annotate org/body.org @ 206:df46a609fed9

removed dead code
author Robert McIntyre <rlm@mit.edu>
date Thu, 09 Feb 2012 04:21:12 -0700
parents d3a2abfac405
children bb3b75bf1664
rev   line source
rlm@202 1 #+title: Building a Body
rlm@0 2 #+author: Robert McIntyre
rlm@0 3 #+email: rlm@mit.edu
rlm@4 4 #+description: Simulating a body (movement, touch, propioception) in jMonkeyEngine3.
rlm@4 5 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 6 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@4 7
rlm@202 8
rlm@202 9 * Design Constraints
rlm@202 10
rlm@202 11 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
rlm@202 12 determined by the requirements of the AI that will use them. The
rlm@202 13 bodies must be easy for an AI to sense and control, and they must be
rlm@202 14 relatively simple for jMonkeyEngine to compute.
rlm@202 15
rlm@202 16 ** Bag of Bones
rlm@202 17
rlm@202 18 How to create such a body? One option I ultimately rejected is to use
rlm@202 19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
rlm@202 20 which describes the creature's entire body. To this you add an
rlm@202 21 (skeleton) which deforms this mesh. This technique is used extensively
rlm@202 22 to model humans and create realistic animations. It is hard to use for
rlm@202 23 my purposes because it is difficult to update the creature's Physics
rlm@202 24 Collision Mesh in tandem with its Geometric Mesh under the influence
rlm@202 25 of the armature. Withouth this the creature will not be able to grab
rlm@202 26 things in its environment, and it won't be able to tell where its
rlm@202 27 physical body is by using its eyes. Also, armatures do not specify
rlm@202 28 any rotational limits for a joint, making it hard to model elbows,
rlm@202 29 shoulders, etc.
rlm@202 30
rlm@202 31 ** EVE
rlm@202 32
rlm@202 33 Instead of using the human-like "deformable bag of bones" approach, I
rlm@202 34 decided to base my body plans on the robot EVE from the movie wall-E.
rlm@202 35
rlm@202 36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
rlm@202 37 [[../images/Eve.jpg]]
rlm@202 38
rlm@204 39 EVE's body is composed of several rigid components that are held
rlm@204 40 together by invisible joint constraints. This is what I mean by
rlm@204 41 "eve-like". The main reason that I use eve-style bodies is so that
rlm@204 42 there will be correspondence between the AI's vision and the physical
rlm@204 43 presence of its body. Each individual section is simulated by a
rlm@204 44 separate rigid body that corresponds exactly with its visual
rlm@204 45 representation and does not change. Sections are connected by
rlm@204 46 invisible joints that are well supported in jMonkyeEngine. Bullet, the
rlm@204 47 physics backend for jMonkeyEngine, can efficiently simulate hundreds
rlm@204 48 of rigid bodies connected by joints. Sections do not have to stay as
rlm@204 49 one piece forever; they can be dynamically replaced with multiple
rlm@204 50 sections to simulate splitting in two. This could be used to simulate
rlm@204 51 retractable claws or EVE's hands, which could coalece into one object
rlm@204 52 in the movie.
rlm@202 53
rlm@202 54 * Solidifying the Body
rlm@202 55
rlm@202 56 Here is a hand designed eve-style in blender.
rlm@202 57
rlm@203 58 #+attr_html: width="755"
rlm@202 59 [[../images/hand-screenshot0.png]]
rlm@202 60
rlm@202 61 If we load it directly into jMonkeyEngine, we get this:
rlm@202 62
rlm@205 63 #+name: test-1
rlm@202 64 #+begin_src clojure
rlm@202 65 (def hand-path "Models/test-creature/hand.blend")
rlm@202 66
rlm@202 67 (defn hand [] (load-blender-model hand-path))
rlm@202 68
rlm@202 69 (defn setup [world]
rlm@202 70 (let [cam (.getCamera world)]
rlm@202 71 (println-repl cam)
rlm@202 72 (.setLocation
rlm@202 73 cam (Vector3f.
rlm@202 74 -6.9015837, 8.644911, 5.6043186))
rlm@202 75 (.setRotation
rlm@202 76 cam
rlm@202 77 (Quaternion.
rlm@202 78 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
rlm@202 79 (light-up-everything world)
rlm@202 80 (.setTimer world (RatchetTimer. 60))
rlm@202 81 world)
rlm@202 82
rlm@202 83 (defn test-one []
rlm@202 84 (world (hand)
rlm@202 85 standard-debug-controls
rlm@202 86 (comp
rlm@202 87 #(Capture/captureVideo
rlm@202 88 % (File. "/home/r/proj/cortex/render/body/1"))
rlm@202 89 setup)
rlm@202 90 no-op))
rlm@202 91 #+end_src
rlm@202 92
rlm@202 93
rlm@202 94 #+begin_src clojure :results silent
rlm@202 95 (.start (cortex.test.body/test-one))
rlm@202 96 #+end_src
rlm@202 97
rlm@202 98 #+begin_html
rlm@203 99 <div class="figure">
rlm@203 100 <center>
rlm@203 101 <video controls="controls" width="640">
rlm@202 102 <source src="../video/ghost-hand.ogg" type="video/ogg"
rlm@202 103 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 104 </video>
rlm@203 105 </center>
rlm@203 106 <p>The hand model directly loaded from blender. It has no physical
rlm@203 107 presense in the simulation. </p>
rlm@203 108 </div>
rlm@202 109 #+end_html
rlm@202 110
rlm@202 111 You will notice that the hand has no physical presence -- it's a
rlm@204 112 hologram through which everything passes. Therefore, the first thing
rlm@202 113 to do is to make it solid. Blender has physics simulation on par with
rlm@202 114 jMonkeyEngine (they both use bullet as their physics backend), but it
rlm@202 115 can be difficult to translate between the two systems, so for now I
rlm@202 116 specify the mass of each object in blender and construct the physics
rlm@202 117 shape based on the mesh in jMonkeyEngine.
rlm@202 118
rlm@203 119 #+name: body-1
rlm@202 120 #+begin_src clojure
rlm@202 121 (defn physical!
rlm@202 122 "Iterate through the nodes in creature and make them real physical
rlm@202 123 objects in the simulation."
rlm@202 124 [#^Node creature]
rlm@202 125 (dorun
rlm@202 126 (map
rlm@202 127 (fn [geom]
rlm@202 128 (let [physics-control
rlm@202 129 (RigidBodyControl.
rlm@202 130 (HullCollisionShape.
rlm@202 131 (.getMesh geom))
rlm@202 132 (if-let [mass (meta-data geom "mass")]
rlm@202 133 (do
rlm@202 134 (println-repl
rlm@202 135 "setting" (.getName geom) "mass to" (float mass))
rlm@202 136 (float mass))
rlm@202 137 (float 1)))]
rlm@202 138 (.addControl geom physics-control)))
rlm@202 139 (filter #(isa? (class %) Geometry )
rlm@202 140 (node-seq creature)))))
rlm@202 141 #+end_src
rlm@202 142
rlm@202 143 =(physical!)= iterates through a creature's node structure, creating
rlm@202 144 CollisionShapes for each geometry with the mass specified in that
rlm@202 145 geometry's meta-data.
rlm@202 146
rlm@205 147 #+name: test-2
rlm@0 148 #+begin_src clojure
rlm@202 149 (in-ns 'cortex.test.body)
rlm@160 150
rlm@202 151 (def normal-gravity
rlm@202 152 {"key-g" (fn [world _]
rlm@202 153 (set-gravity world (Vector3f. 0 -9.81 0)))})
rlm@202 154
rlm@202 155 (defn floor []
rlm@202 156 (box 10 3 10 :position (Vector3f. 0 -10 0)
rlm@202 157 :color ColorRGBA/Gray :mass 0))
rlm@202 158
rlm@202 159 (defn test-two []
rlm@202 160 (world (nodify
rlm@202 161 [(doto (hand)
rlm@202 162 (physical!))
rlm@202 163 (floor)])
rlm@202 164 (merge standard-debug-controls normal-gravity)
rlm@202 165 (comp
rlm@202 166 #(Capture/captureVideo
rlm@202 167 % (File. "/home/r/proj/cortex/render/body/2"))
rlm@202 168 #(do (set-gravity % Vector3f/ZERO) %)
rlm@202 169 setup)
rlm@202 170 no-op))
rlm@202 171 #+end_src
rlm@202 172
rlm@202 173 #+begin_html
rlm@203 174 <div class="figure">
rlm@203 175 <center>
rlm@203 176 <video controls="controls" width="640">
rlm@202 177 <source src="../video/crumbly-hand.ogg" type="video/ogg"
rlm@202 178 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 179 </video>
rlm@203 180 </center>
rlm@203 181 <p>The hand now has a physical presence, but there is nothing to hold
rlm@203 182 it together.</p>
rlm@203 183 </div>
rlm@202 184 #+end_html
rlm@202 185
rlm@202 186 Now that's some progress.
rlm@202 187
rlm@202 188
rlm@202 189 * Joints
rlm@202 190
rlm@202 191 Obviously, an AI is not going to be doing much just lying in pieces on
rlm@202 192 the floor. So, the next step to making a proper body is to connect
rlm@202 193 those pieces together with joints. jMonkeyEngine has a large array of
rlm@202 194 joints available via bullet, such as Point2Point, Cone, Hinge, and a
rlm@202 195 generic Six Degree of Freedom joint, with or without spring
rlm@202 196 restitution.
rlm@202 197
rlm@202 198 Although it should be possible to specify the joints using blender's
rlm@202 199 physics system, and then automatically import them with jMonkeyEngine,
rlm@202 200 the support isn't there yet, and there are a few problems with bullet
rlm@202 201 itself that need to be solved before it can happen.
rlm@202 202
rlm@202 203 So, I will use the same system for specifying joints as I will do for
rlm@202 204 some senses. Each joint is specified by an empty node whose parent
rlm@202 205 has the name "joints". Their orientation and meta-data determine what
rlm@202 206 joint is created.
rlm@202 207
rlm@203 208 #+attr_html: width="755"
rlm@203 209 #+caption: joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
rlm@202 210 [[../images/hand-screenshot1.png]]
rlm@202 211
rlm@203 212 The empty node in the upper right, highlighted in yellow, is the
rlm@203 213 parent node of all the emptys which represent joints. The following
rlm@203 214 functions must do three things to translate these into real joints:
rlm@202 215
rlm@203 216 - Find the children of the "joints" node.
rlm@203 217 - Determine the two spatials the joint it meant to connect.
rlm@203 218 - Create the joint based on the meta-data of the empty node.
rlm@202 219
rlm@203 220 ** Finding the Joints
rlm@203 221 #+name: joints-2
rlm@203 222 #+begin_src clojure
rlm@203 223 (defvar
rlm@203 224 ^{:arglists '([creature])}
rlm@203 225 joints
rlm@203 226 (sense-nodes "joints")
rlm@203 227 "Return the children of the creature's \"joints\" node.")
rlm@203 228 #+end_src
rlm@202 229
rlm@203 230 The higher order function =(sense-nodes)= from cortex.sense makes our
rlm@203 231 first task very easy.
rlm@203 232
rlm@203 233 ** Joint Targets and Orientation
rlm@203 234
rlm@203 235 This technique for finding a joint's targets is very similiar to
rlm@203 236 =(cortex.sense/closest-node)=. A small cube, centered around the
rlm@203 237 empty-node, grows exponentially until it intersects two /physical/
rlm@203 238 objects. The objects are ordered according to the joint's rotation,
rlm@203 239 with the first one being the object that has more negative coordinates
rlm@203 240 in the joint's reference frame. Since the objects must be physical,
rlm@203 241 the empty-node itself escapes detection. Because the objects must be
rlm@203 242 physical, =(joint-targets)= must be called /after/ =(physical!)= is
rlm@203 243 called.
rlm@203 244
rlm@203 245 #+name: joints-3
rlm@202 246 #+begin_src clojure
rlm@135 247 (defn joint-targets
rlm@135 248 "Return the two closest two objects to the joint object, ordered
rlm@135 249 from bottom to top according to the joint's rotation."
rlm@135 250 [#^Node parts #^Node joint]
rlm@135 251 (loop [radius (float 0.01)]
rlm@135 252 (let [results (CollisionResults.)]
rlm@135 253 (.collideWith
rlm@135 254 parts
rlm@135 255 (BoundingBox. (.getWorldTranslation joint)
rlm@135 256 radius radius radius)
rlm@135 257 results)
rlm@135 258 (let [targets
rlm@135 259 (distinct
rlm@135 260 (map #(.getGeometry %) results))]
rlm@135 261 (if (>= (count targets) 2)
rlm@135 262 (sort-by
rlm@135 263 #(let [v
rlm@135 264 (jme-to-blender
rlm@135 265 (.mult
rlm@135 266 (.inverse (.getWorldRotation joint))
rlm@135 267 (.subtract (.getWorldTranslation %)
rlm@135 268 (.getWorldTranslation joint))))]
rlm@135 269 (println-repl (.getName %) ":" v)
rlm@135 270 (.dot (Vector3f. 1 1 1)
rlm@135 271 v))
rlm@135 272 (take 2 targets))
rlm@135 273 (recur (float (* radius 2))))))))
rlm@203 274 #+end_src
rlm@135 275
rlm@203 276 ** Generating Joints
rlm@203 277
rlm@203 278 This long chunk of code iterates through all the different ways of
rlm@203 279 specifying joints using blender meta-data and converts each one to the
rlm@203 280 appropriate jMonkyeEngine joint.
rlm@203 281
rlm@203 282 #+name: joints-4
rlm@203 283 #+begin_src clojure
rlm@160 284 (defmulti joint-dispatch
rlm@160 285 "Translate blender pseudo-joints into real JME joints."
rlm@160 286 (fn [constraints & _]
rlm@160 287 (:type constraints)))
rlm@141 288
rlm@160 289 (defmethod joint-dispatch :point
rlm@160 290 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 291 (println-repl "creating POINT2POINT joint")
rlm@160 292 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@160 293 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@141 294
rlm@160 295 ;; should be able to do this:
rlm@160 296 (comment
rlm@160 297 (Point2PointJoint.
rlm@160 298 control-a
rlm@160 299 control-b
rlm@160 300 pivot-a
rlm@160 301 pivot-b))
rlm@141 302
rlm@160 303 ;; but instead we must do this:
rlm@160 304 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@160 305 (doto
rlm@160 306 (SixDofJoint.
rlm@160 307 control-a
rlm@160 308 control-b
rlm@160 309 pivot-a
rlm@160 310 pivot-b
rlm@160 311 false)
rlm@160 312 (.setLinearLowerLimit Vector3f/ZERO)
rlm@203 313 (.setLinearUpperLimit Vector3f/ZERO)))
rlm@160 314
rlm@160 315 (defmethod joint-dispatch :hinge
rlm@160 316 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 317 (println-repl "creating HINGE joint")
rlm@160 318 (let [axis
rlm@160 319 (if-let
rlm@160 320 [axis (:axis constraints)]
rlm@160 321 axis
rlm@160 322 Vector3f/UNIT_X)
rlm@160 323 [limit-1 limit-2] (:limit constraints)
rlm@160 324 hinge-axis
rlm@160 325 (.mult
rlm@160 326 rotation
rlm@160 327 (blender-to-jme axis))]
rlm@160 328 (doto
rlm@160 329 (HingeJoint.
rlm@160 330 control-a
rlm@160 331 control-b
rlm@160 332 pivot-a
rlm@160 333 pivot-b
rlm@160 334 hinge-axis
rlm@160 335 hinge-axis)
rlm@160 336 (.setLimit limit-1 limit-2))))
rlm@160 337
rlm@160 338 (defmethod joint-dispatch :cone
rlm@160 339 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 340 (let [limit-xz (:limit-xz constraints)
rlm@160 341 limit-xy (:limit-xy constraints)
rlm@160 342 twist (:twist constraints)]
rlm@160 343
rlm@160 344 (println-repl "creating CONE joint")
rlm@160 345 (println-repl rotation)
rlm@160 346 (println-repl
rlm@160 347 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@160 348 (println-repl
rlm@160 349 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@160 350 (println-repl
rlm@160 351 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@160 352 (doto
rlm@160 353 (ConeJoint.
rlm@160 354 control-a
rlm@160 355 control-b
rlm@160 356 pivot-a
rlm@160 357 pivot-b
rlm@160 358 rotation
rlm@160 359 rotation)
rlm@160 360 (.setLimit (float limit-xz)
rlm@160 361 (float limit-xy)
rlm@160 362 (float twist)))))
rlm@160 363
rlm@160 364 (defn connect
rlm@175 365 "Create a joint between 'obj-a and 'obj-b at the location of
rlm@175 366 'joint. The type of joint is determined by the metadata on 'joint.
rlm@175 367
rlm@175 368 Here are some examples:
rlm@160 369 {:type :point}
rlm@160 370 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@160 371 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@160 372
rlm@160 373 {:type :cone :limit-xz 0]
rlm@160 374 :limit-xy 0]
rlm@160 375 :twist 0]} (use XZY rotation mode in blender!)"
rlm@160 376 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@160 377 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@160 378 control-b (.getControl obj-b RigidBodyControl)
rlm@160 379 joint-center (.getWorldTranslation joint)
rlm@160 380 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@160 381 pivot-a (world-to-local obj-a joint-center)
rlm@160 382 pivot-b (world-to-local obj-b joint-center)]
rlm@160 383
rlm@160 384 (if-let [constraints
rlm@160 385 (map-vals
rlm@160 386 eval
rlm@160 387 (read-string
rlm@160 388 (meta-data joint "joint")))]
rlm@160 389 ;; A side-effect of creating a joint registers
rlm@160 390 ;; it with both physics objects which in turn
rlm@160 391 ;; will register the joint with the physics system
rlm@160 392 ;; when the simulation is started.
rlm@160 393 (do
rlm@160 394 (println-repl "creating joint between"
rlm@160 395 (.getName obj-a) "and" (.getName obj-b))
rlm@160 396 (joint-dispatch constraints
rlm@160 397 control-a control-b
rlm@160 398 pivot-a pivot-b
rlm@160 399 joint-rotation))
rlm@160 400 (println-repl "could not find joint meta-data!"))))
rlm@203 401 #+end_src
rlm@160 402
rlm@203 403 Creating joints is now a matter applying =(connect)= to each joint
rlm@203 404 node.
rlm@160 405
rlm@205 406 #+name: joints-5
rlm@203 407 #+begin_src clojure
rlm@175 408 (defn joints!
rlm@175 409 "Connect the solid parts of the creature with physical joints. The
rlm@175 410 joints are taken from the \"joints\" node in the creature."
rlm@175 411 [#^Node creature]
rlm@160 412 (dorun
rlm@160 413 (map
rlm@160 414 (fn [joint]
rlm@175 415 (let [[obj-a obj-b] (joint-targets creature joint)]
rlm@160 416 (connect obj-a obj-b joint)))
rlm@175 417 (joints creature))))
rlm@203 418 #+end_src
rlm@160 419
rlm@203 420
rlm@203 421 ** Round 3
rlm@203 422
rlm@203 423 Now we can test the hand in all its glory.
rlm@203 424
rlm@205 425 #+name: test-3
rlm@203 426 #+begin_src clojure
rlm@203 427 (in-ns 'cortex.test.body)
rlm@203 428
rlm@203 429 (def debug-control
rlm@203 430 {"key-h" (fn [world val]
rlm@203 431 (if val (enable-debug world)))
rlm@205 432 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
rlm@203 433
rlm@203 434 (defn test-three []
rlm@203 435 (world (nodify
rlm@203 436 [(doto (hand)
rlm@205 437 (physical!)
rlm@205 438 (joints!))
rlm@203 439 (floor)])
rlm@203 440 (merge standard-debug-controls debug-control
rlm@203 441 normal-gravity)
rlm@203 442 (comp
rlm@203 443 #(Capture/captureVideo
rlm@203 444 % (File. "/home/r/proj/cortex/render/body/3"))
rlm@203 445 #(do (set-gravity % Vector3f/ZERO) %)
rlm@203 446 setup)
rlm@203 447 no-op))
rlm@203 448 #+end_src
rlm@203 449
rlm@203 450 =(physical!)= makes the hand solid, then =(joints!)= connects each
rlm@203 451 piece together.
rlm@203 452
rlm@203 453 #+begin_html
rlm@203 454 <div class="figure">
rlm@203 455 <center>
rlm@203 456 <video controls="controls" width="640">
rlm@203 457 <source src="../video/full-hand.ogg" type="video/ogg"
rlm@203 458 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@203 459 </video>
rlm@203 460 </center>
rlm@203 461 <p>Now the hand is physical and has joints.</p>
rlm@203 462 </div>
rlm@203 463 #+end_html
rlm@203 464
rlm@203 465 The joints are visualized as green connections between each segment
rlm@203 466 for debug purposes. You can see that they correspond to the empty
rlm@203 467 nodes in the blender file.
rlm@203 468
rlm@203 469 * Wrap-Up!
rlm@203 470
rlm@203 471 It is convienent to combine =(physical!)= and =(joints!)= into one
rlm@203 472 function that completely creates the creature's physical body.
rlm@203 473
rlm@205 474 #+name: joints-6
rlm@203 475 #+begin_src clojure
rlm@175 476 (defn body!
rlm@175 477 "Endow the creature with a physical body connected with joints. The
rlm@175 478 particulars of the joints and the masses of each pody part are
rlm@175 479 determined in blender."
rlm@175 480 [#^Node creature]
rlm@175 481 (physical! creature)
rlm@175 482 (joints! creature))
rlm@64 483 #+end_src
rlm@63 484
rlm@205 485 * The Worm
rlm@205 486
rlm@205 487 Going forward, I will use a model that is less complicated than the
rlm@205 488 hand. It has two segments and one joint, and I call it the worm. All
rlm@205 489 of the senses described in the following posts will be applied to this
rlm@205 490 worm.
rlm@205 491
rlm@205 492 #+name: test-4
rlm@205 493 #+begin_src clojure
rlm@205 494 (in-ns 'cortex.test.body)
rlm@205 495
rlm@205 496 (defn worm-1 []
rlm@205 497 (let [timer (RatchetTimer. 60)]
rlm@205 498 (world
rlm@205 499 (nodify
rlm@205 500 [(doto
rlm@205 501 (load-blender-model
rlm@205 502 "Models/test-creature/worm.blend")
rlm@205 503 (body!))
rlm@205 504 (floor)])
rlm@205 505 (merge standard-debug-controls debug-control)
rlm@205 506 #(do
rlm@205 507 (speed-up %)
rlm@205 508 (light-up-everything %)
rlm@205 509 (.setTimer % timer)
rlm@205 510 (cortex.util/display-dialated-time % timer)
rlm@205 511 (Capture/captureVideo
rlm@205 512 % (File. "/home/r/proj/cortex/render/body/4")))
rlm@205 513 no-op)))
rlm@205 514 #+end_src
rlm@205 515
rlm@205 516 #+begin_html
rlm@205 517 <div class="figure">
rlm@205 518 <center>
rlm@205 519 <video controls="controls" width="640">
rlm@205 520 <source src="../video/worm-1.ogg" type="video/ogg"
rlm@205 521 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@205 522 </video>
rlm@205 523 </center>
rlm@205 524 <p>This worm model will be the platform onto which future senses will
rlm@205 525 be grafted.</p>
rlm@205 526 </div>
rlm@205 527 #+end_html
rlm@205 528
rlm@202 529 * Bookkeeping
rlm@175 530
rlm@203 531 Header; here for completeness.
rlm@203 532
rlm@205 533 #+name: body-header
rlm@202 534 #+begin_src clojure
rlm@202 535 (ns cortex.body
rlm@202 536 "Assemble a physical creature using the definitions found in a
rlm@202 537 specially prepared blender file. Creates rigid bodies and joints so
rlm@202 538 that a creature can have a physical presense in the simulation."
rlm@202 539 {:author "Robert McIntyre"}
rlm@202 540 (:use (cortex world util sense))
rlm@202 541 (:use clojure.contrib.def)
rlm@202 542 (:import
rlm@202 543 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
rlm@202 544 (com.jme3.bullet.joints
rlm@202 545 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
rlm@202 546 com.jme3.bullet.control.RigidBodyControl
rlm@202 547 com.jme3.collision.CollisionResults
rlm@202 548 com.jme3.bounding.BoundingBox
rlm@202 549 com.jme3.scene.Node
rlm@202 550 com.jme3.scene.Geometry
rlm@202 551 com.jme3.bullet.collision.shapes.HullCollisionShape))
rlm@202 552 #+end_src
rlm@133 553
rlm@205 554 #+name: test-header
rlm@205 555 #+begin_src clojure
rlm@205 556 (ns cortex.test.body
rlm@205 557 (:use (cortex world util body))
rlm@205 558 (:import
rlm@205 559 (com.aurellem.capture Capture RatchetTimer)
rlm@205 560 (com.jme3.math Quaternion Vector3f ColorRGBA)
rlm@205 561 java.io.File))
rlm@205 562 #+end_src
rlm@205 563
rlm@202 564 * Source
rlm@202 565
rlm@203 566 Dylan -- I'll fill these in later
rlm@203 567 - cortex.body
rlm@203 568 - cortex.test.body
rlm@203 569 - blender files
rlm@203 570
rlm@63 571
rlm@206 572 * COMMENT Generate Source
rlm@44 573 #+begin_src clojure :tangle ../src/cortex/body.clj
rlm@205 574 <<body-header>>
rlm@205 575 <<body-1>>
rlm@205 576 <<joints-2>>
rlm@205 577 <<joints-3>>
rlm@205 578 <<joints-4>>
rlm@205 579 <<joints-5>>
rlm@205 580 <<joints-6>>
rlm@0 581 #+end_src
rlm@64 582
rlm@69 583 #+begin_src clojure :tangle ../src/cortex/test/body.clj
rlm@205 584 <<test-header>>
rlm@205 585 <<test-1>>
rlm@205 586 <<test-2>>
rlm@205 587 <<test-3>>
rlm@205 588 <<test-4>>
rlm@64 589 #+end_src
rlm@64 590
rlm@64 591
rlm@0 592
rlm@206 593