annotate org/touch.org @ 245:102ac596cc3f

minor formatting changes
author Robert McIntyre <rlm@mit.edu>
date Sun, 12 Feb 2012 14:33:52 -0700
parents f23217324f72
children 63da037ce1c5
rev   line source
rlm@37 1 #+title: Simulated Sense of Touch
rlm@0 2 #+author: Robert McIntyre
rlm@0 3 #+email: rlm@mit.edu
rlm@37 4 #+description: Simulated touch for AI research using JMonkeyEngine and clojure.
rlm@37 5 #+keywords: simulation, tactile sense, jMonkeyEngine3, clojure
rlm@4 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@4 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@0 8
rlm@37 9 * Touch
rlm@0 10
rlm@226 11 Touch is critical to navigation and spatial reasoning and as such I
rlm@226 12 need a simulated version of it to give to my AI creatures.
rlm@0 13
rlm@228 14 However, touch in my virtual can not exactly correspond to human touch
rlm@228 15 because my creatures are made out of completely rigid segments that
rlm@228 16 don't deform like human skin.
rlm@228 17
rlm@228 18 Human skin has a wide array of touch sensors, each of which speciliaze
rlm@228 19 in detecting different vibrational modes and pressures. These sensors
rlm@228 20 can integrate a vast expanse of skin (i.e. your entire palm), or a
rlm@228 21 tiny patch of skin at the tip of your finger. The hairs of the skin
rlm@228 22 help detect objects before they even come into contact with the skin
rlm@228 23 proper.
rlm@228 24
rlm@228 25 Instead of measuring deformation or vibration, I surround each rigid
rlm@228 26 part with a plenitude of hair-like objects which do not interact with
rlm@228 27 the physical world. Physical objects can pass through them with no
rlm@228 28 effect. The hairs are able to measure contact with other objects, and
rlm@228 29 constantly report how much of their extent is covered. So, even though
rlm@228 30 the creature's body parts do not deform, the hairs create a margin
rlm@228 31 around those body parts which achieves a sense of touch which is a
rlm@228 32 hybrid between a human's sense of deformation and sense from hairs.
rlm@228 33
rlm@228 34 Implementing touch in jMonkeyEngine follows a different techinal route
rlm@228 35 than vision and hearing. Those two senses piggybacked off
rlm@228 36 jMonkeyEngine's 3D audio and video rendering subsystems. To simulate
rlm@228 37 Touch, I use jMonkeyEngine's physics system to execute many small
rlm@229 38 collision detections, one for each "hair". The placement of the
rlm@229 39 "hairs" is determined by a UV-mapped image which shows where each hair
rlm@229 40 should be on the 3D surface of the body.
rlm@228 41
rlm@229 42
rlm@229 43 * Defining Touch Meta-Data in Blender
rlm@229 44
rlm@245 45 Each geometry can have a single UV map which describes the position of
rlm@245 46 the "hairs" which will constitute its sense of touch. This image path
rlm@245 47 is stored under the "touch" key. The image itself is black and white,
rlm@245 48 with black meaning a hair length of 0 (no hair is present) and white
rlm@245 49 meaning a hair length of =scale=, which is a float stored under the
rlm@245 50 key "scale". I call these "hairs" /feelers/.
rlm@229 51
rlm@231 52 #+name: meta-data
rlm@0 53 #+begin_src clojure
rlm@229 54 (defn tactile-sensor-profile
rlm@229 55 "Return the touch-sensor distribution image in BufferedImage format,
rlm@229 56 or nil if it does not exist."
rlm@229 57 [#^Geometry obj]
rlm@229 58 (if-let [image-path (meta-data obj "touch")]
rlm@229 59 (load-image image-path)))
rlm@233 60
rlm@233 61 (defn tactile-scale
rlm@233 62 "Return the maximum length of a hair. All hairs are scalled between
rlm@233 63 0.0 and this length, depending on their color. Black is 0, and
rlm@233 64 white is maximum length, and everything in between is scalled
rlm@233 65 linearlly. Default scale is 0.01 jMonkeyEngine units."
rlm@233 66 [#^Geometry obj]
rlm@233 67 (if-let [scale (meta-data obj "scale")]
rlm@233 68 scale 0.1))
rlm@228 69 #+end_src
rlm@156 70
rlm@229 71 ** TODO add image showing example touch-uv map
rlm@229 72 ** TODO add metadata display for worm
rlm@229 73
rlm@234 74
rlm@233 75 * Skin Creation
rlm@238 76
rlm@238 77 =(touch-kernel)= generates the functions which implement the sense of
rlm@238 78 touch for a creature. These functions must do 6 things to obtain touch
rlm@238 79 data.
rlm@238 80
rlm@238 81 - Get the tactile profile image and scale paramaters which describe
rlm@238 82 the layout of feelers along the object's surface.
rlm@239 83 =(tactile-sensor-profile)=, =(tactile-scale)=
rlm@239 84
rlm@238 85 - Find the triangles which make up the mesh in pixel-space and in
rlm@238 86 world-space.
rlm@239 87 =(triangles)= =(pixel-triangles)=
rlm@239 88
rlm@239 89 - Find the coordinates of each pixel in pixel space. These
rlm@239 90 coordinates are used to make the touch-topology.
rlm@240 91 =(feeler-pixel-coords)=
rlm@239 92
rlm@238 93 - Find the coordinates of each pixel in world-space. These
rlm@240 94 coordinates are the origins of the feelers. =(feeler-origins)=
rlm@239 95
rlm@238 96 - Calculate the normals of the triangles in world space, and add
rlm@238 97 them to each of the origins of the feelers. These are the
rlm@238 98 normalized coordinates of the tips of the feelers.
rlm@240 99 For both of these, =(feeler-tips)=
rlm@239 100
rlm@238 101 - Generate some sort of topology for the sensors.
rlm@239 102 =(touch-topology)=
rlm@239 103
rlm@238 104
rlm@233 105 #+name: kernel
rlm@233 106 #+begin_src clojure
rlm@233 107 (in-ns 'cortex.touch)
rlm@233 108
rlm@244 109 (defn set-ray [#^Ray ray #^Matrix4f transform
rlm@244 110 #^Vector3f origin #^Vector3f tip]
rlm@243 111 ;; Doing everything locally recduces garbage collection by enough to
rlm@243 112 ;; be worth it.
rlm@243 113 (.mult transform origin (.getOrigin ray))
rlm@243 114
rlm@243 115 (.mult transform tip (.getDirection ray))
rlm@244 116 (.subtractLocal (.getDirection ray) (.getOrigin ray)))
rlm@242 117
rlm@233 118 (defn touch-kernel
rlm@234 119 "Constructs a function which will return tactile sensory data from
rlm@234 120 'geo when called from inside a running simulation"
rlm@234 121 [#^Geometry geo]
rlm@243 122 (if-let
rlm@243 123 [profile (tactile-sensor-profile geo)]
rlm@243 124 (let [ray-reference-origins (feeler-origins geo profile)
rlm@243 125 ray-reference-tips (feeler-tips geo profile)
rlm@244 126 ray-length (tactile-scale geo)
rlm@243 127 current-rays (map (fn [_] (Ray.)) ray-reference-origins)
rlm@243 128 topology (touch-topology geo profile)]
rlm@244 129 (dorun (map #(.setLimit % ray-length) current-rays))
rlm@233 130 (fn [node]
rlm@243 131 (let [transform (.getWorldMatrix geo)]
rlm@243 132 (dorun
rlm@244 133 (map (fn [ray ref-origin ref-tip]
rlm@244 134 (set-ray ray transform ref-origin ref-tip))
rlm@243 135 current-rays ray-reference-origins
rlm@244 136 ray-reference-tips))
rlm@233 137 (vector
rlm@243 138 topology
rlm@233 139 (vec
rlm@243 140 (for [ray current-rays]
rlm@233 141 (do
rlm@233 142 (let [results (CollisionResults.)]
rlm@233 143 (.collideWith node ray results)
rlm@233 144 (let [touch-objects
rlm@233 145 (filter #(not (= geo (.getGeometry %)))
rlm@233 146 results)]
rlm@233 147 [(if (empty? touch-objects)
rlm@243 148 (.getLimit ray)
rlm@243 149 (.getDistance (first touch-objects)))
rlm@243 150 (.getLimit ray)])))))))))))
rlm@233 151
rlm@233 152 (defn touch!
rlm@233 153 "Endow the creature with the sense of touch. Returns a sequence of
rlm@233 154 functions, one for each body part with a tactile-sensor-proile,
rlm@233 155 each of which when called returns sensory data for that body part."
rlm@233 156 [#^Node creature]
rlm@233 157 (filter
rlm@233 158 (comp not nil?)
rlm@233 159 (map touch-kernel
rlm@233 160 (filter #(isa? (class %) Geometry)
rlm@233 161 (node-seq creature)))))
rlm@233 162 #+end_src
rlm@233 163
rlm@238 164 * Sensor Related Functions
rlm@238 165
rlm@238 166 These functions analyze the touch-sensor-profile image convert the
rlm@238 167 location of each touch sensor from pixel coordinates to UV-coordinates
rlm@238 168 and XYZ-coordinates.
rlm@238 169
rlm@238 170 #+name: sensors
rlm@238 171 #+begin_src clojure
rlm@240 172 (in-ns 'cortex.touch)
rlm@240 173
rlm@240 174 (defn feeler-pixel-coords
rlm@239 175 "Returns the coordinates of the feelers in pixel space in lists, one
rlm@239 176 list for each triangle, ordered in the same way as (triangles) and
rlm@239 177 (pixel-triangles)."
rlm@239 178 [#^Geometry geo image]
rlm@240 179 (map
rlm@240 180 (fn [pixel-triangle]
rlm@240 181 (filter
rlm@240 182 (fn [coord]
rlm@240 183 (inside-triangle? (->triangle pixel-triangle)
rlm@240 184 (->vector3f coord)))
rlm@240 185 (white-coordinates image (convex-bounds pixel-triangle))))
rlm@240 186 (pixel-triangles geo image)))
rlm@239 187
rlm@242 188 (defn feeler-world-coords [#^Geometry geo image]
rlm@240 189 (let [transforms
rlm@240 190 (map #(triangles->affine-transform
rlm@240 191 (->triangle %1) (->triangle %2))
rlm@240 192 (pixel-triangles geo image)
rlm@240 193 (triangles geo))]
rlm@242 194 (map (fn [transform coords]
rlm@240 195 (map #(.mult transform (->vector3f %)) coords))
rlm@240 196 transforms (feeler-pixel-coords geo image))))
rlm@239 197
rlm@242 198 (defn feeler-origins [#^Geometry geo image]
rlm@242 199 (reduce concat (feeler-world-coords geo image)))
rlm@242 200
rlm@240 201 (defn feeler-tips [#^Geometry geo image]
rlm@242 202 (let [world-coords (feeler-world-coords geo image)
rlm@241 203 normals
rlm@241 204 (map
rlm@241 205 (fn [triangle]
rlm@241 206 (.calculateNormal triangle)
rlm@241 207 (.clone (.getNormal triangle)))
rlm@241 208 (map ->triangle (triangles geo)))]
rlm@242 209
rlm@242 210 (mapcat (fn [origins normal]
rlm@242 211 (map #(.add % normal) origins))
rlm@242 212 world-coords normals)))
rlm@241 213
rlm@241 214 (defn touch-topology [#^Geometry geo image]
rlm@243 215 (collapse (reduce concat (feeler-pixel-coords geo image))))
rlm@238 216 #+end_src
rlm@238 217
rlm@233 218 * Visualizing Touch
rlm@233 219 #+name: visualization
rlm@233 220 #+begin_src clojure
rlm@233 221 (in-ns 'cortex.touch)
rlm@233 222
rlm@233 223 (defn touch->gray
rlm@245 224 "Convert a pair of [distance, max-distance] into a grayscale pixel."
rlm@233 225 [distance max-distance]
rlm@245 226 (gray (- 255 (rem (int (* 255 (/ distance max-distance))) 256))))
rlm@233 227
rlm@233 228 (defn view-touch
rlm@245 229 "Creates a function which accepts a list of touch sensor-data and
rlm@233 230 displays each element to the screen."
rlm@233 231 []
rlm@233 232 (view-sense
rlm@233 233 (fn
rlm@233 234 [[coords sensor-data]]
rlm@233 235 (let [image (points->image coords)]
rlm@233 236 (dorun
rlm@233 237 (for [i (range (count coords))]
rlm@233 238 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@233 239 (apply touch->gray (sensor-data i)))))
rlm@233 240 image))))
rlm@233 241 #+end_src
rlm@233 242
rlm@233 243
rlm@233 244
rlm@228 245 * Triangle Manipulation Functions
rlm@228 246
rlm@229 247 The rigid bodies which make up a creature have an underlying
rlm@229 248 =Geometry=, which is a =Mesh= plus a =Material= and other important
rlm@229 249 data involved with displaying the body.
rlm@229 250
rlm@229 251 A =Mesh= is composed of =Triangles=, and each =Triangle= has three
rlm@229 252 verticies which have coordinates in XYZ space and UV space.
rlm@229 253
rlm@229 254 Here, =(triangles)= gets all the triangles which compose a mesh, and
rlm@229 255 =(triangle-UV-coord)= returns the the UV coordinates of the verticies
rlm@229 256 of a triangle.
rlm@229 257
rlm@231 258 #+name: triangles-1
rlm@228 259 #+begin_src clojure
rlm@239 260 (in-ns 'cortex.touch)
rlm@239 261
rlm@239 262 (defn vector3f-seq [#^Vector3f v]
rlm@239 263 [(.getX v) (.getY v) (.getZ v)])
rlm@239 264
rlm@239 265 (defn triangle-seq [#^Triangle tri]
rlm@239 266 [(vector3f-seq (.get1 tri))
rlm@239 267 (vector3f-seq (.get2 tri))
rlm@239 268 (vector3f-seq (.get3 tri))])
rlm@239 269
rlm@240 270 (defn ->vector3f
rlm@240 271 ([coords] (Vector3f. (nth coords 0 0)
rlm@240 272 (nth coords 1 0)
rlm@240 273 (nth coords 2 0))))
rlm@239 274
rlm@239 275 (defn ->triangle [points]
rlm@239 276 (apply #(Triangle. %1 %2 %3) (map ->vector3f points)))
rlm@239 277
rlm@239 278 (defn triangle
rlm@245 279 "Get the triangle specified by triangle-index from the mesh."
rlm@239 280 [#^Geometry geo triangle-index]
rlm@239 281 (triangle-seq
rlm@239 282 (let [scratch (Triangle.)]
rlm@239 283 (.getTriangle (.getMesh geo) triangle-index scratch) scratch)))
rlm@239 284
rlm@228 285 (defn triangles
rlm@228 286 "Return a sequence of all the Triangles which compose a given
rlm@228 287 Geometry."
rlm@239 288 [#^Geometry geo]
rlm@239 289 (map (partial triangle geo) (range (.getTriangleCount (.getMesh geo)))))
rlm@228 290
rlm@228 291 (defn triangle-vertex-indices
rlm@228 292 "Get the triangle vertex indices of a given triangle from a given
rlm@228 293 mesh."
rlm@228 294 [#^Mesh mesh triangle-index]
rlm@228 295 (let [indices (int-array 3)]
rlm@228 296 (.getTriangle mesh triangle-index indices)
rlm@228 297 (vec indices)))
rlm@228 298
rlm@228 299 (defn vertex-UV-coord
rlm@228 300 "Get the UV-coordinates of the vertex named by vertex-index"
rlm@228 301 [#^Mesh mesh vertex-index]
rlm@228 302 (let [UV-buffer
rlm@228 303 (.getData
rlm@228 304 (.getBuffer
rlm@228 305 mesh
rlm@228 306 VertexBuffer$Type/TexCoord))]
rlm@228 307 [(.get UV-buffer (* vertex-index 2))
rlm@228 308 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
rlm@228 309
rlm@239 310 (defn pixel-triangle [#^Geometry geo image index]
rlm@239 311 (let [mesh (.getMesh geo)
rlm@239 312 width (.getWidth image)
rlm@239 313 height (.getHeight image)]
rlm@239 314 (vec (map (fn [[u v]] (vector (* width u) (* height v)))
rlm@239 315 (map (partial vertex-UV-coord mesh)
rlm@239 316 (triangle-vertex-indices mesh index))))))
rlm@228 317
rlm@239 318 (defn pixel-triangles [#^Geometry geo image]
rlm@239 319 (let [height (.getHeight image)
rlm@239 320 width (.getWidth image)]
rlm@239 321 (map (partial pixel-triangle geo image)
rlm@239 322 (range (.getTriangleCount (.getMesh geo))))))
rlm@229 323
rlm@228 324 #+end_src
rlm@228 325
rlm@228 326 * Triangle Affine Transforms
rlm@228 327
rlm@229 328 The position of each hair is stored in a 2D image in UV
rlm@229 329 coordinates. To place the hair in 3D space we must convert from UV
rlm@229 330 coordinates to XYZ coordinates. Each =Triangle= has coordinates in
rlm@229 331 both UV-space and XYZ-space, which defines a unique [[http://mathworld.wolfram.com/AffineTransformation.html ][Affine Transform]]
rlm@229 332 for translating any coordinate within the UV triangle to the
rlm@229 333 cooresponding coordinate in the XYZ triangle.
rlm@229 334
rlm@231 335 #+name: triangles-3
rlm@228 336 #+begin_src clojure
rlm@243 337 (in-ns 'cortex.touch)
rlm@243 338
rlm@228 339 (defn triangle->matrix4f
rlm@228 340 "Converts the triangle into a 4x4 matrix: The first three columns
rlm@228 341 contain the vertices of the triangle; the last contains the unit
rlm@228 342 normal of the triangle. The bottom row is filled with 1s."
rlm@228 343 [#^Triangle t]
rlm@228 344 (let [mat (Matrix4f.)
rlm@228 345 [vert-1 vert-2 vert-3]
rlm@228 346 ((comp vec map) #(.get t %) (range 3))
rlm@228 347 unit-normal (do (.calculateNormal t)(.getNormal t))
rlm@228 348 vertices [vert-1 vert-2 vert-3 unit-normal]]
rlm@228 349 (dorun
rlm@228 350 (for [row (range 4) col (range 3)]
rlm@228 351 (do
rlm@228 352 (.set mat col row (.get (vertices row)col))
rlm@245 353 (.set mat 3 row 1)))) mat))
rlm@228 354
rlm@240 355 (defn triangles->affine-transform
rlm@228 356 "Returns the affine transformation that converts each vertex in the
rlm@228 357 first triangle into the corresponding vertex in the second
rlm@228 358 triangle."
rlm@228 359 [#^Triangle tri-1 #^Triangle tri-2]
rlm@228 360 (.mult
rlm@228 361 (triangle->matrix4f tri-2)
rlm@228 362 (.invert (triangle->matrix4f tri-1))))
rlm@228 363 #+end_src
rlm@228 364
rlm@239 365
rlm@239 366 * Schrapnel Conversion Functions
rlm@239 367
rlm@239 368 It is convienent to treat a =Triangle= as a sequence of verticies, and
rlm@239 369 a =Vector2f= and =Vector3f= as a sequence of floats. These conversion
rlm@239 370 functions make this easy. If these classes implemented =Iterable= then
rlm@239 371 this code would not be necessary. Hopefully they will in the future.
rlm@239 372
rlm@239 373
rlm@229 374 * Triangle Boundaries
rlm@229 375
rlm@229 376 For efficiency's sake I will divide the UV-image into small squares
rlm@229 377 which inscribe each UV-triangle, then extract the points which lie
rlm@229 378 inside the triangle and map them to 3D-space using
rlm@229 379 =(triangle-transform)= above. To do this I need a function,
rlm@229 380 =(inside-triangle?)=, which determines whether a point is inside a
rlm@229 381 triangle in 2D UV-space.
rlm@228 382
rlm@231 383 #+name: triangles-4
rlm@228 384 #+begin_src clojure
rlm@229 385 (defn convex-bounds
rlm@229 386 "Returns the smallest square containing the given vertices, as a
rlm@229 387 vector of integers [left top width height]."
rlm@240 388 [verts]
rlm@240 389 (let [xs (map first verts)
rlm@240 390 ys (map second verts)
rlm@229 391 x0 (Math/floor (apply min xs))
rlm@229 392 y0 (Math/floor (apply min ys))
rlm@229 393 x1 (Math/ceil (apply max xs))
rlm@229 394 y1 (Math/ceil (apply max ys))]
rlm@229 395 [x0 y0 (- x1 x0) (- y1 y0)]))
rlm@229 396
rlm@229 397 (defn same-side?
rlm@229 398 "Given the points p1 and p2 and the reference point ref, is point p
rlm@229 399 on the same side of the line that goes through p1 and p2 as ref is?"
rlm@229 400 [p1 p2 ref p]
rlm@229 401 (<=
rlm@229 402 0
rlm@229 403 (.dot
rlm@229 404 (.cross (.subtract p2 p1) (.subtract p p1))
rlm@229 405 (.cross (.subtract p2 p1) (.subtract ref p1)))))
rlm@229 406
rlm@229 407 (defn inside-triangle?
rlm@229 408 "Is the point inside the triangle?"
rlm@229 409 {:author "Dylan Holmes"}
rlm@229 410 [#^Triangle tri #^Vector3f p]
rlm@240 411 (let [[vert-1 vert-2 vert-3] [(.get1 tri) (.get2 tri) (.get3 tri)]]
rlm@229 412 (and
rlm@229 413 (same-side? vert-1 vert-2 vert-3 p)
rlm@229 414 (same-side? vert-2 vert-3 vert-1 p)
rlm@229 415 (same-side? vert-3 vert-1 vert-2 p))))
rlm@229 416 #+end_src
rlm@229 417
rlm@228 418 * Physics Collision Objects
rlm@230 419
rlm@234 420 The "hairs" are actually =Rays= which extend from a point on a
rlm@230 421 =Triangle= in the =Mesh= normal to the =Triangle's= surface.
rlm@230 422
rlm@226 423 * Headers
rlm@231 424
rlm@231 425 #+name: touch-header
rlm@226 426 #+begin_src clojure
rlm@226 427 (ns cortex.touch
rlm@226 428 "Simulate the sense of touch in jMonkeyEngine3. Enables any Geometry
rlm@226 429 to be outfitted with touch sensors with density determined by a UV
rlm@226 430 image. In this way a Geometry can know what parts of itself are
rlm@226 431 touching nearby objects. Reads specially prepared blender files to
rlm@226 432 construct this sense automatically."
rlm@226 433 {:author "Robert McIntyre"}
rlm@226 434 (:use (cortex world util sense))
rlm@226 435 (:use clojure.contrib.def)
rlm@226 436 (:import (com.jme3.scene Geometry Node Mesh))
rlm@226 437 (:import com.jme3.collision.CollisionResults)
rlm@226 438 (:import com.jme3.scene.VertexBuffer$Type)
rlm@226 439 (:import (com.jme3.math Triangle Vector3f Vector2f Ray Matrix4f)))
rlm@226 440 #+end_src
rlm@37 441
rlm@232 442 * Adding Touch to the Worm
rlm@232 443
rlm@232 444 #+name: test-touch
rlm@232 445 #+begin_src clojure
rlm@232 446 (ns cortex.test.touch
rlm@232 447 (:use (cortex world util sense body touch))
rlm@232 448 (:use cortex.test.body))
rlm@232 449
rlm@232 450 (cortex.import/mega-import-jme3)
rlm@232 451
rlm@232 452 (defn test-touch []
rlm@232 453 (let [the-worm (doto (worm) (body!))
rlm@232 454 touch (touch! the-worm)
rlm@232 455 touch-display (view-touch)]
rlm@232 456 (world (nodify [the-worm (floor)])
rlm@232 457 standard-debug-controls
rlm@232 458
rlm@232 459 (fn [world]
rlm@244 460 (speed-up world)
rlm@232 461 (light-up-everything world))
rlm@232 462
rlm@232 463 (fn [world tpf]
rlm@244 464 (touch-display (map #(% (.getRootNode world)) touch))
rlm@243 465 ))))
rlm@232 466 #+end_src
rlm@228 467 * Source Listing
rlm@228 468 * Next
rlm@228 469
rlm@228 470
rlm@226 471 * COMMENT Code Generation
rlm@39 472 #+begin_src clojure :tangle ../src/cortex/touch.clj
rlm@231 473 <<touch-header>>
rlm@231 474 <<meta-data>>
rlm@231 475 <<triangles-1>>
rlm@231 476 <<triangles-3>>
rlm@231 477 <<triangles-4>>
rlm@231 478 <<sensors>>
rlm@231 479 <<kernel>>
rlm@231 480 <<visualization>>
rlm@0 481 #+end_src
rlm@0 482
rlm@232 483
rlm@68 484 #+begin_src clojure :tangle ../src/cortex/test/touch.clj
rlm@232 485 <<test-touch>>
rlm@39 486 #+end_src
rlm@39 487
rlm@0 488
rlm@0 489
rlm@0 490
rlm@32 491
rlm@32 492
rlm@226 493