annotate org/body.org @ 450:432f2c4646cb

sleepig.
author Robert McIntyre <rlm@mit.edu>
date Wed, 26 Mar 2014 03:18:57 -0400 (2014-03-26)
parents 4c37d39a3cf6
children 42ddfe406c0a
rev   line source
rlm@202 1 #+title: Building a Body
rlm@0 2 #+author: Robert McIntyre
rlm@273 3 #+email: rlm@mit.edu
rlm@306 4 #+description: Simulating a body (movement, touch, proprioception) in jMonkeyEngine3.
rlm@4 5 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 6 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@4 7
rlm@202 8 * Design Constraints
rlm@202 9
rlm@202 10 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
rlm@202 11 determined by the requirements of the AI that will use them. The
rlm@202 12 bodies must be easy for an AI to sense and control, and they must be
rlm@202 13 relatively simple for jMonkeyEngine to compute.
rlm@202 14
ocsenave@251 15 # I'm a secret test! :P
rlm@202 16 ** Bag of Bones
rlm@202 17
rlm@202 18 How to create such a body? One option I ultimately rejected is to use
rlm@202 19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
rlm@202 20 which describes the creature's entire body. To this you add an
rlm@273 21 skeleton which deforms this mesh. This technique is used extensively
rlm@202 22 to model humans and create realistic animations. It is hard to use for
rlm@202 23 my purposes because it is difficult to update the creature's Physics
rlm@202 24 Collision Mesh in tandem with its Geometric Mesh under the influence
rlm@306 25 of the armature. Without this the creature will not be able to grab
rlm@202 26 things in its environment, and it won't be able to tell where its
rlm@388 27 physical body is by using its eyes. Also, armatures do not specify any
rlm@388 28 rotational limits for a joint, making it hard to model elbows,
rlm@202 29 shoulders, etc.
rlm@202 30
rlm@202 31 ** EVE
rlm@202 32
rlm@202 33 Instead of using the human-like "deformable bag of bones" approach, I
rlm@202 34 decided to base my body plans on the robot EVE from the movie wall-E.
rlm@202 35
rlm@202 36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
rlm@202 37 [[../images/Eve.jpg]]
rlm@202 38
rlm@204 39 EVE's body is composed of several rigid components that are held
rlm@204 40 together by invisible joint constraints. This is what I mean by
rlm@204 41 "eve-like". The main reason that I use eve-style bodies is so that
rlm@204 42 there will be correspondence between the AI's vision and the physical
rlm@204 43 presence of its body. Each individual section is simulated by a
rlm@204 44 separate rigid body that corresponds exactly with its visual
rlm@204 45 representation and does not change. Sections are connected by
rlm@306 46 invisible joints that are well supported in jMonkeyEngine. Bullet, the
rlm@204 47 physics backend for jMonkeyEngine, can efficiently simulate hundreds
rlm@204 48 of rigid bodies connected by joints. Sections do not have to stay as
rlm@204 49 one piece forever; they can be dynamically replaced with multiple
rlm@204 50 sections to simulate splitting in two. This could be used to simulate
rlm@306 51 retractable claws or EVE's hands, which are able to coalesce into one
rlm@209 52 object in the movie.
rlm@202 53
rlm@202 54 * Solidifying the Body
rlm@202 55
rlm@202 56 Here is a hand designed eve-style in blender.
rlm@202 57
rlm@203 58 #+attr_html: width="755"
rlm@202 59 [[../images/hand-screenshot0.png]]
rlm@202 60
rlm@202 61 If we load it directly into jMonkeyEngine, we get this:
rlm@202 62
rlm@205 63 #+name: test-1
rlm@202 64 #+begin_src clojure
rlm@202 65 (def hand-path "Models/test-creature/hand.blend")
rlm@202 66
rlm@202 67 (defn hand [] (load-blender-model hand-path))
rlm@202 68
rlm@202 69 (defn setup [world]
rlm@202 70 (let [cam (.getCamera world)]
rlm@202 71 (println-repl cam)
rlm@202 72 (.setLocation
rlm@202 73 cam (Vector3f.
rlm@202 74 -6.9015837, 8.644911, 5.6043186))
rlm@202 75 (.setRotation
rlm@202 76 cam
rlm@202 77 (Quaternion.
rlm@202 78 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
rlm@202 79 (light-up-everything world)
rlm@202 80 (.setTimer world (RatchetTimer. 60))
rlm@202 81 world)
rlm@202 82
rlm@283 83 (defn test-hand-1
rlm@283 84 ([] (test-hand-1 false))
rlm@283 85 ([record?]
rlm@283 86 (world (hand)
rlm@283 87 standard-debug-controls
rlm@283 88 (fn [world]
rlm@283 89 (if record?
rlm@283 90 (Capture/captureVideo
rlm@283 91 world
rlm@283 92 (File. "/home/r/proj/cortex/render/body/1")))
rlm@283 93 (setup world)) no-op)))
rlm@202 94 #+end_src
rlm@202 95
rlm@202 96
rlm@202 97 #+begin_src clojure :results silent
rlm@202 98 (.start (cortex.test.body/test-one))
rlm@202 99 #+end_src
rlm@202 100
rlm@202 101 #+begin_html
rlm@203 102 <div class="figure">
rlm@203 103 <center>
rlm@203 104 <video controls="controls" width="640">
rlm@202 105 <source src="../video/ghost-hand.ogg" type="video/ogg"
rlm@202 106 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 107 </video>
rlm@309 108 <br> <a href="http://youtu.be/9LZpwTIhjzE"> YouTube </a>
rlm@203 109 </center>
rlm@203 110 <p>The hand model directly loaded from blender. It has no physical
rlm@306 111 presence in the simulation. </p>
rlm@203 112 </div>
rlm@202 113 #+end_html
rlm@202 114
rlm@202 115 You will notice that the hand has no physical presence -- it's a
rlm@204 116 hologram through which everything passes. Therefore, the first thing
rlm@202 117 to do is to make it solid. Blender has physics simulation on par with
rlm@202 118 jMonkeyEngine (they both use bullet as their physics backend), but it
rlm@202 119 can be difficult to translate between the two systems, so for now I
rlm@209 120 specify the mass of each object as meta-data in blender and construct
rlm@209 121 the physics shape based on the mesh in jMonkeyEngine.
rlm@202 122
rlm@203 123 #+name: body-1
rlm@202 124 #+begin_src clojure
rlm@202 125 (defn physical!
rlm@202 126 "Iterate through the nodes in creature and make them real physical
rlm@202 127 objects in the simulation."
rlm@202 128 [#^Node creature]
rlm@202 129 (dorun
rlm@202 130 (map
rlm@202 131 (fn [geom]
rlm@202 132 (let [physics-control
rlm@202 133 (RigidBodyControl.
rlm@202 134 (HullCollisionShape.
rlm@202 135 (.getMesh geom))
rlm@202 136 (if-let [mass (meta-data geom "mass")]
rlm@202 137 (do
rlm@321 138 ;;(println-repl
rlm@321 139 ;; "setting" (.getName geom) "mass to" (float mass))
rlm@202 140 (float mass))
rlm@202 141 (float 1)))]
rlm@202 142 (.addControl geom physics-control)))
rlm@202 143 (filter #(isa? (class %) Geometry )
rlm@202 144 (node-seq creature)))))
rlm@202 145 #+end_src
rlm@202 146
rlm@313 147 =physical!= iterates through a creature's node structure, creating
rlm@202 148 CollisionShapes for each geometry with the mass specified in that
rlm@202 149 geometry's meta-data.
rlm@202 150
rlm@205 151 #+name: test-2
rlm@0 152 #+begin_src clojure
rlm@202 153 (in-ns 'cortex.test.body)
rlm@160 154
rlm@209 155 (def gravity-control
rlm@202 156 {"key-g" (fn [world _]
rlm@209 157 (set-gravity world (Vector3f. 0 -9.81 0)))
rlm@209 158 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
rlm@209 159
rlm@202 160 (defn floor []
rlm@202 161 (box 10 3 10 :position (Vector3f. 0 -10 0)
rlm@202 162 :color ColorRGBA/Gray :mass 0))
rlm@202 163
rlm@283 164 (defn test-hand-2
rlm@283 165 ([] (test-hand-2 false))
rlm@283 166 ([record?]
rlm@283 167 (world
rlm@283 168 (nodify
rlm@283 169 [(doto (hand)
rlm@283 170 (physical!))
rlm@283 171 (floor)])
rlm@283 172 (merge standard-debug-controls gravity-control)
rlm@283 173 (fn [world]
rlm@283 174 (if record?
rlm@283 175 (Capture/captureVideo
rlm@283 176 world (File. "/home/r/proj/cortex/render/body/2")))
rlm@283 177 (set-gravity world Vector3f/ZERO)
rlm@283 178 (setup world))
rlm@283 179 no-op)))
rlm@202 180 #+end_src
rlm@202 181
rlm@202 182 #+begin_html
rlm@203 183 <div class="figure">
rlm@203 184 <center>
rlm@203 185 <video controls="controls" width="640">
rlm@202 186 <source src="../video/crumbly-hand.ogg" type="video/ogg"
rlm@202 187 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 188 </video>
rlm@309 189 <br> <a href="http://youtu.be/GEA1SACwpPg"> YouTube </a>
rlm@203 190 </center>
rlm@203 191 <p>The hand now has a physical presence, but there is nothing to hold
rlm@203 192 it together.</p>
rlm@203 193 </div>
rlm@202 194 #+end_html
rlm@202 195
rlm@202 196 Now that's some progress.
rlm@202 197
rlm@202 198 * Joints
rlm@202 199
rlm@209 200 Obviously, an AI is not going to be doing much while lying in pieces
rlm@209 201 on the floor. So, the next step to making a proper body is to connect
rlm@202 202 those pieces together with joints. jMonkeyEngine has a large array of
rlm@202 203 joints available via bullet, such as Point2Point, Cone, Hinge, and a
rlm@202 204 generic Six Degree of Freedom joint, with or without spring
rlm@202 205 restitution.
rlm@202 206
rlm@202 207 Although it should be possible to specify the joints using blender's
rlm@202 208 physics system, and then automatically import them with jMonkeyEngine,
rlm@202 209 the support isn't there yet, and there are a few problems with bullet
rlm@202 210 itself that need to be solved before it can happen.
rlm@202 211
rlm@202 212 So, I will use the same system for specifying joints as I will do for
rlm@202 213 some senses. Each joint is specified by an empty node whose parent
rlm@202 214 has the name "joints". Their orientation and meta-data determine what
rlm@202 215 joint is created.
rlm@202 216
rlm@203 217 #+attr_html: width="755"
rlm@209 218 #+caption: Joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
rlm@202 219 [[../images/hand-screenshot1.png]]
rlm@202 220
rlm@203 221 The empty node in the upper right, highlighted in yellow, is the
rlm@306 222 parent node of all the empties which represent joints. The following
rlm@203 223 functions must do three things to translate these into real joints:
rlm@202 224
rlm@203 225 - Find the children of the "joints" node.
rlm@203 226 - Determine the two spatials the joint it meant to connect.
rlm@203 227 - Create the joint based on the meta-data of the empty node.
rlm@202 228
rlm@203 229 ** Finding the Joints
rlm@209 230
rlm@273 231 The higher order function =sense-nodes= from =cortex.sense= simplifies
rlm@209 232 the first task.
rlm@209 233
rlm@203 234 #+name: joints-2
rlm@203 235 #+begin_src clojure
rlm@317 236 (def
rlm@317 237 ^{:doc "Return the children of the creature's \"joints\" node."
rlm@317 238 :arglists '([creature])}
rlm@203 239 joints
rlm@317 240 (sense-nodes "joints"))
rlm@203 241 #+end_src
rlm@202 242
rlm@203 243 ** Joint Targets and Orientation
rlm@203 244
rlm@306 245 This technique for finding a joint's targets is very similar to
rlm@273 246 =cortex.sense/closest-node=. A small cube, centered around the
rlm@203 247 empty-node, grows exponentially until it intersects two /physical/
rlm@203 248 objects. The objects are ordered according to the joint's rotation,
rlm@203 249 with the first one being the object that has more negative coordinates
rlm@203 250 in the joint's reference frame. Since the objects must be physical,
rlm@203 251 the empty-node itself escapes detection. Because the objects must be
rlm@273 252 physical, =joint-targets= must be called /after/ =physical!= is
rlm@203 253 called.
rlm@203 254
rlm@203 255 #+name: joints-3
rlm@202 256 #+begin_src clojure
rlm@135 257 (defn joint-targets
rlm@135 258 "Return the two closest two objects to the joint object, ordered
rlm@135 259 from bottom to top according to the joint's rotation."
rlm@135 260 [#^Node parts #^Node joint]
rlm@135 261 (loop [radius (float 0.01)]
rlm@135 262 (let [results (CollisionResults.)]
rlm@135 263 (.collideWith
rlm@135 264 parts
rlm@135 265 (BoundingBox. (.getWorldTranslation joint)
rlm@209 266 radius radius radius) results)
rlm@135 267 (let [targets
rlm@135 268 (distinct
rlm@135 269 (map #(.getGeometry %) results))]
rlm@135 270 (if (>= (count targets) 2)
rlm@135 271 (sort-by
rlm@209 272 #(let [joint-ref-frame-position
rlm@135 273 (jme-to-blender
rlm@135 274 (.mult
rlm@135 275 (.inverse (.getWorldRotation joint))
rlm@135 276 (.subtract (.getWorldTranslation %)
rlm@135 277 (.getWorldTranslation joint))))]
rlm@209 278 (.dot (Vector3f. 1 1 1) joint-ref-frame-position))
rlm@135 279 (take 2 targets))
rlm@135 280 (recur (float (* radius 2))))))))
rlm@203 281 #+end_src
rlm@135 282
rlm@203 283 ** Generating Joints
rlm@203 284
rlm@209 285 This section of code iterates through all the different ways of
rlm@203 286 specifying joints using blender meta-data and converts each one to the
rlm@306 287 appropriate jMonkeyEngine joint.
rlm@203 288
rlm@203 289 #+name: joints-4
rlm@203 290 #+begin_src clojure
rlm@160 291 (defmulti joint-dispatch
rlm@160 292 "Translate blender pseudo-joints into real JME joints."
rlm@160 293 (fn [constraints & _]
rlm@160 294 (:type constraints)))
rlm@141 295
rlm@160 296 (defmethod joint-dispatch :point
rlm@160 297 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@321 298 ;;(println-repl "creating POINT2POINT joint")
rlm@160 299 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@160 300 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@141 301
rlm@160 302 ;; should be able to do this:
rlm@160 303 (comment
rlm@160 304 (Point2PointJoint.
rlm@160 305 control-a
rlm@160 306 control-b
rlm@160 307 pivot-a
rlm@160 308 pivot-b))
rlm@141 309
rlm@160 310 ;; but instead we must do this:
rlm@321 311 ;;(println-repl "substituting 6DOF joint for POINT2POINT joint!")
rlm@160 312 (doto
rlm@160 313 (SixDofJoint.
rlm@160 314 control-a
rlm@160 315 control-b
rlm@160 316 pivot-a
rlm@160 317 pivot-b
rlm@160 318 false)
rlm@160 319 (.setLinearLowerLimit Vector3f/ZERO)
rlm@203 320 (.setLinearUpperLimit Vector3f/ZERO)))
rlm@160 321
rlm@160 322 (defmethod joint-dispatch :hinge
rlm@160 323 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@321 324 ;;(println-repl "creating HINGE joint")
rlm@160 325 (let [axis
rlm@160 326 (if-let
rlm@160 327 [axis (:axis constraints)]
rlm@160 328 axis
rlm@160 329 Vector3f/UNIT_X)
rlm@160 330 [limit-1 limit-2] (:limit constraints)
rlm@160 331 hinge-axis
rlm@160 332 (.mult
rlm@160 333 rotation
rlm@160 334 (blender-to-jme axis))]
rlm@160 335 (doto
rlm@160 336 (HingeJoint.
rlm@160 337 control-a
rlm@160 338 control-b
rlm@160 339 pivot-a
rlm@160 340 pivot-b
rlm@160 341 hinge-axis
rlm@160 342 hinge-axis)
rlm@160 343 (.setLimit limit-1 limit-2))))
rlm@160 344
rlm@160 345 (defmethod joint-dispatch :cone
rlm@160 346 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 347 (let [limit-xz (:limit-xz constraints)
rlm@160 348 limit-xy (:limit-xy constraints)
rlm@160 349 twist (:twist constraints)]
rlm@160 350
rlm@321 351 ;;(println-repl "creating CONE joint")
rlm@321 352 ;;(println-repl rotation)
rlm@321 353 ;;(println-repl
rlm@321 354 ;; "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@321 355 ;;(println-repl
rlm@321 356 ;; "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@321 357 ;;(println-repl
rlm@321 358 ;; "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@160 359 (doto
rlm@160 360 (ConeJoint.
rlm@160 361 control-a
rlm@160 362 control-b
rlm@160 363 pivot-a
rlm@160 364 pivot-b
rlm@160 365 rotation
rlm@160 366 rotation)
rlm@160 367 (.setLimit (float limit-xz)
rlm@160 368 (float limit-xy)
rlm@160 369 (float twist)))))
rlm@160 370
rlm@160 371 (defn connect
rlm@175 372 "Create a joint between 'obj-a and 'obj-b at the location of
rlm@175 373 'joint. The type of joint is determined by the metadata on 'joint.
rlm@175 374
rlm@175 375 Here are some examples:
rlm@160 376 {:type :point}
rlm@160 377 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@160 378 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@160 379
rlm@160 380 {:type :cone :limit-xz 0]
rlm@160 381 :limit-xy 0]
rlm@160 382 :twist 0]} (use XZY rotation mode in blender!)"
rlm@160 383 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@160 384 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@160 385 control-b (.getControl obj-b RigidBodyControl)
rlm@160 386 joint-center (.getWorldTranslation joint)
rlm@160 387 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@160 388 pivot-a (world-to-local obj-a joint-center)
rlm@160 389 pivot-b (world-to-local obj-b joint-center)]
rlm@160 390
rlm@160 391 (if-let [constraints
rlm@160 392 (map-vals
rlm@160 393 eval
rlm@160 394 (read-string
rlm@160 395 (meta-data joint "joint")))]
rlm@160 396 ;; A side-effect of creating a joint registers
rlm@160 397 ;; it with both physics objects which in turn
rlm@160 398 ;; will register the joint with the physics system
rlm@160 399 ;; when the simulation is started.
rlm@160 400 (do
rlm@321 401 ;;(println-repl "creating joint between"
rlm@321 402 ;; (.getName obj-a) "and" (.getName obj-b))
rlm@160 403 (joint-dispatch constraints
rlm@160 404 control-a control-b
rlm@160 405 pivot-a pivot-b
rlm@160 406 joint-rotation))
rlm@321 407 ;;(println-repl "could not find joint meta-data!")
rlm@321 408 )))
rlm@203 409 #+end_src
rlm@160 410
rlm@273 411 Creating joints is now a matter of applying =connect= to each joint
rlm@203 412 node.
rlm@160 413
rlm@205 414 #+name: joints-5
rlm@203 415 #+begin_src clojure
rlm@175 416 (defn joints!
rlm@175 417 "Connect the solid parts of the creature with physical joints. The
rlm@175 418 joints are taken from the \"joints\" node in the creature."
rlm@175 419 [#^Node creature]
rlm@160 420 (dorun
rlm@160 421 (map
rlm@160 422 (fn [joint]
rlm@175 423 (let [[obj-a obj-b] (joint-targets creature joint)]
rlm@160 424 (connect obj-a obj-b joint)))
rlm@175 425 (joints creature))))
rlm@203 426 #+end_src
rlm@160 427
rlm@203 428 ** Round 3
rlm@203 429
rlm@203 430 Now we can test the hand in all its glory.
rlm@203 431
rlm@205 432 #+name: test-3
rlm@203 433 #+begin_src clojure
rlm@203 434 (in-ns 'cortex.test.body)
rlm@203 435
rlm@203 436 (def debug-control
rlm@203 437 {"key-h" (fn [world val]
rlm@209 438 (if val (enable-debug world)))})
rlm@203 439
rlm@283 440 (defn test-hand-3
rlm@283 441 ([] (test-hand-3 false))
rlm@283 442 ([record?]
rlm@283 443 (world
rlm@283 444 (nodify
rlm@283 445 [(doto (hand)
rlm@283 446 (physical!)
rlm@283 447 (joints!))
rlm@283 448 (floor)])
rlm@283 449 (merge standard-debug-controls debug-control
rlm@283 450 gravity-control)
rlm@283 451 (comp
rlm@283 452 #(Capture/captureVideo
rlm@283 453 % (File. "/home/r/proj/cortex/render/body/3"))
rlm@283 454 #(do (set-gravity % Vector3f/ZERO) %)
rlm@283 455 setup)
rlm@283 456 no-op)))
rlm@203 457 #+end_src
rlm@203 458
rlm@273 459 =physical!= makes the hand solid, then =joints!= connects each
rlm@203 460 piece together.
rlm@203 461
rlm@203 462 #+begin_html
rlm@203 463 <div class="figure">
rlm@203 464 <center>
rlm@203 465 <video controls="controls" width="640">
rlm@203 466 <source src="../video/full-hand.ogg" type="video/ogg"
rlm@203 467 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@203 468 </video>
rlm@309 469 <br> <a href="http://youtu.be/4affLfwSPP4"> YouTube </a>
rlm@203 470 </center>
rlm@203 471 <p>Now the hand is physical and has joints.</p>
rlm@203 472 </div>
rlm@203 473 #+end_html
rlm@203 474
rlm@203 475 The joints are visualized as green connections between each segment
rlm@203 476 for debug purposes. You can see that they correspond to the empty
rlm@203 477 nodes in the blender file.
rlm@203 478
rlm@203 479 * Wrap-Up!
rlm@203 480
rlm@306 481 It is convenient to combine =physical!= and =joints!= into one
rlm@203 482 function that completely creates the creature's physical body.
rlm@203 483
rlm@205 484 #+name: joints-6
rlm@203 485 #+begin_src clojure
rlm@175 486 (defn body!
rlm@175 487 "Endow the creature with a physical body connected with joints. The
rlm@306 488 particulars of the joints and the masses of each body part are
rlm@175 489 determined in blender."
rlm@175 490 [#^Node creature]
rlm@175 491 (physical! creature)
rlm@175 492 (joints! creature))
rlm@64 493 #+end_src
rlm@63 494
rlm@205 495 * The Worm
rlm@205 496
rlm@205 497 Going forward, I will use a model that is less complicated than the
rlm@205 498 hand. It has two segments and one joint, and I call it the worm. All
rlm@205 499 of the senses described in the following posts will be applied to this
rlm@205 500 worm.
rlm@205 501
rlm@205 502 #+name: test-4
rlm@205 503 #+begin_src clojure
rlm@205 504 (in-ns 'cortex.test.body)
rlm@205 505
rlm@215 506 (defn worm []
rlm@215 507 (load-blender-model
rlm@215 508 "Models/test-creature/worm.blend"))
rlm@215 509
rlm@283 510 (defn test-worm
rlm@321 511
rlm@321 512 "Testing physical bodies:
rlm@321 513 You should see the the worm fall onto a table. You can fire
rlm@321 514 physical balls at it and the worm should move upon being struck.
rlm@321 515
rlm@321 516 Keys:
rlm@321 517 <space> : fire cannon ball."
rlm@321 518
rlm@283 519 ([] (test-worm false))
rlm@283 520 ([record?]
rlm@283 521 (let [timer (RatchetTimer. 60)]
rlm@283 522 (world
rlm@283 523 (nodify
rlm@283 524 [(doto (worm)
rlm@283 525 (body!))
rlm@283 526 (floor)])
rlm@283 527 (merge standard-debug-controls debug-control)
rlm@283 528 #(do
rlm@283 529 (speed-up %)
rlm@283 530 (light-up-everything %)
rlm@283 531 (.setTimer % timer)
rlm@314 532 (cortex.util/display-dilated-time % timer)
rlm@283 533 (if record?
rlm@283 534 (Capture/captureVideo
rlm@283 535 % (File. "/home/r/proj/cortex/render/body/4"))))
rlm@283 536 no-op))))
rlm@205 537 #+end_src
rlm@205 538
rlm@321 539 #+results: test-4
rlm@321 540 : #'cortex.test.body/test-worm
rlm@321 541
rlm@205 542 #+begin_html
rlm@205 543 <div class="figure">
rlm@205 544 <center>
rlm@205 545 <video controls="controls" width="640">
rlm@205 546 <source src="../video/worm-1.ogg" type="video/ogg"
rlm@205 547 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@205 548 </video>
rlm@309 549 <br> <a href="http://youtu.be/rFVXI0T3iSE"> YouTube </a>
rlm@205 550 </center>
rlm@205 551 <p>This worm model will be the platform onto which future senses will
rlm@205 552 be grafted.</p>
rlm@205 553 </div>
rlm@205 554 #+end_html
rlm@205 555
rlm@209 556 * Headers
rlm@205 557 #+name: body-header
rlm@202 558 #+begin_src clojure
rlm@202 559 (ns cortex.body
rlm@202 560 "Assemble a physical creature using the definitions found in a
rlm@202 561 specially prepared blender file. Creates rigid bodies and joints so
rlm@306 562 that a creature can have a physical presence in the simulation."
rlm@202 563 {:author "Robert McIntyre"}
rlm@202 564 (:use (cortex world util sense))
rlm@202 565 (:import
rlm@202 566 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
rlm@202 567 (com.jme3.bullet.joints
rlm@202 568 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
rlm@202 569 com.jme3.bullet.control.RigidBodyControl
rlm@202 570 com.jme3.collision.CollisionResults
rlm@202 571 com.jme3.bounding.BoundingBox
rlm@202 572 com.jme3.scene.Node
rlm@202 573 com.jme3.scene.Geometry
rlm@202 574 com.jme3.bullet.collision.shapes.HullCollisionShape))
rlm@202 575 #+end_src
rlm@133 576
rlm@205 577 #+name: test-header
rlm@205 578 #+begin_src clojure
rlm@205 579 (ns cortex.test.body
rlm@205 580 (:use (cortex world util body))
rlm@205 581 (:import
rlm@340 582 (com.aurellem.capture Capture RatchetTimer IsoTimer)
rlm@205 583 (com.jme3.math Quaternion Vector3f ColorRGBA)
rlm@205 584 java.io.File))
rlm@205 585 #+end_src
rlm@205 586
rlm@340 587 #+results: test-header
rlm@340 588 : java.io.File
rlm@340 589
rlm@202 590 * Source
rlm@207 591 - [[../src/cortex/body.clj][cortex.body]]
rlm@207 592 - [[../src/cortex/test/body.clj][cortex.test.body]]
rlm@207 593 - [[../assets/Models/test-creature/hand.blend][hand.blend]]
rlm@209 594 - [[../assets/Models/test-creature/palm.png][UV-map-1]]
rlm@207 595 - [[../assets/Models/test-creature/worm.blend][worm.blend]]
rlm@207 596 - [[../assets/Models/test-creature/retina-small.png][UV-map-1]]
rlm@207 597 - [[../assets/Models/test-creature/tip.png][UV-map-2]]
rlm@211 598 #+html: <ul> <li> <a href="../org/body.org">This org file</a> </li> </ul>
rlm@217 599 - [[http://hg.bortreb.com ][source-repository]]
rlm@211 600
rlm@211 601 * Next
rlm@211 602 The body I have made here exists without any senses or effectors. In
rlm@211 603 the [[./vision.org][next post]], I'll give the creature eyes.
rlm@63 604
rlm@206 605 * COMMENT Generate Source
rlm@44 606 #+begin_src clojure :tangle ../src/cortex/body.clj
rlm@205 607 <<body-header>>
rlm@205 608 <<body-1>>
rlm@205 609 <<joints-2>>
rlm@205 610 <<joints-3>>
rlm@205 611 <<joints-4>>
rlm@205 612 <<joints-5>>
rlm@205 613 <<joints-6>>
rlm@0 614 #+end_src
rlm@64 615
rlm@69 616 #+begin_src clojure :tangle ../src/cortex/test/body.clj
rlm@205 617 <<test-header>>
rlm@205 618 <<test-1>>
rlm@205 619 <<test-2>>
rlm@205 620 <<test-3>>
rlm@205 621 <<test-4>>
rlm@64 622 #+end_src
rlm@64 623
rlm@64 624
rlm@0 625
rlm@206 626