Mercurial > vba-linux
comparison src/apu/Blip_Buffer.cpp @ 3:b05d00f19d80
fix some formatting
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Sat, 03 Mar 2012 10:33:11 -0600 |
parents | f9f4f1b99eed |
children |
comparison
equal
deleted
inserted
replaced
2:3549bbe597ed | 3:b05d00f19d80 |
---|---|
7 #include <string.h> | 7 #include <string.h> |
8 #include <stdlib.h> | 8 #include <stdlib.h> |
9 #include <math.h> | 9 #include <math.h> |
10 | 10 |
11 /* Copyright (C) 2003-2007 Shay Green. This module is free software; you | 11 /* Copyright (C) 2003-2007 Shay Green. This module is free software; you |
12 can redistribute it and/or modify it under the terms of the GNU Lesser | 12 can redistribute it and/or modify it under the terms of the GNU Lesser |
13 General Public License as published by the Free Software Foundation; either | 13 General Public License as published by the Free Software Foundation; either |
14 version 2.1 of the License, or (at your option) any later version. This | 14 version 2.1 of the License, or (at your option) any later version. This |
15 module is distributed in the hope that it will be useful, but WITHOUT ANY | 15 module is distributed in the hope that it will be useful, but WITHOUT ANY |
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 16 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more | 17 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more |
18 details. You should have received a copy of the GNU Lesser General Public | 18 details. You should have received a copy of the GNU Lesser General Public |
19 License along with this module; if not, write to the Free Software Foundation, | 19 License along with this module; if not, write to the Free Software Foundation, |
20 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ | 20 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ |
21 | 21 |
22 // TODO: use scoped for variables in treble_eq() | 22 // TODO: use scoped for variables in treble_eq() |
23 | 23 |
24 #ifdef BLARGG_ENABLE_OPTIMIZER | 24 #ifdef BLARGG_ENABLE_OPTIMIZER |
25 #include BLARGG_ENABLE_OPTIMIZER | 25 #include BLARGG_ENABLE_OPTIMIZER |
26 #endif | 26 #endif |
27 | 27 |
28 int const silent_buf_size = 1; // size used for Silent_Blip_Buffer | 28 int const silent_buf_size = 1; // size used for Silent_Blip_Buffer |
29 | 29 |
30 Blip_Buffer::Blip_Buffer() | 30 Blip_Buffer::Blip_Buffer() |
31 { | 31 { |
32 factor_ = LONG_MAX; | 32 factor_ = LONG_MAX; |
33 buffer_ = 0; | 33 buffer_ = 0; |
34 buffer_size_ = 0; | 34 buffer_size_ = 0; |
35 sample_rate_ = 0; | 35 sample_rate_ = 0; |
36 bass_shift_ = 0; | 36 bass_shift_ = 0; |
37 clock_rate_ = 0; | 37 clock_rate_ = 0; |
38 bass_freq_ = 16; | 38 bass_freq_ = 16; |
39 length_ = 0; | 39 length_ = 0; |
40 | 40 |
41 // assumptions code makes about implementation-defined features | 41 // assumptions code makes about implementation-defined features |
42 #ifndef NDEBUG | 42 #ifndef NDEBUG |
43 // right shift of negative value preserves sign | 43 // right shift of negative value preserves sign |
44 buf_t_ i = -0x7FFFFFFE; | 44 buf_t_ i = -0x7FFFFFFE; |
45 assert( (i >> 1) == -0x3FFFFFFF ); | 45 assert( (i >> 1) == -0x3FFFFFFF ); |
46 | 46 |
47 // casting to short truncates to 16 bits and sign-extends | 47 // casting to short truncates to 16 bits and sign-extends |
48 i = 0x18000; | 48 i = 0x18000; |
49 assert( (short) i == -0x8000 ); | 49 assert( (short) i == -0x8000 ); |
50 #endif | 50 #endif |
51 | 51 |
52 clear(); | 52 Clear(); |
53 } | 53 } |
54 | 54 |
55 Blip_Buffer::~Blip_Buffer() | 55 Blip_Buffer::~Blip_Buffer() |
56 { | 56 { |
57 if ( buffer_size_ != silent_buf_size ) | 57 if ( buffer_size_ != silent_buf_size ) |
58 free( buffer_ ); | 58 free( buffer_ ); |
59 } | 59 } |
60 | 60 |
61 Silent_Blip_Buffer::Silent_Blip_Buffer() | 61 Silent_Blip_Buffer::Silent_Blip_Buffer() |
62 { | 62 { |
63 factor_ = 0; | 63 factor_ = 0; |
64 buffer_ = buf; | 64 buffer_ = buf; |
65 buffer_size_ = silent_buf_size; | 65 buffer_size_ = silent_buf_size; |
66 clear(); | 66 clear(); |
67 } | 67 } |
68 | 68 |
69 void Blip_Buffer::clear( int entire_buffer ) | 69 void Blip_Buffer::clear( int entire_buffer ) |
70 { | 70 { |
71 offset_ = 0; | 71 offset_ = 0; |
72 reader_accum_ = 0; | 72 reader_accum_ = 0; |
73 modified_ = 0; | 73 modified_ = 0; |
74 if ( buffer_ ) | 74 if ( buffer_ ) |
75 { | 75 { |
76 long count = (entire_buffer ? buffer_size_ : samples_avail()); | 76 long count = (entire_buffer ? buffer_size_ : samples_avail()); |
77 memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) ); | 77 memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) ); |
78 } | 78 } |
79 } | 79 } |
80 | 80 |
81 Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec ) | 81 Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec ) |
82 { | 82 { |
83 if ( buffer_size_ == silent_buf_size ) | 83 if ( buffer_size_ == silent_buf_size ) |
84 { | 84 { |
85 assert( 0 ); | 85 assert( 0 ); |
86 return "Internal (tried to resize Silent_Blip_Buffer)"; | 86 return "Internal (tried to resize Silent_Blip_Buffer)"; |
87 } | 87 } |
88 | 88 |
89 // start with maximum length that resampled time can represent | 89 // start with maximum length that resampled time can represent |
90 long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64; | 90 long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64; |
91 if ( msec != blip_max_length ) | 91 if ( msec != blip_max_length ) |
92 { | 92 { |
93 long s = (new_rate * (msec + 1) + 999) / 1000; | 93 long s = (new_rate * (msec + 1) + 999) / 1000; |
94 if ( s < new_size ) | 94 if ( s < new_size ) |
95 new_size = s; | 95 new_size = s; |
96 else | 96 else |
97 assert( 0 ); // fails if requested buffer length exceeds limit | 97 assert( 0 ); // fails if requested buffer length exceeds limit |
98 } | 98 } |
99 | 99 |
100 if ( buffer_size_ != new_size ) | 100 if ( buffer_size_ != new_size ) |
101 { | 101 { |
102 void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ ); | 102 void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ ); |
103 if ( !p ) | 103 if ( !p ) |
104 return "Out of memory"; | 104 return "Out of memory"; |
105 buffer_ = (buf_t_*) p; | 105 buffer_ = (buf_t_*) p; |
106 } | 106 } |
107 | 107 |
108 buffer_size_ = new_size; | 108 buffer_size_ = new_size; |
109 assert( buffer_size_ != silent_buf_size ); // size should never happen to match this | 109 assert( buffer_size_ != silent_buf_size ); // size should never happen to match this |
110 | 110 |
111 // update things based on the sample rate | 111 // update things based on the sample rate |
112 sample_rate_ = new_rate; | 112 sample_rate_ = new_rate; |
113 length_ = new_size * 1000 / new_rate - 1; | 113 length_ = new_size * 1000 / new_rate - 1; |
114 if ( msec ) | 114 if ( msec ) |
115 assert( length_ == msec ); // ensure length is same as that passed in | 115 assert( length_ == msec ); // ensure length is same as that passed in |
116 | 116 |
117 // update these since they depend on sample rate | 117 // update these since they depend on sample rate |
118 if ( clock_rate_ ) | 118 if ( clock_rate_ ) |
119 clock_rate( clock_rate_ ); | 119 clock_rate( clock_rate_ ); |
120 bass_freq( bass_freq_ ); | 120 bass_freq( bass_freq_ ); |
121 | 121 |
122 clear(); | 122 clear(); |
123 | 123 |
124 return 0; // success | 124 return 0; // success |
125 } | 125 } |
126 | 126 |
127 blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const | 127 blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const |
128 { | 128 { |
129 double ratio = (double) sample_rate_ / rate; | 129 double ratio = (double) sample_rate_ / rate; |
130 blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 ); | 130 blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 ); |
131 assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large | 131 assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large |
132 return (blip_resampled_time_t) factor; | 132 return (blip_resampled_time_t) factor; |
133 } | 133 } |
134 | 134 |
135 void Blip_Buffer::bass_freq( int freq ) | 135 void Blip_Buffer::bass_freq( int freq ) |
136 { | 136 { |
137 bass_freq_ = freq; | 137 bass_freq_ = freq; |
138 int shift = 31; | 138 int shift = 31; |
139 if ( freq > 0 ) | 139 if ( freq > 0 ) |
140 { | 140 { |
141 shift = 13; | 141 shift = 13; |
142 long f = (freq << 16) / sample_rate_; | 142 long f = (freq << 16) / sample_rate_; |
143 while ( (f >>= 1) && --shift ) { } | 143 while ( (f >>= 1) && --shift ) { } |
144 } | 144 } |
145 bass_shift_ = shift; | 145 bass_shift_ = shift; |
146 } | 146 } |
147 | 147 |
148 void Blip_Buffer::end_frame( blip_time_t t ) | 148 void Blip_Buffer::end_frame( blip_time_t t ) |
149 { | 149 { |
150 offset_ += t * factor_; | 150 offset_ += t * factor_; |
151 assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer | 151 assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer |
152 } | 152 } |
153 | 153 |
154 long Blip_Buffer::count_samples( blip_time_t t ) const | 154 long Blip_Buffer::count_samples( blip_time_t t ) const |
155 { | 155 { |
156 blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY; | 156 blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY; |
157 blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY; | 157 blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY; |
158 return long (last_sample - first_sample); | 158 return long (last_sample - first_sample); |
159 } | 159 } |
160 | 160 |
161 blip_time_t Blip_Buffer::count_clocks( long count ) const | 161 blip_time_t Blip_Buffer::count_clocks( long count ) const |
162 { | 162 { |
163 if ( !factor_ ) | 163 if ( !factor_ ) |
164 { | 164 { |
165 assert( 0 ); // sample rate and clock rates must be set first | 165 assert( 0 ); // sample rate and clock rates must be set first |
166 return 0; | 166 return 0; |
167 } | 167 } |
168 | 168 |
169 if ( count > buffer_size_ ) | 169 if ( count > buffer_size_ ) |
170 count = buffer_size_; | 170 count = buffer_size_; |
171 blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY; | 171 blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY; |
172 return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_); | 172 return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_); |
173 } | 173 } |
174 | 174 |
175 void Blip_Buffer::remove_samples( long count ) | 175 void Blip_Buffer::remove_samples( long count ) |
176 { | 176 { |
177 if ( count ) | 177 if ( count ) |
178 { | 178 { |
179 remove_silence( count ); | 179 remove_silence( count ); |
180 | 180 |
181 // copy remaining samples to beginning and clear old samples | 181 // copy remaining samples to beginning and clear old samples |
182 long remain = samples_avail() + blip_buffer_extra_; | 182 long remain = samples_avail() + blip_buffer_extra_; |
183 memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ ); | 183 memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ ); |
184 memset( buffer_ + remain, 0, count * sizeof *buffer_ ); | 184 memset( buffer_ + remain, 0, count * sizeof *buffer_ ); |
185 } | 185 } |
186 } | 186 } |
187 | 187 |
188 // Blip_Synth_ | 188 // Blip_Synth_ |
189 | 189 |
190 Blip_Synth_Fast_::Blip_Synth_Fast_() | 190 Blip_Synth_Fast_::Blip_Synth_Fast_() |
191 { | 191 { |
192 buf = 0; | 192 buf = 0; |
193 last_amp = 0; | 193 last_amp = 0; |
194 delta_factor = 0; | 194 delta_factor = 0; |
195 } | 195 } |
196 | 196 |
197 void Blip_Synth_Fast_::volume_unit( double new_unit ) | 197 void Blip_Synth_Fast_::volume_unit( double new_unit ) |
198 { | 198 { |
199 delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5); | 199 delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5); |
200 } | 200 } |
201 | 201 |
202 #if !BLIP_BUFFER_FAST | 202 #if !BLIP_BUFFER_FAST |
203 | 203 |
204 Blip_Synth_::Blip_Synth_( short* p, int w ) : | 204 Blip_Synth_::Blip_Synth_( short* p, int w ) : |
205 impulses( p ), | 205 impulses( p ), |
206 width( w ) | 206 width( w ) |
207 { | 207 { |
208 volume_unit_ = 0.0; | 208 volume_unit_ = 0.0; |
209 kernel_unit = 0; | 209 kernel_unit = 0; |
210 buf = 0; | 210 buf = 0; |
211 last_amp = 0; | 211 last_amp = 0; |
212 delta_factor = 0; | 212 delta_factor = 0; |
213 } | 213 } |
214 | 214 |
215 #undef PI | 215 #undef PI |
216 #define PI 3.1415926535897932384626433832795029 | 216 #define PI 3.1415926535897932384626433832795029 |
217 | 217 |
218 static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff ) | 218 static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff ) |
219 { | 219 { |
220 if ( cutoff >= 0.999 ) | 220 if ( cutoff >= 0.999 ) |
221 cutoff = 0.999; | 221 cutoff = 0.999; |
222 | 222 |
223 if ( treble < -300.0 ) | 223 if ( treble < -300.0 ) |
224 treble = -300.0; | 224 treble = -300.0; |
225 if ( treble > 5.0 ) | 225 if ( treble > 5.0 ) |
226 treble = 5.0; | 226 treble = 5.0; |
227 | 227 |
228 double const maxh = 4096.0; | 228 double const maxh = 4096.0; |
229 double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) ); | 229 double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) ); |
230 double const pow_a_n = pow( rolloff, maxh - maxh * cutoff ); | 230 double const pow_a_n = pow( rolloff, maxh - maxh * cutoff ); |
231 double const to_angle = PI / 2 / maxh / oversample; | 231 double const to_angle = PI / 2 / maxh / oversample; |
232 for ( int i = 0; i < count; i++ ) | 232 for ( int i = 0; i < count; i++ ) |
233 { | |
234 double angle = ((i - count) * 2 + 1) * to_angle; | |
235 double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle ); | |
236 double cos_nc_angle = cos( maxh * cutoff * angle ); | |
237 double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle ); | |
238 double cos_angle = cos( angle ); | |
239 | |
240 c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle; | |
241 double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle); | |
242 double b = 2.0 - cos_angle - cos_angle; | |
243 double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle; | |
244 | |
245 out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d | |
246 } | |
247 } | |
248 | |
249 void blip_eq_t::generate( float* out, int count ) const | |
250 { | |
251 // lower cutoff freq for narrow kernels with their wider transition band | |
252 // (8 points->1.49, 16 points->1.15) | |
253 double oversample = blip_res * 2.25 / count + 0.85; | |
254 double half_rate = sample_rate * 0.5; | |
255 if ( cutoff_freq ) | |
256 oversample = half_rate / cutoff_freq; | |
257 double cutoff = rolloff_freq * oversample / half_rate; | |
258 | |
259 gen_sinc( out, count, blip_res * oversample, treble, cutoff ); | |
260 | |
261 // apply (half of) hamming window | |
262 double to_fraction = PI / (count - 1); | |
263 for ( int i = count; i--; ) | |
264 out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction ); | |
265 } | |
266 | |
267 void Blip_Synth_::adjust_impulse() | |
268 { | |
269 // sum pairs for each phase and add error correction to end of first half | |
270 int const size = impulses_size(); | |
271 for ( int p = blip_res; p-- >= blip_res / 2; ) | |
272 { | |
273 int p2 = blip_res - 2 - p; | |
274 long error = kernel_unit; | |
275 for ( int i = 1; i < size; i += blip_res ) | |
233 { | 276 { |
234 double angle = ((i - count) * 2 + 1) * to_angle; | 277 error -= impulses [i + p ]; |
235 double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle ); | 278 error -= impulses [i + p2]; |
236 double cos_nc_angle = cos( maxh * cutoff * angle ); | |
237 double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle ); | |
238 double cos_angle = cos( angle ); | |
239 | |
240 c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle; | |
241 double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle); | |
242 double b = 2.0 - cos_angle - cos_angle; | |
243 double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle; | |
244 | |
245 out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d | |
246 } | 279 } |
247 } | 280 if ( p == p2 ) |
248 | 281 error /= 2; // phase = 0.5 impulse uses same half for both sides |
249 void blip_eq_t::generate( float* out, int count ) const | 282 impulses [size - blip_res + p] += (short) error; |
250 { | 283 //printf( "error: %ld\n", error ); |
251 // lower cutoff freq for narrow kernels with their wider transition band | 284 } |
252 // (8 points->1.49, 16 points->1.15) | 285 |
253 double oversample = blip_res * 2.25 / count + 0.85; | 286 //for ( int i = blip_res; i--; printf( "\n" ) ) |
254 double half_rate = sample_rate * 0.5; | 287 // for ( int j = 0; j < width / 2; j++ ) |
255 if ( cutoff_freq ) | 288 // printf( "%5ld,", impulses [j * blip_res + i + 1] ); |
256 oversample = half_rate / cutoff_freq; | 289 } |
257 double cutoff = rolloff_freq * oversample / half_rate; | 290 |
258 | 291 void Blip_Synth_::treble_eq( blip_eq_t const& eq ) |
259 gen_sinc( out, count, blip_res * oversample, treble, cutoff ); | 292 { |
260 | 293 float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2]; |
261 // apply (half of) hamming window | 294 |
262 double to_fraction = PI / (count - 1); | 295 int const half_size = blip_res / 2 * (width - 1); |
263 for ( int i = count; i--; ) | 296 eq.generate( &fimpulse [blip_res], half_size ); |
264 out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction ); | 297 |
265 } | 298 int i; |
266 | 299 |
267 void Blip_Synth_::adjust_impulse() | 300 // need mirror slightly past center for calculation |
268 { | 301 for ( i = blip_res; i--; ) |
269 // sum pairs for each phase and add error correction to end of first half | 302 fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i]; |
270 int const size = impulses_size(); | 303 |
271 for ( int p = blip_res; p-- >= blip_res / 2; ) | 304 // starts at 0 |
305 for ( i = 0; i < blip_res; i++ ) | |
306 fimpulse [i] = 0.0f; | |
307 | |
308 // find rescale factor | |
309 double total = 0.0; | |
310 for ( i = 0; i < half_size; i++ ) | |
311 total += fimpulse [blip_res + i]; | |
312 | |
313 //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB | |
314 //double const base_unit = 37888.0; // allows treble to +5 dB | |
315 double const base_unit = 32768.0; // necessary for blip_unscaled to work | |
316 double rescale = base_unit / 2 / total; | |
317 kernel_unit = (long) base_unit; | |
318 | |
319 // integrate, first difference, rescale, convert to int | |
320 double sum = 0.0; | |
321 double next = 0.0; | |
322 int const size = this->impulses_size(); | |
323 for ( i = 0; i < size; i++ ) | |
324 { | |
325 impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 ); | |
326 sum += fimpulse [i]; | |
327 next += fimpulse [i + blip_res]; | |
328 } | |
329 adjust_impulse(); | |
330 | |
331 // volume might require rescaling | |
332 double vol = volume_unit_; | |
333 if ( vol ) | |
334 { | |
335 volume_unit_ = 0.0; | |
336 volume_unit( vol ); | |
337 } | |
338 } | |
339 | |
340 void Blip_Synth_::volume_unit( double new_unit ) | |
341 { | |
342 if ( new_unit != volume_unit_ ) | |
343 { | |
344 // use default eq if it hasn't been set yet | |
345 if ( !kernel_unit ) | |
346 treble_eq( -8.0 ); | |
347 | |
348 volume_unit_ = new_unit; | |
349 double factor = new_unit * (1L << blip_sample_bits) / kernel_unit; | |
350 | |
351 if ( factor > 0.0 ) | |
272 { | 352 { |
273 int p2 = blip_res - 2 - p; | 353 int shift = 0; |
274 long error = kernel_unit; | 354 |
275 for ( int i = 1; i < size; i += blip_res ) | 355 // if unit is really small, might need to attenuate kernel |
276 { | 356 while ( factor < 2.0 ) |
277 error -= impulses [i + p ]; | 357 { |
278 error -= impulses [i + p2]; | 358 shift++; |
279 } | 359 factor *= 2.0; |
280 if ( p == p2 ) | 360 } |
281 error /= 2; // phase = 0.5 impulse uses same half for both sides | 361 |
282 impulses [size - blip_res + p] += (short) error; | 362 if ( shift ) |
283 //printf( "error: %ld\n", error ); | 363 { |
364 kernel_unit >>= shift; | |
365 assert( kernel_unit > 0 ); // fails if volume unit is too low | |
366 | |
367 // keep values positive to avoid round-towards-zero of sign-preserving | |
368 // right shift for negative values | |
369 long offset = 0x8000 + (1 << (shift - 1)); | |
370 long offset2 = 0x8000 >> shift; | |
371 for ( int i = impulses_size(); i--; ) | |
372 impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2); | |
373 adjust_impulse(); | |
374 } | |
284 } | 375 } |
285 | 376 delta_factor = (int) floor( factor + 0.5 ); |
286 //for ( int i = blip_res; i--; printf( "\n" ) ) | 377 //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit ); |
287 // for ( int j = 0; j < width / 2; j++ ) | 378 } |
288 // printf( "%5ld,", impulses [j * blip_res + i + 1] ); | 379 } |
289 } | 380 #endif |
290 | 381 |
291 void Blip_Synth_::treble_eq( blip_eq_t const& eq ) | 382 long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo ) |
292 { | 383 { |
293 float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2]; | 384 long count = samples_avail(); |
294 | 385 if ( count > max_samples ) |
295 int const half_size = blip_res / 2 * (width - 1); | 386 count = max_samples; |
296 eq.generate( &fimpulse [blip_res], half_size ); | 387 |
297 | 388 if ( count ) |
298 int i; | 389 { |
299 | 390 int const bass = BLIP_READER_BASS( *this ); |
300 // need mirror slightly past center for calculation | 391 BLIP_READER_BEGIN( reader, *this ); |
301 for ( i = blip_res; i--; ) | 392 BLIP_READER_ADJ_( reader, count ); |
302 fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i]; | 393 blip_sample_t* BLIP_RESTRICT out = out_ + count; |
303 | 394 blip_long offset = (blip_long) -count; |
304 // starts at 0 | 395 |
305 for ( i = 0; i < blip_res; i++ ) | 396 if ( !stereo ) |
306 fimpulse [i] = 0.0f; | |
307 | |
308 // find rescale factor | |
309 double total = 0.0; | |
310 for ( i = 0; i < half_size; i++ ) | |
311 total += fimpulse [blip_res + i]; | |
312 | |
313 //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB | |
314 //double const base_unit = 37888.0; // allows treble to +5 dB | |
315 double const base_unit = 32768.0; // necessary for blip_unscaled to work | |
316 double rescale = base_unit / 2 / total; | |
317 kernel_unit = (long) base_unit; | |
318 | |
319 // integrate, first difference, rescale, convert to int | |
320 double sum = 0.0; | |
321 double next = 0.0; | |
322 int const size = this->impulses_size(); | |
323 for ( i = 0; i < size; i++ ) | |
324 { | 397 { |
325 impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 ); | 398 do |
326 sum += fimpulse [i]; | 399 { |
327 next += fimpulse [i + blip_res]; | 400 blip_long s = BLIP_READER_READ( reader ); |
401 BLIP_READER_NEXT_IDX_( reader, bass, offset ); | |
402 BLIP_CLAMP( s, s ); | |
403 out [offset] = (blip_sample_t) s; | |
404 } | |
405 while ( ++offset ); | |
328 } | 406 } |
329 adjust_impulse(); | 407 else |
330 | |
331 // volume might require rescaling | |
332 double vol = volume_unit_; | |
333 if ( vol ) | |
334 { | 408 { |
335 volume_unit_ = 0.0; | 409 do |
336 volume_unit( vol ); | 410 { |
411 blip_long s = BLIP_READER_READ( reader ); | |
412 BLIP_READER_NEXT_IDX_( reader, bass, offset ); | |
413 BLIP_CLAMP( s, s ); | |
414 out [offset * 2] = (blip_sample_t) s; | |
415 } | |
416 while ( ++offset ); | |
337 } | 417 } |
338 } | 418 |
339 | 419 BLIP_READER_END( reader, *this ); |
340 void Blip_Synth_::volume_unit( double new_unit ) | 420 |
341 { | 421 remove_samples( count ); |
342 if ( new_unit != volume_unit_ ) | 422 } |
343 { | 423 return count; |
344 // use default eq if it hasn't been set yet | |
345 if ( !kernel_unit ) | |
346 treble_eq( -8.0 ); | |
347 | |
348 volume_unit_ = new_unit; | |
349 double factor = new_unit * (1L << blip_sample_bits) / kernel_unit; | |
350 | |
351 if ( factor > 0.0 ) | |
352 { | |
353 int shift = 0; | |
354 | |
355 // if unit is really small, might need to attenuate kernel | |
356 while ( factor < 2.0 ) | |
357 { | |
358 shift++; | |
359 factor *= 2.0; | |
360 } | |
361 | |
362 if ( shift ) | |
363 { | |
364 kernel_unit >>= shift; | |
365 assert( kernel_unit > 0 ); // fails if volume unit is too low | |
366 | |
367 // keep values positive to avoid round-towards-zero of sign-preserving | |
368 // right shift for negative values | |
369 long offset = 0x8000 + (1 << (shift - 1)); | |
370 long offset2 = 0x8000 >> shift; | |
371 for ( int i = impulses_size(); i--; ) | |
372 impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2); | |
373 adjust_impulse(); | |
374 } | |
375 } | |
376 delta_factor = (int) floor( factor + 0.5 ); | |
377 //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit ); | |
378 } | |
379 } | |
380 #endif | |
381 | |
382 long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo ) | |
383 { | |
384 long count = samples_avail(); | |
385 if ( count > max_samples ) | |
386 count = max_samples; | |
387 | |
388 if ( count ) | |
389 { | |
390 int const bass = BLIP_READER_BASS( *this ); | |
391 BLIP_READER_BEGIN( reader, *this ); | |
392 BLIP_READER_ADJ_( reader, count ); | |
393 blip_sample_t* BLIP_RESTRICT out = out_ + count; | |
394 blip_long offset = (blip_long) -count; | |
395 | |
396 if ( !stereo ) | |
397 { | |
398 do | |
399 { | |
400 blip_long s = BLIP_READER_READ( reader ); | |
401 BLIP_READER_NEXT_IDX_( reader, bass, offset ); | |
402 BLIP_CLAMP( s, s ); | |
403 out [offset] = (blip_sample_t) s; | |
404 } | |
405 while ( ++offset ); | |
406 } | |
407 else | |
408 { | |
409 do | |
410 { | |
411 blip_long s = BLIP_READER_READ( reader ); | |
412 BLIP_READER_NEXT_IDX_( reader, bass, offset ); | |
413 BLIP_CLAMP( s, s ); | |
414 out [offset * 2] = (blip_sample_t) s; | |
415 } | |
416 while ( ++offset ); | |
417 } | |
418 | |
419 BLIP_READER_END( reader, *this ); | |
420 | |
421 remove_samples( count ); | |
422 } | |
423 return count; | |
424 } | 424 } |
425 | 425 |
426 void Blip_Buffer::mix_samples( blip_sample_t const* in, long count ) | 426 void Blip_Buffer::mix_samples( blip_sample_t const* in, long count ) |
427 { | 427 { |
428 if ( buffer_size_ == silent_buf_size ) | 428 if ( buffer_size_ == silent_buf_size ) |
429 { | 429 { |
430 assert( 0 ); | 430 assert( 0 ); |
431 return; | 431 return; |
432 } | 432 } |
433 | 433 |
434 buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2; | 434 buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2; |
435 | 435 |
436 int const sample_shift = blip_sample_bits - 16; | 436 int const sample_shift = blip_sample_bits - 16; |
437 int prev = 0; | 437 int prev = 0; |
438 while ( count-- ) | 438 while ( count-- ) |
439 { | 439 { |
440 blip_long s = (blip_long) *in++ << sample_shift; | 440 blip_long s = (blip_long) *in++ << sample_shift; |
441 *out += s - prev; | 441 *out += s - prev; |
442 prev = s; | 442 prev = s; |
443 ++out; | 443 ++out; |
444 } | 444 } |
445 *out -= prev; | 445 *out -= prev; |
446 } | 446 } |
447 | 447 |
448 blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1; | 448 blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1; |
449 | 449 |
450 void Blip_Buffer::save_state( blip_buffer_state_t* out ) | 450 void Blip_Buffer::save_state( blip_buffer_state_t* out ) |
451 { | 451 { |
452 assert( samples_avail() == 0 ); | 452 assert( samples_avail() == 0 ); |
453 out->offset_ = offset_; | 453 out->offset_ = offset_; |
454 out->reader_accum_ = reader_accum_; | 454 out->reader_accum_ = reader_accum_; |
455 memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf ); | 455 memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf ); |
456 } | 456 } |
457 | 457 |
458 void Blip_Buffer::load_state( blip_buffer_state_t const& in ) | 458 void Blip_Buffer::load_state( blip_buffer_state_t const& in ) |
459 { | 459 { |
460 clear( false ); | 460 clear( false ); |
461 | 461 |
462 offset_ = in.offset_; | 462 offset_ = in.offset_; |
463 reader_accum_ = in.reader_accum_; | 463 reader_accum_ = in.reader_accum_; |
464 memcpy( buffer_, in.buf, sizeof in.buf ); | 464 memcpy( buffer_, in.buf, sizeof in.buf ); |
465 } | 465 } |