Mercurial > audio-send
comparison Alc/ALu.c @ 0:f9476ff7637e
initial forking of open-al to create multiple listeners
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Tue, 25 Oct 2011 13:02:31 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f9476ff7637e |
---|---|
1 /** | |
2 * OpenAL cross platform audio library | |
3 * Copyright (C) 1999-2007 by authors. | |
4 * This library is free software; you can redistribute it and/or | |
5 * modify it under the terms of the GNU Library General Public | |
6 * License as published by the Free Software Foundation; either | |
7 * version 2 of the License, or (at your option) any later version. | |
8 * | |
9 * This library is distributed in the hope that it will be useful, | |
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
12 * Library General Public License for more details. | |
13 * | |
14 * You should have received a copy of the GNU Library General Public | |
15 * License along with this library; if not, write to the | |
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
17 * Boston, MA 02111-1307, USA. | |
18 * Or go to http://www.gnu.org/copyleft/lgpl.html | |
19 */ | |
20 | |
21 #include "config.h" | |
22 | |
23 #include <math.h> | |
24 #include <stdlib.h> | |
25 #include <string.h> | |
26 #include <ctype.h> | |
27 #include <assert.h> | |
28 | |
29 #include "alMain.h" | |
30 #include "AL/al.h" | |
31 #include "AL/alc.h" | |
32 #include "alSource.h" | |
33 #include "alBuffer.h" | |
34 #include "alListener.h" | |
35 #include "alAuxEffectSlot.h" | |
36 #include "alu.h" | |
37 #include "bs2b.h" | |
38 | |
39 | |
40 static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector) | |
41 { | |
42 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1]; | |
43 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2]; | |
44 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0]; | |
45 } | |
46 | |
47 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2) | |
48 { | |
49 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] + | |
50 inVector1[2]*inVector2[2]; | |
51 } | |
52 | |
53 static __inline ALvoid aluNormalize(ALfloat *inVector) | |
54 { | |
55 ALfloat length, inverse_length; | |
56 | |
57 length = aluSqrt(aluDotproduct(inVector, inVector)); | |
58 if(length != 0.0f) | |
59 { | |
60 inverse_length = 1.0f/length; | |
61 inVector[0] *= inverse_length; | |
62 inVector[1] *= inverse_length; | |
63 inVector[2] *= inverse_length; | |
64 } | |
65 } | |
66 | |
67 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4]) | |
68 { | |
69 ALfloat temp[4] = { | |
70 vector[0], vector[1], vector[2], w | |
71 }; | |
72 | |
73 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0]; | |
74 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1]; | |
75 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2]; | |
76 } | |
77 | |
78 | |
79 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext) | |
80 { | |
81 static const ALfloat angles_Mono[1] = { 0.0f }; | |
82 static const ALfloat angles_Stereo[2] = { -30.0f, 30.0f }; | |
83 static const ALfloat angles_Rear[2] = { -150.0f, 150.0f }; | |
84 static const ALfloat angles_Quad[4] = { -45.0f, 45.0f, -135.0f, 135.0f }; | |
85 static const ALfloat angles_X51[6] = { -30.0f, 30.0f, 0.0f, 0.0f, | |
86 -110.0f, 110.0f }; | |
87 static const ALfloat angles_X61[7] = { -30.0f, 30.0f, 0.0f, 0.0f, | |
88 180.0f, -90.0f, 90.0f }; | |
89 static const ALfloat angles_X71[8] = { -30.0f, 30.0f, 0.0f, 0.0f, | |
90 -110.0f, 110.0f, -90.0f, 90.0f }; | |
91 | |
92 static const enum Channel chans_Mono[1] = { FRONT_CENTER }; | |
93 static const enum Channel chans_Stereo[2] = { FRONT_LEFT, FRONT_RIGHT }; | |
94 static const enum Channel chans_Rear[2] = { BACK_LEFT, BACK_RIGHT }; | |
95 static const enum Channel chans_Quad[4] = { FRONT_LEFT, FRONT_RIGHT, | |
96 BACK_LEFT, BACK_RIGHT }; | |
97 static const enum Channel chans_X51[6] = { FRONT_LEFT, FRONT_RIGHT, | |
98 FRONT_CENTER, LFE, | |
99 BACK_LEFT, BACK_RIGHT }; | |
100 static const enum Channel chans_X61[7] = { FRONT_LEFT, FRONT_RIGHT, | |
101 FRONT_CENTER, LFE, BACK_CENTER, | |
102 SIDE_LEFT, SIDE_RIGHT }; | |
103 static const enum Channel chans_X71[8] = { FRONT_LEFT, FRONT_RIGHT, | |
104 FRONT_CENTER, LFE, | |
105 BACK_LEFT, BACK_RIGHT, | |
106 SIDE_LEFT, SIDE_RIGHT }; | |
107 | |
108 ALCdevice *Device = ALContext->Device; | |
109 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume; | |
110 ALbufferlistitem *BufferListItem; | |
111 enum DevFmtChannels DevChans; | |
112 enum FmtChannels Channels; | |
113 ALfloat (*SrcMatrix)[MAXCHANNELS]; | |
114 ALfloat DryGain, DryGainHF; | |
115 ALfloat WetGain[MAX_SENDS]; | |
116 ALfloat WetGainHF[MAX_SENDS]; | |
117 ALint NumSends, Frequency; | |
118 const ALfloat *SpeakerGain; | |
119 const ALfloat *angles = NULL; | |
120 const enum Channel *chans = NULL; | |
121 enum Resampler Resampler; | |
122 ALint num_channels = 0; | |
123 ALboolean VirtualChannels; | |
124 ALfloat Pitch; | |
125 ALfloat cw; | |
126 ALuint pos; | |
127 ALint i, c; | |
128 | |
129 /* Get device properties */ | |
130 DevChans = ALContext->Device->FmtChans; | |
131 NumSends = ALContext->Device->NumAuxSends; | |
132 Frequency = ALContext->Device->Frequency; | |
133 | |
134 /* Get listener properties */ | |
135 ListenerGain = ALContext->Listener.Gain; | |
136 | |
137 /* Get source properties */ | |
138 SourceVolume = ALSource->flGain; | |
139 MinVolume = ALSource->flMinGain; | |
140 MaxVolume = ALSource->flMaxGain; | |
141 Pitch = ALSource->flPitch; | |
142 Resampler = ALSource->Resampler; | |
143 VirtualChannels = ALSource->VirtualChannels; | |
144 | |
145 /* Calculate the stepping value */ | |
146 Channels = FmtMono; | |
147 BufferListItem = ALSource->queue; | |
148 while(BufferListItem != NULL) | |
149 { | |
150 ALbuffer *ALBuffer; | |
151 if((ALBuffer=BufferListItem->buffer) != NULL) | |
152 { | |
153 ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels / | |
154 ALSource->SampleSize; | |
155 maxstep -= ResamplerPadding[Resampler] + | |
156 ResamplerPrePadding[Resampler] + 1; | |
157 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS); | |
158 | |
159 Pitch = Pitch * ALBuffer->Frequency / Frequency; | |
160 if(Pitch > (ALfloat)maxstep) | |
161 ALSource->Params.Step = maxstep<<FRACTIONBITS; | |
162 else | |
163 { | |
164 ALSource->Params.Step = Pitch*FRACTIONONE; | |
165 if(ALSource->Params.Step == 0) | |
166 ALSource->Params.Step = 1; | |
167 } | |
168 | |
169 Channels = ALBuffer->FmtChannels; | |
170 | |
171 if(ALSource->VirtualChannels && (Device->Flags&DEVICE_USE_HRTF)) | |
172 ALSource->Params.DoMix = SelectHrtfMixer(ALBuffer, | |
173 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER : | |
174 Resampler); | |
175 else | |
176 ALSource->Params.DoMix = SelectMixer(ALBuffer, | |
177 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER : | |
178 Resampler); | |
179 break; | |
180 } | |
181 BufferListItem = BufferListItem->next; | |
182 } | |
183 | |
184 /* Calculate gains */ | |
185 DryGain = clampf(SourceVolume, MinVolume, MaxVolume); | |
186 DryGainHF = 1.0f; | |
187 switch(ALSource->DirectFilter.type) | |
188 { | |
189 case AL_FILTER_LOWPASS: | |
190 DryGain *= ALSource->DirectFilter.Gain; | |
191 DryGainHF *= ALSource->DirectFilter.GainHF; | |
192 break; | |
193 } | |
194 for(i = 0;i < NumSends;i++) | |
195 { | |
196 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume); | |
197 WetGainHF[i] = 1.0f; | |
198 switch(ALSource->Send[i].WetFilter.type) | |
199 { | |
200 case AL_FILTER_LOWPASS: | |
201 WetGain[i] *= ALSource->Send[i].WetFilter.Gain; | |
202 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF; | |
203 break; | |
204 } | |
205 } | |
206 | |
207 SrcMatrix = ALSource->Params.DryGains; | |
208 for(i = 0;i < MAXCHANNELS;i++) | |
209 { | |
210 for(c = 0;c < MAXCHANNELS;c++) | |
211 SrcMatrix[i][c] = 0.0f; | |
212 } | |
213 switch(Channels) | |
214 { | |
215 case FmtMono: | |
216 angles = angles_Mono; | |
217 chans = chans_Mono; | |
218 num_channels = 1; | |
219 break; | |
220 case FmtStereo: | |
221 if(VirtualChannels && (ALContext->Device->Flags&DEVICE_DUPLICATE_STEREO)) | |
222 { | |
223 DryGain *= aluSqrt(2.0f/4.0f); | |
224 for(c = 0;c < 2;c++) | |
225 { | |
226 pos = aluCart2LUTpos(cos(angles_Rear[c] * (M_PI/180.0)), | |
227 sin(angles_Rear[c] * (M_PI/180.0))); | |
228 SpeakerGain = Device->PanningLUT[pos]; | |
229 | |
230 for(i = 0;i < (ALint)Device->NumChan;i++) | |
231 { | |
232 enum Channel chan = Device->Speaker2Chan[i]; | |
233 SrcMatrix[c][chan] += DryGain * ListenerGain * | |
234 SpeakerGain[chan]; | |
235 } | |
236 } | |
237 } | |
238 angles = angles_Stereo; | |
239 chans = chans_Stereo; | |
240 num_channels = 2; | |
241 break; | |
242 | |
243 case FmtRear: | |
244 angles = angles_Rear; | |
245 chans = chans_Rear; | |
246 num_channels = 2; | |
247 break; | |
248 | |
249 case FmtQuad: | |
250 angles = angles_Quad; | |
251 chans = chans_Quad; | |
252 num_channels = 4; | |
253 break; | |
254 | |
255 case FmtX51: | |
256 angles = angles_X51; | |
257 chans = chans_X51; | |
258 num_channels = 6; | |
259 break; | |
260 | |
261 case FmtX61: | |
262 angles = angles_X61; | |
263 chans = chans_X61; | |
264 num_channels = 7; | |
265 break; | |
266 | |
267 case FmtX71: | |
268 angles = angles_X71; | |
269 chans = chans_X71; | |
270 num_channels = 8; | |
271 break; | |
272 } | |
273 | |
274 if(VirtualChannels == AL_FALSE) | |
275 { | |
276 for(c = 0;c < num_channels;c++) | |
277 SrcMatrix[c][chans[c]] += DryGain * ListenerGain; | |
278 } | |
279 else if((Device->Flags&DEVICE_USE_HRTF)) | |
280 { | |
281 for(c = 0;c < num_channels;c++) | |
282 { | |
283 if(chans[c] == LFE) | |
284 { | |
285 /* Skip LFE */ | |
286 ALSource->Params.HrtfDelay[c][0] = 0; | |
287 ALSource->Params.HrtfDelay[c][1] = 0; | |
288 for(i = 0;i < HRIR_LENGTH;i++) | |
289 { | |
290 ALSource->Params.HrtfCoeffs[c][i][0] = 0.0f; | |
291 ALSource->Params.HrtfCoeffs[c][i][1] = 0.0f; | |
292 } | |
293 } | |
294 else | |
295 { | |
296 /* Get the static HRIR coefficients and delays for this | |
297 * channel. */ | |
298 GetLerpedHrtfCoeffs(0.0, angles[c] * (M_PI/180.0), | |
299 DryGain*ListenerGain, | |
300 ALSource->Params.HrtfCoeffs[c], | |
301 ALSource->Params.HrtfDelay[c]); | |
302 } | |
303 ALSource->HrtfCounter = 0; | |
304 } | |
305 } | |
306 else | |
307 { | |
308 for(c = 0;c < num_channels;c++) | |
309 { | |
310 if(chans[c] == LFE) /* Special-case LFE */ | |
311 { | |
312 SrcMatrix[c][LFE] += DryGain * ListenerGain; | |
313 continue; | |
314 } | |
315 pos = aluCart2LUTpos(cos(angles[c] * (M_PI/180.0)), | |
316 sin(angles[c] * (M_PI/180.0))); | |
317 SpeakerGain = Device->PanningLUT[pos]; | |
318 | |
319 for(i = 0;i < (ALint)Device->NumChan;i++) | |
320 { | |
321 enum Channel chan = Device->Speaker2Chan[i]; | |
322 SrcMatrix[c][chan] += DryGain * ListenerGain * | |
323 SpeakerGain[chan]; | |
324 } | |
325 } | |
326 } | |
327 for(i = 0;i < NumSends;i++) | |
328 { | |
329 ALSource->Params.Send[i].Slot = ALSource->Send[i].Slot; | |
330 ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain; | |
331 } | |
332 | |
333 /* Update filter coefficients. Calculations based on the I3DL2 | |
334 * spec. */ | |
335 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency); | |
336 | |
337 /* We use two chained one-pole filters, so we need to take the | |
338 * square root of the squared gain, which is the same as the base | |
339 * gain. */ | |
340 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw); | |
341 for(i = 0;i < NumSends;i++) | |
342 { | |
343 /* We use a one-pole filter, so we need to take the squared gain */ | |
344 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw); | |
345 ALSource->Params.Send[i].iirFilter.coeff = a; | |
346 } | |
347 } | |
348 | |
349 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext) | |
350 { | |
351 const ALCdevice *Device = ALContext->Device; | |
352 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist; | |
353 ALfloat Direction[3],Position[3],SourceToListener[3]; | |
354 ALfloat Velocity[3],ListenerVel[3]; | |
355 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff; | |
356 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain; | |
357 ALfloat DopplerFactor, DopplerVelocity, SpeedOfSound; | |
358 ALfloat AirAbsorptionFactor; | |
359 ALfloat RoomAirAbsorption[MAX_SENDS]; | |
360 ALbufferlistitem *BufferListItem; | |
361 ALfloat Attenuation, EffectiveDist; | |
362 ALfloat RoomAttenuation[MAX_SENDS]; | |
363 ALfloat MetersPerUnit; | |
364 ALfloat RoomRolloffBase; | |
365 ALfloat RoomRolloff[MAX_SENDS]; | |
366 ALfloat DecayDistance[MAX_SENDS]; | |
367 ALfloat DryGain; | |
368 ALfloat DryGainHF; | |
369 ALboolean DryGainHFAuto; | |
370 ALfloat WetGain[MAX_SENDS]; | |
371 ALfloat WetGainHF[MAX_SENDS]; | |
372 ALboolean WetGainAuto; | |
373 ALboolean WetGainHFAuto; | |
374 enum Resampler Resampler; | |
375 ALfloat Pitch; | |
376 ALuint Frequency; | |
377 ALint NumSends; | |
378 ALfloat cw; | |
379 ALint i; | |
380 | |
381 DryGainHF = 1.0f; | |
382 for(i = 0;i < MAX_SENDS;i++) | |
383 WetGainHF[i] = 1.0f; | |
384 | |
385 //Get context properties | |
386 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor; | |
387 DopplerVelocity = ALContext->DopplerVelocity; | |
388 SpeedOfSound = ALContext->flSpeedOfSound; | |
389 NumSends = Device->NumAuxSends; | |
390 Frequency = Device->Frequency; | |
391 | |
392 //Get listener properties | |
393 ListenerGain = ALContext->Listener.Gain; | |
394 MetersPerUnit = ALContext->Listener.MetersPerUnit; | |
395 memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity)); | |
396 | |
397 //Get source properties | |
398 SourceVolume = ALSource->flGain; | |
399 MinVolume = ALSource->flMinGain; | |
400 MaxVolume = ALSource->flMaxGain; | |
401 Pitch = ALSource->flPitch; | |
402 Resampler = ALSource->Resampler; | |
403 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition)); | |
404 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation)); | |
405 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity)); | |
406 MinDist = ALSource->flRefDistance; | |
407 MaxDist = ALSource->flMaxDistance; | |
408 Rolloff = ALSource->flRollOffFactor; | |
409 InnerAngle = ALSource->flInnerAngle * ConeScale; | |
410 OuterAngle = ALSource->flOuterAngle * ConeScale; | |
411 AirAbsorptionFactor = ALSource->AirAbsorptionFactor; | |
412 DryGainHFAuto = ALSource->DryGainHFAuto; | |
413 WetGainAuto = ALSource->WetGainAuto; | |
414 WetGainHFAuto = ALSource->WetGainHFAuto; | |
415 RoomRolloffBase = ALSource->RoomRolloffFactor; | |
416 for(i = 0;i < NumSends;i++) | |
417 { | |
418 ALeffectslot *Slot = ALSource->Send[i].Slot; | |
419 | |
420 if(!Slot || Slot->effect.type == AL_EFFECT_NULL) | |
421 { | |
422 RoomRolloff[i] = 0.0f; | |
423 DecayDistance[i] = 0.0f; | |
424 RoomAirAbsorption[i] = 1.0f; | |
425 } | |
426 else if(Slot->AuxSendAuto) | |
427 { | |
428 RoomRolloff[i] = RoomRolloffBase; | |
429 if(IsReverbEffect(Slot->effect.type)) | |
430 { | |
431 RoomRolloff[i] += Slot->effect.Params.Reverb.RoomRolloffFactor; | |
432 DecayDistance[i] = Slot->effect.Params.Reverb.DecayTime * | |
433 SPEEDOFSOUNDMETRESPERSEC; | |
434 RoomAirAbsorption[i] = Slot->effect.Params.Reverb.AirAbsorptionGainHF; | |
435 } | |
436 else | |
437 { | |
438 DecayDistance[i] = 0.0f; | |
439 RoomAirAbsorption[i] = 1.0f; | |
440 } | |
441 } | |
442 else | |
443 { | |
444 /* If the slot's auxiliary send auto is off, the data sent to the | |
445 * effect slot is the same as the dry path, sans filter effects */ | |
446 RoomRolloff[i] = Rolloff; | |
447 DecayDistance[i] = 0.0f; | |
448 RoomAirAbsorption[i] = AIRABSORBGAINHF; | |
449 } | |
450 | |
451 ALSource->Params.Send[i].Slot = Slot; | |
452 } | |
453 | |
454 //1. Translate Listener to origin (convert to head relative) | |
455 if(ALSource->bHeadRelative == AL_FALSE) | |
456 { | |
457 ALfloat U[3],V[3],N[3]; | |
458 ALfloat Matrix[4][4]; | |
459 | |
460 // Build transform matrix | |
461 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector | |
462 aluNormalize(N); // Normalized At-vector | |
463 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector | |
464 aluNormalize(V); // Normalized Up-vector | |
465 aluCrossproduct(N, V, U); // Right-vector | |
466 aluNormalize(U); // Normalized Right-vector | |
467 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f; | |
468 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f; | |
469 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f; | |
470 Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] = 0.0f; Matrix[3][3] = 1.0f; | |
471 | |
472 // Translate position | |
473 Position[0] -= ALContext->Listener.Position[0]; | |
474 Position[1] -= ALContext->Listener.Position[1]; | |
475 Position[2] -= ALContext->Listener.Position[2]; | |
476 | |
477 // Transform source position and direction into listener space | |
478 aluMatrixVector(Position, 1.0f, Matrix); | |
479 aluMatrixVector(Direction, 0.0f, Matrix); | |
480 // Transform source and listener velocity into listener space | |
481 aluMatrixVector(Velocity, 0.0f, Matrix); | |
482 aluMatrixVector(ListenerVel, 0.0f, Matrix); | |
483 } | |
484 else | |
485 ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f; | |
486 | |
487 SourceToListener[0] = -Position[0]; | |
488 SourceToListener[1] = -Position[1]; | |
489 SourceToListener[2] = -Position[2]; | |
490 aluNormalize(SourceToListener); | |
491 aluNormalize(Direction); | |
492 | |
493 //2. Calculate distance attenuation | |
494 Distance = aluSqrt(aluDotproduct(Position, Position)); | |
495 ClampedDist = Distance; | |
496 | |
497 Attenuation = 1.0f; | |
498 for(i = 0;i < NumSends;i++) | |
499 RoomAttenuation[i] = 1.0f; | |
500 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel : | |
501 ALContext->DistanceModel) | |
502 { | |
503 case InverseDistanceClamped: | |
504 ClampedDist = clampf(ClampedDist, MinDist, MaxDist); | |
505 if(MaxDist < MinDist) | |
506 break; | |
507 //fall-through | |
508 case InverseDistance: | |
509 if(MinDist > 0.0f) | |
510 { | |
511 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f) | |
512 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist))); | |
513 for(i = 0;i < NumSends;i++) | |
514 { | |
515 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f) | |
516 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))); | |
517 } | |
518 } | |
519 break; | |
520 | |
521 case LinearDistanceClamped: | |
522 ClampedDist = clampf(ClampedDist, MinDist, MaxDist); | |
523 if(MaxDist < MinDist) | |
524 break; | |
525 //fall-through | |
526 case LinearDistance: | |
527 if(MaxDist != MinDist) | |
528 { | |
529 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist)); | |
530 Attenuation = maxf(Attenuation, 0.0f); | |
531 for(i = 0;i < NumSends;i++) | |
532 { | |
533 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist)); | |
534 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f); | |
535 } | |
536 } | |
537 break; | |
538 | |
539 case ExponentDistanceClamped: | |
540 ClampedDist = clampf(ClampedDist, MinDist, MaxDist); | |
541 if(MaxDist < MinDist) | |
542 break; | |
543 //fall-through | |
544 case ExponentDistance: | |
545 if(ClampedDist > 0.0f && MinDist > 0.0f) | |
546 { | |
547 Attenuation = aluPow(ClampedDist/MinDist, -Rolloff); | |
548 for(i = 0;i < NumSends;i++) | |
549 RoomAttenuation[i] = aluPow(ClampedDist/MinDist, -RoomRolloff[i]); | |
550 } | |
551 break; | |
552 | |
553 case DisableDistance: | |
554 break; | |
555 } | |
556 | |
557 // Source Gain + Attenuation | |
558 DryGain = SourceVolume * Attenuation; | |
559 for(i = 0;i < NumSends;i++) | |
560 WetGain[i] = SourceVolume * RoomAttenuation[i]; | |
561 | |
562 // Distance-based air absorption | |
563 EffectiveDist = 0.0f; | |
564 if(MinDist > 0.0f && Attenuation < 1.0f) | |
565 EffectiveDist = (MinDist/Attenuation - MinDist)*MetersPerUnit; | |
566 if(AirAbsorptionFactor > 0.0f && EffectiveDist > 0.0f) | |
567 { | |
568 DryGainHF *= aluPow(AIRABSORBGAINHF, AirAbsorptionFactor*EffectiveDist); | |
569 for(i = 0;i < NumSends;i++) | |
570 WetGainHF[i] *= aluPow(RoomAirAbsorption[i], | |
571 AirAbsorptionFactor*EffectiveDist); | |
572 } | |
573 | |
574 //3. Apply directional soundcones | |
575 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * (180.0/M_PI); | |
576 if(Angle >= InnerAngle && Angle <= OuterAngle) | |
577 { | |
578 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle); | |
579 ConeVolume = lerp(1.0, ALSource->flOuterGain, scale); | |
580 ConeHF = lerp(1.0, ALSource->OuterGainHF, scale); | |
581 } | |
582 else if(Angle > OuterAngle) | |
583 { | |
584 ConeVolume = ALSource->flOuterGain; | |
585 ConeHF = ALSource->OuterGainHF; | |
586 } | |
587 else | |
588 { | |
589 ConeVolume = 1.0f; | |
590 ConeHF = 1.0f; | |
591 } | |
592 | |
593 DryGain *= ConeVolume; | |
594 if(WetGainAuto) | |
595 { | |
596 for(i = 0;i < NumSends;i++) | |
597 WetGain[i] *= ConeVolume; | |
598 } | |
599 if(DryGainHFAuto) | |
600 DryGainHF *= ConeHF; | |
601 if(WetGainHFAuto) | |
602 { | |
603 for(i = 0;i < NumSends;i++) | |
604 WetGainHF[i] *= ConeHF; | |
605 } | |
606 | |
607 // Clamp to Min/Max Gain | |
608 DryGain = clampf(DryGain, MinVolume, MaxVolume); | |
609 for(i = 0;i < NumSends;i++) | |
610 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume); | |
611 | |
612 // Apply filter gains and filters | |
613 switch(ALSource->DirectFilter.type) | |
614 { | |
615 case AL_FILTER_LOWPASS: | |
616 DryGain *= ALSource->DirectFilter.Gain; | |
617 DryGainHF *= ALSource->DirectFilter.GainHF; | |
618 break; | |
619 } | |
620 DryGain *= ListenerGain; | |
621 for(i = 0;i < NumSends;i++) | |
622 { | |
623 switch(ALSource->Send[i].WetFilter.type) | |
624 { | |
625 case AL_FILTER_LOWPASS: | |
626 WetGain[i] *= ALSource->Send[i].WetFilter.Gain; | |
627 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF; | |
628 break; | |
629 } | |
630 WetGain[i] *= ListenerGain; | |
631 } | |
632 | |
633 if(WetGainAuto) | |
634 { | |
635 /* Apply a decay-time transformation to the wet path, based on the | |
636 * attenuation of the dry path. | |
637 * | |
638 * Using the approximate (effective) source to listener distance, the | |
639 * initial decay of the reverb effect is calculated and applied to the | |
640 * wet path. | |
641 */ | |
642 for(i = 0;i < NumSends;i++) | |
643 { | |
644 if(DecayDistance[i] > 0.0f) | |
645 WetGain[i] *= aluPow(0.001f /* -60dB */, | |
646 EffectiveDist / DecayDistance[i]); | |
647 } | |
648 } | |
649 | |
650 // Calculate Velocity | |
651 if(DopplerFactor != 0.0f) | |
652 { | |
653 ALfloat VSS, VLS; | |
654 ALfloat MaxVelocity = (SpeedOfSound*DopplerVelocity) / | |
655 DopplerFactor; | |
656 | |
657 VSS = aluDotproduct(Velocity, SourceToListener); | |
658 if(VSS >= MaxVelocity) | |
659 VSS = (MaxVelocity - 1.0f); | |
660 else if(VSS <= -MaxVelocity) | |
661 VSS = -MaxVelocity + 1.0f; | |
662 | |
663 VLS = aluDotproduct(ListenerVel, SourceToListener); | |
664 if(VLS >= MaxVelocity) | |
665 VLS = (MaxVelocity - 1.0f); | |
666 else if(VLS <= -MaxVelocity) | |
667 VLS = -MaxVelocity + 1.0f; | |
668 | |
669 Pitch *= ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VLS)) / | |
670 ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VSS)); | |
671 } | |
672 | |
673 BufferListItem = ALSource->queue; | |
674 while(BufferListItem != NULL) | |
675 { | |
676 ALbuffer *ALBuffer; | |
677 if((ALBuffer=BufferListItem->buffer) != NULL) | |
678 { | |
679 ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels / | |
680 ALSource->SampleSize; | |
681 maxstep -= ResamplerPadding[Resampler] + | |
682 ResamplerPrePadding[Resampler] + 1; | |
683 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS); | |
684 | |
685 Pitch = Pitch * ALBuffer->Frequency / Frequency; | |
686 if(Pitch > (ALfloat)maxstep) | |
687 ALSource->Params.Step = maxstep<<FRACTIONBITS; | |
688 else | |
689 { | |
690 ALSource->Params.Step = Pitch*FRACTIONONE; | |
691 if(ALSource->Params.Step == 0) | |
692 ALSource->Params.Step = 1; | |
693 } | |
694 | |
695 if((Device->Flags&DEVICE_USE_HRTF)) | |
696 ALSource->Params.DoMix = SelectHrtfMixer(ALBuffer, | |
697 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER : | |
698 Resampler); | |
699 else | |
700 ALSource->Params.DoMix = SelectMixer(ALBuffer, | |
701 (ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER : | |
702 Resampler); | |
703 break; | |
704 } | |
705 BufferListItem = BufferListItem->next; | |
706 } | |
707 | |
708 if((Device->Flags&DEVICE_USE_HRTF)) | |
709 { | |
710 // Use a binaural HRTF algorithm for stereo headphone playback | |
711 ALfloat delta, ev = 0.0f, az = 0.0f; | |
712 | |
713 if(Distance > 0.0f) | |
714 { | |
715 ALfloat invlen = 1.0f/Distance; | |
716 Position[0] *= invlen; | |
717 Position[1] *= invlen; | |
718 Position[2] *= invlen; | |
719 | |
720 // Calculate elevation and azimuth only when the source is not at | |
721 // the listener. This prevents +0 and -0 Z from producing | |
722 // inconsistent panning. | |
723 ev = asin(Position[1]); | |
724 az = atan2(Position[0], -Position[2]*ZScale); | |
725 } | |
726 | |
727 // Check to see if the HRIR is already moving. | |
728 if(ALSource->HrtfMoving) | |
729 { | |
730 // Calculate the normalized HRTF transition factor (delta). | |
731 delta = CalcHrtfDelta(ALSource->Params.HrtfGain, DryGain, | |
732 ALSource->Params.HrtfDir, Position); | |
733 // If the delta is large enough, get the moving HRIR target | |
734 // coefficients, target delays, steppping values, and counter. | |
735 if(delta > 0.001f) | |
736 { | |
737 ALSource->HrtfCounter = GetMovingHrtfCoeffs(ev, az, DryGain, | |
738 delta, ALSource->HrtfCounter, | |
739 ALSource->Params.HrtfCoeffs[0], | |
740 ALSource->Params.HrtfDelay[0], | |
741 ALSource->Params.HrtfCoeffStep, | |
742 ALSource->Params.HrtfDelayStep); | |
743 ALSource->Params.HrtfGain = DryGain; | |
744 ALSource->Params.HrtfDir[0] = Position[0]; | |
745 ALSource->Params.HrtfDir[1] = Position[1]; | |
746 ALSource->Params.HrtfDir[2] = Position[2]; | |
747 } | |
748 } | |
749 else | |
750 { | |
751 // Get the initial (static) HRIR coefficients and delays. | |
752 GetLerpedHrtfCoeffs(ev, az, DryGain, | |
753 ALSource->Params.HrtfCoeffs[0], | |
754 ALSource->Params.HrtfDelay[0]); | |
755 ALSource->HrtfCounter = 0; | |
756 ALSource->Params.HrtfGain = DryGain; | |
757 ALSource->Params.HrtfDir[0] = Position[0]; | |
758 ALSource->Params.HrtfDir[1] = Position[1]; | |
759 ALSource->Params.HrtfDir[2] = Position[2]; | |
760 } | |
761 } | |
762 else | |
763 { | |
764 // Use energy-preserving panning algorithm for multi-speaker playback | |
765 ALfloat DirGain, AmbientGain; | |
766 const ALfloat *SpeakerGain; | |
767 ALfloat length; | |
768 ALint pos; | |
769 | |
770 length = maxf(Distance, MinDist); | |
771 if(length > 0.0f) | |
772 { | |
773 ALfloat invlen = 1.0f/length; | |
774 Position[0] *= invlen; | |
775 Position[1] *= invlen; | |
776 Position[2] *= invlen; | |
777 } | |
778 | |
779 pos = aluCart2LUTpos(-Position[2]*ZScale, Position[0]); | |
780 SpeakerGain = Device->PanningLUT[pos]; | |
781 | |
782 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]); | |
783 // elevation adjustment for directional gain. this sucks, but | |
784 // has low complexity | |
785 AmbientGain = aluSqrt(1.0/Device->NumChan); | |
786 for(i = 0;i < MAXCHANNELS;i++) | |
787 { | |
788 ALuint i2; | |
789 for(i2 = 0;i2 < MAXCHANNELS;i2++) | |
790 ALSource->Params.DryGains[i][i2] = 0.0f; | |
791 } | |
792 for(i = 0;i < (ALint)Device->NumChan;i++) | |
793 { | |
794 enum Channel chan = Device->Speaker2Chan[i]; | |
795 ALfloat gain = lerp(AmbientGain, SpeakerGain[chan], DirGain); | |
796 ALSource->Params.DryGains[0][chan] = DryGain * gain; | |
797 } | |
798 } | |
799 for(i = 0;i < NumSends;i++) | |
800 ALSource->Params.Send[i].WetGain = WetGain[i]; | |
801 | |
802 /* Update filter coefficients. */ | |
803 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency); | |
804 | |
805 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw); | |
806 for(i = 0;i < NumSends;i++) | |
807 { | |
808 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw); | |
809 ALSource->Params.Send[i].iirFilter.coeff = a; | |
810 } | |
811 } | |
812 | |
813 | |
814 static __inline ALfloat aluF2F(ALfloat val) | |
815 { return val; } | |
816 static __inline ALshort aluF2S(ALfloat val) | |
817 { | |
818 if(val > 1.0f) return 32767; | |
819 if(val < -1.0f) return -32768; | |
820 return (ALint)(val*32767.0f); | |
821 } | |
822 static __inline ALushort aluF2US(ALfloat val) | |
823 { return aluF2S(val)+32768; } | |
824 static __inline ALbyte aluF2B(ALfloat val) | |
825 { return aluF2S(val)>>8; } | |
826 static __inline ALubyte aluF2UB(ALfloat val) | |
827 { return aluF2US(val)>>8; } | |
828 | |
829 #define DECL_TEMPLATE(T, N, func) \ | |
830 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \ | |
831 ALuint SamplesToDo) \ | |
832 { \ | |
833 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \ | |
834 const enum Channel *ChanMap = device->DevChannels; \ | |
835 ALuint i, j; \ | |
836 \ | |
837 for(i = 0;i < SamplesToDo;i++) \ | |
838 { \ | |
839 for(j = 0;j < N;j++) \ | |
840 *(buffer++) = func(DryBuffer[i][ChanMap[j]]); \ | |
841 } \ | |
842 } | |
843 | |
844 DECL_TEMPLATE(ALfloat, 1, aluF2F) | |
845 DECL_TEMPLATE(ALfloat, 4, aluF2F) | |
846 DECL_TEMPLATE(ALfloat, 6, aluF2F) | |
847 DECL_TEMPLATE(ALfloat, 7, aluF2F) | |
848 DECL_TEMPLATE(ALfloat, 8, aluF2F) | |
849 | |
850 DECL_TEMPLATE(ALushort, 1, aluF2US) | |
851 DECL_TEMPLATE(ALushort, 4, aluF2US) | |
852 DECL_TEMPLATE(ALushort, 6, aluF2US) | |
853 DECL_TEMPLATE(ALushort, 7, aluF2US) | |
854 DECL_TEMPLATE(ALushort, 8, aluF2US) | |
855 | |
856 DECL_TEMPLATE(ALshort, 1, aluF2S) | |
857 DECL_TEMPLATE(ALshort, 4, aluF2S) | |
858 DECL_TEMPLATE(ALshort, 6, aluF2S) | |
859 DECL_TEMPLATE(ALshort, 7, aluF2S) | |
860 DECL_TEMPLATE(ALshort, 8, aluF2S) | |
861 | |
862 DECL_TEMPLATE(ALubyte, 1, aluF2UB) | |
863 DECL_TEMPLATE(ALubyte, 4, aluF2UB) | |
864 DECL_TEMPLATE(ALubyte, 6, aluF2UB) | |
865 DECL_TEMPLATE(ALubyte, 7, aluF2UB) | |
866 DECL_TEMPLATE(ALubyte, 8, aluF2UB) | |
867 | |
868 DECL_TEMPLATE(ALbyte, 1, aluF2B) | |
869 DECL_TEMPLATE(ALbyte, 4, aluF2B) | |
870 DECL_TEMPLATE(ALbyte, 6, aluF2B) | |
871 DECL_TEMPLATE(ALbyte, 7, aluF2B) | |
872 DECL_TEMPLATE(ALbyte, 8, aluF2B) | |
873 | |
874 #undef DECL_TEMPLATE | |
875 | |
876 #define DECL_TEMPLATE(T, N, func) \ | |
877 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \ | |
878 ALuint SamplesToDo) \ | |
879 { \ | |
880 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \ | |
881 const enum Channel *ChanMap = device->DevChannels; \ | |
882 ALuint i, j; \ | |
883 \ | |
884 if(device->Bs2b) \ | |
885 { \ | |
886 for(i = 0;i < SamplesToDo;i++) \ | |
887 { \ | |
888 float samples[2]; \ | |
889 samples[0] = DryBuffer[i][ChanMap[0]]; \ | |
890 samples[1] = DryBuffer[i][ChanMap[1]]; \ | |
891 bs2b_cross_feed(device->Bs2b, samples); \ | |
892 *(buffer++) = func(samples[0]); \ | |
893 *(buffer++) = func(samples[1]); \ | |
894 } \ | |
895 } \ | |
896 else \ | |
897 { \ | |
898 for(i = 0;i < SamplesToDo;i++) \ | |
899 { \ | |
900 for(j = 0;j < N;j++) \ | |
901 *(buffer++) = func(DryBuffer[i][ChanMap[j]]); \ | |
902 } \ | |
903 } \ | |
904 } | |
905 | |
906 DECL_TEMPLATE(ALfloat, 2, aluF2F) | |
907 DECL_TEMPLATE(ALushort, 2, aluF2US) | |
908 DECL_TEMPLATE(ALshort, 2, aluF2S) | |
909 DECL_TEMPLATE(ALubyte, 2, aluF2UB) | |
910 DECL_TEMPLATE(ALbyte, 2, aluF2B) | |
911 | |
912 #undef DECL_TEMPLATE | |
913 | |
914 #define DECL_TEMPLATE(T) \ | |
915 static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \ | |
916 { \ | |
917 switch(device->FmtChans) \ | |
918 { \ | |
919 case DevFmtMono: \ | |
920 Write_##T##_1(device, buffer, SamplesToDo); \ | |
921 break; \ | |
922 case DevFmtStereo: \ | |
923 Write_##T##_2(device, buffer, SamplesToDo); \ | |
924 break; \ | |
925 case DevFmtQuad: \ | |
926 Write_##T##_4(device, buffer, SamplesToDo); \ | |
927 break; \ | |
928 case DevFmtX51: \ | |
929 case DevFmtX51Side: \ | |
930 Write_##T##_6(device, buffer, SamplesToDo); \ | |
931 break; \ | |
932 case DevFmtX61: \ | |
933 Write_##T##_7(device, buffer, SamplesToDo); \ | |
934 break; \ | |
935 case DevFmtX71: \ | |
936 Write_##T##_8(device, buffer, SamplesToDo); \ | |
937 break; \ | |
938 } \ | |
939 } | |
940 | |
941 DECL_TEMPLATE(ALfloat) | |
942 DECL_TEMPLATE(ALushort) | |
943 DECL_TEMPLATE(ALshort) | |
944 DECL_TEMPLATE(ALubyte) | |
945 DECL_TEMPLATE(ALbyte) | |
946 | |
947 #undef DECL_TEMPLATE | |
948 | |
949 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size) | |
950 { | |
951 ALuint SamplesToDo; | |
952 ALeffectslot *ALEffectSlot; | |
953 ALCcontext **ctx, **ctx_end; | |
954 ALsource **src, **src_end; | |
955 int fpuState; | |
956 ALuint i, c; | |
957 ALsizei e; | |
958 | |
959 #if defined(HAVE_FESETROUND) | |
960 fpuState = fegetround(); | |
961 fesetround(FE_TOWARDZERO); | |
962 #elif defined(HAVE__CONTROLFP) | |
963 fpuState = _controlfp(0, 0); | |
964 (void)_controlfp(_RC_CHOP, _MCW_RC); | |
965 #else | |
966 (void)fpuState; | |
967 #endif | |
968 | |
969 while(size > 0) | |
970 { | |
971 /* Setup variables */ | |
972 SamplesToDo = minu(size, BUFFERSIZE); | |
973 | |
974 /* Clear mixing buffer */ | |
975 memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat)); | |
976 | |
977 LockDevice(device); | |
978 ctx = device->Contexts; | |
979 ctx_end = ctx + device->NumContexts; | |
980 //printf("Contexts: %d\n", device->NumContexts); | |
981 int context_number = 0; | |
982 while(ctx != ctx_end) | |
983 { | |
984 //printf("Context %d:\n", context_number++); | |
985 ALboolean DeferUpdates = (*ctx)->DeferUpdates; | |
986 ALboolean UpdateSources = AL_FALSE; | |
987 | |
988 if(!DeferUpdates) | |
989 { | |
990 //printf("NOT deferring updates, whatever that means\n"); | |
991 UpdateSources = (*ctx)->UpdateSources; | |
992 //printf("update sources is set to %d\n", UpdateSources); | |
993 (*ctx)->UpdateSources = AL_FALSE; | |
994 } | |
995 | |
996 src = (*ctx)->ActiveSources; | |
997 src_end = src + (*ctx)->ActiveSourceCount; | |
998 //printf("number of active sources are %d\n", (*ctx)->ActiveSourceCount); | |
999 while(src != src_end) | |
1000 { | |
1001 | |
1002 if((*src)->state != AL_PLAYING) | |
1003 { | |
1004 --((*ctx)->ActiveSourceCount); | |
1005 *src = *(--src_end); | |
1006 continue; | |
1007 } | |
1008 | |
1009 if(!DeferUpdates && ((*src)->NeedsUpdate || UpdateSources)) | |
1010 { | |
1011 (*src)->NeedsUpdate = AL_FALSE; | |
1012 ALsource_Update(*src, *ctx); | |
1013 } | |
1014 //printf("calling MixSource!\n"); | |
1015 MixSource(*src, device, SamplesToDo); | |
1016 src++; | |
1017 } | |
1018 | |
1019 /* effect slot processing */ | |
1020 for(e = 0;e < (*ctx)->EffectSlotMap.size;e++) | |
1021 { | |
1022 ALEffectSlot = (*ctx)->EffectSlotMap.array[e].value; | |
1023 | |
1024 for(i = 0;i < SamplesToDo;i++) | |
1025 { | |
1026 // RLM: remove click-removal | |
1027 ALEffectSlot->WetBuffer[i] += ALEffectSlot->ClickRemoval[0]; | |
1028 ALEffectSlot->ClickRemoval[0] -= ALEffectSlot->ClickRemoval[0] / 256.0f; | |
1029 } | |
1030 for(i = 0;i < 1;i++) | |
1031 { | |
1032 // RLM: remove click-removal | |
1033 ALEffectSlot->ClickRemoval[i] += ALEffectSlot->PendingClicks[i]; | |
1034 ALEffectSlot->PendingClicks[i] = 0.0f; | |
1035 } | |
1036 | |
1037 if(!DeferUpdates && ALEffectSlot->NeedsUpdate) | |
1038 { | |
1039 ALEffectSlot->NeedsUpdate = AL_FALSE; | |
1040 ALEffect_Update(ALEffectSlot->EffectState, *ctx, ALEffectSlot); | |
1041 } | |
1042 | |
1043 ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot, | |
1044 SamplesToDo, ALEffectSlot->WetBuffer, | |
1045 device->DryBuffer); | |
1046 | |
1047 for(i = 0;i < SamplesToDo;i++) | |
1048 ALEffectSlot->WetBuffer[i] = 0.0f; | |
1049 } | |
1050 | |
1051 ctx++; | |
1052 } | |
1053 UnlockDevice(device); | |
1054 | |
1055 //Post processing loop | |
1056 if(device->FmtChans == DevFmtMono) | |
1057 { | |
1058 for(i = 0;i < SamplesToDo;i++) | |
1059 { | |
1060 // RLM: remove click-removal | |
1061 device->DryBuffer[i][FRONT_CENTER] += device->ClickRemoval[FRONT_CENTER]; | |
1062 device->ClickRemoval[FRONT_CENTER] -= device->ClickRemoval[FRONT_CENTER] / 256.0f; | |
1063 } | |
1064 // RLM: remove click-removal | |
1065 device->ClickRemoval[FRONT_CENTER] += device->PendingClicks[FRONT_CENTER]; | |
1066 device->PendingClicks[FRONT_CENTER] = 0.0f; | |
1067 } | |
1068 else if(device->FmtChans == DevFmtStereo) | |
1069 { | |
1070 /* Assumes the first two channels are FRONT_LEFT and FRONT_RIGHT */ | |
1071 for(i = 0;i < SamplesToDo;i++) | |
1072 { | |
1073 for(c = 0;c < 2;c++) | |
1074 { | |
1075 // RLM: remove click-removal | |
1076 device->DryBuffer[i][c] += device->ClickRemoval[c]; | |
1077 device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f; | |
1078 } | |
1079 } | |
1080 for(c = 0;c < 2;c++) | |
1081 { | |
1082 // RLM: remove click-removal | |
1083 device->ClickRemoval[c] += device->PendingClicks[c]; | |
1084 device->PendingClicks[c] = 0.0f; | |
1085 } | |
1086 } | |
1087 else | |
1088 { | |
1089 for(i = 0;i < SamplesToDo;i++) | |
1090 { | |
1091 for(c = 0;c < MAXCHANNELS;c++) | |
1092 { | |
1093 // RLM: remove click-removal | |
1094 device->DryBuffer[i][c] += device->ClickRemoval[c]; | |
1095 device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f; | |
1096 } | |
1097 } | |
1098 for(c = 0;c < MAXCHANNELS;c++) | |
1099 { | |
1100 // RLM: remove click-removal | |
1101 device->ClickRemoval[c] += device->PendingClicks[c]; | |
1102 device->PendingClicks[c] = 0.0f; | |
1103 } | |
1104 } | |
1105 | |
1106 if(buffer) | |
1107 { | |
1108 switch(device->FmtType) | |
1109 { | |
1110 case DevFmtByte: | |
1111 Write_ALbyte(device, buffer, SamplesToDo); | |
1112 break; | |
1113 case DevFmtUByte: | |
1114 Write_ALubyte(device, buffer, SamplesToDo); | |
1115 break; | |
1116 case DevFmtShort: | |
1117 Write_ALshort(device, buffer, SamplesToDo); | |
1118 break; | |
1119 case DevFmtUShort: | |
1120 Write_ALushort(device, buffer, SamplesToDo); | |
1121 break; | |
1122 case DevFmtFloat: | |
1123 Write_ALfloat(device, buffer, SamplesToDo); | |
1124 break; | |
1125 } | |
1126 } | |
1127 | |
1128 size -= SamplesToDo; | |
1129 } | |
1130 | |
1131 #if defined(HAVE_FESETROUND) | |
1132 fesetround(fpuState); | |
1133 #elif defined(HAVE__CONTROLFP) | |
1134 _controlfp(fpuState, _MCW_RC); | |
1135 #endif | |
1136 } | |
1137 | |
1138 | |
1139 | |
1140 | |
1141 | |
1142 ALvoid aluHandleDisconnect(ALCdevice *device) | |
1143 { | |
1144 ALuint i; | |
1145 | |
1146 LockDevice(device); | |
1147 for(i = 0;i < device->NumContexts;i++) | |
1148 { | |
1149 ALCcontext *Context = device->Contexts[i]; | |
1150 ALsource *source; | |
1151 ALsizei pos; | |
1152 | |
1153 for(pos = 0;pos < Context->SourceMap.size;pos++) | |
1154 { | |
1155 source = Context->SourceMap.array[pos].value; | |
1156 if(source->state == AL_PLAYING) | |
1157 { | |
1158 source->state = AL_STOPPED; | |
1159 source->BuffersPlayed = source->BuffersInQueue; | |
1160 source->position = 0; | |
1161 source->position_fraction = 0; | |
1162 } | |
1163 } | |
1164 } | |
1165 | |
1166 device->Connected = ALC_FALSE; | |
1167 UnlockDevice(device); | |
1168 } |