splitting in two. This could be used to simulate
rlm@209 51 retractable claws or EVE's hands, which are able to coalece into one
rlm@209 52 object in the movie.
rlm@202 53
rlm@202 54 * Solidifying the Body
rlm@202 55
rlm@202 56 Here is a hand designed eve-style in blender.
rlm@202 57
rlm@203 58 #+attr_html: width="755"
rlm@202 59 [[../images/hand-screenshot0.png]]
rlm@202 60
rlm@202 61 If we load it directly into jMonkeyEngine, we get this:
rlm@202 62
rlm@205 63 #+name: test-1
rlm@202 64 #+begin_src clojure
rlm@202 65 (def hand-path "Models/test-creature/hand.blend")
rlm@202 66
rlm@202 67 (defn hand [] (load-blender-model hand-path))
rlm@202 68
rlm@202 69 (defn setup [world]
rlm@202 70 (let [cam (.getCamera world)]
rlm@202 71 (println-repl cam)
rlm@202 72 (.setLocation
rlm@202 73 cam (Vector3f.
rlm@202 74 -6.9015837, 8.644911, 5.6043186))
rlm@202 75 (.setRotation
rlm@202 76 cam
rlm@202 77 (Quaternion.
rlm@202 78 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
rlm@202 79 (light-up-everything world)
rlm@202 80 (.setTimer world (RatchetTimer. 60))
rlm@202 81 world)
rlm@202 82
rlm@283 83 (defn test-hand-1
rlm@283 84 ([] (test-hand-1 false))
rlm@283 85 ([record?]
rlm@283 86 (world (hand)
rlm@283 87 standard-debug-controls
rlm@283 88 (fn [world]
rlm@283 89 (if record?
rlm@283 90 (Capture/captureVideo
rlm@283 91 world
rlm@283 92 (File. "/home/r/proj/cortex/render/body/1")))
rlm@283 93 (setup world)) no-op)))
rlm@202 94 #+end_src
rlm@202 95
rlm@202 96
rlm@202 97 #+begin_src clojure :results silent
rlm@202 98 (.start (cortex.test.body/test-one))
rlm@202 99 #+end_src
rlm@202 100
rlm@202 101 #+begin_html
rlm@203 102 <div class="figure">
rlm@203 103 <center>
rlm@203 104 <video controls="controls" width="640">
rlm@202 105 <source src="../video/ghost-hand.ogg" type="video/ogg"
rlm@202 106 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 107 </video>
rlm@203 108 </center>
rlm@203 109 <p>The hand model directly loaded from blender. It has no physical
rlm@203 110 presense in the simulation. </p>
rlm@203 111 </div>
rlm@202 112 #+end_html
rlm@202 113
rlm@202 114 You will notice that the hand has no physical presence -- it's a
rlm@204 115 hologram through which everything passes. Therefore, the first thing
rlm@202 116 to do is to make it solid. Blender has physics simulation on par with
rlm@202 117 jMonkeyEngine (they both use bullet as their physics backend), but it
rlm@202 118 can be difficult to translate between the two systems, so for now I
rlm@209 119 specify the mass of each object as meta-data in blender and construct
rlm@209 120 the physics shape based on the mesh in jMonkeyEngine.
rlm@202 121
rlm@203 122 #+name: body-1
rlm@202 123 #+begin_src clojure
rlm@202 124 (defn physical!
rlm@202 125 "Iterate through the nodes in creature and make them real physical
rlm@202 126 objects in the simulation."
rlm@202 127 [#^Node creature]
rlm@202 128 (dorun
rlm@202 129 (map
rlm@202 130 (fn [geom]
rlm@202 131 (let [physics-control
rlm@202 132 (RigidBodyControl.
rlm@202 133 (HullCollisionShape.
rlm@202 134 (.getMesh geom))
rlm@202 135 (if-let [mass (meta-data geom "mass")]
rlm@202 136 (do
rlm@202 137 (println-repl
rlm@202 138 "setting" (.getName geom) "mass to" (float mass))
rlm@202 139 (float mass))
rlm@202 140 (float 1)))]
rlm@202 141 (.addControl geom physics-control)))
rlm@202 142 (filter #(isa? (class %) Geometry )
rlm@202 143 (node-seq creature)))))
rlm@202 144 #+end_src
rlm@202 145
rlm@273 146 =physical!)= iterates through a creature's node structure, creating
rlm@202 147 CollisionShapes for each geometry with the mass specified in that
rlm@202 148 geometry's meta-data.
rlm@202 149
rlm@205 150 #+name: test-2
rlm@0 151 #+begin_src clojure
rlm@202 152 (in-ns 'cortex.test.body)
rlm@160 153
rlm@209 154 (def gravity-control
rlm@202 155 {"key-g" (fn [world _]
rlm@209 156 (set-gravity world (Vector3f. 0 -9.81 0)))
rlm@209 157 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
rlm@209 158
rlm@202 159
rlm@202 160 (defn floor []
rlm@202 161 (box 10 3 10 :position (Vector3f. 0 -10 0)
rlm@202 162 :color ColorRGBA/Gray :mass 0))
rlm@202 163
rlm@283 164 (defn test-hand-2
rlm@283 165 ([] (test-hand-2 false))
rlm@283 166 ([record?]
rlm@283 167 (world
rlm@283 168 (nodify
rlm@283 169 [(doto (hand)
rlm@283 170 (physical!))
rlm@283 171 (floor)])
rlm@283 172 (merge standard-debug-controls gravity-control)
rlm@283 173 (fn [world]
rlm@283 174 (if record?
rlm@283 175 (Capture/captureVideo
rlm@283 176 world (File. "/home/r/proj/cortex/render/body/2")))
rlm@283 177 (set-gravity world Vector3f/ZERO)
rlm@283 178 (setup world))
rlm@283 179 no-op)))
rlm@202 180 #+end_src
rlm@202 181
rlm@202 182 #+begin_html
rlm@203 183 <div class="figure">
rlm@203 184 <center>
rlm@203 185 <video controls="controls" width="640">
rlm@202 186 <source src="../video/crumbly-hand.ogg" type="video/ogg"
rlm@202 187 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 188 </video>
rlm@203 189 </center>
rlm@203 190 <p>The hand now has a physical presence, but there is nothing to hold
rlm@203 191 it together.</p>
rlm@203 192 </div>
rlm@202 193 #+end_html
rlm@202 194
rlm@202 195 Now that's some progress.
rlm@202 196
rlm@202 197 * Joints
rlm@202 198
rlm@209 199 Obviously, an AI is not going to be doing much while lying in pieces
rlm@209 200 on the floor. So, the next step to making a proper body is to connect
rlm@202 201 those pieces together with joints. jMonkeyEngine has a large array of
rlm@202 202 joints available via bullet, such as Point2Point, Cone, Hinge, and a
rlm@202 203 generic Six Degree of Freedom joint, with or without spring
rlm@202 204 restitution.
rlm@202 205
rlm@202 206 Although it should be possible to specify the joints using blender's
rlm@202 207 physics system, and then automatically import them with jMonkeyEngine,
rlm@202 208 the support isn't there yet, and there are a few problems with bullet
rlm@202 209 itself that need to be solved before it can happen.
rlm@202 210
rlm@202 211 So, I will use the same system for specifying joints as I will do for
rlm@202 212 some senses. Each joint is specified by an empty node whose parent
rlm@202 213 has the name "joints". Their orientation and meta-data determine what
rlm@202 214 joint is created.
rlm@202 215
rlm@203 216 #+attr_html: width="755"
rlm@209 217 #+caption: Joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
rlm@202 218 [[../images/hand-screenshot1.png]]
rlm@202 219
rlm@203 220 The empty node in the upper right, highlighted in yellow, is the
rlm@203 221 parent node of all the emptys which represent joints. The following
rlm@203 222 functions must do three things to translate these into real joints:
rlm@202 223
rlm@203 224 - Find the children of the "joints" node.
rlm@203 225 - Determine the two spatials the joint it meant to connect.
rlm@203 226 - Create the joint based on the meta-data of the empty node.
rlm@202 227
rlm@203 228 ** Finding the Joints
rlm@209 229
rlm@273 230 The higher order function =sense-nodes= from =cortex.sense= simplifies
rlm@209 231 the first task.
rlm@209 232
rlm@203 233 #+name: joints-2
rlm@203 234 #+begin_src clojure
rlm@203 235 (defvar
rlm@203 236 ^{:arglists '([creature])}
rlm@203 237 joints
rlm@203 238 (sense-nodes "joints")
rlm@203 239 "Return the children of the creature's \"joints\" node.")
rlm@203 240 #+end_src
rlm@202 241
rlm@203 242 ** Joint Targets and Orientation
rlm@203 243
rlm@203 244 This technique for finding a joint's targets is very similiar to
rlm@273 245 =cortex.sense/closest-node=. A small cube, centered around the
rlm@203 246 empty-node, grows exponentially until it intersects two /physical/
rlm@203 247 objects. The objects are ordered according to the joint's rotation,
rlm@203 248 with the first one being the object that has more negative coordinates
rlm@203 249 in the joint's reference frame. Since the objects must be physical,
rlm@203 250 the empty-node itself escapes detection. Because the objects must be
rlm@273 251 physical, =joint-targets= must be called /after/ =physical!= is
rlm@203 252 called.
rlm@203 253
rlm@203 254 #+name: joints-3
rlm@202 255 #+begin_src clojure
rlm@135 256 (defn joint-targets
rlm@135 257 "Return the two closest two objects to the joint object, ordered
rlm@135 258 from bottom to top according to the joint's rotation."
rlm@135 259 [#^Node parts #^Node joint]
rlm@135 260 (loop [radius (float 0.01)]
rlm@135 261 (let [results (CollisionResults.)]
rlm@135 262 (.collideWith
rlm@135 263 parts
rlm@135 264 (BoundingBox. (.getWorldTranslation joint)
rlm@209 265 radius radius radius) results)
rlm@135 266 (let [targets
rlm@135 267 (distinct
rlm@135 268 (map #(.getGeometry %) results))]
rlm@135 269 (if (>= (count targets) 2)
rlm@135 270 (sort-by
rlm@209 271 #(let [joint-ref-frame-position
rlm@135 272 (jme-to-blender
rlm@135 273 (.mult
rlm@135 274 (.inverse (.getWorldRotation joint))
rlm@135 275 (.subtract (.getWorldTranslation %)
rlm@135 276 (.getWorldTranslation joint))))]
rlm@209 277 (.dot (Vector3f. 1 1 1) joint-ref-frame-position))
rlm@135 278 (take 2 targets))
rlm@135 279 (recur (float (* radius 2))))))))
rlm@203 280 #+end_src
rlm@135 281
rlm@203 282 ** Generating Joints
rlm@203 283
rlm@209 284 This section of code iterates through all the different ways of
rlm@203 285 specifying joints using blender meta-data and converts each one to the
rlm@203 286 appropriate jMonkyeEngine joint.
rlm@203 287
rlm@203 288 #+name: joints-4
rlm@203 289 #+begin_src clojure
rlm@160 290 (defmulti joint-dispatch
rlm@160 291 "Translate blender pseudo-joints into real JME joints."
rlm@160 292 (fn [constraints & _]
rlm@160 293 (:type constraints)))
rlm@141 294
rlm@160 295 (defmethod joint-dispatch :point
rlm@160 296 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 297 (println-repl "creating POINT2POINT joint")
rlm@160 298 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@160 299 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@141 300
rlm@160 301 ;; should be able to do this:
rlm@160 302 (comment
rlm@160 303 (Point2PointJoint.
rlm@160 304 control-a
rlm@160 305 control-b
rlm@160 306 pivot-a
rlm@160 307 pivot-b))
rlm@141 308
rlm@160 309 ;; but instead we must do this:
rlm@160 310 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@160 311 (doto
rlm@160 312 (SixDofJoint.
rlm@160 313 control-a
rlm@160 314 control-b
rlm@160 315 pivot-a
rlm@160 316 pivot-b
rlm@160 317 false)
rlm@160 318 (.setLinearLowerLimit Vector3f/ZERO)
rlm@203 319 (.setLinearUpperLimit Vector3f/ZERO)))
rlm@160 320
rlm@160 321 (defmethod joint-dispatch :hinge
rlm@160 322 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 323 (println-repl "creating HINGE joint")
rlm@160 324 (let [axis
rlm@160 325 (if-let
rlm@160 326 [axis (:axis constraints)]
rlm@160 327 axis
rlm@160 328 Vector3f/UNIT_X)
rlm@160 329 [limit-1 limit-2] (:limit constraints)
rlm@160 330 hinge-axis
rlm@160 331 (.mult
rlm@160 332 rotation
rlm@160 333 (blender-to-jme axis))]
rlm@160 334 (doto
rlm@160 335 (HingeJoint.
rlm@160 336 control-a
rlm@160 337 control-b
rlm@160 338 pivot-a
rlm@160 339 pivot-b
rlm@160 340 hinge-axis
rlm@160 341 hinge-axis)
rlm@160 342 (.setLimit limit-1 limit-2))))
rlm@160 343
rlm@160 344 (defmethod joint-dispatch :cone
rlm@160 345 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 346 (let [limit-xz (:limit-xz constraints)
rlm@160 347 limit-xy (:limit-xy constraints)
rlm@160 348 twist (:twist constraints)]
rlm@160 349
rlm@160 350 (println-repl "creating CONE joint")
rlm@160 351 (println-repl rotation)
rlm@160 352 (println-repl
rlm@160 353 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@160 354 (println-repl
rlm@160 355 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@160 356 (println-repl
rlm@160 357 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@160 358 (doto
rlm@160 359 (ConeJoint.
rlm@160 360 control-a
rlm@160 361 control-b
rlm@160 362 pivot-a
rlm@160 363 pivot-b
rlm@160 364 rotation
rlm@160 365 rotation)
rlm@160 366 (.setLimit (float limit-xz)
rlm@160 367 (float limit-xy)
rlm@160 368 (float twist)))))
rlm@160 369
rlm@160 370 (defn connect
rlm@175 371 "Create a joint between 'obj-a and 'obj-b at the location of
rlm@175 372 'joint. The type of joint is determined by the metadata on 'joint.
rlm@175 373
rlm@175 374 Here are some examples:
rlm@160 375 {:type :point}
rlm@160 376 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@160 377 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@160 378
rlm@160 379 {:type :cone :limit-xz 0]
rlm@160 380 :limit-xy 0]
rlm@160 381 :twist 0]} (use XZY rotation mode in blender!)"
rlm@160 382 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@160 383 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@160 384 control-b (.getControl obj-b RigidBodyControl)
rlm@160 385 joint-center (.getWorldTranslation joint)
rlm@160 386 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@160 387 pivot-a (world-to-local obj-a joint-center)
rlm@160 388 pivot-b (world-to-local obj-b joint-center)]
rlm@160 389
rlm@160 390 (if-let [constraints
rlm@160 391 (map-vals
rlm@160 392 eval
rlm@160 393 (read-string
rlm@160 394 (meta-data joint "joint")))]
rlm@160 395 ;; A side-effect of creating a joint registers
rlm@160 396 ;; it with both physics objects which in turn
rlm@160 397 ;; will register the joint with the physics system
rlm@160 398 ;; when the simulation is started.
rlm@160 399 (do
rlm@160 400 (println-repl "creating joint between"
rlm@160 401 (.getName obj-a) "and" (.getName obj-b))
rlm@160 402 (joint-dispatch constraints
rlm@160 403 control-a control-b
rlm@160 404 pivot-a pivot-b
rlm@160 405 joint-rotation))
rlm@160 406 (println-repl "could not find joint meta-data!"))))
rlm@203 407 #+end_src
rlm@160 408
rlm@273 409 Creating joints is now a matter of applying =connect= to each joint
rlm@203 410 node.
rlm@160 411
rlm@205 412 #+name: joints-5
rlm@203 413 #+begin_src clojure
rlm@175 414 (defn joints!
rlm@175 415 "Connect the solid parts of the creature with physical joints. The
rlm@175 416 joints are taken from the \"joints\" node in the creature."
rlm@175 417 [#^Node creature]
rlm@160 418 (dorun
rlm@160 419 (map
rlm@160 420 (fn [joint]
rlm@175 421 (let [[obj-a obj-b] (joint-targets creature joint)]
rlm@160 422 (connect obj-a obj-b joint)))
rlm@175 423 (joints creature))))
rlm@203 424 #+end_src
rlm@160 425
rlm@203 426 ** Round 3
rlm@203 427
rlm@203 428 Now we can test the hand in all its glory.
rlm@203 429
rlm@205 430 #+name: test-3
rlm@203 431 #+begin_src clojure
rlm@203 432 (in-ns 'cortex.test.body)
rlm@203 433
rlm@203 434 (def debug-control
rlm@203 435 {"key-h" (fn [world val]
rlm@209 436 (if val (enable-debug world)))})
rlm@203 437
rlm@283 438 (defn test-hand-3
rlm@283 439 ([] (test-hand-3 false))
rlm@283 440 ([record?]
rlm@283 441 (world
rlm@283 442 (nodify
rlm@283 443 [(doto (hand)
rlm@283 444 (physical!)
rlm@283 445 (joints!))
rlm@283 446 (floor)])
rlm@283 447 (merge standard-debug-controls debug-control
rlm@283 448 gravity-control)
rlm@283 449 (comp
rlm@283 450 #(Capture/captureVideo
rlm@283 451 % (File. "/home/r/proj/cortex/render/body/3"))
rlm@283 452 #(do (set-gravity % Vector3f/ZERO) %)
rlm@283 453 setup)
rlm@283 454 no-op)))
rlm@203 455 #+end_src
rlm@203 456
rlm@273 457 =physical!= makes the hand solid, then =joints!= connects each
rlm@203 458 piece together.
rlm@203 459
rlm@203 460 #+begin_html
rlm@203 461 <div class="figure">
rlm@203 462 <center>
rlm@203 463 <video controls="controls" width="640">
rlm@203 464 <source src="../video/full-hand.ogg" type="video/ogg"
rlm@203 465 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@203 466 </video>
rlm@203 467 </center>
rlm@203 468 <p>Now the hand is physical and has joints.</p>
rlm@203 469 </div>
rlm@203 470 #+end_html
rlm@203 471
rlm@203 472 The joints are visualized as green connections between each segment
rlm@203 473 for debug purposes. You can see that they correspond to the empty
rlm@203 474 nodes in the blender file.
rlm@203 475
rlm@203 476 * Wrap-Up!
rlm@203 477
rlm@273 478 It is convienent to combine =physical!= and =joints!= into one
rlm@203 479 function that completely creates the creature's physical body.
rlm@203 480
rlm@205 481 #+name: joints-6
rlm@203 482 #+begin_src clojure
rlm@175 483 (defn body!
rlm@175 484 "Endow the creature with a physical body connected with joints. The
rlm@175 485 particulars of the joints and the masses of each pody part are
rlm@175 486 determined in blender."
rlm@175 487 [#^Node creature]
rlm@175 488 (physical! creature)
rlm@175 489 (joints! creature))
rlm@64 490 #+end_src
rlm@63 491
rlm@205 492 * The Worm
rlm@205 493
rlm@205 494 Going forward, I will use a model that is less complicated than the
rlm@205 495 hand. It has two segments and one joint, and I call it the worm. All
rlm@205 496 of the senses described in the following posts will be applied to this
rlm@205 497 worm.
rlm@205 498
rlm@205 499 #+name: test-4
rlm@205 500 #+begin_src clojure
rlm@205 501 (in-ns 'cortex.test.body)
rlm@205 502
rlm@215 503 (defn worm []
rlm@215 504 (load-blender-model
rlm@215 505 "Models/test-creature/worm.blend"))
rlm@215 506
rlm@283 507 (defn test-worm
rlm@283 508 ([] (test-worm false))
rlm@283 509 ([record?]
rlm@283 510 (let [timer (RatchetTimer. 60)]
rlm@283 511 (world
rlm@283 512 (nodify
rlm@283 513 [(doto (worm)
rlm@283 514 (body!))
rlm@283 515 (floor)])
rlm@283 516 (merge standard-debug-controls debug-control)
rlm@283 517 #(do
rlm@283 518 (speed-up %)
rlm@283 519 (light-up-everything %)
rlm@283 520 (.setTimer % timer)
rlm@283 521 (cortex.util/display-dialated-time % timer)
rlm@283 522 (if record?
rlm@283 523 (Capture/captureVideo
rlm@283 524 % (File. "/home/r/proj/cortex/render/body/4"))))
rlm@283 525 no-op))))
rlm@205 526 #+end_src
rlm@205 527
rlm@205 528 #+begin_html
rlm@205 529 <div class="figure">
rlm@205 530 <center>
rlm@205 531 <video controls="controls" width="640">
rlm@205 532 <source src="../video/worm-1.ogg" type="video/ogg"
rlm@205 533 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@205 534 </video>
rlm@205 535 </center>
rlm@205 536 <p>This worm model will be the platform onto which future senses will
rlm@205 537 be grafted.</p>
rlm@205 538 </div>
rlm@205 539 #+end_html
rlm@205 540
rlm@209 541 * Headers
rlm@205 542 #+name: body-header
rlm@202 543 #+begin_src clojure
rlm@202 544 (ns cortex.body
rlm@202 545 "Assemble a physical creature using the definitions found in a
rlm@202 546 specially prepared blender file. Creates rigid bodies and joints so
rlm@202 547 that a creature can have a physical presense in the simulation."
rlm@202 548 {:author "Robert McIntyre"}
rlm@202 549 (:use (cortex world util sense))
rlm@202 550 (:use clojure.contrib.def)
rlm@202 551 (:import
rlm@202 552 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
rlm@202 553 (com.jme3.bullet.joints
rlm@202 554 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
rlm@202 555 com.jme3.bullet.control.RigidBodyControl
rlm@202 556 com.jme3.collision.CollisionResults
rlm@202 557 com.jme3.bounding.BoundingBox
rlm@202 558 com.jme3.scene.Node
rlm@202 559 com.jme3.scene.Geometry
rlm@202 560 com.jme3.bullet.collision.shapes.HullCollisionShape))
rlm@202 561 #+end_src
rlm@133 562
rlm@205 563 #+name: test-header
rlm@205 564 #+begin_src clojure
rlm@205 565 (ns cortex.test.body
rlm@205 566 (:use (cortex world util body))
rlm@205 567 (:import
rlm@205 568 (com.aurellem.capture Capture RatchetTimer)
rlm@205 569 (com.jme3.math Quaternion Vector3f ColorRGBA)
rlm@205 570 java.io.File))
rlm@205 571 #+end_src
rlm@205 572
rlm@202 573 * Source
rlm@207 574 - [[../src/cortex/body.clj][cortex.body]]
rlm@207 575 - [[../src/cortex/test/body.clj][cortex.test.body]]
rlm@207 576 - [[../assets/Models/test-creature/hand.blend][hand.blend]]
rlm@209 577 - [[../assets/Models/test-creature/palm.png][UV-map-1]]
rlm@207 578 - [[../assets/Models/test-creature/worm.blend][worm.blend]]
rlm@207 579 - [[../assets/Models/test-creature/retina-small.png][UV-map-1]]
rlm@207 580 - [[../assets/Models/test-creature/tip.png][UV-map-2]]
rlm@211 581 #+html: <ul> <li> <a href="../org/body.org">This org file</a> </li> </ul>
rlm@217 582 - [[http://hg.bortreb.com ][source-repository]]
rlm@211 583
rlm@211 584 * Next
rlm@211 585 The body I have made here exists without any senses or effectors. In
rlm@211 586 the [[./vision.org][next post]], I'll give the creature eyes.
rlm@63 587
rlm@206 588 * COMMENT Generate Source
rlm@44 589 #+begin_src clojure :tangle ../src/cortex/body.clj
rlm@205 590 <<body-header>>
rlm@205 591 <<body-1>>
rlm@205 592 <<joints-2>>
rlm@205 593 <<joints-3>>
rlm@205 594 <<joints-4>>
rlm@205 595 <<joints-5>>
rlm@205 596 <<joints-6>>
rlm@0 597 #+end_src
rlm@64 598
rlm@69 599 #+begin_src clojure :tangle ../src/cortex/test/body.clj
rlm@205 600 <<test-header>>
rlm@205 601 <<test-1>>
rlm@205 602 <<test-2>>
rlm@205 603 <<test-3>>
rlm@205 604 <<test-4>>
rlm@64 605 #+end_src
rlm@64 606
rlm@64 607
rlm@0 608
rlm@206 609