annotate org/body.org @ 458:42ddfe406c0a

working on depth maps for the lulz.
author Robert McIntyre <rlm@mit.edu>
date Tue, 11 Jun 2013 07:13:42 -0400
parents 4c37d39a3cf6
children 8bf4bb02ed05
rev   line source
rlm@202 1 #+title: Building a Body
rlm@0 2 #+author: Robert McIntyre
rlm@273 3 #+email: rlm@mit.edu
rlm@306 4 #+description: Simulating a body (movement, touch, proprioception) in jMonkeyEngine3.
rlm@4 5 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 6 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@4 7
rlm@202 8 * Design Constraints
rlm@202 9
rlm@202 10 I use [[www.blender.org/][blender]] to design bodies. The design of the bodies is
rlm@202 11 determined by the requirements of the AI that will use them. The
rlm@202 12 bodies must be easy for an AI to sense and control, and they must be
rlm@202 13 relatively simple for jMonkeyEngine to compute.
rlm@202 14
ocsenave@251 15 # I'm a secret test! :P
rlm@202 16 ** Bag of Bones
rlm@202 17
rlm@202 18 How to create such a body? One option I ultimately rejected is to use
rlm@202 19 blender's [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures][armature]] system. The idea would have been to define a mesh
rlm@202 20 which describes the creature's entire body. To this you add an
rlm@273 21 skeleton which deforms this mesh. This technique is used extensively
rlm@202 22 to model humans and create realistic animations. It is hard to use for
rlm@202 23 my purposes because it is difficult to update the creature's Physics
rlm@202 24 Collision Mesh in tandem with its Geometric Mesh under the influence
rlm@306 25 of the armature. Without this the creature will not be able to grab
rlm@202 26 things in its environment, and it won't be able to tell where its
rlm@388 27 physical body is by using its eyes. Also, armatures do not specify any
rlm@388 28 rotational limits for a joint, making it hard to model elbows,
rlm@202 29 shoulders, etc.
rlm@202 30
rlm@202 31 ** EVE
rlm@202 32
rlm@202 33 Instead of using the human-like "deformable bag of bones" approach, I
rlm@202 34 decided to base my body plans on the robot EVE from the movie wall-E.
rlm@202 35
rlm@202 36 #+caption: EVE from the movie WALL-E. This body plan turns out to be much better suited to my purposes than a more human-like one.
rlm@202 37 [[../images/Eve.jpg]]
rlm@202 38
rlm@204 39 EVE's body is composed of several rigid components that are held
rlm@204 40 together by invisible joint constraints. This is what I mean by
rlm@204 41 "eve-like". The main reason that I use eve-style bodies is so that
rlm@204 42 there will be correspondence between the AI's vision and the physical
rlm@204 43 presence of its body. Each individual section is simulated by a
rlm@204 44 separate rigid body that corresponds exactly with its visual
rlm@204 45 representation and does not change. Sections are connected by
rlm@306 46 invisible joints that are well supported in jMonkeyEngine. Bullet, the
rlm@204 47 physics backend for jMonkeyEngine, can efficiently simulate hundreds
rlm@204 48 of rigid bodies connected by joints. Sections do not have to stay as
rlm@204 49 one piece forever; they can be dynamically replaced with multiple
rlm@204 50 sections to simulate splitting in two. This could be used to simulate
rlm@306 51 retractable claws or EVE's hands, which are able to coalesce into one
rlm@209 52 object in the movie.
rlm@202 53
rlm@202 54 * Solidifying the Body
rlm@202 55
rlm@202 56 Here is a hand designed eve-style in blender.
rlm@202 57
rlm@203 58 #+attr_html: width="755"
rlm@202 59 [[../images/hand-screenshot0.png]]
rlm@202 60
rlm@202 61 If we load it directly into jMonkeyEngine, we get this:
rlm@202 62
rlm@205 63 #+name: test-1
rlm@202 64 #+begin_src clojure
rlm@202 65 (def hand-path "Models/test-creature/hand.blend")
rlm@202 66
rlm@202 67 (defn hand [] (load-blender-model hand-path))
rlm@202 68
rlm@202 69 (defn setup [world]
rlm@202 70 (let [cam (.getCamera world)]
rlm@202 71 (println-repl cam)
rlm@202 72 (.setLocation
rlm@202 73 cam (Vector3f.
rlm@202 74 -6.9015837, 8.644911, 5.6043186))
rlm@202 75 (.setRotation
rlm@202 76 cam
rlm@202 77 (Quaternion.
rlm@202 78 0.14046453, 0.85894054, -0.34301838, 0.3533118)))
rlm@202 79 (light-up-everything world)
rlm@202 80 (.setTimer world (RatchetTimer. 60))
rlm@202 81 world)
rlm@202 82
rlm@283 83 (defn test-hand-1
rlm@283 84 ([] (test-hand-1 false))
rlm@283 85 ([record?]
rlm@283 86 (world (hand)
rlm@283 87 standard-debug-controls
rlm@283 88 (fn [world]
rlm@283 89 (if record?
rlm@283 90 (Capture/captureVideo
rlm@283 91 world
rlm@283 92 (File. "/home/r/proj/cortex/render/body/1")))
rlm@283 93 (setup world)) no-op)))
rlm@202 94 #+end_src
rlm@202 95
rlm@202 96
rlm@202 97 #+begin_src clojure :results silent
rlm@202 98 (.start (cortex.test.body/test-one))
rlm@202 99 #+end_src
rlm@202 100
rlm@202 101 #+begin_html
rlm@203 102 <div class="figure">
rlm@203 103 <center>
rlm@203 104 <video controls="controls" width="640">
rlm@202 105 <source src="../video/ghost-hand.ogg" type="video/ogg"
rlm@202 106 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 107 </video>
rlm@309 108 <br> <a href="http://youtu.be/9LZpwTIhjzE"> YouTube </a>
rlm@203 109 </center>
rlm@203 110 <p>The hand model directly loaded from blender. It has no physical
rlm@306 111 presence in the simulation. </p>
rlm@203 112 </div>
rlm@202 113 #+end_html
rlm@202 114
rlm@202 115 You will notice that the hand has no physical presence -- it's a
rlm@204 116 hologram through which everything passes. Therefore, the first thing
rlm@202 117 to do is to make it solid. Blender has physics simulation on par with
rlm@202 118 jMonkeyEngine (they both use bullet as their physics backend), but it
rlm@202 119 can be difficult to translate between the two systems, so for now I
rlm@209 120 specify the mass of each object as meta-data in blender and construct
rlm@209 121 the physics shape based on the mesh in jMonkeyEngine.
rlm@202 122
rlm@203 123 #+name: body-1
rlm@202 124 #+begin_src clojure
rlm@202 125 (defn physical!
rlm@202 126 "Iterate through the nodes in creature and make them real physical
rlm@202 127 objects in the simulation."
rlm@202 128 [#^Node creature]
rlm@202 129 (dorun
rlm@202 130 (map
rlm@202 131 (fn [geom]
rlm@202 132 (let [physics-control
rlm@202 133 (RigidBodyControl.
rlm@202 134 (HullCollisionShape.
rlm@202 135 (.getMesh geom))
rlm@202 136 (if-let [mass (meta-data geom "mass")]
rlm@202 137 (do
rlm@321 138 ;;(println-repl
rlm@321 139 ;; "setting" (.getName geom) "mass to" (float mass))
rlm@202 140 (float mass))
rlm@202 141 (float 1)))]
rlm@202 142 (.addControl geom physics-control)))
rlm@202 143 (filter #(isa? (class %) Geometry )
rlm@202 144 (node-seq creature)))))
rlm@202 145 #+end_src
rlm@202 146
rlm@313 147 =physical!= iterates through a creature's node structure, creating
rlm@202 148 CollisionShapes for each geometry with the mass specified in that
rlm@202 149 geometry's meta-data.
rlm@202 150
rlm@205 151 #+name: test-2
rlm@0 152 #+begin_src clojure
rlm@202 153 (in-ns 'cortex.test.body)
rlm@160 154
rlm@209 155 (def gravity-control
rlm@202 156 {"key-g" (fn [world _]
rlm@209 157 (set-gravity world (Vector3f. 0 -9.81 0)))
rlm@209 158 "key-u" (fn [world _] (set-gravity world Vector3f/ZERO))})
rlm@209 159
rlm@202 160 (defn floor []
rlm@202 161 (box 10 3 10 :position (Vector3f. 0 -10 0)
rlm@202 162 :color ColorRGBA/Gray :mass 0))
rlm@202 163
rlm@283 164 (defn test-hand-2
rlm@283 165 ([] (test-hand-2 false))
rlm@283 166 ([record?]
rlm@283 167 (world
rlm@283 168 (nodify
rlm@283 169 [(doto (hand)
rlm@283 170 (physical!))
rlm@283 171 (floor)])
rlm@283 172 (merge standard-debug-controls gravity-control)
rlm@283 173 (fn [world]
rlm@283 174 (if record?
rlm@283 175 (Capture/captureVideo
rlm@283 176 world (File. "/home/r/proj/cortex/render/body/2")))
rlm@283 177 (set-gravity world Vector3f/ZERO)
rlm@283 178 (setup world))
rlm@283 179 no-op)))
rlm@202 180 #+end_src
rlm@202 181
rlm@458 182 #+results: test-2
rlm@458 183 : #'cortex.test.body/test-hand-2
rlm@458 184
rlm@202 185 #+begin_html
rlm@203 186 <div class="figure">
rlm@203 187 <center>
rlm@203 188 <video controls="controls" width="640">
rlm@202 189 <source src="../video/crumbly-hand.ogg" type="video/ogg"
rlm@202 190 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@202 191 </video>
rlm@309 192 <br> <a href="http://youtu.be/GEA1SACwpPg"> YouTube </a>
rlm@203 193 </center>
rlm@203 194 <p>The hand now has a physical presence, but there is nothing to hold
rlm@203 195 it together.</p>
rlm@203 196 </div>
rlm@202 197 #+end_html
rlm@202 198
rlm@202 199 Now that's some progress.
rlm@202 200
rlm@202 201 * Joints
rlm@202 202
rlm@209 203 Obviously, an AI is not going to be doing much while lying in pieces
rlm@209 204 on the floor. So, the next step to making a proper body is to connect
rlm@202 205 those pieces together with joints. jMonkeyEngine has a large array of
rlm@202 206 joints available via bullet, such as Point2Point, Cone, Hinge, and a
rlm@202 207 generic Six Degree of Freedom joint, with or without spring
rlm@202 208 restitution.
rlm@202 209
rlm@202 210 Although it should be possible to specify the joints using blender's
rlm@202 211 physics system, and then automatically import them with jMonkeyEngine,
rlm@202 212 the support isn't there yet, and there are a few problems with bullet
rlm@202 213 itself that need to be solved before it can happen.
rlm@202 214
rlm@202 215 So, I will use the same system for specifying joints as I will do for
rlm@202 216 some senses. Each joint is specified by an empty node whose parent
rlm@202 217 has the name "joints". Their orientation and meta-data determine what
rlm@202 218 joint is created.
rlm@202 219
rlm@203 220 #+attr_html: width="755"
rlm@209 221 #+caption: Joints hack in blender. Each empty node here will be transformed into a joint in jMonkeyEngine
rlm@202 222 [[../images/hand-screenshot1.png]]
rlm@202 223
rlm@203 224 The empty node in the upper right, highlighted in yellow, is the
rlm@306 225 parent node of all the empties which represent joints. The following
rlm@203 226 functions must do three things to translate these into real joints:
rlm@202 227
rlm@203 228 - Find the children of the "joints" node.
rlm@203 229 - Determine the two spatials the joint it meant to connect.
rlm@203 230 - Create the joint based on the meta-data of the empty node.
rlm@202 231
rlm@203 232 ** Finding the Joints
rlm@209 233
rlm@273 234 The higher order function =sense-nodes= from =cortex.sense= simplifies
rlm@209 235 the first task.
rlm@209 236
rlm@203 237 #+name: joints-2
rlm@203 238 #+begin_src clojure
rlm@317 239 (def
rlm@317 240 ^{:doc "Return the children of the creature's \"joints\" node."
rlm@317 241 :arglists '([creature])}
rlm@203 242 joints
rlm@317 243 (sense-nodes "joints"))
rlm@203 244 #+end_src
rlm@202 245
rlm@203 246 ** Joint Targets and Orientation
rlm@203 247
rlm@306 248 This technique for finding a joint's targets is very similar to
rlm@273 249 =cortex.sense/closest-node=. A small cube, centered around the
rlm@203 250 empty-node, grows exponentially until it intersects two /physical/
rlm@203 251 objects. The objects are ordered according to the joint's rotation,
rlm@203 252 with the first one being the object that has more negative coordinates
rlm@203 253 in the joint's reference frame. Since the objects must be physical,
rlm@203 254 the empty-node itself escapes detection. Because the objects must be
rlm@273 255 physical, =joint-targets= must be called /after/ =physical!= is
rlm@203 256 called.
rlm@203 257
rlm@203 258 #+name: joints-3
rlm@202 259 #+begin_src clojure
rlm@135 260 (defn joint-targets
rlm@135 261 "Return the two closest two objects to the joint object, ordered
rlm@135 262 from bottom to top according to the joint's rotation."
rlm@135 263 [#^Node parts #^Node joint]
rlm@135 264 (loop [radius (float 0.01)]
rlm@135 265 (let [results (CollisionResults.)]
rlm@135 266 (.collideWith
rlm@135 267 parts
rlm@135 268 (BoundingBox. (.getWorldTranslation joint)
rlm@209 269 radius radius radius) results)
rlm@135 270 (let [targets
rlm@135 271 (distinct
rlm@135 272 (map #(.getGeometry %) results))]
rlm@135 273 (if (>= (count targets) 2)
rlm@135 274 (sort-by
rlm@209 275 #(let [joint-ref-frame-position
rlm@135 276 (jme-to-blender
rlm@135 277 (.mult
rlm@135 278 (.inverse (.getWorldRotation joint))
rlm@135 279 (.subtract (.getWorldTranslation %)
rlm@135 280 (.getWorldTranslation joint))))]
rlm@209 281 (.dot (Vector3f. 1 1 1) joint-ref-frame-position))
rlm@135 282 (take 2 targets))
rlm@135 283 (recur (float (* radius 2))))))))
rlm@203 284 #+end_src
rlm@135 285
rlm@203 286 ** Generating Joints
rlm@203 287
rlm@209 288 This section of code iterates through all the different ways of
rlm@203 289 specifying joints using blender meta-data and converts each one to the
rlm@306 290 appropriate jMonkeyEngine joint.
rlm@203 291
rlm@203 292 #+name: joints-4
rlm@203 293 #+begin_src clojure
rlm@160 294 (defmulti joint-dispatch
rlm@160 295 "Translate blender pseudo-joints into real JME joints."
rlm@160 296 (fn [constraints & _]
rlm@160 297 (:type constraints)))
rlm@141 298
rlm@160 299 (defmethod joint-dispatch :point
rlm@160 300 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@321 301 ;;(println-repl "creating POINT2POINT joint")
rlm@160 302 ;; bullet's point2point joints are BROKEN, so we must use the
rlm@160 303 ;; generic 6DOF joint instead of an actual Point2Point joint!
rlm@141 304
rlm@160 305 ;; should be able to do this:
rlm@160 306 (comment
rlm@160 307 (Point2PointJoint.
rlm@160 308 control-a
rlm@160 309 control-b
rlm@160 310 pivot-a
rlm@160 311 pivot-b))
rlm@141 312
rlm@160 313 ;; but instead we must do this:
rlm@321 314 ;;(println-repl "substituting 6DOF joint for POINT2POINT joint!")
rlm@160 315 (doto
rlm@160 316 (SixDofJoint.
rlm@160 317 control-a
rlm@160 318 control-b
rlm@160 319 pivot-a
rlm@160 320 pivot-b
rlm@160 321 false)
rlm@160 322 (.setLinearLowerLimit Vector3f/ZERO)
rlm@203 323 (.setLinearUpperLimit Vector3f/ZERO)))
rlm@160 324
rlm@160 325 (defmethod joint-dispatch :hinge
rlm@160 326 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@321 327 ;;(println-repl "creating HINGE joint")
rlm@160 328 (let [axis
rlm@160 329 (if-let
rlm@160 330 [axis (:axis constraints)]
rlm@160 331 axis
rlm@160 332 Vector3f/UNIT_X)
rlm@160 333 [limit-1 limit-2] (:limit constraints)
rlm@160 334 hinge-axis
rlm@160 335 (.mult
rlm@160 336 rotation
rlm@160 337 (blender-to-jme axis))]
rlm@160 338 (doto
rlm@160 339 (HingeJoint.
rlm@160 340 control-a
rlm@160 341 control-b
rlm@160 342 pivot-a
rlm@160 343 pivot-b
rlm@160 344 hinge-axis
rlm@160 345 hinge-axis)
rlm@160 346 (.setLimit limit-1 limit-2))))
rlm@160 347
rlm@160 348 (defmethod joint-dispatch :cone
rlm@160 349 [constraints control-a control-b pivot-a pivot-b rotation]
rlm@160 350 (let [limit-xz (:limit-xz constraints)
rlm@160 351 limit-xy (:limit-xy constraints)
rlm@160 352 twist (:twist constraints)]
rlm@160 353
rlm@321 354 ;;(println-repl "creating CONE joint")
rlm@321 355 ;;(println-repl rotation)
rlm@321 356 ;;(println-repl
rlm@321 357 ;; "UNIT_X --> " (.mult rotation (Vector3f. 1 0 0)))
rlm@321 358 ;;(println-repl
rlm@321 359 ;; "UNIT_Y --> " (.mult rotation (Vector3f. 0 1 0)))
rlm@321 360 ;;(println-repl
rlm@321 361 ;; "UNIT_Z --> " (.mult rotation (Vector3f. 0 0 1)))
rlm@160 362 (doto
rlm@160 363 (ConeJoint.
rlm@160 364 control-a
rlm@160 365 control-b
rlm@160 366 pivot-a
rlm@160 367 pivot-b
rlm@160 368 rotation
rlm@160 369 rotation)
rlm@160 370 (.setLimit (float limit-xz)
rlm@160 371 (float limit-xy)
rlm@160 372 (float twist)))))
rlm@160 373
rlm@160 374 (defn connect
rlm@175 375 "Create a joint between 'obj-a and 'obj-b at the location of
rlm@175 376 'joint. The type of joint is determined by the metadata on 'joint.
rlm@175 377
rlm@175 378 Here are some examples:
rlm@160 379 {:type :point}
rlm@160 380 {:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
rlm@160 381 (:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)
rlm@160 382
rlm@160 383 {:type :cone :limit-xz 0]
rlm@160 384 :limit-xy 0]
rlm@160 385 :twist 0]} (use XZY rotation mode in blender!)"
rlm@160 386 [#^Node obj-a #^Node obj-b #^Node joint]
rlm@160 387 (let [control-a (.getControl obj-a RigidBodyControl)
rlm@160 388 control-b (.getControl obj-b RigidBodyControl)
rlm@160 389 joint-center (.getWorldTranslation joint)
rlm@160 390 joint-rotation (.toRotationMatrix (.getWorldRotation joint))
rlm@160 391 pivot-a (world-to-local obj-a joint-center)
rlm@160 392 pivot-b (world-to-local obj-b joint-center)]
rlm@160 393
rlm@160 394 (if-let [constraints
rlm@160 395 (map-vals
rlm@160 396 eval
rlm@160 397 (read-string
rlm@160 398 (meta-data joint "joint")))]
rlm@160 399 ;; A side-effect of creating a joint registers
rlm@160 400 ;; it with both physics objects which in turn
rlm@160 401 ;; will register the joint with the physics system
rlm@160 402 ;; when the simulation is started.
rlm@160 403 (do
rlm@321 404 ;;(println-repl "creating joint between"
rlm@321 405 ;; (.getName obj-a) "and" (.getName obj-b))
rlm@160 406 (joint-dispatch constraints
rlm@160 407 control-a control-b
rlm@160 408 pivot-a pivot-b
rlm@160 409 joint-rotation))
rlm@321 410 ;;(println-repl "could not find joint meta-data!")
rlm@321 411 )))
rlm@203 412 #+end_src
rlm@160 413
rlm@273 414 Creating joints is now a matter of applying =connect= to each joint
rlm@203 415 node.
rlm@160 416
rlm@205 417 #+name: joints-5
rlm@203 418 #+begin_src clojure
rlm@175 419 (defn joints!
rlm@175 420 "Connect the solid parts of the creature with physical joints. The
rlm@175 421 joints are taken from the \"joints\" node in the creature."
rlm@175 422 [#^Node creature]
rlm@160 423 (dorun
rlm@160 424 (map
rlm@160 425 (fn [joint]
rlm@175 426 (let [[obj-a obj-b] (joint-targets creature joint)]
rlm@160 427 (connect obj-a obj-b joint)))
rlm@175 428 (joints creature))))
rlm@203 429 #+end_src
rlm@160 430
rlm@203 431 ** Round 3
rlm@203 432
rlm@203 433 Now we can test the hand in all its glory.
rlm@203 434
rlm@205 435 #+name: test-3
rlm@203 436 #+begin_src clojure
rlm@203 437 (in-ns 'cortex.test.body)
rlm@203 438
rlm@203 439 (def debug-control
rlm@203 440 {"key-h" (fn [world val]
rlm@209 441 (if val (enable-debug world)))})
rlm@203 442
rlm@283 443 (defn test-hand-3
rlm@283 444 ([] (test-hand-3 false))
rlm@283 445 ([record?]
rlm@283 446 (world
rlm@283 447 (nodify
rlm@283 448 [(doto (hand)
rlm@283 449 (physical!)
rlm@283 450 (joints!))
rlm@283 451 (floor)])
rlm@283 452 (merge standard-debug-controls debug-control
rlm@283 453 gravity-control)
rlm@283 454 (comp
rlm@283 455 #(Capture/captureVideo
rlm@283 456 % (File. "/home/r/proj/cortex/render/body/3"))
rlm@283 457 #(do (set-gravity % Vector3f/ZERO) %)
rlm@283 458 setup)
rlm@283 459 no-op)))
rlm@203 460 #+end_src
rlm@203 461
rlm@273 462 =physical!= makes the hand solid, then =joints!= connects each
rlm@203 463 piece together.
rlm@203 464
rlm@203 465 #+begin_html
rlm@203 466 <div class="figure">
rlm@203 467 <center>
rlm@203 468 <video controls="controls" width="640">
rlm@203 469 <source src="../video/full-hand.ogg" type="video/ogg"
rlm@203 470 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@203 471 </video>
rlm@309 472 <br> <a href="http://youtu.be/4affLfwSPP4"> YouTube </a>
rlm@203 473 </center>
rlm@203 474 <p>Now the hand is physical and has joints.</p>
rlm@203 475 </div>
rlm@203 476 #+end_html
rlm@203 477
rlm@203 478 The joints are visualized as green connections between each segment
rlm@203 479 for debug purposes. You can see that they correspond to the empty
rlm@203 480 nodes in the blender file.
rlm@203 481
rlm@203 482 * Wrap-Up!
rlm@203 483
rlm@306 484 It is convenient to combine =physical!= and =joints!= into one
rlm@203 485 function that completely creates the creature's physical body.
rlm@203 486
rlm@205 487 #+name: joints-6
rlm@203 488 #+begin_src clojure
rlm@175 489 (defn body!
rlm@175 490 "Endow the creature with a physical body connected with joints. The
rlm@306 491 particulars of the joints and the masses of each body part are
rlm@175 492 determined in blender."
rlm@175 493 [#^Node creature]
rlm@175 494 (physical! creature)
rlm@175 495 (joints! creature))
rlm@64 496 #+end_src
rlm@63 497
rlm@205 498 * The Worm
rlm@205 499
rlm@205 500 Going forward, I will use a model that is less complicated than the
rlm@205 501 hand. It has two segments and one joint, and I call it the worm. All
rlm@205 502 of the senses described in the following posts will be applied to this
rlm@205 503 worm.
rlm@205 504
rlm@205 505 #+name: test-4
rlm@205 506 #+begin_src clojure
rlm@205 507 (in-ns 'cortex.test.body)
rlm@205 508
rlm@215 509 (defn worm []
rlm@215 510 (load-blender-model
rlm@215 511 "Models/test-creature/worm.blend"))
rlm@215 512
rlm@283 513 (defn test-worm
rlm@321 514
rlm@321 515 "Testing physical bodies:
rlm@321 516 You should see the the worm fall onto a table. You can fire
rlm@321 517 physical balls at it and the worm should move upon being struck.
rlm@321 518
rlm@321 519 Keys:
rlm@321 520 <space> : fire cannon ball."
rlm@321 521
rlm@283 522 ([] (test-worm false))
rlm@283 523 ([record?]
rlm@283 524 (let [timer (RatchetTimer. 60)]
rlm@283 525 (world
rlm@283 526 (nodify
rlm@283 527 [(doto (worm)
rlm@283 528 (body!))
rlm@283 529 (floor)])
rlm@283 530 (merge standard-debug-controls debug-control)
rlm@283 531 #(do
rlm@283 532 (speed-up %)
rlm@283 533 (light-up-everything %)
rlm@283 534 (.setTimer % timer)
rlm@314 535 (cortex.util/display-dilated-time % timer)
rlm@283 536 (if record?
rlm@283 537 (Capture/captureVideo
rlm@283 538 % (File. "/home/r/proj/cortex/render/body/4"))))
rlm@283 539 no-op))))
rlm@205 540 #+end_src
rlm@205 541
rlm@321 542 #+results: test-4
rlm@321 543 : #'cortex.test.body/test-worm
rlm@321 544
rlm@205 545 #+begin_html
rlm@205 546 <div class="figure">
rlm@205 547 <center>
rlm@205 548 <video controls="controls" width="640">
rlm@205 549 <source src="../video/worm-1.ogg" type="video/ogg"
rlm@205 550 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@205 551 </video>
rlm@309 552 <br> <a href="http://youtu.be/rFVXI0T3iSE"> YouTube </a>
rlm@205 553 </center>
rlm@205 554 <p>This worm model will be the platform onto which future senses will
rlm@205 555 be grafted.</p>
rlm@205 556 </div>
rlm@205 557 #+end_html
rlm@205 558
rlm@209 559 * Headers
rlm@205 560 #+name: body-header
rlm@202 561 #+begin_src clojure
rlm@202 562 (ns cortex.body
rlm@202 563 "Assemble a physical creature using the definitions found in a
rlm@202 564 specially prepared blender file. Creates rigid bodies and joints so
rlm@306 565 that a creature can have a physical presence in the simulation."
rlm@202 566 {:author "Robert McIntyre"}
rlm@202 567 (:use (cortex world util sense))
rlm@202 568 (:import
rlm@202 569 (com.jme3.math Vector3f Quaternion Vector2f Matrix3f)
rlm@202 570 (com.jme3.bullet.joints
rlm@202 571 SixDofJoint Point2PointJoint HingeJoint ConeJoint)
rlm@202 572 com.jme3.bullet.control.RigidBodyControl
rlm@202 573 com.jme3.collision.CollisionResults
rlm@202 574 com.jme3.bounding.BoundingBox
rlm@202 575 com.jme3.scene.Node
rlm@202 576 com.jme3.scene.Geometry
rlm@202 577 com.jme3.bullet.collision.shapes.HullCollisionShape))
rlm@202 578 #+end_src
rlm@133 579
rlm@205 580 #+name: test-header
rlm@205 581 #+begin_src clojure
rlm@205 582 (ns cortex.test.body
rlm@205 583 (:use (cortex world util body))
rlm@205 584 (:import
rlm@340 585 (com.aurellem.capture Capture RatchetTimer IsoTimer)
rlm@205 586 (com.jme3.math Quaternion Vector3f ColorRGBA)
rlm@205 587 java.io.File))
rlm@205 588 #+end_src
rlm@205 589
rlm@340 590 #+results: test-header
rlm@340 591 : java.io.File
rlm@340 592
rlm@202 593 * Source
rlm@207 594 - [[../src/cortex/body.clj][cortex.body]]
rlm@207 595 - [[../src/cortex/test/body.clj][cortex.test.body]]
rlm@207 596 - [[../assets/Models/test-creature/hand.blend][hand.blend]]
rlm@209 597 - [[../assets/Models/test-creature/palm.png][UV-map-1]]
rlm@207 598 - [[../assets/Models/test-creature/worm.blend][worm.blend]]
rlm@207 599 - [[../assets/Models/test-creature/retina-small.png][UV-map-1]]
rlm@207 600 - [[../assets/Models/test-creature/tip.png][UV-map-2]]
rlm@211 601 #+html: <ul> <li> <a href="../org/body.org">This org file</a> </li> </ul>
rlm@217 602 - [[http://hg.bortreb.com ][source-repository]]
rlm@211 603
rlm@211 604 * Next
rlm@211 605 The body I have made here exists without any senses or effectors. In
rlm@211 606 the [[./vision.org][next post]], I'll give the creature eyes.
rlm@63 607
rlm@206 608 * COMMENT Generate Source
rlm@44 609 #+begin_src clojure :tangle ../src/cortex/body.clj
rlm@205 610 <<body-header>>
rlm@205 611 <<body-1>>
rlm@205 612 <<joints-2>>
rlm@205 613 <<joints-3>>
rlm@205 614 <<joints-4>>
rlm@205 615 <<joints-5>>
rlm@205 616 <<joints-6>>
rlm@0 617 #+end_src
rlm@64 618
rlm@69 619 #+begin_src clojure :tangle ../src/cortex/test/body.clj
rlm@205 620 <<test-header>>
rlm@205 621 <<test-1>>
rlm@205 622 <<test-2>>
rlm@205 623 <<test-3>>
rlm@205 624 <<test-4>>
rlm@64 625 #+end_src
rlm@64 626
rlm@64 627
rlm@0 628
rlm@206 629