view Alc/ALu.c @ 0:f9476ff7637e

initial forking of open-al to create multiple listeners
author Robert McIntyre <rlm@mit.edu>
date Tue, 25 Oct 2011 13:02:31 -0700
parents
children
line wrap: on
line source
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
13 *
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
19 */
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alListener.h"
35 #include "alAuxEffectSlot.h"
36 #include "alu.h"
37 #include "bs2b.h"
40 static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
41 {
42 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
43 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
44 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
45 }
47 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
48 {
49 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
50 inVector1[2]*inVector2[2];
51 }
53 static __inline ALvoid aluNormalize(ALfloat *inVector)
54 {
55 ALfloat length, inverse_length;
57 length = aluSqrt(aluDotproduct(inVector, inVector));
58 if(length != 0.0f)
59 {
60 inverse_length = 1.0f/length;
61 inVector[0] *= inverse_length;
62 inVector[1] *= inverse_length;
63 inVector[2] *= inverse_length;
64 }
65 }
67 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
68 {
69 ALfloat temp[4] = {
70 vector[0], vector[1], vector[2], w
71 };
73 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
74 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
75 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
76 }
79 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
80 {
81 static const ALfloat angles_Mono[1] = { 0.0f };
82 static const ALfloat angles_Stereo[2] = { -30.0f, 30.0f };
83 static const ALfloat angles_Rear[2] = { -150.0f, 150.0f };
84 static const ALfloat angles_Quad[4] = { -45.0f, 45.0f, -135.0f, 135.0f };
85 static const ALfloat angles_X51[6] = { -30.0f, 30.0f, 0.0f, 0.0f,
86 -110.0f, 110.0f };
87 static const ALfloat angles_X61[7] = { -30.0f, 30.0f, 0.0f, 0.0f,
88 180.0f, -90.0f, 90.0f };
89 static const ALfloat angles_X71[8] = { -30.0f, 30.0f, 0.0f, 0.0f,
90 -110.0f, 110.0f, -90.0f, 90.0f };
92 static const enum Channel chans_Mono[1] = { FRONT_CENTER };
93 static const enum Channel chans_Stereo[2] = { FRONT_LEFT, FRONT_RIGHT };
94 static const enum Channel chans_Rear[2] = { BACK_LEFT, BACK_RIGHT };
95 static const enum Channel chans_Quad[4] = { FRONT_LEFT, FRONT_RIGHT,
96 BACK_LEFT, BACK_RIGHT };
97 static const enum Channel chans_X51[6] = { FRONT_LEFT, FRONT_RIGHT,
98 FRONT_CENTER, LFE,
99 BACK_LEFT, BACK_RIGHT };
100 static const enum Channel chans_X61[7] = { FRONT_LEFT, FRONT_RIGHT,
101 FRONT_CENTER, LFE, BACK_CENTER,
102 SIDE_LEFT, SIDE_RIGHT };
103 static const enum Channel chans_X71[8] = { FRONT_LEFT, FRONT_RIGHT,
104 FRONT_CENTER, LFE,
105 BACK_LEFT, BACK_RIGHT,
106 SIDE_LEFT, SIDE_RIGHT };
108 ALCdevice *Device = ALContext->Device;
109 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
110 ALbufferlistitem *BufferListItem;
111 enum DevFmtChannels DevChans;
112 enum FmtChannels Channels;
113 ALfloat (*SrcMatrix)[MAXCHANNELS];
114 ALfloat DryGain, DryGainHF;
115 ALfloat WetGain[MAX_SENDS];
116 ALfloat WetGainHF[MAX_SENDS];
117 ALint NumSends, Frequency;
118 const ALfloat *SpeakerGain;
119 const ALfloat *angles = NULL;
120 const enum Channel *chans = NULL;
121 enum Resampler Resampler;
122 ALint num_channels = 0;
123 ALboolean VirtualChannels;
124 ALfloat Pitch;
125 ALfloat cw;
126 ALuint pos;
127 ALint i, c;
129 /* Get device properties */
130 DevChans = ALContext->Device->FmtChans;
131 NumSends = ALContext->Device->NumAuxSends;
132 Frequency = ALContext->Device->Frequency;
134 /* Get listener properties */
135 ListenerGain = ALContext->Listener.Gain;
137 /* Get source properties */
138 SourceVolume = ALSource->flGain;
139 MinVolume = ALSource->flMinGain;
140 MaxVolume = ALSource->flMaxGain;
141 Pitch = ALSource->flPitch;
142 Resampler = ALSource->Resampler;
143 VirtualChannels = ALSource->VirtualChannels;
145 /* Calculate the stepping value */
146 Channels = FmtMono;
147 BufferListItem = ALSource->queue;
148 while(BufferListItem != NULL)
149 {
150 ALbuffer *ALBuffer;
151 if((ALBuffer=BufferListItem->buffer) != NULL)
152 {
153 ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels /
154 ALSource->SampleSize;
155 maxstep -= ResamplerPadding[Resampler] +
156 ResamplerPrePadding[Resampler] + 1;
157 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
159 Pitch = Pitch * ALBuffer->Frequency / Frequency;
160 if(Pitch > (ALfloat)maxstep)
161 ALSource->Params.Step = maxstep<<FRACTIONBITS;
162 else
163 {
164 ALSource->Params.Step = Pitch*FRACTIONONE;
165 if(ALSource->Params.Step == 0)
166 ALSource->Params.Step = 1;
167 }
169 Channels = ALBuffer->FmtChannels;
171 if(ALSource->VirtualChannels && (Device->Flags&DEVICE_USE_HRTF))
172 ALSource->Params.DoMix = SelectHrtfMixer(ALBuffer,
173 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER :
174 Resampler);
175 else
176 ALSource->Params.DoMix = SelectMixer(ALBuffer,
177 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER :
178 Resampler);
179 break;
180 }
181 BufferListItem = BufferListItem->next;
182 }
184 /* Calculate gains */
185 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
186 DryGainHF = 1.0f;
187 switch(ALSource->DirectFilter.type)
188 {
189 case AL_FILTER_LOWPASS:
190 DryGain *= ALSource->DirectFilter.Gain;
191 DryGainHF *= ALSource->DirectFilter.GainHF;
192 break;
193 }
194 for(i = 0;i < NumSends;i++)
195 {
196 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
197 WetGainHF[i] = 1.0f;
198 switch(ALSource->Send[i].WetFilter.type)
199 {
200 case AL_FILTER_LOWPASS:
201 WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
202 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
203 break;
204 }
205 }
207 SrcMatrix = ALSource->Params.DryGains;
208 for(i = 0;i < MAXCHANNELS;i++)
209 {
210 for(c = 0;c < MAXCHANNELS;c++)
211 SrcMatrix[i][c] = 0.0f;
212 }
213 switch(Channels)
214 {
215 case FmtMono:
216 angles = angles_Mono;
217 chans = chans_Mono;
218 num_channels = 1;
219 break;
220 case FmtStereo:
221 if(VirtualChannels && (ALContext->Device->Flags&DEVICE_DUPLICATE_STEREO))
222 {
223 DryGain *= aluSqrt(2.0f/4.0f);
224 for(c = 0;c < 2;c++)
225 {
226 pos = aluCart2LUTpos(cos(angles_Rear[c] * (M_PI/180.0)),
227 sin(angles_Rear[c] * (M_PI/180.0)));
228 SpeakerGain = Device->PanningLUT[pos];
230 for(i = 0;i < (ALint)Device->NumChan;i++)
231 {
232 enum Channel chan = Device->Speaker2Chan[i];
233 SrcMatrix[c][chan] += DryGain * ListenerGain *
234 SpeakerGain[chan];
235 }
236 }
237 }
238 angles = angles_Stereo;
239 chans = chans_Stereo;
240 num_channels = 2;
241 break;
243 case FmtRear:
244 angles = angles_Rear;
245 chans = chans_Rear;
246 num_channels = 2;
247 break;
249 case FmtQuad:
250 angles = angles_Quad;
251 chans = chans_Quad;
252 num_channels = 4;
253 break;
255 case FmtX51:
256 angles = angles_X51;
257 chans = chans_X51;
258 num_channels = 6;
259 break;
261 case FmtX61:
262 angles = angles_X61;
263 chans = chans_X61;
264 num_channels = 7;
265 break;
267 case FmtX71:
268 angles = angles_X71;
269 chans = chans_X71;
270 num_channels = 8;
271 break;
272 }
274 if(VirtualChannels == AL_FALSE)
275 {
276 for(c = 0;c < num_channels;c++)
277 SrcMatrix[c][chans[c]] += DryGain * ListenerGain;
278 }
279 else if((Device->Flags&DEVICE_USE_HRTF))
280 {
281 for(c = 0;c < num_channels;c++)
282 {
283 if(chans[c] == LFE)
284 {
285 /* Skip LFE */
286 ALSource->Params.HrtfDelay[c][0] = 0;
287 ALSource->Params.HrtfDelay[c][1] = 0;
288 for(i = 0;i < HRIR_LENGTH;i++)
289 {
290 ALSource->Params.HrtfCoeffs[c][i][0] = 0.0f;
291 ALSource->Params.HrtfCoeffs[c][i][1] = 0.0f;
292 }
293 }
294 else
295 {
296 /* Get the static HRIR coefficients and delays for this
297 * channel. */
298 GetLerpedHrtfCoeffs(0.0, angles[c] * (M_PI/180.0),
299 DryGain*ListenerGain,
300 ALSource->Params.HrtfCoeffs[c],
301 ALSource->Params.HrtfDelay[c]);
302 }
303 ALSource->HrtfCounter = 0;
304 }
305 }
306 else
307 {
308 for(c = 0;c < num_channels;c++)
309 {
310 if(chans[c] == LFE) /* Special-case LFE */
311 {
312 SrcMatrix[c][LFE] += DryGain * ListenerGain;
313 continue;
314 }
315 pos = aluCart2LUTpos(cos(angles[c] * (M_PI/180.0)),
316 sin(angles[c] * (M_PI/180.0)));
317 SpeakerGain = Device->PanningLUT[pos];
319 for(i = 0;i < (ALint)Device->NumChan;i++)
320 {
321 enum Channel chan = Device->Speaker2Chan[i];
322 SrcMatrix[c][chan] += DryGain * ListenerGain *
323 SpeakerGain[chan];
324 }
325 }
326 }
327 for(i = 0;i < NumSends;i++)
328 {
329 ALSource->Params.Send[i].Slot = ALSource->Send[i].Slot;
330 ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain;
331 }
333 /* Update filter coefficients. Calculations based on the I3DL2
334 * spec. */
335 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
337 /* We use two chained one-pole filters, so we need to take the
338 * square root of the squared gain, which is the same as the base
339 * gain. */
340 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
341 for(i = 0;i < NumSends;i++)
342 {
343 /* We use a one-pole filter, so we need to take the squared gain */
344 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
345 ALSource->Params.Send[i].iirFilter.coeff = a;
346 }
347 }
349 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
350 {
351 const ALCdevice *Device = ALContext->Device;
352 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
353 ALfloat Direction[3],Position[3],SourceToListener[3];
354 ALfloat Velocity[3],ListenerVel[3];
355 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
356 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
357 ALfloat DopplerFactor, DopplerVelocity, SpeedOfSound;
358 ALfloat AirAbsorptionFactor;
359 ALfloat RoomAirAbsorption[MAX_SENDS];
360 ALbufferlistitem *BufferListItem;
361 ALfloat Attenuation, EffectiveDist;
362 ALfloat RoomAttenuation[MAX_SENDS];
363 ALfloat MetersPerUnit;
364 ALfloat RoomRolloffBase;
365 ALfloat RoomRolloff[MAX_SENDS];
366 ALfloat DecayDistance[MAX_SENDS];
367 ALfloat DryGain;
368 ALfloat DryGainHF;
369 ALboolean DryGainHFAuto;
370 ALfloat WetGain[MAX_SENDS];
371 ALfloat WetGainHF[MAX_SENDS];
372 ALboolean WetGainAuto;
373 ALboolean WetGainHFAuto;
374 enum Resampler Resampler;
375 ALfloat Pitch;
376 ALuint Frequency;
377 ALint NumSends;
378 ALfloat cw;
379 ALint i;
381 DryGainHF = 1.0f;
382 for(i = 0;i < MAX_SENDS;i++)
383 WetGainHF[i] = 1.0f;
385 //Get context properties
386 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
387 DopplerVelocity = ALContext->DopplerVelocity;
388 SpeedOfSound = ALContext->flSpeedOfSound;
389 NumSends = Device->NumAuxSends;
390 Frequency = Device->Frequency;
392 //Get listener properties
393 ListenerGain = ALContext->Listener.Gain;
394 MetersPerUnit = ALContext->Listener.MetersPerUnit;
395 memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
397 //Get source properties
398 SourceVolume = ALSource->flGain;
399 MinVolume = ALSource->flMinGain;
400 MaxVolume = ALSource->flMaxGain;
401 Pitch = ALSource->flPitch;
402 Resampler = ALSource->Resampler;
403 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
404 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
405 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
406 MinDist = ALSource->flRefDistance;
407 MaxDist = ALSource->flMaxDistance;
408 Rolloff = ALSource->flRollOffFactor;
409 InnerAngle = ALSource->flInnerAngle * ConeScale;
410 OuterAngle = ALSource->flOuterAngle * ConeScale;
411 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
412 DryGainHFAuto = ALSource->DryGainHFAuto;
413 WetGainAuto = ALSource->WetGainAuto;
414 WetGainHFAuto = ALSource->WetGainHFAuto;
415 RoomRolloffBase = ALSource->RoomRolloffFactor;
416 for(i = 0;i < NumSends;i++)
417 {
418 ALeffectslot *Slot = ALSource->Send[i].Slot;
420 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
421 {
422 RoomRolloff[i] = 0.0f;
423 DecayDistance[i] = 0.0f;
424 RoomAirAbsorption[i] = 1.0f;
425 }
426 else if(Slot->AuxSendAuto)
427 {
428 RoomRolloff[i] = RoomRolloffBase;
429 if(IsReverbEffect(Slot->effect.type))
430 {
431 RoomRolloff[i] += Slot->effect.Params.Reverb.RoomRolloffFactor;
432 DecayDistance[i] = Slot->effect.Params.Reverb.DecayTime *
433 SPEEDOFSOUNDMETRESPERSEC;
434 RoomAirAbsorption[i] = Slot->effect.Params.Reverb.AirAbsorptionGainHF;
435 }
436 else
437 {
438 DecayDistance[i] = 0.0f;
439 RoomAirAbsorption[i] = 1.0f;
440 }
441 }
442 else
443 {
444 /* If the slot's auxiliary send auto is off, the data sent to the
445 * effect slot is the same as the dry path, sans filter effects */
446 RoomRolloff[i] = Rolloff;
447 DecayDistance[i] = 0.0f;
448 RoomAirAbsorption[i] = AIRABSORBGAINHF;
449 }
451 ALSource->Params.Send[i].Slot = Slot;
452 }
454 //1. Translate Listener to origin (convert to head relative)
455 if(ALSource->bHeadRelative == AL_FALSE)
456 {
457 ALfloat U[3],V[3],N[3];
458 ALfloat Matrix[4][4];
460 // Build transform matrix
461 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
462 aluNormalize(N); // Normalized At-vector
463 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
464 aluNormalize(V); // Normalized Up-vector
465 aluCrossproduct(N, V, U); // Right-vector
466 aluNormalize(U); // Normalized Right-vector
467 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
468 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
469 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
470 Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] = 0.0f; Matrix[3][3] = 1.0f;
472 // Translate position
473 Position[0] -= ALContext->Listener.Position[0];
474 Position[1] -= ALContext->Listener.Position[1];
475 Position[2] -= ALContext->Listener.Position[2];
477 // Transform source position and direction into listener space
478 aluMatrixVector(Position, 1.0f, Matrix);
479 aluMatrixVector(Direction, 0.0f, Matrix);
480 // Transform source and listener velocity into listener space
481 aluMatrixVector(Velocity, 0.0f, Matrix);
482 aluMatrixVector(ListenerVel, 0.0f, Matrix);
483 }
484 else
485 ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;
487 SourceToListener[0] = -Position[0];
488 SourceToListener[1] = -Position[1];
489 SourceToListener[2] = -Position[2];
490 aluNormalize(SourceToListener);
491 aluNormalize(Direction);
493 //2. Calculate distance attenuation
494 Distance = aluSqrt(aluDotproduct(Position, Position));
495 ClampedDist = Distance;
497 Attenuation = 1.0f;
498 for(i = 0;i < NumSends;i++)
499 RoomAttenuation[i] = 1.0f;
500 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
501 ALContext->DistanceModel)
502 {
503 case InverseDistanceClamped:
504 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
505 if(MaxDist < MinDist)
506 break;
507 //fall-through
508 case InverseDistance:
509 if(MinDist > 0.0f)
510 {
511 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
512 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
513 for(i = 0;i < NumSends;i++)
514 {
515 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
516 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
517 }
518 }
519 break;
521 case LinearDistanceClamped:
522 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
523 if(MaxDist < MinDist)
524 break;
525 //fall-through
526 case LinearDistance:
527 if(MaxDist != MinDist)
528 {
529 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
530 Attenuation = maxf(Attenuation, 0.0f);
531 for(i = 0;i < NumSends;i++)
532 {
533 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
534 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
535 }
536 }
537 break;
539 case ExponentDistanceClamped:
540 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
541 if(MaxDist < MinDist)
542 break;
543 //fall-through
544 case ExponentDistance:
545 if(ClampedDist > 0.0f && MinDist > 0.0f)
546 {
547 Attenuation = aluPow(ClampedDist/MinDist, -Rolloff);
548 for(i = 0;i < NumSends;i++)
549 RoomAttenuation[i] = aluPow(ClampedDist/MinDist, -RoomRolloff[i]);
550 }
551 break;
553 case DisableDistance:
554 break;
555 }
557 // Source Gain + Attenuation
558 DryGain = SourceVolume * Attenuation;
559 for(i = 0;i < NumSends;i++)
560 WetGain[i] = SourceVolume * RoomAttenuation[i];
562 // Distance-based air absorption
563 EffectiveDist = 0.0f;
564 if(MinDist > 0.0f && Attenuation < 1.0f)
565 EffectiveDist = (MinDist/Attenuation - MinDist)*MetersPerUnit;
566 if(AirAbsorptionFactor > 0.0f && EffectiveDist > 0.0f)
567 {
568 DryGainHF *= aluPow(AIRABSORBGAINHF, AirAbsorptionFactor*EffectiveDist);
569 for(i = 0;i < NumSends;i++)
570 WetGainHF[i] *= aluPow(RoomAirAbsorption[i],
571 AirAbsorptionFactor*EffectiveDist);
572 }
574 //3. Apply directional soundcones
575 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * (180.0/M_PI);
576 if(Angle >= InnerAngle && Angle <= OuterAngle)
577 {
578 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
579 ConeVolume = lerp(1.0, ALSource->flOuterGain, scale);
580 ConeHF = lerp(1.0, ALSource->OuterGainHF, scale);
581 }
582 else if(Angle > OuterAngle)
583 {
584 ConeVolume = ALSource->flOuterGain;
585 ConeHF = ALSource->OuterGainHF;
586 }
587 else
588 {
589 ConeVolume = 1.0f;
590 ConeHF = 1.0f;
591 }
593 DryGain *= ConeVolume;
594 if(WetGainAuto)
595 {
596 for(i = 0;i < NumSends;i++)
597 WetGain[i] *= ConeVolume;
598 }
599 if(DryGainHFAuto)
600 DryGainHF *= ConeHF;
601 if(WetGainHFAuto)
602 {
603 for(i = 0;i < NumSends;i++)
604 WetGainHF[i] *= ConeHF;
605 }
607 // Clamp to Min/Max Gain
608 DryGain = clampf(DryGain, MinVolume, MaxVolume);
609 for(i = 0;i < NumSends;i++)
610 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
612 // Apply filter gains and filters
613 switch(ALSource->DirectFilter.type)
614 {
615 case AL_FILTER_LOWPASS:
616 DryGain *= ALSource->DirectFilter.Gain;
617 DryGainHF *= ALSource->DirectFilter.GainHF;
618 break;
619 }
620 DryGain *= ListenerGain;
621 for(i = 0;i < NumSends;i++)
622 {
623 switch(ALSource->Send[i].WetFilter.type)
624 {
625 case AL_FILTER_LOWPASS:
626 WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
627 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
628 break;
629 }
630 WetGain[i] *= ListenerGain;
631 }
633 if(WetGainAuto)
634 {
635 /* Apply a decay-time transformation to the wet path, based on the
636 * attenuation of the dry path.
637 *
638 * Using the approximate (effective) source to listener distance, the
639 * initial decay of the reverb effect is calculated and applied to the
640 * wet path.
641 */
642 for(i = 0;i < NumSends;i++)
643 {
644 if(DecayDistance[i] > 0.0f)
645 WetGain[i] *= aluPow(0.001f /* -60dB */,
646 EffectiveDist / DecayDistance[i]);
647 }
648 }
650 // Calculate Velocity
651 if(DopplerFactor != 0.0f)
652 {
653 ALfloat VSS, VLS;
654 ALfloat MaxVelocity = (SpeedOfSound*DopplerVelocity) /
655 DopplerFactor;
657 VSS = aluDotproduct(Velocity, SourceToListener);
658 if(VSS >= MaxVelocity)
659 VSS = (MaxVelocity - 1.0f);
660 else if(VSS <= -MaxVelocity)
661 VSS = -MaxVelocity + 1.0f;
663 VLS = aluDotproduct(ListenerVel, SourceToListener);
664 if(VLS >= MaxVelocity)
665 VLS = (MaxVelocity - 1.0f);
666 else if(VLS <= -MaxVelocity)
667 VLS = -MaxVelocity + 1.0f;
669 Pitch *= ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VLS)) /
670 ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VSS));
671 }
673 BufferListItem = ALSource->queue;
674 while(BufferListItem != NULL)
675 {
676 ALbuffer *ALBuffer;
677 if((ALBuffer=BufferListItem->buffer) != NULL)
678 {
679 ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels /
680 ALSource->SampleSize;
681 maxstep -= ResamplerPadding[Resampler] +
682 ResamplerPrePadding[Resampler] + 1;
683 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
685 Pitch = Pitch * ALBuffer->Frequency / Frequency;
686 if(Pitch > (ALfloat)maxstep)
687 ALSource->Params.Step = maxstep<<FRACTIONBITS;
688 else
689 {
690 ALSource->Params.Step = Pitch*FRACTIONONE;
691 if(ALSource->Params.Step == 0)
692 ALSource->Params.Step = 1;
693 }
695 if((Device->Flags&DEVICE_USE_HRTF))
696 ALSource->Params.DoMix = SelectHrtfMixer(ALBuffer,
697 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER :
698 Resampler);
699 else
700 ALSource->Params.DoMix = SelectMixer(ALBuffer,
701 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER :
702 Resampler);
703 break;
704 }
705 BufferListItem = BufferListItem->next;
706 }
708 if((Device->Flags&DEVICE_USE_HRTF))
709 {
710 // Use a binaural HRTF algorithm for stereo headphone playback
711 ALfloat delta, ev = 0.0f, az = 0.0f;
713 if(Distance > 0.0f)
714 {
715 ALfloat invlen = 1.0f/Distance;
716 Position[0] *= invlen;
717 Position[1] *= invlen;
718 Position[2] *= invlen;
720 // Calculate elevation and azimuth only when the source is not at
721 // the listener. This prevents +0 and -0 Z from producing
722 // inconsistent panning.
723 ev = asin(Position[1]);
724 az = atan2(Position[0], -Position[2]*ZScale);
725 }
727 // Check to see if the HRIR is already moving.
728 if(ALSource->HrtfMoving)
729 {
730 // Calculate the normalized HRTF transition factor (delta).
731 delta = CalcHrtfDelta(ALSource->Params.HrtfGain, DryGain,
732 ALSource->Params.HrtfDir, Position);
733 // If the delta is large enough, get the moving HRIR target
734 // coefficients, target delays, steppping values, and counter.
735 if(delta > 0.001f)
736 {
737 ALSource->HrtfCounter = GetMovingHrtfCoeffs(ev, az, DryGain,
738 delta, ALSource->HrtfCounter,
739 ALSource->Params.HrtfCoeffs[0],
740 ALSource->Params.HrtfDelay[0],
741 ALSource->Params.HrtfCoeffStep,
742 ALSource->Params.HrtfDelayStep);
743 ALSource->Params.HrtfGain = DryGain;
744 ALSource->Params.HrtfDir[0] = Position[0];
745 ALSource->Params.HrtfDir[1] = Position[1];
746 ALSource->Params.HrtfDir[2] = Position[2];
747 }
748 }
749 else
750 {
751 // Get the initial (static) HRIR coefficients and delays.
752 GetLerpedHrtfCoeffs(ev, az, DryGain,
753 ALSource->Params.HrtfCoeffs[0],
754 ALSource->Params.HrtfDelay[0]);
755 ALSource->HrtfCounter = 0;
756 ALSource->Params.HrtfGain = DryGain;
757 ALSource->Params.HrtfDir[0] = Position[0];
758 ALSource->Params.HrtfDir[1] = Position[1];
759 ALSource->Params.HrtfDir[2] = Position[2];
760 }
761 }
762 else
763 {
764 // Use energy-preserving panning algorithm for multi-speaker playback
765 ALfloat DirGain, AmbientGain;
766 const ALfloat *SpeakerGain;
767 ALfloat length;
768 ALint pos;
770 length = maxf(Distance, MinDist);
771 if(length > 0.0f)
772 {
773 ALfloat invlen = 1.0f/length;
774 Position[0] *= invlen;
775 Position[1] *= invlen;
776 Position[2] *= invlen;
777 }
779 pos = aluCart2LUTpos(-Position[2]*ZScale, Position[0]);
780 SpeakerGain = Device->PanningLUT[pos];
782 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
783 // elevation adjustment for directional gain. this sucks, but
784 // has low complexity
785 AmbientGain = aluSqrt(1.0/Device->NumChan);
786 for(i = 0;i < MAXCHANNELS;i++)
787 {
788 ALuint i2;
789 for(i2 = 0;i2 < MAXCHANNELS;i2++)
790 ALSource->Params.DryGains[i][i2] = 0.0f;
791 }
792 for(i = 0;i < (ALint)Device->NumChan;i++)
793 {
794 enum Channel chan = Device->Speaker2Chan[i];
795 ALfloat gain = lerp(AmbientGain, SpeakerGain[chan], DirGain);
796 ALSource->Params.DryGains[0][chan] = DryGain * gain;
797 }
798 }
799 for(i = 0;i < NumSends;i++)
800 ALSource->Params.Send[i].WetGain = WetGain[i];
802 /* Update filter coefficients. */
803 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
805 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
806 for(i = 0;i < NumSends;i++)
807 {
808 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
809 ALSource->Params.Send[i].iirFilter.coeff = a;
810 }
811 }
814 static __inline ALfloat aluF2F(ALfloat val)
815 { return val; }
816 static __inline ALshort aluF2S(ALfloat val)
817 {
818 if(val > 1.0f) return 32767;
819 if(val < -1.0f) return -32768;
820 return (ALint)(val*32767.0f);
821 }
822 static __inline ALushort aluF2US(ALfloat val)
823 { return aluF2S(val)+32768; }
824 static __inline ALbyte aluF2B(ALfloat val)
825 { return aluF2S(val)>>8; }
826 static __inline ALubyte aluF2UB(ALfloat val)
827 { return aluF2US(val)>>8; }
829 #define DECL_TEMPLATE(T, N, func) \
830 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \
831 ALuint SamplesToDo) \
832 { \
833 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
834 const enum Channel *ChanMap = device->DevChannels; \
835 ALuint i, j; \
836 \
837 for(i = 0;i < SamplesToDo;i++) \
838 { \
839 for(j = 0;j < N;j++) \
840 *(buffer++) = func(DryBuffer[i][ChanMap[j]]); \
841 } \
842 }
844 DECL_TEMPLATE(ALfloat, 1, aluF2F)
845 DECL_TEMPLATE(ALfloat, 4, aluF2F)
846 DECL_TEMPLATE(ALfloat, 6, aluF2F)
847 DECL_TEMPLATE(ALfloat, 7, aluF2F)
848 DECL_TEMPLATE(ALfloat, 8, aluF2F)
850 DECL_TEMPLATE(ALushort, 1, aluF2US)
851 DECL_TEMPLATE(ALushort, 4, aluF2US)
852 DECL_TEMPLATE(ALushort, 6, aluF2US)
853 DECL_TEMPLATE(ALushort, 7, aluF2US)
854 DECL_TEMPLATE(ALushort, 8, aluF2US)
856 DECL_TEMPLATE(ALshort, 1, aluF2S)
857 DECL_TEMPLATE(ALshort, 4, aluF2S)
858 DECL_TEMPLATE(ALshort, 6, aluF2S)
859 DECL_TEMPLATE(ALshort, 7, aluF2S)
860 DECL_TEMPLATE(ALshort, 8, aluF2S)
862 DECL_TEMPLATE(ALubyte, 1, aluF2UB)
863 DECL_TEMPLATE(ALubyte, 4, aluF2UB)
864 DECL_TEMPLATE(ALubyte, 6, aluF2UB)
865 DECL_TEMPLATE(ALubyte, 7, aluF2UB)
866 DECL_TEMPLATE(ALubyte, 8, aluF2UB)
868 DECL_TEMPLATE(ALbyte, 1, aluF2B)
869 DECL_TEMPLATE(ALbyte, 4, aluF2B)
870 DECL_TEMPLATE(ALbyte, 6, aluF2B)
871 DECL_TEMPLATE(ALbyte, 7, aluF2B)
872 DECL_TEMPLATE(ALbyte, 8, aluF2B)
874 #undef DECL_TEMPLATE
876 #define DECL_TEMPLATE(T, N, func) \
877 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \
878 ALuint SamplesToDo) \
879 { \
880 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
881 const enum Channel *ChanMap = device->DevChannels; \
882 ALuint i, j; \
883 \
884 if(device->Bs2b) \
885 { \
886 for(i = 0;i < SamplesToDo;i++) \
887 { \
888 float samples[2]; \
889 samples[0] = DryBuffer[i][ChanMap[0]]; \
890 samples[1] = DryBuffer[i][ChanMap[1]]; \
891 bs2b_cross_feed(device->Bs2b, samples); \
892 *(buffer++) = func(samples[0]); \
893 *(buffer++) = func(samples[1]); \
894 } \
895 } \
896 else \
897 { \
898 for(i = 0;i < SamplesToDo;i++) \
899 { \
900 for(j = 0;j < N;j++) \
901 *(buffer++) = func(DryBuffer[i][ChanMap[j]]); \
902 } \
903 } \
904 }
906 DECL_TEMPLATE(ALfloat, 2, aluF2F)
907 DECL_TEMPLATE(ALushort, 2, aluF2US)
908 DECL_TEMPLATE(ALshort, 2, aluF2S)
909 DECL_TEMPLATE(ALubyte, 2, aluF2UB)
910 DECL_TEMPLATE(ALbyte, 2, aluF2B)
912 #undef DECL_TEMPLATE
914 #define DECL_TEMPLATE(T) \
915 static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \
916 { \
917 switch(device->FmtChans) \
918 { \
919 case DevFmtMono: \
920 Write_##T##_1(device, buffer, SamplesToDo); \
921 break; \
922 case DevFmtStereo: \
923 Write_##T##_2(device, buffer, SamplesToDo); \
924 break; \
925 case DevFmtQuad: \
926 Write_##T##_4(device, buffer, SamplesToDo); \
927 break; \
928 case DevFmtX51: \
929 case DevFmtX51Side: \
930 Write_##T##_6(device, buffer, SamplesToDo); \
931 break; \
932 case DevFmtX61: \
933 Write_##T##_7(device, buffer, SamplesToDo); \
934 break; \
935 case DevFmtX71: \
936 Write_##T##_8(device, buffer, SamplesToDo); \
937 break; \
938 } \
939 }
941 DECL_TEMPLATE(ALfloat)
942 DECL_TEMPLATE(ALushort)
943 DECL_TEMPLATE(ALshort)
944 DECL_TEMPLATE(ALubyte)
945 DECL_TEMPLATE(ALbyte)
947 #undef DECL_TEMPLATE
949 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
950 {
951 ALuint SamplesToDo;
952 ALeffectslot *ALEffectSlot;
953 ALCcontext **ctx, **ctx_end;
954 ALsource **src, **src_end;
955 int fpuState;
956 ALuint i, c;
957 ALsizei e;
959 #if defined(HAVE_FESETROUND)
960 fpuState = fegetround();
961 fesetround(FE_TOWARDZERO);
962 #elif defined(HAVE__CONTROLFP)
963 fpuState = _controlfp(0, 0);
964 (void)_controlfp(_RC_CHOP, _MCW_RC);
965 #else
966 (void)fpuState;
967 #endif
969 while(size > 0)
970 {
971 /* Setup variables */
972 SamplesToDo = minu(size, BUFFERSIZE);
974 /* Clear mixing buffer */
975 memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat));
977 LockDevice(device);
978 ctx = device->Contexts;
979 ctx_end = ctx + device->NumContexts;
980 //printf("Contexts: %d\n", device->NumContexts);
981 int context_number = 0;
982 while(ctx != ctx_end)
983 {
984 //printf("Context %d:\n", context_number++);
985 ALboolean DeferUpdates = (*ctx)->DeferUpdates;
986 ALboolean UpdateSources = AL_FALSE;
988 if(!DeferUpdates)
989 {
990 //printf("NOT deferring updates, whatever that means\n");
991 UpdateSources = (*ctx)->UpdateSources;
992 //printf("update sources is set to %d\n", UpdateSources);
993 (*ctx)->UpdateSources = AL_FALSE;
994 }
996 src = (*ctx)->ActiveSources;
997 src_end = src + (*ctx)->ActiveSourceCount;
998 //printf("number of active sources are %d\n", (*ctx)->ActiveSourceCount);
999 while(src != src_end)
1002 if((*src)->state != AL_PLAYING)
1004 --((*ctx)->ActiveSourceCount);
1005 *src = *(--src_end);
1006 continue;
1009 if(!DeferUpdates && ((*src)->NeedsUpdate || UpdateSources))
1011 (*src)->NeedsUpdate = AL_FALSE;
1012 ALsource_Update(*src, *ctx);
1014 //printf("calling MixSource!\n");
1015 MixSource(*src, device, SamplesToDo);
1016 src++;
1019 /* effect slot processing */
1020 for(e = 0;e < (*ctx)->EffectSlotMap.size;e++)
1022 ALEffectSlot = (*ctx)->EffectSlotMap.array[e].value;
1024 for(i = 0;i < SamplesToDo;i++)
1026 // RLM: remove click-removal
1027 ALEffectSlot->WetBuffer[i] += ALEffectSlot->ClickRemoval[0];
1028 ALEffectSlot->ClickRemoval[0] -= ALEffectSlot->ClickRemoval[0] / 256.0f;
1030 for(i = 0;i < 1;i++)
1032 // RLM: remove click-removal
1033 ALEffectSlot->ClickRemoval[i] += ALEffectSlot->PendingClicks[i];
1034 ALEffectSlot->PendingClicks[i] = 0.0f;
1037 if(!DeferUpdates && ALEffectSlot->NeedsUpdate)
1039 ALEffectSlot->NeedsUpdate = AL_FALSE;
1040 ALEffect_Update(ALEffectSlot->EffectState, *ctx, ALEffectSlot);
1043 ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot,
1044 SamplesToDo, ALEffectSlot->WetBuffer,
1045 device->DryBuffer);
1047 for(i = 0;i < SamplesToDo;i++)
1048 ALEffectSlot->WetBuffer[i] = 0.0f;
1051 ctx++;
1053 UnlockDevice(device);
1055 //Post processing loop
1056 if(device->FmtChans == DevFmtMono)
1058 for(i = 0;i < SamplesToDo;i++)
1060 // RLM: remove click-removal
1061 device->DryBuffer[i][FRONT_CENTER] += device->ClickRemoval[FRONT_CENTER];
1062 device->ClickRemoval[FRONT_CENTER] -= device->ClickRemoval[FRONT_CENTER] / 256.0f;
1064 // RLM: remove click-removal
1065 device->ClickRemoval[FRONT_CENTER] += device->PendingClicks[FRONT_CENTER];
1066 device->PendingClicks[FRONT_CENTER] = 0.0f;
1068 else if(device->FmtChans == DevFmtStereo)
1070 /* Assumes the first two channels are FRONT_LEFT and FRONT_RIGHT */
1071 for(i = 0;i < SamplesToDo;i++)
1073 for(c = 0;c < 2;c++)
1075 // RLM: remove click-removal
1076 device->DryBuffer[i][c] += device->ClickRemoval[c];
1077 device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f;
1080 for(c = 0;c < 2;c++)
1082 // RLM: remove click-removal
1083 device->ClickRemoval[c] += device->PendingClicks[c];
1084 device->PendingClicks[c] = 0.0f;
1087 else
1089 for(i = 0;i < SamplesToDo;i++)
1091 for(c = 0;c < MAXCHANNELS;c++)
1093 // RLM: remove click-removal
1094 device->DryBuffer[i][c] += device->ClickRemoval[c];
1095 device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f;
1098 for(c = 0;c < MAXCHANNELS;c++)
1100 // RLM: remove click-removal
1101 device->ClickRemoval[c] += device->PendingClicks[c];
1102 device->PendingClicks[c] = 0.0f;
1106 if(buffer)
1108 switch(device->FmtType)
1110 case DevFmtByte:
1111 Write_ALbyte(device, buffer, SamplesToDo);
1112 break;
1113 case DevFmtUByte:
1114 Write_ALubyte(device, buffer, SamplesToDo);
1115 break;
1116 case DevFmtShort:
1117 Write_ALshort(device, buffer, SamplesToDo);
1118 break;
1119 case DevFmtUShort:
1120 Write_ALushort(device, buffer, SamplesToDo);
1121 break;
1122 case DevFmtFloat:
1123 Write_ALfloat(device, buffer, SamplesToDo);
1124 break;
1128 size -= SamplesToDo;
1131 #if defined(HAVE_FESETROUND)
1132 fesetround(fpuState);
1133 #elif defined(HAVE__CONTROLFP)
1134 _controlfp(fpuState, _MCW_RC);
1135 #endif
1142 ALvoid aluHandleDisconnect(ALCdevice *device)
1144 ALuint i;
1146 LockDevice(device);
1147 for(i = 0;i < device->NumContexts;i++)
1149 ALCcontext *Context = device->Contexts[i];
1150 ALsource *source;
1151 ALsizei pos;
1153 for(pos = 0;pos < Context->SourceMap.size;pos++)
1155 source = Context->SourceMap.array[pos].value;
1156 if(source->state == AL_PLAYING)
1158 source->state = AL_STOPPED;
1159 source->BuffersPlayed = source->BuffersInQueue;
1160 source->position = 0;
1161 source->position_fraction = 0;
1166 device->Connected = ALC_FALSE;
1167 UnlockDevice(device);