rlm@202
|
1 #+title: Building a Body
|
rlm@0
|
2 #+author: Robert McIntyre
|
rlm@0
|
3 #+email: rlm@mit.edu
|
rlm@4
|
4 #+description: Simulating a body (movement, touch, propioception) in jMonkeyEngine3.
|
rlm@4
|
5 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@4
|
6 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@4
|
7
|
rlm@202
|
8
|
rlm@202
|
9 * Design Constraints
|
rlm@202
|
10
|
rlm@202
|
11 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
|
rlm@202
|
12 determined by the requirements of the AI that will use them. The
|
rlm@202
|
13 bodies must be easy for an AI to sense and control, and they must be
|
rlm@202
|
14 relatively simple for jMonkeyEngine to compute.
|
rlm@202
|
15
|
rlm@202
|
16 ** Bag of Bones
|
rlm@202
|
17
|
rlm@202
|
18 How to create such a body? One option I ultimately rejected is to use
|
rlm@202
|
19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
|
rlm@202
|
20 which describes the creature's entire body. To this you add an
|
rlm@202
|
21 (skeleton) which deforms this mesh. This technique is used extensively
|
rlm@202
|
22 to model humans and create realistic animations. It is hard to use for
|
rlm@202
|
23 my purposes because it is difficult to update the creature's Physics
|
rlm@202
|
24 Collision Mesh in tandem with its Geometric Mesh under the influence
|
rlm@202
|
25 of the armature. Withouth this the creature will not be able to grab
|
rlm@202
|
26 things in its environment, and it won't be able to tell where its
|
rlm@202
|
27 physical body is by using its eyes. Also, armatures do not specify
|
rlm@202
|
28 any rotational limits for a joint, making it hard to model elbows,
|
rlm@202
|
29 shoulders, etc.
|
rlm@202
|
30
|
rlm@202
|
31 ** EVE
|
rlm@202
|
32
|
rlm@202
|
33 Instead of using the human-like "deformable bag of bones" approach, I
|
rlm@202
|
34 decided to base my body plans on the robot EVE from the movie wall-E.
|
rlm@202
|
35
|
rlm@202
|
36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
|
rlm@202
|
37 [[../images/Eve.jpg]]
|
rlm@202
|
38
|
rlm@204
|
39 EVE's body is composed of several rigid components that are held
|
rlm@204
|
40 together by invisible joint constraints. This is what I mean by
|
rlm@204
|
41 "eve-like". The main reason that I use eve-style bodies is so that
|
rlm@204
|
42 there will be correspondence between the AI's vision and the physical
|
rlm@204
|
43 presence of its body. Each individual section is simulated by a
|
rlm@204
|
44 separate rigid body that corresponds exactly with its visual
|
rlm@204
|
45 representation and does not change. Sections are connected by
|
rlm@204
|
46 invisible joints that are well supported in jMonkyeEngine. Bullet, the
|
rlm@204
|
47 physics backend for jMonkeyEngine, can efficiently simulate hundreds
|
rlm@204
|
48 of rigid bodies connected by joints. Sections do not have to stay as
|
rlm@204
|
49 one piece forever; they can be dynamically replaced with multiple
|
rlm@204
|
50 sections to simulate splitting in two. This could be used to simulate
|
rlm@204
|
51 retractable claws or EVE's hands, which could coalece into one object
|
rlm@204
|
52 in the movie.
|
rlm@202
|
53
|
rlm@202
|
54 * Solidifying the Body
|
rlm@202
|
55
|
rlm@202
|
56 Here is a hand designed eve-style in blender.
|
rlm@202
|
57
|
rlm@203
|
58 #+attr_html: width="755"
|
rlm@202
|
59 [[../images/hand-screenshot0.png]]
|
rlm@202
|
60
|
rlm@202
|
61 If we load it directly into jMonkeyEngine, we get this:
|
rlm@202
|
62
|
rlm@205
|
63 #+name: test-1
|
rlm@202
|
64 #+begin_src clojure
|
rlm@202
|
65 (def hand-path "Models/test-creature/hand.blend")
|
rlm@202
|
66
|
rlm@202
|
67 (defn hand [] (load-blender-model hand-path))
|
rlm@202
|
68
|
rlm@202
|
69 (defn setup [world]
|
rlm@202
|
70 (let [cam (.getCamera world)]
|
rlm@202
|
71 (println-repl cam)
|
rlm@202
|
72 (.setLocation
|
rlm@202
|
73 cam (Vector3f.
|
rlm@202
|
74 -6.9015837, 8.644911, 5.6043186))
|
rlm@202
|
75 (.setRotation
|
rlm@202
|
76 cam
|
rlm@202
|
77 (Quaternion.
|
rlm@202
|
78 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
|
rlm@202
|
79 (light-up-everything world)
|
rlm@202
|
80 (.setTimer world (RatchetTimer. 60))
|
rlm@202
|
81 world)
|
rlm@202
|
82
|
rlm@202
|
83 (defn test-one []
|
rlm@202
|
84 (world (hand)
|
rlm@202
|
85 standard-debug-controls
|
rlm@202
|
86 (comp
|
rlm@202
|
87 #(Capture/captureVideo
|
rlm@202
|
88 % (File. "/home/r/proj/cortex/render/body/1"))
|
rlm@202
|
89 setup)
|
rlm@202
|
90 no-op))
|
rlm@202
|
91 #+end_src
|
rlm@202
|
92
|
rlm@202
|
93
|
rlm@202
|
94 #+begin_src clojure :results silent
|
rlm@202
|
95 (.start (cortex.test.body/test-one))
|
rlm@202
|
96 #+end_src
|
rlm@202
|
97
|
rlm@202
|
98 #+begin_html
|
rlm@203
|
99 <div class="figure">
|
rlm@203
|
100 <center>
|
rlm@203
|
101 <video controls="controls" width="640">
|
rlm@202
|
102 <source src="../video/ghost-hand.ogg" type="video/ogg"
|
rlm@202
|
103 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@202
|
104 </video>
|
rlm@203
|
105 </center>
|
rlm@203
|
106 <p>The hand model directly loaded from blender. It has no physical
|
rlm@203
|
107 presense in the simulation. </p>
|
rlm@203
|
108 </div>
|
rlm@202
|
109 #+end_html
|
rlm@202
|
110
|
rlm@202
|
111 You will notice that the hand has no physical presence -- it's a
|
rlm@204
|
112 hologram through which everything passes. Therefore, the first thing
|
rlm@202
|
113 to do is to make it solid. Blender has physics simulation on par with
|
rlm@202
|
114 jMonkeyEngine (they both use bullet as their physics backend), but it
|
rlm@202
|
115 can be difficult to translate between the two systems, so for now I
|
rlm@202
|
116 specify the mass of each object in blender and construct the physics
|
rlm@202
|
117 shape based on the mesh in jMonkeyEngine.
|
rlm@202
|
118
|
rlm@203
|
119 #+name: body-1
|
rlm@202
|
120 #+begin_src clojure
|
rlm@202
|
121 (defn physical!
|
rlm@202
|
122 "Iterate through the nodes in creature and make them real physical
|
rlm@202
|
123 objects in the simulation."
|
rlm@202
|
124 [#^Node creature]
|
rlm@202
|
125 (dorun
|
rlm@202
|
126 (map
|
rlm@202
|
127 (fn [geom]
|
rlm@202
|
128 (let [physics-control
|
rlm@202
|
129 (RigidBodyControl.
|
rlm@202
|
130 (HullCollisionShape.
|
rlm@202
|
131 (.getMesh geom))
|
rlm@202
|
132 (if-let [mass (meta-data geom "mass")]
|
rlm@202
|
133 (do
|
rlm@202
|
134 (println-repl
|
rlm@202
|
135 "setting" (.getName geom) "mass to" (float mass))
|
rlm@202
|
136 (float mass))
|
rlm@202
|
137 (float 1)))]
|
rlm@202
|
138 (.addControl geom physics-control)))
|
rlm@202
|
139 (filter #(isa? (class %) Geometry )
|
rlm@202
|
140 (node-seq creature)))))
|
rlm@202
|
141 #+end_src
|
rlm@202
|
142
|
rlm@202
|
143 =(physical!)= iterates through a creature's node structure, creating
|
rlm@202
|
144 CollisionShapes for each geometry with the mass specified in that
|
rlm@202
|
145 geometry's meta-data.
|
rlm@202
|
146
|
rlm@205
|
147 #+name: test-2
|
rlm@0
|
148 #+begin_src clojure
|
rlm@202
|
149 (in-ns 'cortex.test.body)
|
rlm@160
|
150
|
rlm@202
|
151 (def normal-gravity
|
rlm@202
|
152 {"key-g" (fn [world _]
|
rlm@202
|
153 (set-gravity world (Vector3f. 0 -9.81 0)))})
|
rlm@202
|
154
|
rlm@202
|
155 (defn floor []
|
rlm@202
|
156 (box 10 3 10 :position (Vector3f. 0 -10 0)
|
rlm@202
|
157 :color ColorRGBA/Gray :mass 0))
|
rlm@202
|
158
|
rlm@202
|
159 (defn test-two []
|
rlm@202
|
160 (world (nodify
|
rlm@202
|
161 [(doto (hand)
|
rlm@202
|
162 (physical!))
|
rlm@202
|
163 (floor)])
|
rlm@202
|
164 (merge standard-debug-controls normal-gravity)
|
rlm@202
|
165 (comp
|
rlm@202
|
166 #(Capture/captureVideo
|
rlm@202
|
167 % (File. "/home/r/proj/cortex/render/body/2"))
|
rlm@202
|
168 #(do (set-gravity % Vector3f/ZERO) %)
|
rlm@202
|
169 setup)
|
rlm@202
|
170 no-op))
|
rlm@202
|
171 #+end_src
|
rlm@202
|
172
|
rlm@202
|
173 #+begin_html
|
rlm@203
|
174 <div class="figure">
|
rlm@203
|
175 <center>
|
rlm@203
|
176 <video controls="controls" width="640">
|
rlm@202
|
177 <source src="../video/crumbly-hand.ogg" type="video/ogg"
|
rlm@202
|
178 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@202
|
179 </video>
|
rlm@203
|
180 </center>
|
rlm@203
|
181 <p>The hand now has a physical presence, but there is nothing to hold
|
rlm@203
|
182 it together.</p>
|
rlm@203
|
183 </div>
|
rlm@202
|
184 #+end_html
|
rlm@202
|
185
|
rlm@202
|
186 Now that's some progress.
|
rlm@202
|
187
|
rlm@202
|
188
|
rlm@202
|
189 * Joints
|
rlm@202
|
190
|
rlm@202
|
191 Obviously, an AI is not going to be doing much just lying in pieces on
|
rlm@202
|
192 the floor. So, the next step to making a proper body is to connect
|
rlm@202
|
193 those pieces together with joints. jMonkeyEngine has a large array of
|
rlm@202
|
194 joints available via bullet, such as Point2Point, Cone, Hinge, and a
|
rlm@202
|
195 generic Six Degree of Freedom joint, with or without spring
|
rlm@202
|
196 restitution.
|
rlm@202
|
197
|
rlm@202
|
198 Although it should be possible to specify the joints using blender's
|
rlm@202
|
199 physics system, and then automatically import them with jMonkeyEngine,
|
rlm@202
|
200 the support isn't there yet, and there are a few problems with bullet
|
rlm@202
|
201 itself that need to be solved before it can happen.
|
rlm@202
|
202
|
rlm@202
|
203 So, I will use the same system for specifying joints as I will do for
|
rlm@202
|
204 some senses. Each joint is specified by an empty node whose parent
|
rlm@202
|
205 has the name "joints". Their orientation and meta-data determine what
|
rlm@202
|
206 joint is created.
|
rlm@202
|
207
|
rlm@203
|
208 #+attr_html: width="755"
|
rlm@203
|
209 #+caption: joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
|
rlm@202
|
210 [[../images/hand-screenshot1.png]]
|
rlm@202
|
211
|
rlm@203
|
212 The empty node in the upper right, highlighted in yellow, is the
|
rlm@203
|
213 parent node of all the emptys which represent joints. The following
|
rlm@203
|
214 functions must do three things to translate these into real joints:
|
rlm@202
|
215
|
rlm@203
|
216 - Find the children of the "joints" node.
|
rlm@203
|
217 - Determine the two spatials the joint it meant to connect.
|
rlm@203
|
218 - Create the joint based on the meta-data of the empty node.
|
rlm@202
|
219
|
rlm@203
|
220 ** Finding the Joints
|
rlm@203
|
221 #+name: joints-2
|
rlm@203
|
222 #+begin_src clojure
|
rlm@203
|
223 (defvar
|
rlm@203
|
224 ^{:arglists '([creature])}
|
rlm@203
|
225 joints
|
rlm@203
|
226 (sense-nodes "joints")
|
rlm@203
|
227 "Return the children of the creature's \"joints\" node.")
|
rlm@203
|
228 #+end_src
|
rlm@202
|
229
|
rlm@203
|
230 The higher order function =(sense-nodes)= from cortex.sense makes our
|
rlm@203
|
231 first task very easy.
|
rlm@203
|
232
|
rlm@203
|
233 ** Joint Targets and Orientation
|
rlm@203
|
234
|
rlm@203
|
235 This technique for finding a joint's targets is very similiar to
|
rlm@203
|
236 =(cortex.sense/closest-node)=. A small cube, centered around the
|
rlm@203
|
237 empty-node, grows exponentially until it intersects two /physical/
|
rlm@203
|
238 objects. The objects are ordered according to the joint's rotation,
|
rlm@203
|
239 with the first one being the object that has more negative coordinates
|
rlm@203
|
240 in the joint's reference frame. Since the objects must be physical,
|
rlm@203
|
241 the empty-node itself escapes detection. Because the objects must be
|
rlm@203
|
242 physical, =(joint-targets)= must be called /after/ =(physical!)= is
|
rlm@203
|
243 called.
|
rlm@203
|
244
|
rlm@203
|
245 #+name: joints-3
|
rlm@202
|
246 #+begin_src clojure
|
rlm@135
|
247 (defn joint-targets
|
rlm@135
|
248 "Return the two closest two objects to the joint object, ordered
|
rlm@135
|
249 from bottom to top according to the joint's rotation."
|
rlm@135
|
250 [#^Node parts #^Node joint]
|
rlm@135
|
251 (loop [radius (float 0.01)]
|
rlm@135
|
252 (let [results (CollisionResults.)]
|
rlm@135
|
253 (.collideWith
|
rlm@135
|
254 parts
|
rlm@135
|
255 (BoundingBox. (.getWorldTranslation joint)
|
rlm@135
|
256 radius radius radius)
|
rlm@135
|
257 results)
|
rlm@135
|
258 (let [targets
|
rlm@135
|
259 (distinct
|
rlm@135
|
260 (map #(.getGeometry %) results))]
|
rlm@135
|
261 (if (>= (count targets) 2)
|
rlm@135
|
262 (sort-by
|
rlm@135
|
263 #(let [v
|
rlm@135
|
264 (jme-to-blender
|
rlm@135
|
265 (.mult
|
rlm@135
|
266 (.inverse (.getWorldRotation joint))
|
rlm@135
|
267 (.subtract (.getWorldTranslation %)
|
rlm@135
|
268 (.getWorldTranslation joint))))]
|
rlm@135
|
269 (println-repl (.getName %) ":" v)
|
rlm@135
|
270 (.dot (Vector3f. 1 1 1)
|
rlm@135
|
271 v))
|
rlm@135
|
272 (take 2 targets))
|
rlm@135
|
273 (recur (float (* radius 2))))))))
|
rlm@203
|
274 #+end_src
|
rlm@135
|
275
|
rlm@203
|
276 ** Generating Joints
|
rlm@203
|
277
|
rlm@203
|
278 This long chunk of code iterates through all the different ways of
|
rlm@203
|
279 specifying joints using blender meta-data and converts each one to the
|
rlm@203
|
280 appropriate jMonkyeEngine joint.
|
rlm@203
|
281
|
rlm@203
|
282 #+name: joints-4
|
rlm@203
|
283 #+begin_src clojure
|
rlm@160
|
284 (defmulti joint-dispatch
|
rlm@160
|
285 "Translate blender pseudo-joints into real JME joints."
|
rlm@160
|
286 (fn [constraints & _]
|
rlm@160
|
287 (:type constraints)))
|
rlm@141
|
288
|
rlm@160
|
289 (defmethod joint-dispatch :point
|
rlm@160
|
290 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@160
|
291 (println-repl "creating POINT2POINT joint")
|
rlm@160
|
292 ;; bullet's point2point joints are BROKEN, so we must use the
|
rlm@160
|
293 ;; generic 6DOF joint instead of an actual Point2Point joint!
|
rlm@141
|
294
|
rlm@160
|
295 ;; should be able to do this:
|
rlm@160
|
296 (comment
|
rlm@160
|
297 (Point2PointJoint.
|
rlm@160
|
298 control-a
|
rlm@160
|
299 control-b
|
rlm@160
|
300 pivot-a
|
rlm@160
|
301 pivot-b))
|
rlm@141
|
302
|
rlm@160
|
303 ;; but instead we must do this:
|
rlm@160
|
304 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
|
rlm@160
|
305 (doto
|
rlm@160
|
306 (SixDofJoint.
|
rlm@160
|
307 control-a
|
rlm@160
|
308 control-b
|
rlm@160
|
309 pivot-a
|
rlm@160
|
310 pivot-b
|
rlm@160
|
311 false)
|
rlm@160
|
312 (.setLinearLowerLimit Vector3f/ZERO)
|
rlm@203
|
313 (.setLinearUpperLimit Vector3f/ZERO)))
|
rlm@160
|
314
|
rlm@160
|
315 (defmethod joint-dispatch :hinge
|
rlm@160
|
316 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@160
|
317 (println-repl "creating HINGE joint")
|
rlm@160
|
318 (let [axis
|
rlm@160
|
319 (if-let
|
rlm@160
|
320 [axis (:axis constraints)]
|
rlm@160
|
321 axis
|
rlm@160
|
322 Vector3f/UNIT_X)
|
rlm@160
|
323 [limit-1 limit-2] (:limit constraints)
|
rlm@160
|
324 hinge-axis
|
rlm@160
|
325 (.mult
|
rlm@160
|
326 rotation
|
rlm@160
|
327 (blender-to-jme axis))]
|
rlm@160
|
328 (doto
|
rlm@160
|
329 (HingeJoint.
|
rlm@160
|
330 control-a
|
rlm@160
|
331 control-b
|
rlm@160
|
332 pivot-a
|
rlm@160
|
333 pivot-b
|
rlm@160
|
334 hinge-axis
|
rlm@160
|
335 hinge-axis)
|
rlm@160
|
336 (.setLimit limit-1 limit-2))))
|
rlm@160
|
337
|
rlm@160
|
338 (defmethod joint-dispatch :cone
|
rlm@160
|
339 [constraints control-a control-b pivot-a pivot-b rotation]
|
rlm@160
|
340 (let [limit-xz (:limit-xz constraints)
|
rlm@160
|
341 limit-xy (:limit-xy constraints)
|
rlm@160
|
342 twist (:twist constraints)]
|
rlm@160
|
343
|
rlm@160
|
344 (println-repl "creating CONE joint")
|
rlm@160
|
345 (println-repl rotation)
|
rlm@160
|
346 (println-repl
|
rlm@160
|
347 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
|
rlm@160
|
348 (println-repl
|
rlm@160
|
349 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
|
rlm@160
|
350 (println-repl
|
rlm@160
|
351 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
|
rlm@160
|
352 (doto
|
rlm@160
|
353 (ConeJoint.
|
rlm@160
|
354 control-a
|
rlm@160
|
355 control-b
|
rlm@160
|
356 pivot-a
|
rlm@160
|
357 pivot-b
|
rlm@160
|
358 rotation
|
rlm@160
|
359 rotation)
|
rlm@160
|
360 (.setLimit (float limit-xz)
|
rlm@160
|
361 (float limit-xy)
|
rlm@160
|
362 (float twist)))))
|
rlm@160
|
363
|
rlm@160
|
364 (defn connect
|
rlm@175
|
365 "Create a joint between 'obj-a and 'obj-b at the location of
|
rlm@175
|
366 'joint. The type of joint is determined by the metadata on 'joint.
|
rlm@175
|
367
|
rlm@175
|
368 Here are some examples:
|
rlm@160
|
369 {:type :point}
|
rlm@160
|
370 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
|
rlm@160
|
371 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
|
rlm@160
|
372
|
rlm@160
|
373 {:type :cone :limit-xz 0]
|
rlm@160
|
374 :limit-xy 0]
|
rlm@160
|
375 :twist 0]} (use XZY rotation mode in blender!)"
|
rlm@160
|
376 [#^Node obj-a #^Node obj-b #^Node joint]
|
rlm@160
|
377 (let [control-a (.getControl obj-a RigidBodyControl)
|
rlm@160
|
378 control-b (.getControl obj-b RigidBodyControl)
|
rlm@160
|
379 joint-center (.getWorldTranslation joint)
|
rlm@160
|
380 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
|
rlm@160
|
381 pivot-a (world-to-local obj-a joint-center)
|
rlm@160
|
382 pivot-b (world-to-local obj-b joint-center)]
|
rlm@160
|
383
|
rlm@160
|
384 (if-let [constraints
|
rlm@160
|
385 (map-vals
|
rlm@160
|
386 eval
|
rlm@160
|
387 (read-string
|
rlm@160
|
388 (meta-data joint "joint")))]
|
rlm@160
|
389 ;; A side-effect of creating a joint registers
|
rlm@160
|
390 ;; it with both physics objects which in turn
|
rlm@160
|
391 ;; will register the joint with the physics system
|
rlm@160
|
392 ;; when the simulation is started.
|
rlm@160
|
393 (do
|
rlm@160
|
394 (println-repl "creating joint between"
|
rlm@160
|
395 (.getName obj-a) "and" (.getName obj-b))
|
rlm@160
|
396 (joint-dispatch constraints
|
rlm@160
|
397 control-a control-b
|
rlm@160
|
398 pivot-a pivot-b
|
rlm@160
|
399 joint-rotation))
|
rlm@160
|
400 (println-repl "could not find joint meta-data!"))))
|
rlm@203
|
401 #+end_src
|
rlm@160
|
402
|
rlm@203
|
403 Creating joints is now a matter applying =(connect)= to each joint
|
rlm@203
|
404 node.
|
rlm@160
|
405
|
rlm@205
|
406 #+name: joints-5
|
rlm@203
|
407 #+begin_src clojure
|
rlm@175
|
408 (defn joints!
|
rlm@175
|
409 "Connect the solid parts of the creature with physical joints. The
|
rlm@175
|
410 joints are taken from the \"joints\" node in the creature."
|
rlm@175
|
411 [#^Node creature]
|
rlm@160
|
412 (dorun
|
rlm@160
|
413 (map
|
rlm@160
|
414 (fn [joint]
|
rlm@175
|
415 (let [[obj-a obj-b] (joint-targets creature joint)]
|
rlm@160
|
416 (connect obj-a obj-b joint)))
|
rlm@175
|
417 (joints creature))))
|
rlm@203
|
418 #+end_src
|
rlm@160
|
419
|
rlm@203
|
420
|
rlm@203
|
421 ** Round 3
|
rlm@203
|
422
|
rlm@203
|
423 Now we can test the hand in all its glory.
|
rlm@203
|
424
|
rlm@205
|
425 #+name: test-3
|
rlm@203
|
426 #+begin_src clojure
|
rlm@203
|
427 (in-ns 'cortex.test.body)
|
rlm@203
|
428
|
rlm@203
|
429 (def debug-control
|
rlm@203
|
430 {"key-h" (fn [world val]
|
rlm@203
|
431 (if val (enable-debug world)))
|
rlm@205
|
432 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
|
rlm@203
|
433
|
rlm@203
|
434 (defn test-three []
|
rlm@203
|
435 (world (nodify
|
rlm@203
|
436 [(doto (hand)
|
rlm@205
|
437 (physical!)
|
rlm@205
|
438 (joints!))
|
rlm@203
|
439 (floor)])
|
rlm@203
|
440 (merge standard-debug-controls debug-control
|
rlm@203
|
441 normal-gravity)
|
rlm@203
|
442 (comp
|
rlm@203
|
443 #(Capture/captureVideo
|
rlm@203
|
444 % (File. "/home/r/proj/cortex/render/body/3"))
|
rlm@203
|
445 #(do (set-gravity % Vector3f/ZERO) %)
|
rlm@203
|
446 setup)
|
rlm@203
|
447 no-op))
|
rlm@203
|
448 #+end_src
|
rlm@203
|
449
|
rlm@203
|
450 =(physical!)= makes the hand solid, then =(joints!)= connects each
|
rlm@203
|
451 piece together.
|
rlm@203
|
452
|
rlm@203
|
453 #+begin_html
|
rlm@203
|
454 <div class="figure">
|
rlm@203
|
455 <center>
|
rlm@203
|
456 <video controls="controls" width="640">
|
rlm@203
|
457 <source src="../video/full-hand.ogg" type="video/ogg"
|
rlm@203
|
458 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@203
|
459 </video>
|
rlm@203
|
460 </center>
|
rlm@203
|
461 <p>Now the hand is physical and has joints.</p>
|
rlm@203
|
462 </div>
|
rlm@203
|
463 #+end_html
|
rlm@203
|
464
|
rlm@203
|
465 The joints are visualized as green connections between each segment
|
rlm@203
|
466 for debug purposes. You can see that they correspond to the empty
|
rlm@203
|
467 nodes in the blender file.
|
rlm@203
|
468
|
rlm@203
|
469 * Wrap-Up!
|
rlm@203
|
470
|
rlm@203
|
471 It is convienent to combine =(physical!)= and =(joints!)= into one
|
rlm@203
|
472 function that completely creates the creature's physical body.
|
rlm@203
|
473
|
rlm@205
|
474 #+name: joints-6
|
rlm@203
|
475 #+begin_src clojure
|
rlm@175
|
476 (defn body!
|
rlm@175
|
477 "Endow the creature with a physical body connected with joints. The
|
rlm@175
|
478 particulars of the joints and the masses of each pody part are
|
rlm@175
|
479 determined in blender."
|
rlm@175
|
480 [#^Node creature]
|
rlm@175
|
481 (physical! creature)
|
rlm@175
|
482 (joints! creature))
|
rlm@64
|
483 #+end_src
|
rlm@63
|
484
|
rlm@205
|
485 * The Worm
|
rlm@205
|
486
|
rlm@205
|
487 Going forward, I will use a model that is less complicated than the
|
rlm@205
|
488 hand. It has two segments and one joint, and I call it the worm. All
|
rlm@205
|
489 of the senses described in the following posts will be applied to this
|
rlm@205
|
490 worm.
|
rlm@205
|
491
|
rlm@205
|
492 #+name: test-4
|
rlm@205
|
493 #+begin_src clojure
|
rlm@205
|
494 (in-ns 'cortex.test.body)
|
rlm@205
|
495
|
rlm@205
|
496 (defn worm-1 []
|
rlm@205
|
497 (let [timer (RatchetTimer. 60)]
|
rlm@205
|
498 (world
|
rlm@205
|
499 (nodify
|
rlm@205
|
500 [(doto
|
rlm@205
|
501 (load-blender-model
|
rlm@205
|
502 "Models/test-creature/worm.blend")
|
rlm@205
|
503 (body!))
|
rlm@205
|
504 (floor)])
|
rlm@205
|
505 (merge standard-debug-controls debug-control)
|
rlm@205
|
506 #(do
|
rlm@205
|
507 (speed-up %)
|
rlm@205
|
508 (light-up-everything %)
|
rlm@205
|
509 (.setTimer % timer)
|
rlm@205
|
510 (cortex.util/display-dialated-time % timer)
|
rlm@205
|
511 (Capture/captureVideo
|
rlm@205
|
512 % (File. "/home/r/proj/cortex/render/body/4")))
|
rlm@205
|
513 no-op)))
|
rlm@205
|
514 #+end_src
|
rlm@205
|
515
|
rlm@205
|
516 #+begin_html
|
rlm@205
|
517 <div class="figure">
|
rlm@205
|
518 <center>
|
rlm@205
|
519 <video controls="controls" width="640">
|
rlm@205
|
520 <source src="../video/worm-1.ogg" type="video/ogg"
|
rlm@205
|
521 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@205
|
522 </video>
|
rlm@205
|
523 </center>
|
rlm@205
|
524 <p>This worm model will be the platform onto which future senses will
|
rlm@205
|
525 be grafted.</p>
|
rlm@205
|
526 </div>
|
rlm@205
|
527 #+end_html
|
rlm@205
|
528
|
rlm@202
|
529 * Bookkeeping
|
rlm@175
|
530
|
rlm@203
|
531 Header; here for completeness.
|
rlm@203
|
532
|
rlm@205
|
533 #+name: body-header
|
rlm@202
|
534 #+begin_src clojure
|
rlm@202
|
535 (ns cortex.body
|
rlm@202
|
536 "Assemble a physical creature using the definitions found in a
|
rlm@202
|
537 specially prepared blender file. Creates rigid bodies and joints so
|
rlm@202
|
538 that a creature can have a physical presense in the simulation."
|
rlm@202
|
539 {:author "Robert McIntyre"}
|
rlm@202
|
540 (:use (cortex world util sense))
|
rlm@202
|
541 (:use clojure.contrib.def)
|
rlm@202
|
542 (:import
|
rlm@202
|
543 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
|
rlm@202
|
544 (com.jme3.bullet.joints
|
rlm@202
|
545 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
|
rlm@202
|
546 com.jme3.bullet.control.RigidBodyControl
|
rlm@202
|
547 com.jme3.collision.CollisionResults
|
rlm@202
|
548 com.jme3.bounding.BoundingBox
|
rlm@202
|
549 com.jme3.scene.Node
|
rlm@202
|
550 com.jme3.scene.Geometry
|
rlm@202
|
551 com.jme3.bullet.collision.shapes.HullCollisionShape))
|
rlm@202
|
552 #+end_src
|
rlm@133
|
553
|
rlm@205
|
554 #+name: test-header
|
rlm@205
|
555 #+begin_src clojure
|
rlm@205
|
556 (ns cortex.test.body
|
rlm@205
|
557 (:use (cortex world util body))
|
rlm@205
|
558 (:import
|
rlm@205
|
559 (com.aurellem.capture Capture RatchetTimer)
|
rlm@205
|
560 (com.jme3.math Quaternion Vector3f ColorRGBA)
|
rlm@205
|
561 java.io.File))
|
rlm@205
|
562 #+end_src
|
rlm@205
|
563
|
rlm@202
|
564 * Source
|
rlm@202
|
565
|
rlm@203
|
566 Dylan -- I'll fill these in later
|
rlm@203
|
567 - cortex.body
|
rlm@203
|
568 - cortex.test.body
|
rlm@203
|
569 - blender files
|
rlm@203
|
570
|
rlm@202
|
571 * COMMENT Examples
|
rlm@63
|
572
|
rlm@69
|
573 #+name: test-body
|
rlm@64
|
574 #+begin_src clojure
|
rlm@63
|
575
|
rlm@64
|
576 (defn worm-segments
|
rlm@64
|
577 "Create multiple evenly spaced box segments. They're fabulous!"
|
rlm@64
|
578 [segment-length num-segments interstitial-space radius]
|
rlm@64
|
579 (letfn [(nth-segment
|
rlm@64
|
580 [n]
|
rlm@64
|
581 (box segment-length radius radius :mass 0.1
|
rlm@64
|
582 :position
|
rlm@64
|
583 (Vector3f.
|
rlm@64
|
584 (* 2 n (+ interstitial-space segment-length)) 0 0)
|
rlm@64
|
585 :name (str "worm-segment" n)
|
rlm@64
|
586 :color (ColorRGBA/randomColor)))]
|
rlm@64
|
587 (map nth-segment (range num-segments))))
|
rlm@63
|
588
|
rlm@64
|
589 (defn connect-at-midpoint
|
rlm@64
|
590 "Connect two physics objects with a Point2Point joint constraint at
|
rlm@64
|
591 the point equidistant from both objects' centers."
|
rlm@64
|
592 [segmentA segmentB]
|
rlm@64
|
593 (let [centerA (.getWorldTranslation segmentA)
|
rlm@64
|
594 centerB (.getWorldTranslation segmentB)
|
rlm@64
|
595 midpoint (.mult (.add centerA centerB) (float 0.5))
|
rlm@64
|
596 pivotA (.subtract midpoint centerA)
|
rlm@64
|
597 pivotB (.subtract midpoint centerB)
|
rlm@64
|
598
|
rlm@64
|
599 ;; A side-effect of creating a joint registers
|
rlm@64
|
600 ;; it with both physics objects which in turn
|
rlm@64
|
601 ;; will register the joint with the physics system
|
rlm@64
|
602 ;; when the simulation is started.
|
rlm@64
|
603 joint (Point2PointJoint.
|
rlm@64
|
604 (.getControl segmentA RigidBodyControl)
|
rlm@64
|
605 (.getControl segmentB RigidBodyControl)
|
rlm@64
|
606 pivotA
|
rlm@64
|
607 pivotB)]
|
rlm@64
|
608 segmentB))
|
rlm@63
|
609
|
rlm@64
|
610 (defn eve-worm
|
rlm@72
|
611 "Create a worm-like body bound by invisible joint constraints."
|
rlm@64
|
612 []
|
rlm@64
|
613 (let [segments (worm-segments 0.2 5 0.1 0.1)]
|
rlm@64
|
614 (dorun (map (partial apply connect-at-midpoint)
|
rlm@64
|
615 (partition 2 1 segments)))
|
rlm@64
|
616 (nodify "worm" segments)))
|
rlm@63
|
617
|
rlm@64
|
618 (defn worm-pattern
|
rlm@64
|
619 "This is a simple, mindless motor control pattern that drives the
|
rlm@64
|
620 second segment of the worm's body at an offset angle with
|
rlm@64
|
621 sinusoidally varying strength."
|
rlm@64
|
622 [time]
|
rlm@64
|
623 (let [angle (* Math/PI (/ 9 20))
|
rlm@63
|
624 direction (Vector3f. 0 (Math/sin angle) (Math/cos angle))]
|
rlm@63
|
625 [Vector3f/ZERO
|
rlm@63
|
626 (.mult
|
rlm@63
|
627 direction
|
rlm@63
|
628 (float (* 2 (Math/sin (* Math/PI 2 (/ (rem time 300 ) 300))))))
|
rlm@63
|
629 Vector3f/ZERO
|
rlm@63
|
630 Vector3f/ZERO
|
rlm@63
|
631 Vector3f/ZERO]))
|
rlm@60
|
632
|
rlm@64
|
633 (defn test-motor-control
|
rlm@69
|
634 "Testing motor-control:
|
rlm@69
|
635 You should see a multi-segmented worm-like object fall onto the
|
rlm@64
|
636 table and begin writhing and moving."
|
rlm@60
|
637 []
|
rlm@64
|
638 (let [worm (eve-worm)
|
rlm@60
|
639 time (atom 0)
|
rlm@63
|
640 worm-motor-map (vector-motor-control worm)]
|
rlm@60
|
641 (world
|
rlm@60
|
642 (nodify [worm
|
rlm@60
|
643 (box 10 0.5 10 :position (Vector3f. 0 -5 0) :mass 0
|
rlm@60
|
644 :color ColorRGBA/Gray)])
|
rlm@60
|
645 standard-debug-controls
|
rlm@60
|
646 (fn [world]
|
rlm@60
|
647 (enable-debug world)
|
rlm@60
|
648 (light-up-everything world)
|
rlm@63
|
649 (comment
|
rlm@63
|
650 (com.aurellem.capture.Capture/captureVideo
|
rlm@63
|
651 world
|
rlm@63
|
652 (file-str "/home/r/proj/cortex/tmp/moving-worm")))
|
rlm@63
|
653 )
|
rlm@60
|
654
|
rlm@60
|
655 (fn [_ _]
|
rlm@60
|
656 (swap! time inc)
|
rlm@64
|
657 (Thread/sleep 20)
|
rlm@60
|
658 (dorun (worm-motor-map
|
rlm@60
|
659 (worm-pattern @time)))))))
|
rlm@60
|
660
|
rlm@130
|
661
|
rlm@135
|
662
|
rlm@130
|
663 (defn join-at-point [obj-a obj-b world-pivot]
|
rlm@130
|
664 (cortex.silly/joint-dispatch
|
rlm@130
|
665 {:type :point}
|
rlm@130
|
666 (.getControl obj-a RigidBodyControl)
|
rlm@130
|
667 (.getControl obj-b RigidBodyControl)
|
rlm@130
|
668 (cortex.silly/world-to-local obj-a world-pivot)
|
rlm@130
|
669 (cortex.silly/world-to-local obj-b world-pivot)
|
rlm@130
|
670 nil
|
rlm@130
|
671 ))
|
rlm@130
|
672
|
rlm@133
|
673 (import com.jme3.bullet.collision.PhysicsCollisionObject)
|
rlm@130
|
674
|
rlm@130
|
675 (defn blab-* []
|
rlm@130
|
676 (let [hand (box 0.5 0.2 0.2 :position (Vector3f. 0 0 0)
|
rlm@130
|
677 :mass 0 :color ColorRGBA/Green)
|
rlm@130
|
678 finger (box 0.5 0.2 0.2 :position (Vector3f. 2.4 0 0)
|
rlm@130
|
679 :mass 1 :color ColorRGBA/Red)
|
rlm@130
|
680 connection-point (Vector3f. 1.2 0 0)
|
rlm@130
|
681 root (nodify [hand finger])]
|
rlm@130
|
682
|
rlm@130
|
683 (join-at-point hand finger (Vector3f. 1.2 0 0))
|
rlm@130
|
684
|
rlm@130
|
685 (.setCollisionGroup
|
rlm@130
|
686 (.getControl hand RigidBodyControl)
|
rlm@130
|
687 PhysicsCollisionObject/COLLISION_GROUP_NONE)
|
rlm@130
|
688 (world
|
rlm@130
|
689 root
|
rlm@130
|
690 standard-debug-controls
|
rlm@130
|
691 (fn [world]
|
rlm@130
|
692 (enable-debug world)
|
rlm@130
|
693 (.setTimer world (com.aurellem.capture.RatchetTimer. 60))
|
rlm@130
|
694 (set-gravity world Vector3f/ZERO)
|
rlm@130
|
695 )
|
rlm@130
|
696 no-op)))
|
rlm@133
|
697 (comment
|
rlm@133
|
698
|
rlm@133
|
699 (defn proprioception-debug-window
|
rlm@133
|
700 []
|
rlm@133
|
701 (let [time (atom 0)]
|
rlm@133
|
702 (fn [prop-data]
|
rlm@133
|
703 (if (= 0 (rem (swap! time inc) 40))
|
rlm@133
|
704 (println-repl prop-data)))))
|
rlm@133
|
705 )
|
rlm@133
|
706
|
rlm@131
|
707 (comment
|
rlm@131
|
708 (dorun
|
rlm@131
|
709 (map
|
rlm@131
|
710 (comp
|
rlm@131
|
711 println-repl
|
rlm@131
|
712 (fn [[p y r]]
|
rlm@131
|
713 (format
|
rlm@131
|
714 "pitch: %1.2f\nyaw: %1.2f\nroll: %1.2f\n"
|
rlm@131
|
715 p y r)))
|
rlm@131
|
716 prop-data)))
|
rlm@131
|
717
|
rlm@130
|
718
|
rlm@130
|
719
|
rlm@137
|
720
|
rlm@64
|
721 (defn test-proprioception
|
rlm@69
|
722 "Testing proprioception:
|
rlm@69
|
723 You should see two foating bars, and a printout of pitch, yaw, and
|
rlm@64
|
724 roll. Pressing key-r/key-t should move the blue bar up and down and
|
rlm@64
|
725 change only the value of pitch. key-f/key-g moves it side to side
|
rlm@64
|
726 and changes yaw. key-v/key-b will spin the blue segment clockwise
|
rlm@64
|
727 and counterclockwise, and only affect roll."
|
rlm@60
|
728 []
|
rlm@145
|
729 (let [hand (box 0.2 1 0.2 :position (Vector3f. 0 0 0)
|
rlm@142
|
730 :mass 0 :color ColorRGBA/Green :name "hand")
|
rlm@145
|
731 finger (box 0.2 1 0.2 :position (Vector3f. 0 2.4 0)
|
rlm@132
|
732 :mass 1 :color ColorRGBA/Red :name "finger")
|
rlm@133
|
733 joint-node (box 0.1 0.05 0.05 :color ColorRGBA/Yellow
|
rlm@145
|
734 :position (Vector3f. 0 1.2 0)
|
rlm@145
|
735 :rotation (doto (Quaternion.)
|
rlm@145
|
736 (.fromAngleAxis
|
rlm@145
|
737 (/ Math/PI 2)
|
rlm@145
|
738 (Vector3f. 0 0 1)))
|
rlm@133
|
739 :physical? false)
|
rlm@145
|
740 joint (join-at-point hand finger (Vector3f. 0 1.2 0 ))
|
rlm@135
|
741 creature (nodify [hand finger joint-node])
|
rlm@145
|
742 finger-control (.getControl finger RigidBodyControl)
|
rlm@145
|
743 hand-control (.getControl hand RigidBodyControl)]
|
rlm@145
|
744
|
rlm@145
|
745
|
rlm@145
|
746 (let
|
rlm@135
|
747 ;; *******************************************
|
rlm@137
|
748
|
rlm@145
|
749 [floor (box 10 10 10 :position (Vector3f. 0 -15 0)
|
rlm@135
|
750 :mass 0 :color ColorRGBA/Gray)
|
rlm@137
|
751
|
rlm@137
|
752 root (nodify [creature floor])
|
rlm@133
|
753 prop (joint-proprioception creature joint-node)
|
rlm@139
|
754 prop-view (proprioception-debug-window)
|
rlm@139
|
755
|
rlm@139
|
756 controls
|
rlm@139
|
757 (merge standard-debug-controls
|
rlm@140
|
758 {"key-o"
|
rlm@139
|
759 (fn [_ _] (.setEnabled finger-control true))
|
rlm@140
|
760 "key-p"
|
rlm@139
|
761 (fn [_ _] (.setEnabled finger-control false))
|
rlm@140
|
762 "key-k"
|
rlm@140
|
763 (fn [_ _] (.setEnabled hand-control true))
|
rlm@140
|
764 "key-l"
|
rlm@140
|
765 (fn [_ _] (.setEnabled hand-control false))
|
rlm@139
|
766 "key-i"
|
rlm@139
|
767 (fn [world _] (set-gravity world (Vector3f. 0 0 0)))
|
rlm@142
|
768 "key-period"
|
rlm@142
|
769 (fn [world _]
|
rlm@142
|
770 (.setEnabled finger-control false)
|
rlm@142
|
771 (.setEnabled hand-control false)
|
rlm@142
|
772 (.rotate creature (doto (Quaternion.)
|
rlm@142
|
773 (.fromAngleAxis
|
rlm@142
|
774 (float (/ Math/PI 15))
|
rlm@142
|
775 (Vector3f. 0 0 -1))))
|
rlm@142
|
776
|
rlm@142
|
777 (.setEnabled finger-control true)
|
rlm@142
|
778 (.setEnabled hand-control true)
|
rlm@142
|
779 (set-gravity world (Vector3f. 0 0 0))
|
rlm@142
|
780 )
|
rlm@142
|
781
|
rlm@142
|
782
|
rlm@139
|
783 }
|
rlm@139
|
784 )
|
rlm@130
|
785
|
rlm@139
|
786 ]
|
rlm@139
|
787 (comment
|
rlm@139
|
788 (.setCollisionGroup
|
rlm@139
|
789 (.getControl hand RigidBodyControl)
|
rlm@139
|
790 PhysicsCollisionObject/COLLISION_GROUP_NONE)
|
rlm@139
|
791 )
|
rlm@140
|
792 (apply
|
rlm@140
|
793 world
|
rlm@140
|
794 (with-movement
|
rlm@140
|
795 hand
|
rlm@140
|
796 ["key-y" "key-u" "key-h" "key-j" "key-n" "key-m"]
|
rlm@140
|
797 [10 10 10 10 1 1]
|
rlm@140
|
798 (with-movement
|
rlm@140
|
799 finger
|
rlm@140
|
800 ["key-r" "key-t" "key-f" "key-g" "key-v" "key-b"]
|
rlm@145
|
801 [1 1 10 10 10 10]
|
rlm@140
|
802 [root
|
rlm@140
|
803 controls
|
rlm@140
|
804 (fn [world]
|
rlm@140
|
805 (.setTimer world (com.aurellem.capture.RatchetTimer. 60))
|
rlm@140
|
806 (set-gravity world (Vector3f. 0 0 0))
|
rlm@140
|
807 (light-up-everything world))
|
rlm@145
|
808 (fn [_ _] (prop-view (list (prop))))]))))))
|
rlm@138
|
809
|
rlm@64
|
810 #+end_src
|
rlm@56
|
811
|
rlm@130
|
812 #+results: test-body
|
rlm@130
|
813 : #'cortex.test.body/test-proprioception
|
rlm@130
|
814
|
rlm@60
|
815
|
rlm@63
|
816 * COMMENT code-limbo
|
rlm@61
|
817 #+begin_src clojure
|
rlm@61
|
818 ;;(.loadModel
|
rlm@61
|
819 ;; (doto (asset-manager)
|
rlm@61
|
820 ;; (.registerLoader BlenderModelLoader (into-array String ["blend"])))
|
rlm@61
|
821 ;; "Models/person/person.blend")
|
rlm@61
|
822
|
rlm@64
|
823
|
rlm@64
|
824 (defn load-blender-model
|
rlm@64
|
825 "Load a .blend file using an asset folder relative path."
|
rlm@64
|
826 [^String model]
|
rlm@64
|
827 (.loadModel
|
rlm@64
|
828 (doto (asset-manager)
|
rlm@64
|
829 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
|
rlm@64
|
830 model))
|
rlm@64
|
831
|
rlm@64
|
832
|
rlm@61
|
833 (defn view-model [^String model]
|
rlm@61
|
834 (view
|
rlm@61
|
835 (.loadModel
|
rlm@61
|
836 (doto (asset-manager)
|
rlm@61
|
837 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
|
rlm@61
|
838 model)))
|
rlm@61
|
839
|
rlm@61
|
840 (defn load-blender-scene [^String model]
|
rlm@61
|
841 (.loadModel
|
rlm@61
|
842 (doto (asset-manager)
|
rlm@61
|
843 (.registerLoader BlenderLoader (into-array String ["blend"])))
|
rlm@61
|
844 model))
|
rlm@61
|
845
|
rlm@61
|
846 (defn worm
|
rlm@61
|
847 []
|
rlm@61
|
848 (.loadModel (asset-manager) "Models/anim2/Cube.mesh.xml"))
|
rlm@61
|
849
|
rlm@61
|
850 (defn oto
|
rlm@61
|
851 []
|
rlm@61
|
852 (.loadModel (asset-manager) "Models/Oto/Oto.mesh.xml"))
|
rlm@61
|
853
|
rlm@61
|
854 (defn sinbad
|
rlm@61
|
855 []
|
rlm@61
|
856 (.loadModel (asset-manager) "Models/Sinbad/Sinbad.mesh.xml"))
|
rlm@61
|
857
|
rlm@61
|
858 (defn worm-blender
|
rlm@61
|
859 []
|
rlm@61
|
860 (first (seq (.getChildren (load-blender-model
|
rlm@61
|
861 "Models/anim2/simple-worm.blend")))))
|
rlm@61
|
862
|
rlm@61
|
863 (defn body
|
rlm@61
|
864 "given a node with a SkeletonControl, will produce a body sutiable
|
rlm@61
|
865 for AI control with movement and proprioception."
|
rlm@61
|
866 [node]
|
rlm@61
|
867 (let [skeleton-control (.getControl node SkeletonControl)
|
rlm@61
|
868 krc (KinematicRagdollControl.)]
|
rlm@61
|
869 (comment
|
rlm@61
|
870 (dorun
|
rlm@61
|
871 (map #(.addBoneName krc %)
|
rlm@61
|
872 ["mid2" "tail" "head" "mid1" "mid3" "mid4" "Dummy-Root" ""]
|
rlm@61
|
873 ;;"mid2" "mid3" "tail" "head"]
|
rlm@61
|
874 )))
|
rlm@61
|
875 (.addControl node krc)
|
rlm@61
|
876 (.setRagdollMode krc)
|
rlm@61
|
877 )
|
rlm@61
|
878 node
|
rlm@61
|
879 )
|
rlm@61
|
880 (defn show-skeleton [node]
|
rlm@61
|
881 (let [sd
|
rlm@61
|
882
|
rlm@61
|
883 (doto
|
rlm@61
|
884 (SkeletonDebugger. "aurellem-skel-debug"
|
rlm@61
|
885 (skel node))
|
rlm@61
|
886 (.setMaterial (green-x-ray)))]
|
rlm@61
|
887 (.attachChild node sd)
|
rlm@61
|
888 node))
|
rlm@61
|
889
|
rlm@61
|
890
|
rlm@61
|
891
|
rlm@61
|
892 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
rlm@61
|
893
|
rlm@61
|
894 ;; this could be a good way to give objects special properties like
|
rlm@61
|
895 ;; being eyes and the like
|
rlm@61
|
896
|
rlm@61
|
897 (.getUserData
|
rlm@61
|
898 (.getChild
|
rlm@61
|
899 (load-blender-model "Models/property/test.blend") 0)
|
rlm@61
|
900 "properties")
|
rlm@61
|
901
|
rlm@61
|
902 ;; the properties are saved along with the blender file.
|
rlm@61
|
903 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
rlm@61
|
904
|
rlm@61
|
905
|
rlm@61
|
906
|
rlm@61
|
907
|
rlm@61
|
908 (defn init-debug-skel-node
|
rlm@61
|
909 [f debug-node skeleton]
|
rlm@61
|
910 (let [bones
|
rlm@61
|
911 (map #(.getBone skeleton %)
|
rlm@61
|
912 (range (.getBoneCount skeleton)))]
|
rlm@61
|
913 (dorun (map #(.setUserControl % true) bones))
|
rlm@61
|
914 (dorun (map (fn [b]
|
rlm@61
|
915 (println (.getName b)
|
rlm@61
|
916 " -- " (f b)))
|
rlm@61
|
917 bones))
|
rlm@61
|
918 (dorun
|
rlm@61
|
919 (map #(.attachChild
|
rlm@61
|
920 debug-node
|
rlm@61
|
921 (doto
|
rlm@61
|
922 (sphere 0.1
|
rlm@61
|
923 :position (f %)
|
rlm@61
|
924 :physical? false)
|
rlm@61
|
925 (.setMaterial (green-x-ray))))
|
rlm@61
|
926 bones)))
|
rlm@61
|
927 debug-node)
|
rlm@61
|
928
|
rlm@61
|
929 (import jme3test.bullet.PhysicsTestHelper)
|
rlm@61
|
930
|
rlm@61
|
931
|
rlm@61
|
932 (defn test-zzz [the-worm world value]
|
rlm@61
|
933 (if (not value)
|
rlm@61
|
934 (let [skeleton (skel the-worm)]
|
rlm@61
|
935 (println-repl "enabling bones")
|
rlm@61
|
936 (dorun
|
rlm@61
|
937 (map
|
rlm@61
|
938 #(.setUserControl (.getBone skeleton %) true)
|
rlm@61
|
939 (range (.getBoneCount skeleton))))
|
rlm@61
|
940
|
rlm@61
|
941
|
rlm@61
|
942 (let [b (.getBone skeleton 2)]
|
rlm@61
|
943 (println-repl "moving " (.getName b))
|
rlm@61
|
944 (println-repl (.getLocalPosition b))
|
rlm@61
|
945 (.setUserTransforms b
|
rlm@61
|
946 Vector3f/UNIT_X
|
rlm@61
|
947 Quaternion/IDENTITY
|
rlm@61
|
948 ;;(doto (Quaternion.)
|
rlm@61
|
949 ;; (.fromAngles (/ Math/PI 2)
|
rlm@61
|
950 ;; 0
|
rlm@61
|
951 ;; 0
|
rlm@61
|
952
|
rlm@61
|
953 (Vector3f. 1 1 1))
|
rlm@61
|
954 )
|
rlm@61
|
955
|
rlm@61
|
956 (println-repl "hi! <3"))))
|
rlm@61
|
957
|
rlm@61
|
958
|
rlm@61
|
959 (defn test-ragdoll []
|
rlm@61
|
960
|
rlm@61
|
961 (let [the-worm
|
rlm@61
|
962
|
rlm@61
|
963 ;;(.loadModel (asset-manager) "Models/anim2/Cube.mesh.xml")
|
rlm@61
|
964 (doto (show-skeleton (worm-blender))
|
rlm@61
|
965 (.setLocalTranslation (Vector3f. 0 10 0))
|
rlm@61
|
966 ;;(worm)
|
rlm@61
|
967 ;;(oto)
|
rlm@61
|
968 ;;(sinbad)
|
rlm@61
|
969 )
|
rlm@61
|
970 ]
|
rlm@61
|
971
|
rlm@61
|
972
|
rlm@61
|
973 (.start
|
rlm@61
|
974 (world
|
rlm@61
|
975 (doto (Node.)
|
rlm@61
|
976 (.attachChild the-worm))
|
rlm@61
|
977 {"key-return" (fire-cannon-ball)
|
rlm@61
|
978 "key-space" (partial test-zzz the-worm)
|
rlm@61
|
979 }
|
rlm@61
|
980 (fn [world]
|
rlm@61
|
981 (light-up-everything world)
|
rlm@61
|
982 (PhysicsTestHelper/createPhysicsTestWorld
|
rlm@61
|
983 (.getRootNode world)
|
rlm@61
|
984 (asset-manager)
|
rlm@61
|
985 (.getPhysicsSpace
|
rlm@61
|
986 (.getState (.getStateManager world) BulletAppState)))
|
rlm@61
|
987 (set-gravity world Vector3f/ZERO)
|
rlm@61
|
988 ;;(.setTimer world (NanoTimer.))
|
rlm@61
|
989 ;;(org.lwjgl.input.Mouse/setGrabbed false)
|
rlm@61
|
990 )
|
rlm@61
|
991 no-op
|
rlm@61
|
992 )
|
rlm@61
|
993
|
rlm@61
|
994
|
rlm@61
|
995 )))
|
rlm@61
|
996
|
rlm@61
|
997
|
rlm@61
|
998 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
rlm@61
|
999 ;;; here is the ragdoll stuff
|
rlm@61
|
1000
|
rlm@61
|
1001 (def worm-mesh (.getMesh (.getChild (worm-blender) 0)))
|
rlm@61
|
1002 (def mesh worm-mesh)
|
rlm@61
|
1003
|
rlm@61
|
1004 (.getFloatBuffer mesh VertexBuffer$Type/Position)
|
rlm@61
|
1005 (.getFloatBuffer mesh VertexBuffer$Type/BoneWeight)
|
rlm@61
|
1006 (.getData (.getBuffer mesh VertexBuffer$Type/BoneIndex))
|
rlm@61
|
1007
|
rlm@61
|
1008
|
rlm@61
|
1009 (defn position [index]
|
rlm@61
|
1010 (.get
|
rlm@61
|
1011 (.getFloatBuffer worm-mesh VertexBuffer$Type/Position)
|
rlm@61
|
1012 index))
|
rlm@61
|
1013
|
rlm@61
|
1014 (defn bones [index]
|
rlm@61
|
1015 (.get
|
rlm@61
|
1016 (.getData (.getBuffer mesh VertexBuffer$Type/BoneIndex))
|
rlm@61
|
1017 index))
|
rlm@61
|
1018
|
rlm@61
|
1019 (defn bone-weights [index]
|
rlm@61
|
1020 (.get
|
rlm@61
|
1021 (.getFloatBuffer mesh VertexBuffer$Type/BoneWeight)
|
rlm@61
|
1022 index))
|
rlm@61
|
1023
|
rlm@61
|
1024
|
rlm@61
|
1025
|
rlm@61
|
1026 (defn vertex-bones [vertex]
|
rlm@61
|
1027 (vec (map (comp int bones) (range (* vertex 4) (+ (* vertex 4) 4)))))
|
rlm@61
|
1028
|
rlm@61
|
1029 (defn vertex-weights [vertex]
|
rlm@61
|
1030 (vec (map (comp float bone-weights) (range (* vertex 4) (+ (* vertex 4) 4)))))
|
rlm@61
|
1031
|
rlm@61
|
1032 (defn vertex-position [index]
|
rlm@61
|
1033 (let [offset (* index 3)]
|
rlm@61
|
1034 (Vector3f. (position offset)
|
rlm@61
|
1035 (position (inc offset))
|
rlm@61
|
1036 (position (inc(inc offset))))))
|
rlm@61
|
1037
|
rlm@61
|
1038 (def vertex-info (juxt vertex-position vertex-bones vertex-weights))
|
rlm@61
|
1039
|
rlm@61
|
1040 (defn bone-control-color [index]
|
rlm@61
|
1041 (get {[1 0 0 0] ColorRGBA/Red
|
rlm@61
|
1042 [1 2 0 0] ColorRGBA/Magenta
|
rlm@61
|
1043 [2 0 0 0] ColorRGBA/Blue}
|
rlm@61
|
1044 (vertex-bones index)
|
rlm@61
|
1045 ColorRGBA/White))
|
rlm@61
|
1046
|
rlm@61
|
1047 (defn influence-color [index bone-num]
|
rlm@61
|
1048 (get
|
rlm@61
|
1049 {(float 0) ColorRGBA/Blue
|
rlm@61
|
1050 (float 0.5) ColorRGBA/Green
|
rlm@61
|
1051 (float 1) ColorRGBA/Red}
|
rlm@61
|
1052 ;; find the weight of the desired bone
|
rlm@61
|
1053 ((zipmap (vertex-bones index)(vertex-weights index))
|
rlm@61
|
1054 bone-num)
|
rlm@61
|
1055 ColorRGBA/Blue))
|
rlm@61
|
1056
|
rlm@61
|
1057 (def worm-vertices (set (map vertex-info (range 60))))
|
rlm@61
|
1058
|
rlm@61
|
1059
|
rlm@61
|
1060 (defn test-info []
|
rlm@61
|
1061 (let [points (Node.)]
|
rlm@61
|
1062 (dorun
|
rlm@61
|
1063 (map #(.attachChild points %)
|
rlm@61
|
1064 (map #(sphere 0.01
|
rlm@61
|
1065 :position (vertex-position %)
|
rlm@61
|
1066 :color (influence-color % 1)
|
rlm@61
|
1067 :physical? false)
|
rlm@61
|
1068 (range 60))))
|
rlm@61
|
1069 (view points)))
|
rlm@61
|
1070
|
rlm@61
|
1071
|
rlm@61
|
1072 (defrecord JointControl [joint physics-space]
|
rlm@61
|
1073 PhysicsControl
|
rlm@61
|
1074 (setPhysicsSpace [this space]
|
rlm@61
|
1075 (dosync
|
rlm@61
|
1076 (ref-set (:physics-space this) space))
|
rlm@61
|
1077 (.addJoint space (:joint this)))
|
rlm@61
|
1078 (update [this tpf])
|
rlm@61
|
1079 (setSpatial [this spatial])
|
rlm@61
|
1080 (render [this rm vp])
|
rlm@61
|
1081 (getPhysicsSpace [this] (deref (:physics-space this)))
|
rlm@61
|
1082 (isEnabled [this] true)
|
rlm@61
|
1083 (setEnabled [this state]))
|
rlm@61
|
1084
|
rlm@61
|
1085 (defn add-joint
|
rlm@61
|
1086 "Add a joint to a particular object. When the object is added to the
|
rlm@61
|
1087 PhysicsSpace of a simulation, the joint will also be added"
|
rlm@61
|
1088 [object joint]
|
rlm@61
|
1089 (let [control (JointControl. joint (ref nil))]
|
rlm@61
|
1090 (.addControl object control))
|
rlm@61
|
1091 object)
|
rlm@61
|
1092
|
rlm@61
|
1093
|
rlm@61
|
1094 (defn hinge-world
|
rlm@61
|
1095 []
|
rlm@61
|
1096 (let [sphere1 (sphere)
|
rlm@61
|
1097 sphere2 (sphere 1 :position (Vector3f. 3 3 3))
|
rlm@61
|
1098 joint (Point2PointJoint.
|
rlm@61
|
1099 (.getControl sphere1 RigidBodyControl)
|
rlm@61
|
1100 (.getControl sphere2 RigidBodyControl)
|
rlm@61
|
1101 Vector3f/ZERO (Vector3f. 3 3 3))]
|
rlm@61
|
1102 (add-joint sphere1 joint)
|
rlm@61
|
1103 (doto (Node. "hinge-world")
|
rlm@61
|
1104 (.attachChild sphere1)
|
rlm@61
|
1105 (.attachChild sphere2))))
|
rlm@61
|
1106
|
rlm@61
|
1107
|
rlm@61
|
1108 (defn test-joint []
|
rlm@61
|
1109 (view (hinge-world)))
|
rlm@61
|
1110
|
rlm@61
|
1111 ;; (defn copier-gen []
|
rlm@61
|
1112 ;; (let [count (atom 0)]
|
rlm@61
|
1113 ;; (fn [in]
|
rlm@61
|
1114 ;; (swap! count inc)
|
rlm@61
|
1115 ;; (clojure.contrib.duck-streams/copy
|
rlm@61
|
1116 ;; in (File. (str "/home/r/tmp/mao-test/clojure-images/"
|
rlm@61
|
1117 ;; ;;/home/r/tmp/mao-test/clojure-images
|
rlm@61
|
1118 ;; (format "%08d.png" @count)))))))
|
rlm@61
|
1119 ;; (defn decrease-framerate []
|
rlm@61
|
1120 ;; (map
|
rlm@61
|
1121 ;; (copier-gen)
|
rlm@61
|
1122 ;; (sort
|
rlm@61
|
1123 ;; (map first
|
rlm@61
|
1124 ;; (partition
|
rlm@61
|
1125 ;; 4
|
rlm@61
|
1126 ;; (filter #(re-matches #".*.png$" (.getCanonicalPath %))
|
rlm@61
|
1127 ;; (file-seq
|
rlm@61
|
1128 ;; (file-str
|
rlm@61
|
1129 ;; "/home/r/media/anime/mao-temp/images"))))))))
|
rlm@61
|
1130
|
rlm@61
|
1131
|
rlm@61
|
1132
|
rlm@61
|
1133 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
rlm@61
|
1134
|
rlm@61
|
1135 (defn proprioception
|
rlm@61
|
1136 "Create a proprioception map that reports the rotations of the
|
rlm@61
|
1137 various limbs of the creature's body"
|
rlm@61
|
1138 [creature]
|
rlm@61
|
1139 [#^Node creature]
|
rlm@61
|
1140 (let [
|
rlm@61
|
1141 nodes (node-seq creature)
|
rlm@61
|
1142 joints
|
rlm@61
|
1143 (map
|
rlm@61
|
1144 :joint
|
rlm@61
|
1145 (filter
|
rlm@61
|
1146 #(isa? (class %) JointControl)
|
rlm@61
|
1147 (reduce
|
rlm@61
|
1148 concat
|
rlm@61
|
1149 (map (fn [node]
|
rlm@61
|
1150 (map (fn [num] (.getControl node num))
|
rlm@61
|
1151 (range (.getNumControls node))))
|
rlm@61
|
1152 nodes))))]
|
rlm@61
|
1153 (fn []
|
rlm@61
|
1154 (reduce concat (map relative-positions (list (first joints)))))))
|
rlm@61
|
1155
|
rlm@61
|
1156
|
rlm@63
|
1157 (defn skel [node]
|
rlm@63
|
1158 (doto
|
rlm@63
|
1159 (.getSkeleton
|
rlm@63
|
1160 (.getControl node SkeletonControl))
|
rlm@63
|
1161 ;; this is necessary to force the skeleton to have accurate world
|
rlm@63
|
1162 ;; transforms before it is rendered to the screen.
|
rlm@63
|
1163 (.resetAndUpdate)))
|
rlm@63
|
1164
|
rlm@63
|
1165 (defn green-x-ray []
|
rlm@63
|
1166 (doto (Material. (asset-manager)
|
rlm@63
|
1167 "Common/MatDefs/Misc/Unshaded.j3md")
|
rlm@63
|
1168 (.setColor "Color" ColorRGBA/Green)
|
rlm@63
|
1169 (-> (.getAdditionalRenderState)
|
rlm@63
|
1170 (.setDepthTest false))))
|
rlm@63
|
1171
|
rlm@63
|
1172 (defn test-worm []
|
rlm@63
|
1173 (.start
|
rlm@63
|
1174 (world
|
rlm@63
|
1175 (doto (Node.)
|
rlm@63
|
1176 ;;(.attachChild (point-worm))
|
rlm@63
|
1177 (.attachChild (load-blender-model
|
rlm@63
|
1178 "Models/anim2/joint-worm.blend"))
|
rlm@63
|
1179
|
rlm@63
|
1180 (.attachChild (box 10 1 10
|
rlm@63
|
1181 :position (Vector3f. 0 -2 0) :mass 0
|
rlm@63
|
1182 :color (ColorRGBA/Gray))))
|
rlm@63
|
1183 {
|
rlm@63
|
1184 "key-space" (fire-cannon-ball)
|
rlm@63
|
1185 }
|
rlm@63
|
1186 (fn [world]
|
rlm@63
|
1187 (enable-debug world)
|
rlm@63
|
1188 (light-up-everything world)
|
rlm@63
|
1189 ;;(.setTimer world (NanoTimer.))
|
rlm@63
|
1190 )
|
rlm@63
|
1191 no-op)))
|
rlm@63
|
1192
|
rlm@63
|
1193
|
rlm@63
|
1194
|
rlm@63
|
1195 ;; defunct movement stuff
|
rlm@63
|
1196 (defn torque-controls [control]
|
rlm@63
|
1197 (let [torques
|
rlm@63
|
1198 (concat
|
rlm@63
|
1199 (map #(Vector3f. 0 (Math/sin %) (Math/cos %))
|
rlm@63
|
1200 (range 0 (* Math/PI 2) (/ (* Math/PI 2) 20)))
|
rlm@63
|
1201 [Vector3f/UNIT_X])]
|
rlm@63
|
1202 (map (fn [torque-axis]
|
rlm@63
|
1203 (fn [torque]
|
rlm@63
|
1204 (.applyTorque
|
rlm@63
|
1205 control
|
rlm@63
|
1206 (.mult (.mult (.getPhysicsRotation control)
|
rlm@63
|
1207 torque-axis)
|
rlm@63
|
1208 (float
|
rlm@63
|
1209 (* (.getMass control) torque))))))
|
rlm@63
|
1210 torques)))
|
rlm@63
|
1211
|
rlm@63
|
1212 (defn motor-map
|
rlm@63
|
1213 "Take a creature and generate a function that will enable fine
|
rlm@63
|
1214 grained control over all the creature's limbs."
|
rlm@63
|
1215 [#^Node creature]
|
rlm@63
|
1216 (let [controls (keep #(.getControl % RigidBodyControl)
|
rlm@63
|
1217 (node-seq creature))
|
rlm@63
|
1218 limb-controls (reduce concat (map torque-controls controls))
|
rlm@63
|
1219 body-control (partial map #(%1 %2) limb-controls)]
|
rlm@63
|
1220 body-control))
|
rlm@63
|
1221
|
rlm@63
|
1222 (defn test-motor-map
|
rlm@63
|
1223 "see how torque works."
|
rlm@63
|
1224 []
|
rlm@63
|
1225 (let [finger (box 3 0.5 0.5 :position (Vector3f. 0 2 0)
|
rlm@63
|
1226 :mass 1 :color ColorRGBA/Green)
|
rlm@63
|
1227 motor-map (motor-map finger)]
|
rlm@63
|
1228 (world
|
rlm@63
|
1229 (nodify [finger
|
rlm@63
|
1230 (box 10 0.5 10 :position (Vector3f. 0 -5 0) :mass 0
|
rlm@63
|
1231 :color ColorRGBA/Gray)])
|
rlm@63
|
1232 standard-debug-controls
|
rlm@63
|
1233 (fn [world]
|
rlm@63
|
1234 (set-gravity world Vector3f/ZERO)
|
rlm@63
|
1235 (light-up-everything world)
|
rlm@63
|
1236 (.setTimer world (NanoTimer.)))
|
rlm@63
|
1237 (fn [_ _]
|
rlm@145
|
1238 (dorun (motor-map [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
|
rlm@145
|
1239 0]))))))
|
rlm@145
|
1240
|
rlm@145
|
1241 (defn joint-proprioception [#^Node parts #^Node joint]
|
rlm@145
|
1242 (let [[obj-a obj-b] (joint-targets parts joint)
|
rlm@145
|
1243 joint-rot (.getWorldRotation joint)
|
rlm@145
|
1244 pre-inv-a (.inverse (.getWorldRotation obj-a))
|
rlm@145
|
1245 x (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_X))
|
rlm@145
|
1246 y (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_Y))
|
rlm@145
|
1247 z (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_Z))
|
rlm@145
|
1248
|
rlm@145
|
1249 x Vector3f/UNIT_Y
|
rlm@145
|
1250 y Vector3f/UNIT_Z
|
rlm@145
|
1251 z Vector3f/UNIT_X
|
rlm@145
|
1252
|
rlm@145
|
1253
|
rlm@145
|
1254 tmp-rot-a (.getWorldRotation obj-a)]
|
rlm@145
|
1255 (println-repl "x:" (.mult tmp-rot-a x))
|
rlm@145
|
1256 (println-repl "y:" (.mult tmp-rot-a y))
|
rlm@145
|
1257 (println-repl "z:" (.mult tmp-rot-a z))
|
rlm@145
|
1258 (println-repl "rot-a" (.getWorldRotation obj-a))
|
rlm@145
|
1259 (println-repl "rot-b" (.getWorldRotation obj-b))
|
rlm@145
|
1260 (println-repl "joint-rot" joint-rot)
|
rlm@145
|
1261 ;; this function will report proprioceptive information for the
|
rlm@145
|
1262 ;; joint.
|
rlm@145
|
1263 (fn []
|
rlm@145
|
1264 ;; x is the "twist" axis, y and z are the "bend" axes
|
rlm@145
|
1265 (let [rot-a (.getWorldRotation obj-a)
|
rlm@145
|
1266 ;;inv-a (.inverse rot-a)
|
rlm@145
|
1267 rot-b (.getWorldRotation obj-b)
|
rlm@145
|
1268 ;;relative (.mult rot-b inv-a)
|
rlm@145
|
1269 basis (doto (Matrix3f.)
|
rlm@145
|
1270 (.setColumn 0 (.mult rot-a x))
|
rlm@145
|
1271 (.setColumn 1 (.mult rot-a y))
|
rlm@145
|
1272 (.setColumn 2 (.mult rot-a z)))
|
rlm@145
|
1273 rotation-about-joint
|
rlm@145
|
1274 (doto (Quaternion.)
|
rlm@145
|
1275 (.fromRotationMatrix
|
rlm@145
|
1276 (.mult (.invert basis)
|
rlm@145
|
1277 (.toRotationMatrix rot-b))))
|
rlm@145
|
1278 [yaw roll pitch]
|
rlm@145
|
1279 (seq (.toAngles rotation-about-joint nil))]
|
rlm@145
|
1280 ;;return euler angles of the quaternion around the new basis
|
rlm@145
|
1281 [yaw roll pitch]))))
|
rlm@145
|
1282
|
rlm@61
|
1283 #+end_src
|
rlm@0
|
1284
|
rlm@0
|
1285
|
rlm@0
|
1286
|
rlm@0
|
1287
|
rlm@0
|
1288
|
rlm@0
|
1289
|
rlm@0
|
1290
|
rlm@73
|
1291 * COMMENT generate Source
|
rlm@44
|
1292 #+begin_src clojure :tangle ../src/cortex/body.clj
|
rlm@205
|
1293 <<body-header>>
|
rlm@205
|
1294 <<body-1>>
|
rlm@205
|
1295 <<joints-2>>
|
rlm@205
|
1296 <<joints-3>>
|
rlm@205
|
1297 <<joints-4>>
|
rlm@205
|
1298 <<joints-5>>
|
rlm@205
|
1299 <<joints-6>>
|
rlm@0
|
1300 #+end_src
|
rlm@64
|
1301
|
rlm@69
|
1302 #+begin_src clojure :tangle ../src/cortex/test/body.clj
|
rlm@205
|
1303 <<test-header>>
|
rlm@205
|
1304 <<test-1>>
|
rlm@205
|
1305 <<test-2>>
|
rlm@205
|
1306 <<test-3>>
|
rlm@205
|
1307 <<test-4>>
|
rlm@64
|
1308 #+end_src
|
rlm@64
|
1309
|
rlm@64
|
1310
|
rlm@0
|
1311
|