rlm@1: /* LzmaDec.c -- LZMA Decoder rlm@1: 2008-11-06 : Igor Pavlov : Public domain */ rlm@1: rlm@1: #include "LzmaDec.h" rlm@1: rlm@1: #include rlm@1: rlm@1: #define kNumTopBits 24 rlm@1: #define kTopValue ((UInt32)1 << kNumTopBits) rlm@1: rlm@1: #define kNumBitModelTotalBits 11 rlm@1: #define kBitModelTotal (1 << kNumBitModelTotalBits) rlm@1: #define kNumMoveBits 5 rlm@1: rlm@1: #define RC_INIT_SIZE 5 rlm@1: rlm@1: #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); } rlm@1: rlm@1: #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound) rlm@1: #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); rlm@1: #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); rlm@1: #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \ rlm@1: { UPDATE_0(p); i = (i + i); A0; } else \ rlm@1: { UPDATE_1(p); i = (i + i) + 1; A1; } rlm@1: #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;) rlm@1: rlm@1: #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); } rlm@1: #define TREE_DECODE(probs, limit, i) \ rlm@1: { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; } rlm@1: rlm@1: /* #define _LZMA_SIZE_OPT */ rlm@1: rlm@1: #ifdef _LZMA_SIZE_OPT rlm@1: #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i) rlm@1: #else rlm@1: #define TREE_6_DECODE(probs, i) \ rlm@1: { i = 1; \ rlm@1: TREE_GET_BIT(probs, i); \ rlm@1: TREE_GET_BIT(probs, i); \ rlm@1: TREE_GET_BIT(probs, i); \ rlm@1: TREE_GET_BIT(probs, i); \ rlm@1: TREE_GET_BIT(probs, i); \ rlm@1: TREE_GET_BIT(probs, i); \ rlm@1: i -= 0x40; } rlm@1: #endif rlm@1: rlm@1: #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); } rlm@1: rlm@1: #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound) rlm@1: #define UPDATE_0_CHECK range = bound; rlm@1: #define UPDATE_1_CHECK range -= bound; code -= bound; rlm@1: #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \ rlm@1: { UPDATE_0_CHECK; i = (i + i); A0; } else \ rlm@1: { UPDATE_1_CHECK; i = (i + i) + 1; A1; } rlm@1: #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;) rlm@1: #define TREE_DECODE_CHECK(probs, limit, i) \ rlm@1: { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; } rlm@1: rlm@1: rlm@1: #define kNumPosBitsMax 4 rlm@1: #define kNumPosStatesMax (1 << kNumPosBitsMax) rlm@1: rlm@1: #define kLenNumLowBits 3 rlm@1: #define kLenNumLowSymbols (1 << kLenNumLowBits) rlm@1: #define kLenNumMidBits 3 rlm@1: #define kLenNumMidSymbols (1 << kLenNumMidBits) rlm@1: #define kLenNumHighBits 8 rlm@1: #define kLenNumHighSymbols (1 << kLenNumHighBits) rlm@1: rlm@1: #define LenChoice 0 rlm@1: #define LenChoice2 (LenChoice + 1) rlm@1: #define LenLow (LenChoice2 + 1) rlm@1: #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) rlm@1: #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) rlm@1: #define kNumLenProbs (LenHigh + kLenNumHighSymbols) rlm@1: rlm@1: rlm@1: #define kNumStates 12 rlm@1: #define kNumLitStates 7 rlm@1: rlm@1: #define kStartPosModelIndex 4 rlm@1: #define kEndPosModelIndex 14 rlm@1: #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) rlm@1: rlm@1: #define kNumPosSlotBits 6 rlm@1: #define kNumLenToPosStates 4 rlm@1: rlm@1: #define kNumAlignBits 4 rlm@1: #define kAlignTableSize (1 << kNumAlignBits) rlm@1: rlm@1: #define kMatchMinLen 2 rlm@1: #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) rlm@1: rlm@1: #define IsMatch 0 rlm@1: #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) rlm@1: #define IsRepG0 (IsRep + kNumStates) rlm@1: #define IsRepG1 (IsRepG0 + kNumStates) rlm@1: #define IsRepG2 (IsRepG1 + kNumStates) rlm@1: #define IsRep0Long (IsRepG2 + kNumStates) rlm@1: #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) rlm@1: #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) rlm@1: #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) rlm@1: #define LenCoder (Align + kAlignTableSize) rlm@1: #define RepLenCoder (LenCoder + kNumLenProbs) rlm@1: #define Literal (RepLenCoder + kNumLenProbs) rlm@1: rlm@1: #define LZMA_BASE_SIZE 1846 rlm@1: #define LZMA_LIT_SIZE 768 rlm@1: rlm@1: #define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp))) rlm@1: rlm@1: #if Literal != LZMA_BASE_SIZE rlm@1: StopCompilingDueBUG rlm@1: #endif rlm@1: rlm@1: static const Byte kLiteralNextStates[kNumStates * 2] = rlm@1: { rlm@1: 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5, rlm@1: 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10 rlm@1: }; rlm@1: rlm@1: #define LZMA_DIC_MIN (1 << 12) rlm@1: rlm@1: /* First LZMA-symbol is always decoded. rlm@1: And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization rlm@1: Out: rlm@1: Result: rlm@1: SZ_OK - OK rlm@1: SZ_ERROR_DATA - Error rlm@1: p->remainLen: rlm@1: < kMatchSpecLenStart : normal remain rlm@1: = kMatchSpecLenStart : finished rlm@1: = kMatchSpecLenStart + 1 : Flush marker rlm@1: = kMatchSpecLenStart + 2 : State Init Marker rlm@1: */ rlm@1: rlm@1: static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit) rlm@1: { rlm@1: CLzmaProb *probs = p->probs; rlm@1: rlm@1: unsigned state = p->state; rlm@1: UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3]; rlm@1: unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1; rlm@1: unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1; rlm@1: unsigned lc = p->prop.lc; rlm@1: rlm@1: Byte *dic = p->dic; rlm@1: SizeT dicBufSize = p->dicBufSize; rlm@1: SizeT dicPos = p->dicPos; rlm@1: rlm@1: UInt32 processedPos = p->processedPos; rlm@1: UInt32 checkDicSize = p->checkDicSize; rlm@1: unsigned len = 0; rlm@1: rlm@1: const Byte *buf = p->buf; rlm@1: UInt32 range = p->range; rlm@1: UInt32 code = p->code; rlm@1: rlm@1: do rlm@1: { rlm@1: CLzmaProb *prob; rlm@1: UInt32 bound; rlm@1: unsigned ttt; rlm@1: unsigned posState = processedPos & pbMask; rlm@1: rlm@1: prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; rlm@1: IF_BIT_0(prob) rlm@1: { rlm@1: unsigned symbol; rlm@1: UPDATE_0(prob); rlm@1: prob = probs + Literal; rlm@1: if (checkDicSize != 0 || processedPos != 0) rlm@1: prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) + rlm@1: (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc)))); rlm@1: rlm@1: if (state < kNumLitStates) rlm@1: { rlm@1: symbol = 1; rlm@1: do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100); rlm@1: } rlm@1: else rlm@1: { rlm@1: unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; rlm@1: unsigned offs = 0x100; rlm@1: symbol = 1; rlm@1: do rlm@1: { rlm@1: unsigned bit; rlm@1: CLzmaProb *probLit; rlm@1: matchByte <<= 1; rlm@1: bit = (matchByte & offs); rlm@1: probLit = prob + offs + bit + symbol; rlm@1: GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit) rlm@1: } rlm@1: while (symbol < 0x100); rlm@1: } rlm@1: dic[dicPos++] = (Byte)(symbol & 0xFF); rlm@1: processedPos++; rlm@1: rlm@1: state = kLiteralNextStates[state]; rlm@1: /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */ rlm@1: continue; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1(prob); rlm@1: prob = probs + IsRep + state; rlm@1: IF_BIT_0(prob) rlm@1: { rlm@1: UPDATE_0(prob); rlm@1: state += kNumStates; rlm@1: prob = probs + LenCoder; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1(prob); rlm@1: if (checkDicSize == 0 && processedPos == 0) rlm@1: return SZ_ERROR_DATA; rlm@1: prob = probs + IsRepG0 + state; rlm@1: IF_BIT_0(prob) rlm@1: { rlm@1: UPDATE_0(prob); rlm@1: prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; rlm@1: IF_BIT_0(prob) rlm@1: { rlm@1: UPDATE_0(prob); rlm@1: dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; rlm@1: dicPos++; rlm@1: processedPos++; rlm@1: state = state < kNumLitStates ? 9 : 11; rlm@1: continue; rlm@1: } rlm@1: UPDATE_1(prob); rlm@1: } rlm@1: else rlm@1: { rlm@1: UInt32 distance; rlm@1: UPDATE_1(prob); rlm@1: prob = probs + IsRepG1 + state; rlm@1: IF_BIT_0(prob) rlm@1: { rlm@1: UPDATE_0(prob); rlm@1: distance = rep1; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1(prob); rlm@1: prob = probs + IsRepG2 + state; rlm@1: IF_BIT_0(prob) rlm@1: { rlm@1: UPDATE_0(prob); rlm@1: distance = rep2; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1(prob); rlm@1: distance = rep3; rlm@1: rep3 = rep2; rlm@1: } rlm@1: rep2 = rep1; rlm@1: } rlm@1: rep1 = rep0; rlm@1: rep0 = distance; rlm@1: } rlm@1: state = state < kNumLitStates ? 8 : 11; rlm@1: prob = probs + RepLenCoder; rlm@1: } rlm@1: { rlm@1: unsigned limit, offset; rlm@1: CLzmaProb *probLen = prob + LenChoice; rlm@1: IF_BIT_0(probLen) rlm@1: { rlm@1: UPDATE_0(probLen); rlm@1: probLen = prob + LenLow + (posState << kLenNumLowBits); rlm@1: offset = 0; rlm@1: limit = (1 << kLenNumLowBits); rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1(probLen); rlm@1: probLen = prob + LenChoice2; rlm@1: IF_BIT_0(probLen) rlm@1: { rlm@1: UPDATE_0(probLen); rlm@1: probLen = prob + LenMid + (posState << kLenNumMidBits); rlm@1: offset = kLenNumLowSymbols; rlm@1: limit = (1 << kLenNumMidBits); rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1(probLen); rlm@1: probLen = prob + LenHigh; rlm@1: offset = kLenNumLowSymbols + kLenNumMidSymbols; rlm@1: limit = (1 << kLenNumHighBits); rlm@1: } rlm@1: } rlm@1: TREE_DECODE(probLen, limit, len); rlm@1: len += offset; rlm@1: } rlm@1: rlm@1: if (state >= kNumStates) rlm@1: { rlm@1: UInt32 distance; rlm@1: prob = probs + PosSlot + rlm@1: ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits); rlm@1: TREE_6_DECODE(prob, distance); rlm@1: if (distance >= kStartPosModelIndex) rlm@1: { rlm@1: unsigned posSlot = (unsigned)distance; rlm@1: int numDirectBits = (int)(((distance >> 1) - 1)); rlm@1: distance = (2 | (distance & 1)); rlm@1: if (posSlot < kEndPosModelIndex) rlm@1: { rlm@1: distance <<= numDirectBits; rlm@1: prob = probs + SpecPos + distance - posSlot - 1; rlm@1: { rlm@1: UInt32 mask = 1; rlm@1: unsigned i = 1; rlm@1: do rlm@1: { rlm@1: GET_BIT2(prob + i, i, ; , distance |= mask); rlm@1: mask <<= 1; rlm@1: } rlm@1: while (--numDirectBits != 0); rlm@1: } rlm@1: } rlm@1: else rlm@1: { rlm@1: numDirectBits -= kNumAlignBits; rlm@1: do rlm@1: { rlm@1: NORMALIZE rlm@1: range >>= 1; rlm@1: rlm@1: { rlm@1: UInt32 t; rlm@1: code -= range; rlm@1: t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */ rlm@1: distance = (distance << 1) + (t + 1); rlm@1: code += range & t; rlm@1: } rlm@1: /* rlm@1: distance <<= 1; rlm@1: if (code >= range) rlm@1: { rlm@1: code -= range; rlm@1: distance |= 1; rlm@1: } rlm@1: */ rlm@1: } rlm@1: while (--numDirectBits != 0); rlm@1: prob = probs + Align; rlm@1: distance <<= kNumAlignBits; rlm@1: { rlm@1: unsigned i = 1; rlm@1: GET_BIT2(prob + i, i, ; , distance |= 1); rlm@1: GET_BIT2(prob + i, i, ; , distance |= 2); rlm@1: GET_BIT2(prob + i, i, ; , distance |= 4); rlm@1: GET_BIT2(prob + i, i, ; , distance |= 8); rlm@1: } rlm@1: if (distance == (UInt32)0xFFFFFFFF) rlm@1: { rlm@1: len += kMatchSpecLenStart; rlm@1: state -= kNumStates; rlm@1: break; rlm@1: } rlm@1: } rlm@1: } rlm@1: rep3 = rep2; rlm@1: rep2 = rep1; rlm@1: rep1 = rep0; rlm@1: rep0 = distance + 1; rlm@1: if (checkDicSize == 0) rlm@1: { rlm@1: if (distance >= processedPos) rlm@1: return SZ_ERROR_DATA; rlm@1: } rlm@1: else if (distance >= checkDicSize) rlm@1: return SZ_ERROR_DATA; rlm@1: state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3; rlm@1: /* state = kLiteralNextStates[state]; */ rlm@1: } rlm@1: rlm@1: len += kMatchMinLen; rlm@1: rlm@1: if (limit == dicPos) rlm@1: return SZ_ERROR_DATA; rlm@1: { rlm@1: SizeT rem = limit - dicPos; rlm@1: unsigned curLen = ((rem < len) ? (unsigned)rem : len); rlm@1: SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0); rlm@1: rlm@1: processedPos += curLen; rlm@1: rlm@1: len -= curLen; rlm@1: if (pos + curLen <= dicBufSize) rlm@1: { rlm@1: Byte *dest = dic + dicPos; rlm@1: ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos; rlm@1: const Byte *lim = dest + curLen; rlm@1: dicPos += curLen; rlm@1: do rlm@1: *(dest) = (Byte)*(dest + src); rlm@1: while (++dest != lim); rlm@1: } rlm@1: else rlm@1: { rlm@1: do rlm@1: { rlm@1: dic[dicPos++] = dic[pos]; rlm@1: if (++pos == dicBufSize) rlm@1: pos = 0; rlm@1: } rlm@1: while (--curLen != 0); rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: while (dicPos < limit && buf < bufLimit); rlm@1: NORMALIZE; rlm@1: p->buf = buf; rlm@1: p->range = range; rlm@1: p->code = code; rlm@1: p->remainLen = len; rlm@1: p->dicPos = dicPos; rlm@1: p->processedPos = processedPos; rlm@1: p->reps[0] = rep0; rlm@1: p->reps[1] = rep1; rlm@1: p->reps[2] = rep2; rlm@1: p->reps[3] = rep3; rlm@1: p->state = state; rlm@1: rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit) rlm@1: { rlm@1: if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart) rlm@1: { rlm@1: Byte *dic = p->dic; rlm@1: SizeT dicPos = p->dicPos; rlm@1: SizeT dicBufSize = p->dicBufSize; rlm@1: unsigned len = p->remainLen; rlm@1: UInt32 rep0 = p->reps[0]; rlm@1: if (limit - dicPos < len) rlm@1: len = (unsigned)(limit - dicPos); rlm@1: rlm@1: if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len) rlm@1: p->checkDicSize = p->prop.dicSize; rlm@1: rlm@1: p->processedPos += len; rlm@1: p->remainLen -= len; rlm@1: while (len-- != 0) rlm@1: { rlm@1: dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; rlm@1: dicPos++; rlm@1: } rlm@1: p->dicPos = dicPos; rlm@1: } rlm@1: } rlm@1: rlm@1: static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit) rlm@1: { rlm@1: do rlm@1: { rlm@1: SizeT limit2 = limit; rlm@1: if (p->checkDicSize == 0) rlm@1: { rlm@1: UInt32 rem = p->prop.dicSize - p->processedPos; rlm@1: if (limit - p->dicPos > rem) rlm@1: limit2 = p->dicPos + rem; rlm@1: } rlm@1: RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit)); rlm@1: if (p->processedPos >= p->prop.dicSize) rlm@1: p->checkDicSize = p->prop.dicSize; rlm@1: LzmaDec_WriteRem(p, limit); rlm@1: } rlm@1: while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart); rlm@1: rlm@1: if (p->remainLen > kMatchSpecLenStart) rlm@1: { rlm@1: p->remainLen = kMatchSpecLenStart; rlm@1: } rlm@1: return 0; rlm@1: } rlm@1: rlm@1: typedef enum rlm@1: { rlm@1: DUMMY_ERROR, /* unexpected end of input stream */ rlm@1: DUMMY_LIT, rlm@1: DUMMY_MATCH, rlm@1: DUMMY_REP rlm@1: } ELzmaDummy; rlm@1: rlm@1: static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize) rlm@1: { rlm@1: UInt32 range = p->range; rlm@1: UInt32 code = p->code; rlm@1: const Byte *bufLimit = buf + inSize; rlm@1: CLzmaProb *probs = p->probs; rlm@1: unsigned state = p->state; rlm@1: ELzmaDummy res; rlm@1: rlm@1: { rlm@1: CLzmaProb *prob; rlm@1: UInt32 bound; rlm@1: unsigned ttt; rlm@1: unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1); rlm@1: rlm@1: prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; rlm@1: IF_BIT_0_CHECK(prob) rlm@1: { rlm@1: UPDATE_0_CHECK rlm@1: rlm@1: /* if (bufLimit - buf >= 7) return DUMMY_LIT; */ rlm@1: rlm@1: prob = probs + Literal; rlm@1: if (p->checkDicSize != 0 || p->processedPos != 0) rlm@1: prob += (LZMA_LIT_SIZE * rlm@1: ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) + rlm@1: (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc)))); rlm@1: rlm@1: if (state < kNumLitStates) rlm@1: { rlm@1: unsigned symbol = 1; rlm@1: do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100); rlm@1: } rlm@1: else rlm@1: { rlm@1: unsigned matchByte = p->dic[p->dicPos - p->reps[0] + rlm@1: ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)]; rlm@1: unsigned offs = 0x100; rlm@1: unsigned symbol = 1; rlm@1: do rlm@1: { rlm@1: unsigned bit; rlm@1: CLzmaProb *probLit; rlm@1: matchByte <<= 1; rlm@1: bit = (matchByte & offs); rlm@1: probLit = prob + offs + bit + symbol; rlm@1: GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit) rlm@1: } rlm@1: while (symbol < 0x100); rlm@1: } rlm@1: res = DUMMY_LIT; rlm@1: } rlm@1: else rlm@1: { rlm@1: unsigned len; rlm@1: UPDATE_1_CHECK; rlm@1: rlm@1: prob = probs + IsRep + state; rlm@1: IF_BIT_0_CHECK(prob) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: state = 0; rlm@1: prob = probs + LenCoder; rlm@1: res = DUMMY_MATCH; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: res = DUMMY_REP; rlm@1: prob = probs + IsRepG0 + state; rlm@1: IF_BIT_0_CHECK(prob) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; rlm@1: IF_BIT_0_CHECK(prob) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: NORMALIZE_CHECK; rlm@1: return DUMMY_REP; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: } rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: prob = probs + IsRepG1 + state; rlm@1: IF_BIT_0_CHECK(prob) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: prob = probs + IsRepG2 + state; rlm@1: IF_BIT_0_CHECK(prob) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: } rlm@1: } rlm@1: } rlm@1: state = kNumStates; rlm@1: prob = probs + RepLenCoder; rlm@1: } rlm@1: { rlm@1: unsigned limit, offset; rlm@1: CLzmaProb *probLen = prob + LenChoice; rlm@1: IF_BIT_0_CHECK(probLen) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: probLen = prob + LenLow + (posState << kLenNumLowBits); rlm@1: offset = 0; rlm@1: limit = 1 << kLenNumLowBits; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: probLen = prob + LenChoice2; rlm@1: IF_BIT_0_CHECK(probLen) rlm@1: { rlm@1: UPDATE_0_CHECK; rlm@1: probLen = prob + LenMid + (posState << kLenNumMidBits); rlm@1: offset = kLenNumLowSymbols; rlm@1: limit = 1 << kLenNumMidBits; rlm@1: } rlm@1: else rlm@1: { rlm@1: UPDATE_1_CHECK; rlm@1: probLen = prob + LenHigh; rlm@1: offset = kLenNumLowSymbols + kLenNumMidSymbols; rlm@1: limit = 1 << kLenNumHighBits; rlm@1: } rlm@1: } rlm@1: TREE_DECODE_CHECK(probLen, limit, len); rlm@1: len += offset; rlm@1: } rlm@1: rlm@1: if (state < 4) rlm@1: { rlm@1: unsigned posSlot; rlm@1: prob = probs + PosSlot + rlm@1: ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << rlm@1: kNumPosSlotBits); rlm@1: TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot); rlm@1: if (posSlot >= kStartPosModelIndex) rlm@1: { rlm@1: int numDirectBits = ((posSlot >> 1) - 1); rlm@1: rlm@1: /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */ rlm@1: rlm@1: if (posSlot < kEndPosModelIndex) rlm@1: { rlm@1: prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1; rlm@1: } rlm@1: else rlm@1: { rlm@1: numDirectBits -= kNumAlignBits; rlm@1: do rlm@1: { rlm@1: NORMALIZE_CHECK rlm@1: range >>= 1; rlm@1: code -= range & (((code - range) >> 31) - 1); rlm@1: /* if (code >= range) code -= range; */ rlm@1: } rlm@1: while (--numDirectBits != 0); rlm@1: prob = probs + Align; rlm@1: numDirectBits = kNumAlignBits; rlm@1: } rlm@1: { rlm@1: unsigned i = 1; rlm@1: do rlm@1: { rlm@1: GET_BIT_CHECK(prob + i, i); rlm@1: } rlm@1: while (--numDirectBits != 0); rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: NORMALIZE_CHECK; rlm@1: return res; rlm@1: } rlm@1: rlm@1: rlm@1: static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data) rlm@1: { rlm@1: p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]); rlm@1: p->range = 0xFFFFFFFF; rlm@1: p->needFlush = 0; rlm@1: } rlm@1: rlm@1: void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState) rlm@1: { rlm@1: p->needFlush = 1; rlm@1: p->remainLen = 0; rlm@1: p->tempBufSize = 0; rlm@1: rlm@1: if (initDic) rlm@1: { rlm@1: p->processedPos = 0; rlm@1: p->checkDicSize = 0; rlm@1: p->needInitState = 1; rlm@1: } rlm@1: if (initState) rlm@1: p->needInitState = 1; rlm@1: } rlm@1: rlm@1: void LzmaDec_Init(CLzmaDec *p) rlm@1: { rlm@1: p->dicPos = 0; rlm@1: LzmaDec_InitDicAndState(p, True, True); rlm@1: } rlm@1: rlm@1: static void LzmaDec_InitStateReal(CLzmaDec *p) rlm@1: { rlm@1: UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp)); rlm@1: UInt32 i; rlm@1: CLzmaProb *probs = p->probs; rlm@1: for (i = 0; i < numProbs; i++) rlm@1: probs[i] = kBitModelTotal >> 1; rlm@1: p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1; rlm@1: p->state = 0; rlm@1: p->needInitState = 0; rlm@1: } rlm@1: rlm@1: SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen, rlm@1: ELzmaFinishMode finishMode, ELzmaStatus *status) rlm@1: { rlm@1: SizeT inSize = *srcLen; rlm@1: (*srcLen) = 0; rlm@1: LzmaDec_WriteRem(p, dicLimit); rlm@1: rlm@1: *status = LZMA_STATUS_NOT_SPECIFIED; rlm@1: rlm@1: while (p->remainLen != kMatchSpecLenStart) rlm@1: { rlm@1: int checkEndMarkNow; rlm@1: rlm@1: if (p->needFlush != 0) rlm@1: { rlm@1: for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--) rlm@1: p->tempBuf[p->tempBufSize++] = *src++; rlm@1: if (p->tempBufSize < RC_INIT_SIZE) rlm@1: { rlm@1: *status = LZMA_STATUS_NEEDS_MORE_INPUT; rlm@1: return SZ_OK; rlm@1: } rlm@1: if (p->tempBuf[0] != 0) rlm@1: return SZ_ERROR_DATA; rlm@1: rlm@1: LzmaDec_InitRc(p, p->tempBuf); rlm@1: p->tempBufSize = 0; rlm@1: } rlm@1: rlm@1: checkEndMarkNow = 0; rlm@1: if (p->dicPos >= dicLimit) rlm@1: { rlm@1: if (p->remainLen == 0 && p->code == 0) rlm@1: { rlm@1: *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK; rlm@1: return SZ_OK; rlm@1: } rlm@1: if (finishMode == LZMA_FINISH_ANY) rlm@1: { rlm@1: *status = LZMA_STATUS_NOT_FINISHED; rlm@1: return SZ_OK; rlm@1: } rlm@1: if (p->remainLen != 0) rlm@1: { rlm@1: *status = LZMA_STATUS_NOT_FINISHED; rlm@1: return SZ_ERROR_DATA; rlm@1: } rlm@1: checkEndMarkNow = 1; rlm@1: } rlm@1: rlm@1: if (p->needInitState) rlm@1: LzmaDec_InitStateReal(p); rlm@1: rlm@1: if (p->tempBufSize == 0) rlm@1: { rlm@1: SizeT processed; rlm@1: const Byte *bufLimit; rlm@1: if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) rlm@1: { rlm@1: int dummyRes = LzmaDec_TryDummy(p, src, inSize); rlm@1: if (dummyRes == DUMMY_ERROR) rlm@1: { rlm@1: memcpy(p->tempBuf, src, inSize); rlm@1: p->tempBufSize = (unsigned)inSize; rlm@1: (*srcLen) += inSize; rlm@1: *status = LZMA_STATUS_NEEDS_MORE_INPUT; rlm@1: return SZ_OK; rlm@1: } rlm@1: if (checkEndMarkNow && dummyRes != DUMMY_MATCH) rlm@1: { rlm@1: *status = LZMA_STATUS_NOT_FINISHED; rlm@1: return SZ_ERROR_DATA; rlm@1: } rlm@1: bufLimit = src; rlm@1: } rlm@1: else rlm@1: bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX; rlm@1: p->buf = src; rlm@1: if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0) rlm@1: return SZ_ERROR_DATA; rlm@1: processed = (SizeT)(p->buf - src); rlm@1: (*srcLen) += processed; rlm@1: src += processed; rlm@1: inSize -= processed; rlm@1: } rlm@1: else rlm@1: { rlm@1: unsigned rem = p->tempBufSize, lookAhead = 0; rlm@1: while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize) rlm@1: p->tempBuf[rem++] = src[lookAhead++]; rlm@1: p->tempBufSize = rem; rlm@1: if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) rlm@1: { rlm@1: int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem); rlm@1: if (dummyRes == DUMMY_ERROR) rlm@1: { rlm@1: (*srcLen) += lookAhead; rlm@1: *status = LZMA_STATUS_NEEDS_MORE_INPUT; rlm@1: return SZ_OK; rlm@1: } rlm@1: if (checkEndMarkNow && dummyRes != DUMMY_MATCH) rlm@1: { rlm@1: *status = LZMA_STATUS_NOT_FINISHED; rlm@1: return SZ_ERROR_DATA; rlm@1: } rlm@1: } rlm@1: p->buf = p->tempBuf; rlm@1: if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0) rlm@1: return SZ_ERROR_DATA; rlm@1: lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf)); rlm@1: (*srcLen) += lookAhead; rlm@1: src += lookAhead; rlm@1: inSize -= lookAhead; rlm@1: p->tempBufSize = 0; rlm@1: } rlm@1: } rlm@1: if (p->code == 0) rlm@1: *status = LZMA_STATUS_FINISHED_WITH_MARK; rlm@1: return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA; rlm@1: } rlm@1: rlm@1: SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status) rlm@1: { rlm@1: SizeT outSize = *destLen; rlm@1: SizeT inSize = *srcLen; rlm@1: *srcLen = *destLen = 0; rlm@1: for (;;) rlm@1: { rlm@1: SizeT inSizeCur = inSize, outSizeCur, dicPos; rlm@1: ELzmaFinishMode curFinishMode; rlm@1: SRes res; rlm@1: if (p->dicPos == p->dicBufSize) rlm@1: p->dicPos = 0; rlm@1: dicPos = p->dicPos; rlm@1: if (outSize > p->dicBufSize - dicPos) rlm@1: { rlm@1: outSizeCur = p->dicBufSize; rlm@1: curFinishMode = LZMA_FINISH_ANY; rlm@1: } rlm@1: else rlm@1: { rlm@1: outSizeCur = dicPos + outSize; rlm@1: curFinishMode = finishMode; rlm@1: } rlm@1: rlm@1: res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status); rlm@1: src += inSizeCur; rlm@1: inSize -= inSizeCur; rlm@1: *srcLen += inSizeCur; rlm@1: outSizeCur = p->dicPos - dicPos; rlm@1: memcpy(dest, p->dic + dicPos, outSizeCur); rlm@1: dest += outSizeCur; rlm@1: outSize -= outSizeCur; rlm@1: *destLen += outSizeCur; rlm@1: if (res != 0) rlm@1: return res; rlm@1: if (outSizeCur == 0 || outSize == 0) rlm@1: return SZ_OK; rlm@1: } rlm@1: } rlm@1: rlm@1: void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc) rlm@1: { rlm@1: alloc->Free(alloc, p->probs); rlm@1: p->probs = 0; rlm@1: } rlm@1: rlm@1: static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc) rlm@1: { rlm@1: alloc->Free(alloc, p->dic); rlm@1: p->dic = 0; rlm@1: } rlm@1: rlm@1: void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc) rlm@1: { rlm@1: LzmaDec_FreeProbs(p, alloc); rlm@1: LzmaDec_FreeDict(p, alloc); rlm@1: } rlm@1: rlm@1: SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size) rlm@1: { rlm@1: UInt32 dicSize; rlm@1: Byte d; rlm@1: rlm@1: if (size < LZMA_PROPS_SIZE) rlm@1: return SZ_ERROR_UNSUPPORTED; rlm@1: else rlm@1: dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24); rlm@1: rlm@1: if (dicSize < LZMA_DIC_MIN) rlm@1: dicSize = LZMA_DIC_MIN; rlm@1: p->dicSize = dicSize; rlm@1: rlm@1: d = data[0]; rlm@1: if (d >= (9 * 5 * 5)) rlm@1: return SZ_ERROR_UNSUPPORTED; rlm@1: rlm@1: p->lc = d % 9; rlm@1: d /= 9; rlm@1: p->pb = d / 5; rlm@1: p->lp = d % 5; rlm@1: rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc) rlm@1: { rlm@1: UInt32 numProbs = LzmaProps_GetNumProbs(propNew); rlm@1: if (p->probs == 0 || numProbs != p->numProbs) rlm@1: { rlm@1: LzmaDec_FreeProbs(p, alloc); rlm@1: p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb)); rlm@1: p->numProbs = numProbs; rlm@1: if (p->probs == 0) rlm@1: return SZ_ERROR_MEM; rlm@1: } rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc) rlm@1: { rlm@1: CLzmaProps propNew; rlm@1: RINOK(LzmaProps_Decode(&propNew, props, propsSize)); rlm@1: RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc)); rlm@1: p->prop = propNew; rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc) rlm@1: { rlm@1: CLzmaProps propNew; rlm@1: SizeT dicBufSize; rlm@1: RINOK(LzmaProps_Decode(&propNew, props, propsSize)); rlm@1: RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc)); rlm@1: dicBufSize = propNew.dicSize; rlm@1: if (p->dic == 0 || dicBufSize != p->dicBufSize) rlm@1: { rlm@1: LzmaDec_FreeDict(p, alloc); rlm@1: p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize); rlm@1: if (p->dic == 0) rlm@1: { rlm@1: LzmaDec_FreeProbs(p, alloc); rlm@1: return SZ_ERROR_MEM; rlm@1: } rlm@1: } rlm@1: p->dicBufSize = dicBufSize; rlm@1: p->prop = propNew; rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, rlm@1: const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode, rlm@1: ELzmaStatus *status, ISzAlloc *alloc) rlm@1: { rlm@1: CLzmaDec p; rlm@1: SRes res; rlm@1: SizeT inSize = *srcLen; rlm@1: SizeT outSize = *destLen; rlm@1: *srcLen = *destLen = 0; rlm@1: if (inSize < RC_INIT_SIZE) rlm@1: return SZ_ERROR_INPUT_EOF; rlm@1: rlm@1: LzmaDec_Construct(&p); rlm@1: res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc); rlm@1: if (res != 0) rlm@1: return res; rlm@1: p.dic = dest; rlm@1: p.dicBufSize = outSize; rlm@1: rlm@1: LzmaDec_Init(&p); rlm@1: rlm@1: *srcLen = inSize; rlm@1: res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status); rlm@1: rlm@1: if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT) rlm@1: res = SZ_ERROR_INPUT_EOF; rlm@1: rlm@1: (*destLen) = p.dicPos; rlm@1: LzmaDec_FreeProbs(&p, alloc); rlm@1: return res; rlm@1: }