annotate org/body.org @ 205:d3a2abfac405

fixed tangling in body.org, added dialated time HUD display in cortex.util
author Robert McIntyre <rlm@mit.edu>
date Thu, 09 Feb 2012 04:15:09 -0700
parents 162b24a82712
children df46a609fed9
rev   line source
rlm@202 1 #+title: Building a Body
rlm@0 2 #+author: Robert McIntyre
rlm@0 3 #+email: rlm@mit.edu
rlm@4 4 #+description: Simulating a body (movement, touch, propioception) in jMonkeyEngine3.
rlm@4 5 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 6 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@4 7
rlm@202 8
rlm@202 9 * Design Constraints
rlm@202 10
rlm@202 11 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
rlm@202 12 determined by the requirements of the AI that will use them. The
rlm@202 13 bodies must be easy for an AI to sense and control, and they must be
rlm@202 14 relatively simple for jMonkeyEngine to compute.
rlm@202 15
rlm@202 16 ** Bag of Bones
rlm@202 17
rlm@202 18 How to create such a body? One option I ultimately rejected is to use
rlm@202 19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
rlm@202 20 which describes the creature's entire body. To this you add an
rlm@202 21 (skeleton) which deforms this mesh. This technique is used extensively
rlm@202 22 to model humans and create realistic animations. It is hard to use for
rlm@202 23 my purposes because it is difficult to update the creature's Physics
rlm@202 24 Collision Mesh in tandem with its Geometric Mesh under the influence
rlm@202 25 of the armature. Withouth this the creature will not be able to grab
rlm@202 26 things in its environment, and it won't be able to tell where its
rlm@202 27 physical body is by using its eyes. Also, armatures do not specify
rlm@202 28 any rotational limits for a joint, making it hard to model elbows,
rlm@202 29 shoulders, etc.
rlm@202 30
rlm@202 31 ** EVE
rlm@202 32
rlm@202 33 Instead of using the human-like "deformable bag of bones" approach, I
rlm@202 34 decided to base my body plans on the robot EVE from the movie wall-E.
rlm@202 35
rlm@202 36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
rlm@202 37 [[../images/Eve.jpg]]
rlm@202 38
rlm@204 39 EVE's body is composed of several rigid components that are held
rlm@204 40 together by invisible joint constraints. This is what I mean by
rlm@204 41 "eve-like". The main reason that I use eve-style bodies is so that
rlm@204 42 there will be correspondence between the AI's vision and the physical
rlm@204 43 presence of its body. Each individual section is simulated by a
rlm@204 44 separate rigid body that corresponds exactly with its visual
rlm@204 45 representation and does not change. Sections are connected by
rlm@204 46 invisible joints that are well supported in jMonkyeEngine. Bullet, the
rlm@204 47 physics backend for jMonkeyEngine, can efficiently simulate hundreds
rlm@204 48 of rigid bodies connected by joints. Sections do not have to stay as
rlm@204 49 one piece forever; they can be dynamically replaced with multiple
rlm@204 50 sections to simulate splitting in two. This could be used to simulate
rlm@204 51 retractable claws or EVE's hands, which could coalece into one object
rlm@204 52 in the movie.
rlm@202 53
rlm@202 54 * Solidifying the Body
rlm@202 55
rlm@202 56 Here is a hand designed eve-style in blender.
rlm@202 57
rlm@203 58 #+attr_html: width="755"
rlm@202 59 [[../images/hand-screenshot0.png]]
rlm@202 60
rlm@202 61 If we load it directly into jMonkeyEngine, we get this:
rlm@202 62
rlm@205 63 #+name: test-1
rlm@202 64 #+begin_src clojure
rlm@202 65 (def hand-path "Models/test-creature/hand.blend")
rlm@202 66
rlm@202 67 (defn hand [] (load-blender-model hand-path))
rlm@202 68
rlm@202 69 (defn setup [world]
rlm@202 70 (let [cam (.getCamera world)]
rlm@202 71 (println-repl cam)
rlm@202 72 (.setLocation
rlm@202 73 cam (Vector3f.
rlm@202 74 -6.9015837, 8.644911, 5.6043186))
rlm@202 75 (.setRotation
rlm@202 76 cam
rlm@202 77 (Quaternion.
rlm@202 78 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
rlm@202 79 (light-up-everything world)
rlm@202 80 (.setTimer world (RatchetTimer. 60))
rlm@202 81 world)
rlm@202 82
rlm@202 83 (defn test-one []
rlm@202 84 (world (hand)
rlm@202 85 standard-debug-controls
rlm@202 86 (comp
rlm@202 87 #(Capture/captureVideo
rlm@202 88 % (File. "/home/r/proj/cortex/render/body/1"))
rlm@202 89 setup)
rlm@202 90 no-op))
rlm@202 91 #+end_src
rlm@202 92
rlm@202 93
rlm@202 94 #+begin_src clojure :results silent
rlm@202 95 (.start (cortex.test.body/test-one))
rlm@202 96 #+end_src
rlm@202 97
rlm@202 98 #+begin_html
rlm@203 99 <div class="figure">
rlm@203 100 <center>
rlm@203 101 <video controls="controls" width="640">
rlm@202 102 <source src="../video/ghost-hand.ogg" type="video/ogg"
rlm@202 103 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 104 </video>
rlm@203 105 </center>
rlm@203 106 <p>The hand model directly loaded from blender. It has no physical
rlm@203 107 presense in the simulation. </p>
rlm@203 108 </div>
rlm@202 109 #+end_html
rlm@202 110
rlm@202 111 You will notice that the hand has no physical presence -- it's a
rlm@204 112 hologram through which everything passes. Therefore, the first thing
rlm@202 113 to do is to make it solid. Blender has physics simulation on par with
rlm@202 114 jMonkeyEngine (they both use bullet as their physics backend), but it
rlm@202 115 can be difficult to translate between the two systems, so for now I
rlm@202 116 specify the mass of each object in blender and construct the physics
rlm@202 117 shape based on the mesh in jMonkeyEngine.
rlm@202 118
rlm@203 119 #+name: body-1
rlm@202 120 #+begin_src clojure
rlm@202 121 (defn physical!
rlm@202 122 "Iterate through the nodes in creature and make them real physical
rlm@202 123 objects in the simulation."
rlm@202 124 [#^Node creature]
rlm@202 125 (dorun
rlm@202 126 (map
rlm@202 127 (fn [geom]
rlm@202 128 (let [physics-control
rlm@202 129 (RigidBodyControl.
rlm@202 130 (HullCollisionShape.
rlm@202 131 (.getMesh geom))
rlm@202 132 (if-let [mass (meta-data geom "mass")]
rlm@202 133 (do
rlm@202 134 (println-repl
rlm@202 135 "setting" (.getName geom) "mass to" (float mass))
rlm@202 136 (float mass))
rlm@202 137 (float 1)))]
rlm@202 138 (.addControl geom physics-control)))
rlm@202 139 (filter #(isa? (class %) Geometry )
rlm@202 140 (node-seq creature)))))
rlm@202 141 #+end_src
rlm@202 142
rlm@202 143 =(physical!)= iterates through a creature's node structure, creating
rlm@202 144 CollisionShapes for each geometry with the mass specified in that
rlm@202 145 geometry's meta-data.
rlm@202 146
rlm@205 147 #+name: test-2
rlm@0 148 #+begin_src clojure
rlm@202 149 (in-ns 'cortex.test.body)
rlm@160 150
rlm@202 151 (def normal-gravity
rlm@202 152 {"key-g" (fn [world _]
rlm@202 153 (set-gravity world (Vector3f. 0 -9.81 0)))})
rlm@202 154
rlm@202 155 (defn floor []
rlm@202 156 (box 10 3 10 :position (Vector3f. 0 -10 0)
rlm@202 157 :color ColorRGBA/Gray :mass 0))
rlm@202 158
rlm@202 159 (defn test-two []
rlm@202 160 (world (nodify
rlm@202 161 [(doto (hand)
rlm@202 162 (physical!))
rlm@202 163 (floor)])
rlm@202 164 (merge standard-debug-controls normal-gravity)
rlm@202 165 (comp
rlm@202 166 #(Capture/captureVideo
rlm@202 167 % (File. "/home/r/proj/cortex/render/body/2"))
rlm@202 168 #(do (set-gravity % Vector3f/ZERO) %)
rlm@202 169 setup)
rlm@202 170 no-op))
rlm@202 171 #+end_src
rlm@202 172
rlm@202 173 #+begin_html
rlm@203 174 <div class="figure">
rlm@203 175 <center>
rlm@203 176 <video controls="controls" width="640">
rlm@202 177 <source src="../video/crumbly-hand.ogg" type="video/ogg"
rlm@202 178 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 179 </video>
rlm@203 180 </center>
rlm@203 181 <p>The hand now has a physical presence, but there is nothing to hold
rlm@203 182 it together.</p>
rlm@203 183 </div>
rlm@202 184 #+end_html
rlm@202 185
rlm@202 186 Now that's some progress.
rlm@202 187
rlm@202 188
rlm@202 189 * Joints
rlm@202 190
rlm@202 191 Obviously, an AI is not going to be doing much just lying in pieces on
rlm@202 192 the floor. So, the next step to making a proper body is to connect
rlm@202 193 those pieces together with joints. jMonkeyEngine has a large array of
rlm@202 194 joints available via bullet, such as Point2Point, Cone, Hinge, and a
rlm@202 195 generic Six Degree of Freedom joint, with or without spring
rlm@202 196 restitution.
rlm@202 197
rlm@202 198 Although it should be possible to specify the joints using blender's
rlm@202 199 physics system, and then automatically import them with jMonkeyEngine,
rlm@202 200 the support isn't there yet, and there are a few problems with bullet
rlm@202 201 itself that need to be solved before it can happen.
rlm@202 202
rlm@202 203 So, I will use the same system for specifying joints as I will do for
rlm@202 204 some senses. Each joint is specified by an empty node whose parent
rlm@202 205 has the name "joints". Their orientation and meta-data determine what
rlm@202 206 joint is created.
rlm@202 207
rlm@203 208 #+attr_html: width="755"
rlm@203 209 #+caption: joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
rlm@202 210 [[../images/hand-screenshot1.png]]
rlm@202 211
rlm@203 212 The empty node in the upper right, highlighted in yellow, is the
rlm@203 213 parent node of all the emptys which represent joints. The following
rlm@203 214 functions must do three things to translate these into real joints:
rlm@202 215
rlm@203 216 - Find the children of the "joints" node.
rlm@203 217 - Determine the two spatials the joint it meant to connect.
rlm@203 218 - Create the joint based on the meta-data of the empty node.
rlm@202 219
rlm@203 220 ** Finding the Joints
rlm@203 221 #+name: joints-2
rlm@203 222 #+begin_src clojure
rlm@203 223 (defvar
rlm@203 224 ^{:arglists '([creature])}
rlm@203 225 joints
rlm@203 226 (sense-nodes "joints")
rlm@203 227 "Return the children of the creature's \"joints\" node.")
rlm@203 228 #+end_src
rlm@202 229
rlm@203 230 The higher order function =(sense-nodes)= from cortex.sense makes our
rlm@203 231 first task very easy.
rlm@203 232
rlm@203 233 ** Joint Targets and Orientation
rlm@203 234
rlm@203 235 This technique for finding a joint's targets is very similiar to
rlm@203 236 =(cortex.sense/closest-node)=. A small cube, centered around the
rlm@203 237 empty-node, grows exponentially until it intersects two /physical/
rlm@203 238 objects. The objects are ordered according to the joint's rotation,
rlm@203 239 with the first one being the object that has more negative coordinates
rlm@203 240 in the joint's reference frame. Since the objects must be physical,
rlm@203 241 the empty-node itself escapes detection. Because the objects must be
rlm@203 242 physical, =(joint-targets)= must be called /after/ =(physical!)= is
rlm@203 243 called.
rlm@203 244
rlm@203 245 #+name: joints-3
rlm@202 246 #+begin_src clojure
rlm@135 247 (defn joint-targets
rlm@135 248 "Return the two closest two objects to the joint object, ordered
rlm@135 249 from bottom to top according to the joint's rotation."
rlm@135 250 [#^Node parts #^Node joint]
rlm@135 251 (loop [radius (float 0.01)]
rlm@135 252 (let [results (CollisionResults.)]
rlm@135 253 (.collideWith
rlm@135 254 parts
rlm@135 255 (BoundingBox. (.getWorldTranslation joint)
rlm@135 256 radius radius radius)
rlm@135 257 results)
rlm@135 258 (let [targets
rlm@135 259 (distinct
rlm@135 260 (map #(.getGeometry %) results))]
rlm@135 261 (if (>= (count targets) 2)
rlm@135 262 (sort-by
rlm@135 263 #(let [v
rlm@135 264 (jme-to-blender
rlm@135 265 (.mult
rlm@135 266 (.inverse (.getWorldRotation joint))
rlm@135 267 (.subtract (.getWorldTranslation %)
rlm@135 268 (.getWorldTranslation joint))))]
rlm@135 269 (println-repl (.getName %) ":" v)
rlm@135 270 (.dot (Vector3f. 1 1 1)
rlm@135 271 v))
rlm@135 272 (take 2 targets))
rlm@135 273 (recur (float (* radius 2))))))))
rlm@203 274 #+end_src
rlm@135 275
rlm@203 276 ** Generating Joints
rlm@203 277
rlm@203 278 This long chunk of code iterates through all the different ways of
rlm@203 279 specifying joints using blender meta-data and converts each one to the
rlm@203 280 appropriate jMonkyeEngine joint.
rlm@203 281
rlm@203 282 #+name: joints-4
rlm@203 283 #+begin_src clojure
rlm@160 284 (defmulti joint-dispatch
rlm@160 285 "Translate blender pseudo-joints into real JME joints."
rlm@160 286 (fn [constraints & _]
rlm@160 287 (:type constraints)))
rlm@141 288
rlm@160 289 (defmethod joint-dispatch :point
rlm@160 290 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 291 (println-repl "creating POINT2POINT joint")
rlm@160 292 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@160 293 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@141 294
rlm@160 295 ;; should be able to do this:
rlm@160 296 (comment
rlm@160 297 (Point2PointJoint.
rlm@160 298 control-a
rlm@160 299 control-b
rlm@160 300 pivot-a
rlm@160 301 pivot-b))
rlm@141 302
rlm@160 303 ;; but instead we must do this:
rlm@160 304 (println-repl "substuting 6DOF joint for POINT2POINT joint!")
rlm@160 305 (doto
rlm@160 306 (SixDofJoint.
rlm@160 307 control-a
rlm@160 308 control-b
rlm@160 309 pivot-a
rlm@160 310 pivot-b
rlm@160 311 false)
rlm@160 312 (.setLinearLowerLimit Vector3f/ZERO)
rlm@203 313 (.setLinearUpperLimit Vector3f/ZERO)))
rlm@160 314
rlm@160 315 (defmethod joint-dispatch :hinge
rlm@160 316 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 317 (println-repl "creating HINGE joint")
rlm@160 318 (let [axis
rlm@160 319 (if-let
rlm@160 320 [axis (:axis constraints)]
rlm@160 321 axis
rlm@160 322 Vector3f/UNIT_X)
rlm@160 323 [limit-1 limit-2] (:limit constraints)
rlm@160 324 hinge-axis
rlm@160 325 (.mult
rlm@160 326 rotation
rlm@160 327 (blender-to-jme axis))]
rlm@160 328 (doto
rlm@160 329 (HingeJoint.
rlm@160 330 control-a
rlm@160 331 control-b
rlm@160 332 pivot-a
rlm@160 333 pivot-b
rlm@160 334 hinge-axis
rlm@160 335 hinge-axis)
rlm@160 336 (.setLimit limit-1 limit-2))))
rlm@160 337
rlm@160 338 (defmethod joint-dispatch :cone
rlm@160 339 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 340 (let [limit-xz (:limit-xz constraints)
rlm@160 341 limit-xy (:limit-xy constraints)
rlm@160 342 twist (:twist constraints)]
rlm@160 343
rlm@160 344 (println-repl "creating CONE joint")
rlm@160 345 (println-repl rotation)
rlm@160 346 (println-repl
rlm@160 347 "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@160 348 (println-repl
rlm@160 349 "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@160 350 (println-repl
rlm@160 351 "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@160 352 (doto
rlm@160 353 (ConeJoint.
rlm@160 354 control-a
rlm@160 355 control-b
rlm@160 356 pivot-a
rlm@160 357 pivot-b
rlm@160 358 rotation
rlm@160 359 rotation)
rlm@160 360 (.setLimit (float limit-xz)
rlm@160 361 (float limit-xy)
rlm@160 362 (float twist)))))
rlm@160 363
rlm@160 364 (defn connect
rlm@175 365 "Create a joint between 'obj-a and 'obj-b at the location of
rlm@175 366 'joint. The type of joint is determined by the metadata on 'joint.
rlm@175 367
rlm@175 368 Here are some examples:
rlm@160 369 {:type :point}
rlm@160 370 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@160 371 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@160 372
rlm@160 373 {:type :cone :limit-xz 0]
rlm@160 374 :limit-xy 0]
rlm@160 375 :twist 0]} (use XZY rotation mode in blender!)"
rlm@160 376 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@160 377 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@160 378 control-b (.getControl obj-b RigidBodyControl)
rlm@160 379 joint-center (.getWorldTranslation joint)
rlm@160 380 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@160 381 pivot-a (world-to-local obj-a joint-center)
rlm@160 382 pivot-b (world-to-local obj-b joint-center)]
rlm@160 383
rlm@160 384 (if-let [constraints
rlm@160 385 (map-vals
rlm@160 386 eval
rlm@160 387 (read-string
rlm@160 388 (meta-data joint "joint")))]
rlm@160 389 ;; A side-effect of creating a joint registers
rlm@160 390 ;; it with both physics objects which in turn
rlm@160 391 ;; will register the joint with the physics system
rlm@160 392 ;; when the simulation is started.
rlm@160 393 (do
rlm@160 394 (println-repl "creating joint between"
rlm@160 395 (.getName obj-a) "and" (.getName obj-b))
rlm@160 396 (joint-dispatch constraints
rlm@160 397 control-a control-b
rlm@160 398 pivot-a pivot-b
rlm@160 399 joint-rotation))
rlm@160 400 (println-repl "could not find joint meta-data!"))))
rlm@203 401 #+end_src
rlm@160 402
rlm@203 403 Creating joints is now a matter applying =(connect)= to each joint
rlm@203 404 node.
rlm@160 405
rlm@205 406 #+name: joints-5
rlm@203 407 #+begin_src clojure
rlm@175 408 (defn joints!
rlm@175 409 "Connect the solid parts of the creature with physical joints. The
rlm@175 410 joints are taken from the \"joints\" node in the creature."
rlm@175 411 [#^Node creature]
rlm@160 412 (dorun
rlm@160 413 (map
rlm@160 414 (fn [joint]
rlm@175 415 (let [[obj-a obj-b] (joint-targets creature joint)]
rlm@160 416 (connect obj-a obj-b joint)))
rlm@175 417 (joints creature))))
rlm@203 418 #+end_src
rlm@160 419
rlm@203 420
rlm@203 421 ** Round 3
rlm@203 422
rlm@203 423 Now we can test the hand in all its glory.
rlm@203 424
rlm@205 425 #+name: test-3
rlm@203 426 #+begin_src clojure
rlm@203 427 (in-ns 'cortex.test.body)
rlm@203 428
rlm@203 429 (def debug-control
rlm@203 430 {"key-h" (fn [world val]
rlm@203 431 (if val (enable-debug world)))
rlm@205 432 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
rlm@203 433
rlm@203 434 (defn test-three []
rlm@203 435 (world (nodify
rlm@203 436 [(doto (hand)
rlm@205 437 (physical!)
rlm@205 438 (joints!))
rlm@203 439 (floor)])
rlm@203 440 (merge standard-debug-controls debug-control
rlm@203 441 normal-gravity)
rlm@203 442 (comp
rlm@203 443 #(Capture/captureVideo
rlm@203 444 % (File. "/home/r/proj/cortex/render/body/3"))
rlm@203 445 #(do (set-gravity % Vector3f/ZERO) %)
rlm@203 446 setup)
rlm@203 447 no-op))
rlm@203 448 #+end_src
rlm@203 449
rlm@203 450 =(physical!)= makes the hand solid, then =(joints!)= connects each
rlm@203 451 piece together.
rlm@203 452
rlm@203 453 #+begin_html
rlm@203 454 <div class="figure">
rlm@203 455 <center>
rlm@203 456 <video controls="controls" width="640">
rlm@203 457 <source src="../video/full-hand.ogg" type="video/ogg"
rlm@203 458 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@203 459 </video>
rlm@203 460 </center>
rlm@203 461 <p>Now the hand is physical and has joints.</p>
rlm@203 462 </div>
rlm@203 463 #+end_html
rlm@203 464
rlm@203 465 The joints are visualized as green connections between each segment
rlm@203 466 for debug purposes. You can see that they correspond to the empty
rlm@203 467 nodes in the blender file.
rlm@203 468
rlm@203 469 * Wrap-Up!
rlm@203 470
rlm@203 471 It is convienent to combine =(physical!)= and =(joints!)= into one
rlm@203 472 function that completely creates the creature's physical body.
rlm@203 473
rlm@205 474 #+name: joints-6
rlm@203 475 #+begin_src clojure
rlm@175 476 (defn body!
rlm@175 477 "Endow the creature with a physical body connected with joints. The
rlm@175 478 particulars of the joints and the masses of each pody part are
rlm@175 479 determined in blender."
rlm@175 480 [#^Node creature]
rlm@175 481 (physical! creature)
rlm@175 482 (joints! creature))
rlm@64 483 #+end_src
rlm@63 484
rlm@205 485 * The Worm
rlm@205 486
rlm@205 487 Going forward, I will use a model that is less complicated than the
rlm@205 488 hand. It has two segments and one joint, and I call it the worm. All
rlm@205 489 of the senses described in the following posts will be applied to this
rlm@205 490 worm.
rlm@205 491
rlm@205 492 #+name: test-4
rlm@205 493 #+begin_src clojure
rlm@205 494 (in-ns 'cortex.test.body)
rlm@205 495
rlm@205 496 (defn worm-1 []
rlm@205 497 (let [timer (RatchetTimer. 60)]
rlm@205 498 (world
rlm@205 499 (nodify
rlm@205 500 [(doto
rlm@205 501 (load-blender-model
rlm@205 502 "Models/test-creature/worm.blend")
rlm@205 503 (body!))
rlm@205 504 (floor)])
rlm@205 505 (merge standard-debug-controls debug-control)
rlm@205 506 #(do
rlm@205 507 (speed-up %)
rlm@205 508 (light-up-everything %)
rlm@205 509 (.setTimer % timer)
rlm@205 510 (cortex.util/display-dialated-time % timer)
rlm@205 511 (Capture/captureVideo
rlm@205 512 % (File. "/home/r/proj/cortex/render/body/4")))
rlm@205 513 no-op)))
rlm@205 514 #+end_src
rlm@205 515
rlm@205 516 #+begin_html
rlm@205 517 <div class="figure">
rlm@205 518 <center>
rlm@205 519 <video controls="controls" width="640">
rlm@205 520 <source src="../video/worm-1.ogg" type="video/ogg"
rlm@205 521 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@205 522 </video>
rlm@205 523 </center>
rlm@205 524 <p>This worm model will be the platform onto which future senses will
rlm@205 525 be grafted.</p>
rlm@205 526 </div>
rlm@205 527 #+end_html
rlm@205 528
rlm@202 529 * Bookkeeping
rlm@175 530
rlm@203 531 Header; here for completeness.
rlm@203 532
rlm@205 533 #+name: body-header
rlm@202 534 #+begin_src clojure
rlm@202 535 (ns cortex.body
rlm@202 536 "Assemble a physical creature using the definitions found in a
rlm@202 537 specially prepared blender file. Creates rigid bodies and joints so
rlm@202 538 that a creature can have a physical presense in the simulation."
rlm@202 539 {:author "Robert McIntyre"}
rlm@202 540 (:use (cortex world util sense))
rlm@202 541 (:use clojure.contrib.def)
rlm@202 542 (:import
rlm@202 543 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
rlm@202 544 (com.jme3.bullet.joints
rlm@202 545 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
rlm@202 546 com.jme3.bullet.control.RigidBodyControl
rlm@202 547 com.jme3.collision.CollisionResults
rlm@202 548 com.jme3.bounding.BoundingBox
rlm@202 549 com.jme3.scene.Node
rlm@202 550 com.jme3.scene.Geometry
rlm@202 551 com.jme3.bullet.collision.shapes.HullCollisionShape))
rlm@202 552 #+end_src
rlm@133 553
rlm@205 554 #+name: test-header
rlm@205 555 #+begin_src clojure
rlm@205 556 (ns cortex.test.body
rlm@205 557 (:use (cortex world util body))
rlm@205 558 (:import
rlm@205 559 (com.aurellem.capture Capture RatchetTimer)
rlm@205 560 (com.jme3.math Quaternion Vector3f ColorRGBA)
rlm@205 561 java.io.File))
rlm@205 562 #+end_src
rlm@205 563
rlm@202 564 * Source
rlm@202 565
rlm@203 566 Dylan -- I'll fill these in later
rlm@203 567 - cortex.body
rlm@203 568 - cortex.test.body
rlm@203 569 - blender files
rlm@203 570
rlm@202 571 * COMMENT Examples
rlm@63 572
rlm@69 573 #+name: test-body
rlm@64 574 #+begin_src clojure
rlm@63 575
rlm@64 576 (defn worm-segments
rlm@64 577 "Create multiple evenly spaced box segments. They're fabulous!"
rlm@64 578 [segment-length num-segments interstitial-space radius]
rlm@64 579 (letfn [(nth-segment
rlm@64 580 [n]
rlm@64 581 (box segment-length radius radius :mass 0.1
rlm@64 582 :position
rlm@64 583 (Vector3f.
rlm@64 584 (* 2 n (+ interstitial-space segment-length)) 0 0)
rlm@64 585 :name (str "worm-segment" n)
rlm@64 586 :color (ColorRGBA/randomColor)))]
rlm@64 587 (map nth-segment (range num-segments))))
rlm@63 588
rlm@64 589 (defn connect-at-midpoint
rlm@64 590 "Connect two physics objects with a Point2Point joint constraint at
rlm@64 591 the point equidistant from both objects' centers."
rlm@64 592 [segmentA segmentB]
rlm@64 593 (let [centerA (.getWorldTranslation segmentA)
rlm@64 594 centerB (.getWorldTranslation segmentB)
rlm@64 595 midpoint (.mult (.add centerA centerB) (float 0.5))
rlm@64 596 pivotA (.subtract midpoint centerA)
rlm@64 597 pivotB (.subtract midpoint centerB)
rlm@64 598
rlm@64 599 ;; A side-effect of creating a joint registers
rlm@64 600 ;; it with both physics objects which in turn
rlm@64 601 ;; will register the joint with the physics system
rlm@64 602 ;; when the simulation is started.
rlm@64 603 joint (Point2PointJoint.
rlm@64 604 (.getControl segmentA RigidBodyControl)
rlm@64 605 (.getControl segmentB RigidBodyControl)
rlm@64 606 pivotA
rlm@64 607 pivotB)]
rlm@64 608 segmentB))
rlm@63 609
rlm@64 610 (defn eve-worm
rlm@72 611 "Create a worm-like body bound by invisible joint constraints."
rlm@64 612 []
rlm@64 613 (let [segments (worm-segments 0.2 5 0.1 0.1)]
rlm@64 614 (dorun (map (partial apply connect-at-midpoint)
rlm@64 615 (partition 2 1 segments)))
rlm@64 616 (nodify "worm" segments)))
rlm@63 617
rlm@64 618 (defn worm-pattern
rlm@64 619 "This is a simple, mindless motor control pattern that drives the
rlm@64 620 second segment of the worm's body at an offset angle with
rlm@64 621 sinusoidally varying strength."
rlm@64 622 [time]
rlm@64 623 (let [angle (* Math/PI (/ 9 20))
rlm@63 624 direction (Vector3f. 0 (Math/sin angle) (Math/cos angle))]
rlm@63 625 [Vector3f/ZERO
rlm@63 626 (.mult
rlm@63 627 direction
rlm@63 628 (float (* 2 (Math/sin (* Math/PI 2 (/ (rem time 300 ) 300))))))
rlm@63 629 Vector3f/ZERO
rlm@63 630 Vector3f/ZERO
rlm@63 631 Vector3f/ZERO]))
rlm@60 632
rlm@64 633 (defn test-motor-control
rlm@69 634 "Testing motor-control:
rlm@69 635 You should see a multi-segmented worm-like object fall onto the
rlm@64 636 table and begin writhing and moving."
rlm@60 637 []
rlm@64 638 (let [worm (eve-worm)
rlm@60 639 time (atom 0)
rlm@63 640 worm-motor-map (vector-motor-control worm)]
rlm@60 641 (world
rlm@60 642 (nodify [worm
rlm@60 643 (box 10 0.5 10 :position (Vector3f. 0 -5 0) :mass 0
rlm@60 644 :color ColorRGBA/Gray)])
rlm@60 645 standard-debug-controls
rlm@60 646 (fn [world]
rlm@60 647 (enable-debug world)
rlm@60 648 (light-up-everything world)
rlm@63 649 (comment
rlm@63 650 (com.aurellem.capture.Capture/captureVideo
rlm@63 651 world
rlm@63 652 (file-str "/home/r/proj/cortex/tmp/moving-worm")))
rlm@63 653 )
rlm@60 654
rlm@60 655 (fn [_ _]
rlm@60 656 (swap! time inc)
rlm@64 657 (Thread/sleep 20)
rlm@60 658 (dorun (worm-motor-map
rlm@60 659 (worm-pattern @time)))))))
rlm@60 660
rlm@130 661
rlm@135 662
rlm@130 663 (defn join-at-point [obj-a obj-b world-pivot]
rlm@130 664 (cortex.silly/joint-dispatch
rlm@130 665 {:type :point}
rlm@130 666 (.getControl obj-a RigidBodyControl)
rlm@130 667 (.getControl obj-b RigidBodyControl)
rlm@130 668 (cortex.silly/world-to-local obj-a world-pivot)
rlm@130 669 (cortex.silly/world-to-local obj-b world-pivot)
rlm@130 670 nil
rlm@130 671 ))
rlm@130 672
rlm@133 673 (import com.jme3.bullet.collision.PhysicsCollisionObject)
rlm@130 674
rlm@130 675 (defn blab-* []
rlm@130 676 (let [hand (box 0.5 0.2 0.2 :position (Vector3f. 0 0 0)
rlm@130 677 :mass 0 :color ColorRGBA/Green)
rlm@130 678 finger (box 0.5 0.2 0.2 :position (Vector3f. 2.4 0 0)
rlm@130 679 :mass 1 :color ColorRGBA/Red)
rlm@130 680 connection-point (Vector3f. 1.2 0 0)
rlm@130 681 root (nodify [hand finger])]
rlm@130 682
rlm@130 683 (join-at-point hand finger (Vector3f. 1.2 0 0))
rlm@130 684
rlm@130 685 (.setCollisionGroup
rlm@130 686 (.getControl hand RigidBodyControl)
rlm@130 687 PhysicsCollisionObject/COLLISION_GROUP_NONE)
rlm@130 688 (world
rlm@130 689 root
rlm@130 690 standard-debug-controls
rlm@130 691 (fn [world]
rlm@130 692 (enable-debug world)
rlm@130 693 (.setTimer world (com.aurellem.capture.RatchetTimer. 60))
rlm@130 694 (set-gravity world Vector3f/ZERO)
rlm@130 695 )
rlm@130 696 no-op)))
rlm@133 697 (comment
rlm@133 698
rlm@133 699 (defn proprioception-debug-window
rlm@133 700 []
rlm@133 701 (let [time (atom 0)]
rlm@133 702 (fn [prop-data]
rlm@133 703 (if (= 0 (rem (swap! time inc) 40))
rlm@133 704 (println-repl prop-data)))))
rlm@133 705 )
rlm@133 706
rlm@131 707 (comment
rlm@131 708 (dorun
rlm@131 709 (map
rlm@131 710 (comp
rlm@131 711 println-repl
rlm@131 712 (fn [[p y r]]
rlm@131 713 (format
rlm@131 714 "pitch: %1.2f\nyaw: %1.2f\nroll: %1.2f\n"
rlm@131 715 p y r)))
rlm@131 716 prop-data)))
rlm@131 717
rlm@130 718
rlm@130 719
rlm@137 720
rlm@64 721 (defn test-proprioception
rlm@69 722 "Testing proprioception:
rlm@69 723 You should see two foating bars, and a printout of pitch, yaw, and
rlm@64 724 roll. Pressing key-r/key-t should move the blue bar up and down and
rlm@64 725 change only the value of pitch. key-f/key-g moves it side to side
rlm@64 726 and changes yaw. key-v/key-b will spin the blue segment clockwise
rlm@64 727 and counterclockwise, and only affect roll."
rlm@60 728 []
rlm@145 729 (let [hand (box 0.2 1 0.2 :position (Vector3f. 0 0 0)
rlm@142 730 :mass 0 :color ColorRGBA/Green :name "hand")
rlm@145 731 finger (box 0.2 1 0.2 :position (Vector3f. 0 2.4 0)
rlm@132 732 :mass 1 :color ColorRGBA/Red :name "finger")
rlm@133 733 joint-node (box 0.1 0.05 0.05 :color ColorRGBA/Yellow
rlm@145 734 :position (Vector3f. 0 1.2 0)
rlm@145 735 :rotation (doto (Quaternion.)
rlm@145 736 (.fromAngleAxis
rlm@145 737 (/ Math/PI 2)
rlm@145 738 (Vector3f. 0 0 1)))
rlm@133 739 :physical? false)
rlm@145 740 joint (join-at-point hand finger (Vector3f. 0 1.2 0 ))
rlm@135 741 creature (nodify [hand finger joint-node])
rlm@145 742 finger-control (.getControl finger RigidBodyControl)
rlm@145 743 hand-control (.getControl hand RigidBodyControl)]
rlm@145 744
rlm@145 745
rlm@145 746 (let
rlm@135 747 ;; *******************************************
rlm@137 748
rlm@145 749 [floor (box 10 10 10 :position (Vector3f. 0 -15 0)
rlm@135 750 :mass 0 :color ColorRGBA/Gray)
rlm@137 751
rlm@137 752 root (nodify [creature floor])
rlm@133 753 prop (joint-proprioception creature joint-node)
rlm@139 754 prop-view (proprioception-debug-window)
rlm@139 755
rlm@139 756 controls
rlm@139 757 (merge standard-debug-controls
rlm@140 758 {"key-o"
rlm@139 759 (fn [_ _] (.setEnabled finger-control true))
rlm@140 760 "key-p"
rlm@139 761 (fn [_ _] (.setEnabled finger-control false))
rlm@140 762 "key-k"
rlm@140 763 (fn [_ _] (.setEnabled hand-control true))
rlm@140 764 "key-l"
rlm@140 765 (fn [_ _] (.setEnabled hand-control false))
rlm@139 766 "key-i"
rlm@139 767 (fn [world _] (set-gravity world (Vector3f. 0 0 0)))
rlm@142 768 "key-period"
rlm@142 769 (fn [world _]
rlm@142 770 (.setEnabled finger-control false)
rlm@142 771 (.setEnabled hand-control false)
rlm@142 772 (.rotate creature (doto (Quaternion.)
rlm@142 773 (.fromAngleAxis
rlm@142 774 (float (/ Math/PI 15))
rlm@142 775 (Vector3f. 0 0 -1))))
rlm@142 776
rlm@142 777 (.setEnabled finger-control true)
rlm@142 778 (.setEnabled hand-control true)
rlm@142 779 (set-gravity world (Vector3f. 0 0 0))
rlm@142 780 )
rlm@142 781
rlm@142 782
rlm@139 783 }
rlm@139 784 )
rlm@130 785
rlm@139 786 ]
rlm@139 787 (comment
rlm@139 788 (.setCollisionGroup
rlm@139 789 (.getControl hand RigidBodyControl)
rlm@139 790 PhysicsCollisionObject/COLLISION_GROUP_NONE)
rlm@139 791 )
rlm@140 792 (apply
rlm@140 793 world
rlm@140 794 (with-movement
rlm@140 795 hand
rlm@140 796 ["key-y" "key-u" "key-h" "key-j" "key-n" "key-m"]
rlm@140 797 [10 10 10 10 1 1]
rlm@140 798 (with-movement
rlm@140 799 finger
rlm@140 800 ["key-r" "key-t" "key-f" "key-g" "key-v" "key-b"]
rlm@145 801 [1 1 10 10 10 10]
rlm@140 802 [root
rlm@140 803 controls
rlm@140 804 (fn [world]
rlm@140 805 (.setTimer world (com.aurellem.capture.RatchetTimer. 60))
rlm@140 806 (set-gravity world (Vector3f. 0 0 0))
rlm@140 807 (light-up-everything world))
rlm@145 808 (fn [_ _] (prop-view (list (prop))))]))))))
rlm@138 809
rlm@64 810 #+end_src
rlm@56 811
rlm@130 812 #+results: test-body
rlm@130 813 : #'cortex.test.body/test-proprioception
rlm@130 814
rlm@60 815
rlm@63 816 * COMMENT code-limbo
rlm@61 817 #+begin_src clojure
rlm@61 818 ;;(.loadModel
rlm@61 819 ;; (doto (asset-manager)
rlm@61 820 ;; (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@61 821 ;; "Models/person/person.blend")
rlm@61 822
rlm@64 823
rlm@64 824 (defn load-blender-model
rlm@64 825 "Load a .blend file using an asset folder relative path."
rlm@64 826 [^String model]
rlm@64 827 (.loadModel
rlm@64 828 (doto (asset-manager)
rlm@64 829 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@64 830 model))
rlm@64 831
rlm@64 832
rlm@61 833 (defn view-model [^String model]
rlm@61 834 (view
rlm@61 835 (.loadModel
rlm@61 836 (doto (asset-manager)
rlm@61 837 (.registerLoader BlenderModelLoader (into-array String ["blend"])))
rlm@61 838 model)))
rlm@61 839
rlm@61 840 (defn load-blender-scene [^String model]
rlm@61 841 (.loadModel
rlm@61 842 (doto (asset-manager)
rlm@61 843 (.registerLoader BlenderLoader (into-array String ["blend"])))
rlm@61 844 model))
rlm@61 845
rlm@61 846 (defn worm
rlm@61 847 []
rlm@61 848 (.loadModel (asset-manager) "Models/anim2/Cube.mesh.xml"))
rlm@61 849
rlm@61 850 (defn oto
rlm@61 851 []
rlm@61 852 (.loadModel (asset-manager) "Models/Oto/Oto.mesh.xml"))
rlm@61 853
rlm@61 854 (defn sinbad
rlm@61 855 []
rlm@61 856 (.loadModel (asset-manager) "Models/Sinbad/Sinbad.mesh.xml"))
rlm@61 857
rlm@61 858 (defn worm-blender
rlm@61 859 []
rlm@61 860 (first (seq (.getChildren (load-blender-model
rlm@61 861 "Models/anim2/simple-worm.blend")))))
rlm@61 862
rlm@61 863 (defn body
rlm@61 864 "given a node with a SkeletonControl, will produce a body sutiable
rlm@61 865 for AI control with movement and proprioception."
rlm@61 866 [node]
rlm@61 867 (let [skeleton-control (.getControl node SkeletonControl)
rlm@61 868 krc (KinematicRagdollControl.)]
rlm@61 869 (comment
rlm@61 870 (dorun
rlm@61 871 (map #(.addBoneName krc %)
rlm@61 872 ["mid2" "tail" "head" "mid1" "mid3" "mid4" "Dummy-Root" ""]
rlm@61 873 ;;"mid2" "mid3" "tail" "head"]
rlm@61 874 )))
rlm@61 875 (.addControl node krc)
rlm@61 876 (.setRagdollMode krc)
rlm@61 877 )
rlm@61 878 node
rlm@61 879 )
rlm@61 880 (defn show-skeleton [node]
rlm@61 881 (let [sd
rlm@61 882
rlm@61 883 (doto
rlm@61 884 (SkeletonDebugger. "aurellem-skel-debug"
rlm@61 885 (skel node))
rlm@61 886 (.setMaterial (green-x-ray)))]
rlm@61 887 (.attachChild node sd)
rlm@61 888 node))
rlm@61 889
rlm@61 890
rlm@61 891
rlm@61 892 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 893
rlm@61 894 ;; this could be a good way to give objects special properties like
rlm@61 895 ;; being eyes and the like
rlm@61 896
rlm@61 897 (.getUserData
rlm@61 898 (.getChild
rlm@61 899 (load-blender-model "Models/property/test.blend") 0)
rlm@61 900 "properties")
rlm@61 901
rlm@61 902 ;; the properties are saved along with the blender file.
rlm@61 903 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 904
rlm@61 905
rlm@61 906
rlm@61 907
rlm@61 908 (defn init-debug-skel-node
rlm@61 909 [f debug-node skeleton]
rlm@61 910 (let [bones
rlm@61 911 (map #(.getBone skeleton %)
rlm@61 912 (range (.getBoneCount skeleton)))]
rlm@61 913 (dorun (map #(.setUserControl % true) bones))
rlm@61 914 (dorun (map (fn [b]
rlm@61 915 (println (.getName b)
rlm@61 916 " -- " (f b)))
rlm@61 917 bones))
rlm@61 918 (dorun
rlm@61 919 (map #(.attachChild
rlm@61 920 debug-node
rlm@61 921 (doto
rlm@61 922 (sphere 0.1
rlm@61 923 :position (f %)
rlm@61 924 :physical? false)
rlm@61 925 (.setMaterial (green-x-ray))))
rlm@61 926 bones)))
rlm@61 927 debug-node)
rlm@61 928
rlm@61 929 (import jme3test.bullet.PhysicsTestHelper)
rlm@61 930
rlm@61 931
rlm@61 932 (defn test-zzz [the-worm world value]
rlm@61 933 (if (not value)
rlm@61 934 (let [skeleton (skel the-worm)]
rlm@61 935 (println-repl "enabling bones")
rlm@61 936 (dorun
rlm@61 937 (map
rlm@61 938 #(.setUserControl (.getBone skeleton %) true)
rlm@61 939 (range (.getBoneCount skeleton))))
rlm@61 940
rlm@61 941
rlm@61 942 (let [b (.getBone skeleton 2)]
rlm@61 943 (println-repl "moving " (.getName b))
rlm@61 944 (println-repl (.getLocalPosition b))
rlm@61 945 (.setUserTransforms b
rlm@61 946 Vector3f/UNIT_X
rlm@61 947 Quaternion/IDENTITY
rlm@61 948 ;;(doto (Quaternion.)
rlm@61 949 ;; (.fromAngles (/ Math/PI 2)
rlm@61 950 ;; 0
rlm@61 951 ;; 0
rlm@61 952
rlm@61 953 (Vector3f. 1 1 1))
rlm@61 954 )
rlm@61 955
rlm@61 956 (println-repl "hi! <3"))))
rlm@61 957
rlm@61 958
rlm@61 959 (defn test-ragdoll []
rlm@61 960
rlm@61 961 (let [the-worm
rlm@61 962
rlm@61 963 ;;(.loadModel (asset-manager) "Models/anim2/Cube.mesh.xml")
rlm@61 964 (doto (show-skeleton (worm-blender))
rlm@61 965 (.setLocalTranslation (Vector3f. 0 10 0))
rlm@61 966 ;;(worm)
rlm@61 967 ;;(oto)
rlm@61 968 ;;(sinbad)
rlm@61 969 )
rlm@61 970 ]
rlm@61 971
rlm@61 972
rlm@61 973 (.start
rlm@61 974 (world
rlm@61 975 (doto (Node.)
rlm@61 976 (.attachChild the-worm))
rlm@61 977 {"key-return" (fire-cannon-ball)
rlm@61 978 "key-space" (partial test-zzz the-worm)
rlm@61 979 }
rlm@61 980 (fn [world]
rlm@61 981 (light-up-everything world)
rlm@61 982 (PhysicsTestHelper/createPhysicsTestWorld
rlm@61 983 (.getRootNode world)
rlm@61 984 (asset-manager)
rlm@61 985 (.getPhysicsSpace
rlm@61 986 (.getState (.getStateManager world) BulletAppState)))
rlm@61 987 (set-gravity world Vector3f/ZERO)
rlm@61 988 ;;(.setTimer world (NanoTimer.))
rlm@61 989 ;;(org.lwjgl.input.Mouse/setGrabbed false)
rlm@61 990 )
rlm@61 991 no-op
rlm@61 992 )
rlm@61 993
rlm@61 994
rlm@61 995 )))
rlm@61 996
rlm@61 997
rlm@61 998 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 999 ;;; here is the ragdoll stuff
rlm@61 1000
rlm@61 1001 (def worm-mesh (.getMesh (.getChild (worm-blender) 0)))
rlm@61 1002 (def mesh worm-mesh)
rlm@61 1003
rlm@61 1004 (.getFloatBuffer mesh VertexBuffer$Type/Position)
rlm@61 1005 (.getFloatBuffer mesh VertexBuffer$Type/BoneWeight)
rlm@61 1006 (.getData (.getBuffer mesh VertexBuffer$Type/BoneIndex))
rlm@61 1007
rlm@61 1008
rlm@61 1009 (defn position [index]
rlm@61 1010 (.get
rlm@61 1011 (.getFloatBuffer worm-mesh VertexBuffer$Type/Position)
rlm@61 1012 index))
rlm@61 1013
rlm@61 1014 (defn bones [index]
rlm@61 1015 (.get
rlm@61 1016 (.getData (.getBuffer mesh VertexBuffer$Type/BoneIndex))
rlm@61 1017 index))
rlm@61 1018
rlm@61 1019 (defn bone-weights [index]
rlm@61 1020 (.get
rlm@61 1021 (.getFloatBuffer mesh VertexBuffer$Type/BoneWeight)
rlm@61 1022 index))
rlm@61 1023
rlm@61 1024
rlm@61 1025
rlm@61 1026 (defn vertex-bones [vertex]
rlm@61 1027 (vec (map (comp int bones) (range (* vertex 4) (+ (* vertex 4) 4)))))
rlm@61 1028
rlm@61 1029 (defn vertex-weights [vertex]
rlm@61 1030 (vec (map (comp float bone-weights) (range (* vertex 4) (+ (* vertex 4) 4)))))
rlm@61 1031
rlm@61 1032 (defn vertex-position [index]
rlm@61 1033 (let [offset (* index 3)]
rlm@61 1034 (Vector3f. (position offset)
rlm@61 1035 (position (inc offset))
rlm@61 1036 (position (inc(inc offset))))))
rlm@61 1037
rlm@61 1038 (def vertex-info (juxt vertex-position vertex-bones vertex-weights))
rlm@61 1039
rlm@61 1040 (defn bone-control-color [index]
rlm@61 1041 (get {[1 0 0 0] ColorRGBA/Red
rlm@61 1042 [1 2 0 0] ColorRGBA/Magenta
rlm@61 1043 [2 0 0 0] ColorRGBA/Blue}
rlm@61 1044 (vertex-bones index)
rlm@61 1045 ColorRGBA/White))
rlm@61 1046
rlm@61 1047 (defn influence-color [index bone-num]
rlm@61 1048 (get
rlm@61 1049 {(float 0) ColorRGBA/Blue
rlm@61 1050 (float 0.5) ColorRGBA/Green
rlm@61 1051 (float 1) ColorRGBA/Red}
rlm@61 1052 ;; find the weight of the desired bone
rlm@61 1053 ((zipmap (vertex-bones index)(vertex-weights index))
rlm@61 1054 bone-num)
rlm@61 1055 ColorRGBA/Blue))
rlm@61 1056
rlm@61 1057 (def worm-vertices (set (map vertex-info (range 60))))
rlm@61 1058
rlm@61 1059
rlm@61 1060 (defn test-info []
rlm@61 1061 (let [points (Node.)]
rlm@61 1062 (dorun
rlm@61 1063 (map #(.attachChild points %)
rlm@61 1064 (map #(sphere 0.01
rlm@61 1065 :position (vertex-position %)
rlm@61 1066 :color (influence-color % 1)
rlm@61 1067 :physical? false)
rlm@61 1068 (range 60))))
rlm@61 1069 (view points)))
rlm@61 1070
rlm@61 1071
rlm@61 1072 (defrecord JointControl [joint physics-space]
rlm@61 1073 PhysicsControl
rlm@61 1074 (setPhysicsSpace [this space]
rlm@61 1075 (dosync
rlm@61 1076 (ref-set (:physics-space this) space))
rlm@61 1077 (.addJoint space (:joint this)))
rlm@61 1078 (update [this tpf])
rlm@61 1079 (setSpatial [this spatial])
rlm@61 1080 (render [this rm vp])
rlm@61 1081 (getPhysicsSpace [this] (deref (:physics-space this)))
rlm@61 1082 (isEnabled [this] true)
rlm@61 1083 (setEnabled [this state]))
rlm@61 1084
rlm@61 1085 (defn add-joint
rlm@61 1086 "Add a joint to a particular object. When the object is added to the
rlm@61 1087 PhysicsSpace of a simulation, the joint will also be added"
rlm@61 1088 [object joint]
rlm@61 1089 (let [control (JointControl. joint (ref nil))]
rlm@61 1090 (.addControl object control))
rlm@61 1091 object)
rlm@61 1092
rlm@61 1093
rlm@61 1094 (defn hinge-world
rlm@61 1095 []
rlm@61 1096 (let [sphere1 (sphere)
rlm@61 1097 sphere2 (sphere 1 :position (Vector3f. 3 3 3))
rlm@61 1098 joint (Point2PointJoint.
rlm@61 1099 (.getControl sphere1 RigidBodyControl)
rlm@61 1100 (.getControl sphere2 RigidBodyControl)
rlm@61 1101 Vector3f/ZERO (Vector3f. 3 3 3))]
rlm@61 1102 (add-joint sphere1 joint)
rlm@61 1103 (doto (Node. "hinge-world")
rlm@61 1104 (.attachChild sphere1)
rlm@61 1105 (.attachChild sphere2))))
rlm@61 1106
rlm@61 1107
rlm@61 1108 (defn test-joint []
rlm@61 1109 (view (hinge-world)))
rlm@61 1110
rlm@61 1111 ;; (defn copier-gen []
rlm@61 1112 ;; (let [count (atom 0)]
rlm@61 1113 ;; (fn [in]
rlm@61 1114 ;; (swap! count inc)
rlm@61 1115 ;; (clojure.contrib.duck-streams/copy
rlm@61 1116 ;; in (File. (str "/home/r/tmp/mao-test/clojure-images/"
rlm@61 1117 ;; ;;/home/r/tmp/mao-test/clojure-images
rlm@61 1118 ;; (format "%08d.png" @count)))))))
rlm@61 1119 ;; (defn decrease-framerate []
rlm@61 1120 ;; (map
rlm@61 1121 ;; (copier-gen)
rlm@61 1122 ;; (sort
rlm@61 1123 ;; (map first
rlm@61 1124 ;; (partition
rlm@61 1125 ;; 4
rlm@61 1126 ;; (filter #(re-matches #".*.png$" (.getCanonicalPath %))
rlm@61 1127 ;; (file-seq
rlm@61 1128 ;; (file-str
rlm@61 1129 ;; "/home/r/media/anime/mao-temp/images"))))))))
rlm@61 1130
rlm@61 1131
rlm@61 1132
rlm@61 1133 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rlm@61 1134
rlm@61 1135 (defn proprioception
rlm@61 1136 "Create a proprioception map that reports the rotations of the
rlm@61 1137 various limbs of the creature's body"
rlm@61 1138 [creature]
rlm@61 1139 [#^Node creature]
rlm@61 1140 (let [
rlm@61 1141 nodes (node-seq creature)
rlm@61 1142 joints
rlm@61 1143 (map
rlm@61 1144 :joint
rlm@61 1145 (filter
rlm@61 1146 #(isa? (class %) JointControl)
rlm@61 1147 (reduce
rlm@61 1148 concat
rlm@61 1149 (map (fn [node]
rlm@61 1150 (map (fn [num] (.getControl node num))
rlm@61 1151 (range (.getNumControls node))))
rlm@61 1152 nodes))))]
rlm@61 1153 (fn []
rlm@61 1154 (reduce concat (map relative-positions (list (first joints)))))))
rlm@61 1155
rlm@61 1156
rlm@63 1157 (defn skel [node]
rlm@63 1158 (doto
rlm@63 1159 (.getSkeleton
rlm@63 1160 (.getControl node SkeletonControl))
rlm@63 1161 ;; this is necessary to force the skeleton to have accurate world
rlm@63 1162 ;; transforms before it is rendered to the screen.
rlm@63 1163 (.resetAndUpdate)))
rlm@63 1164
rlm@63 1165 (defn green-x-ray []
rlm@63 1166 (doto (Material. (asset-manager)
rlm@63 1167 "Common/MatDefs/Misc/Unshaded.j3md")
rlm@63 1168 (.setColor "Color" ColorRGBA/Green)
rlm@63 1169 (-> (.getAdditionalRenderState)
rlm@63 1170 (.setDepthTest false))))
rlm@63 1171
rlm@63 1172 (defn test-worm []
rlm@63 1173 (.start
rlm@63 1174 (world
rlm@63 1175 (doto (Node.)
rlm@63 1176 ;;(.attachChild (point-worm))
rlm@63 1177 (.attachChild (load-blender-model
rlm@63 1178 "Models/anim2/joint-worm.blend"))
rlm@63 1179
rlm@63 1180 (.attachChild (box 10 1 10
rlm@63 1181 :position (Vector3f. 0 -2 0) :mass 0
rlm@63 1182 :color (ColorRGBA/Gray))))
rlm@63 1183 {
rlm@63 1184 "key-space" (fire-cannon-ball)
rlm@63 1185 }
rlm@63 1186 (fn [world]
rlm@63 1187 (enable-debug world)
rlm@63 1188 (light-up-everything world)
rlm@63 1189 ;;(.setTimer world (NanoTimer.))
rlm@63 1190 )
rlm@63 1191 no-op)))
rlm@63 1192
rlm@63 1193
rlm@63 1194
rlm@63 1195 ;; defunct movement stuff
rlm@63 1196 (defn torque-controls [control]
rlm@63 1197 (let [torques
rlm@63 1198 (concat
rlm@63 1199 (map #(Vector3f. 0 (Math/sin %) (Math/cos %))
rlm@63 1200 (range 0 (* Math/PI 2) (/ (* Math/PI 2) 20)))
rlm@63 1201 [Vector3f/UNIT_X])]
rlm@63 1202 (map (fn [torque-axis]
rlm@63 1203 (fn [torque]
rlm@63 1204 (.applyTorque
rlm@63 1205 control
rlm@63 1206 (.mult (.mult (.getPhysicsRotation control)
rlm@63 1207 torque-axis)
rlm@63 1208 (float
rlm@63 1209 (* (.getMass control) torque))))))
rlm@63 1210 torques)))
rlm@63 1211
rlm@63 1212 (defn motor-map
rlm@63 1213 "Take a creature and generate a function that will enable fine
rlm@63 1214 grained control over all the creature's limbs."
rlm@63 1215 [#^Node creature]
rlm@63 1216 (let [controls (keep #(.getControl % RigidBodyControl)
rlm@63 1217 (node-seq creature))
rlm@63 1218 limb-controls (reduce concat (map torque-controls controls))
rlm@63 1219 body-control (partial map #(%1 %2) limb-controls)]
rlm@63 1220 body-control))
rlm@63 1221
rlm@63 1222 (defn test-motor-map
rlm@63 1223 "see how torque works."
rlm@63 1224 []
rlm@63 1225 (let [finger (box 3 0.5 0.5 :position (Vector3f. 0 2 0)
rlm@63 1226 :mass 1 :color ColorRGBA/Green)
rlm@63 1227 motor-map (motor-map finger)]
rlm@63 1228 (world
rlm@63 1229 (nodify [finger
rlm@63 1230 (box 10 0.5 10 :position (Vector3f. 0 -5 0) :mass 0
rlm@63 1231 :color ColorRGBA/Gray)])
rlm@63 1232 standard-debug-controls
rlm@63 1233 (fn [world]
rlm@63 1234 (set-gravity world Vector3f/ZERO)
rlm@63 1235 (light-up-everything world)
rlm@63 1236 (.setTimer world (NanoTimer.)))
rlm@63 1237 (fn [_ _]
rlm@145 1238 (dorun (motor-map [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
rlm@145 1239 0]))))))
rlm@145 1240
rlm@145 1241 (defn joint-proprioception [#^Node parts #^Node joint]
rlm@145 1242 (let [[obj-a obj-b] (joint-targets parts joint)
rlm@145 1243 joint-rot (.getWorldRotation joint)
rlm@145 1244 pre-inv-a (.inverse (.getWorldRotation obj-a))
rlm@145 1245 x (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_X))
rlm@145 1246 y (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_Y))
rlm@145 1247 z (.mult pre-inv-a (.mult joint-rot Vector3f/UNIT_Z))
rlm@145 1248
rlm@145 1249 x Vector3f/UNIT_Y
rlm@145 1250 y Vector3f/UNIT_Z
rlm@145 1251 z Vector3f/UNIT_X
rlm@145 1252
rlm@145 1253
rlm@145 1254 tmp-rot-a (.getWorldRotation obj-a)]
rlm@145 1255 (println-repl "x:" (.mult tmp-rot-a x))
rlm@145 1256 (println-repl "y:" (.mult tmp-rot-a y))
rlm@145 1257 (println-repl "z:" (.mult tmp-rot-a z))
rlm@145 1258 (println-repl "rot-a" (.getWorldRotation obj-a))
rlm@145 1259 (println-repl "rot-b" (.getWorldRotation obj-b))
rlm@145 1260 (println-repl "joint-rot" joint-rot)
rlm@145 1261 ;; this function will report proprioceptive information for the
rlm@145 1262 ;; joint.
rlm@145 1263 (fn []
rlm@145 1264 ;; x is the "twist" axis, y and z are the "bend" axes
rlm@145 1265 (let [rot-a (.getWorldRotation obj-a)
rlm@145 1266 ;;inv-a (.inverse rot-a)
rlm@145 1267 rot-b (.getWorldRotation obj-b)
rlm@145 1268 ;;relative (.mult rot-b inv-a)
rlm@145 1269 basis (doto (Matrix3f.)
rlm@145 1270 (.setColumn 0 (.mult rot-a x))
rlm@145 1271 (.setColumn 1 (.mult rot-a y))
rlm@145 1272 (.setColumn 2 (.mult rot-a z)))
rlm@145 1273 rotation-about-joint
rlm@145 1274 (doto (Quaternion.)
rlm@145 1275 (.fromRotationMatrix
rlm@145 1276 (.mult (.invert basis)
rlm@145 1277 (.toRotationMatrix rot-b))))
rlm@145 1278 [yaw roll pitch]
rlm@145 1279 (seq (.toAngles rotation-about-joint nil))]
rlm@145 1280 ;;return euler angles of the quaternion around the new basis
rlm@145 1281 [yaw roll pitch]))))
rlm@145 1282
rlm@61 1283 #+end_src
rlm@0 1284
rlm@0 1285
rlm@0 1286
rlm@0 1287
rlm@0 1288
rlm@0 1289
rlm@0 1290
rlm@73 1291 * COMMENT generate Source
rlm@44 1292 #+begin_src clojure :tangle ../src/cortex/body.clj
rlm@205 1293 <<body-header>>
rlm@205 1294 <<body-1>>
rlm@205 1295 <<joints-2>>
rlm@205 1296 <<joints-3>>
rlm@205 1297 <<joints-4>>
rlm@205 1298 <<joints-5>>
rlm@205 1299 <<joints-6>>
rlm@0 1300 #+end_src
rlm@64 1301
rlm@69 1302 #+begin_src clojure :tangle ../src/cortex/test/body.clj
rlm@205 1303 <<test-header>>
rlm@205 1304 <<test-1>>
rlm@205 1305 <<test-2>>
rlm@205 1306 <<test-3>>
rlm@205 1307 <<test-4>>
rlm@64 1308 #+end_src
rlm@64 1309
rlm@64 1310
rlm@0 1311