rlm@1: /* LzmaEnc.c -- LZMA Encoder rlm@1: 2008-10-04 : Igor Pavlov : Public domain */ rlm@1: rlm@1: #include rlm@1: rlm@1: /* #define SHOW_STAT */ rlm@1: /* #define SHOW_STAT2 */ rlm@1: rlm@1: #if defined(SHOW_STAT) || defined(SHOW_STAT2) rlm@1: #include rlm@1: #endif rlm@1: rlm@1: #include "LzmaEnc.h" rlm@1: rlm@1: #include "LzFind.h" rlm@1: #ifdef COMPRESS_MF_MT rlm@1: #include "LzFindMt.h" rlm@1: #endif rlm@1: rlm@1: #ifdef SHOW_STAT rlm@1: static int ttt = 0; rlm@1: #endif rlm@1: rlm@1: #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1) rlm@1: rlm@1: #define kBlockSize (9 << 10) rlm@1: #define kUnpackBlockSize (1 << 18) rlm@1: #define kMatchArraySize (1 << 21) rlm@1: #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX) rlm@1: rlm@1: #define kNumMaxDirectBits (31) rlm@1: rlm@1: #define kNumTopBits 24 rlm@1: #define kTopValue ((UInt32)1 << kNumTopBits) rlm@1: rlm@1: #define kNumBitModelTotalBits 11 rlm@1: #define kBitModelTotal (1 << kNumBitModelTotalBits) rlm@1: #define kNumMoveBits 5 rlm@1: #define kProbInitValue (kBitModelTotal >> 1) rlm@1: rlm@1: #define kNumMoveReducingBits 4 rlm@1: #define kNumBitPriceShiftBits 4 rlm@1: #define kBitPrice (1 << kNumBitPriceShiftBits) rlm@1: rlm@1: void LzmaEncProps_Init(CLzmaEncProps *p) rlm@1: { rlm@1: p->level = 5; rlm@1: p->dictSize = p->mc = 0; rlm@1: p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1; rlm@1: p->writeEndMark = 0; rlm@1: } rlm@1: rlm@1: void LzmaEncProps_Normalize(CLzmaEncProps *p) rlm@1: { rlm@1: int level = p->level; rlm@1: if (level < 0) level = 5; rlm@1: p->level = level; rlm@1: if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26))); rlm@1: if (p->lc < 0) p->lc = 3; rlm@1: if (p->lp < 0) p->lp = 0; rlm@1: if (p->pb < 0) p->pb = 2; rlm@1: if (p->algo < 0) p->algo = (level < 5 ? 0 : 1); rlm@1: if (p->fb < 0) p->fb = (level < 7 ? 32 : 64); rlm@1: if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1); rlm@1: if (p->numHashBytes < 0) p->numHashBytes = 4; rlm@1: if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1); rlm@1: if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1); rlm@1: } rlm@1: rlm@1: UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2) rlm@1: { rlm@1: CLzmaEncProps props = *props2; rlm@1: LzmaEncProps_Normalize(&props); rlm@1: return props.dictSize; rlm@1: } rlm@1: rlm@1: /* #define LZMA_LOG_BSR */ rlm@1: /* Define it for Intel's CPU */ rlm@1: rlm@1: rlm@1: #ifdef LZMA_LOG_BSR rlm@1: rlm@1: #define kDicLogSizeMaxCompress 30 rlm@1: rlm@1: #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); } rlm@1: rlm@1: UInt32 GetPosSlot1(UInt32 pos) rlm@1: { rlm@1: UInt32 res; rlm@1: BSR2_RET(pos, res); rlm@1: return res; rlm@1: } rlm@1: #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } rlm@1: #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); } rlm@1: rlm@1: #else rlm@1: rlm@1: #define kNumLogBits (9 + (int)sizeof(size_t) / 2) rlm@1: #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) rlm@1: rlm@1: void LzmaEnc_FastPosInit(Byte *g_FastPos) rlm@1: { rlm@1: int c = 2, slotFast; rlm@1: g_FastPos[0] = 0; rlm@1: g_FastPos[1] = 1; rlm@1: rlm@1: for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++) rlm@1: { rlm@1: UInt32 k = (1 << ((slotFast >> 1) - 1)); rlm@1: UInt32 j; rlm@1: for (j = 0; j < k; j++, c++) rlm@1: g_FastPos[c] = (Byte)slotFast; rlm@1: } rlm@1: } rlm@1: rlm@1: #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \ rlm@1: (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ rlm@1: res = p->g_FastPos[pos >> i] + (i * 2); } rlm@1: /* rlm@1: #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ rlm@1: p->g_FastPos[pos >> 6] + 12 : \ rlm@1: p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } rlm@1: */ rlm@1: rlm@1: #define GetPosSlot1(pos) p->g_FastPos[pos] rlm@1: #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } rlm@1: #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); } rlm@1: rlm@1: #endif rlm@1: rlm@1: rlm@1: #define LZMA_NUM_REPS 4 rlm@1: rlm@1: typedef unsigned CState; rlm@1: rlm@1: typedef struct _COptimal rlm@1: { rlm@1: UInt32 price; rlm@1: rlm@1: CState state; rlm@1: int prev1IsChar; rlm@1: int prev2; rlm@1: rlm@1: UInt32 posPrev2; rlm@1: UInt32 backPrev2; rlm@1: rlm@1: UInt32 posPrev; rlm@1: UInt32 backPrev; rlm@1: UInt32 backs[LZMA_NUM_REPS]; rlm@1: } COptimal; rlm@1: rlm@1: #define kNumOpts (1 << 12) rlm@1: rlm@1: #define kNumLenToPosStates 4 rlm@1: #define kNumPosSlotBits 6 rlm@1: #define kDicLogSizeMin 0 rlm@1: #define kDicLogSizeMax 32 rlm@1: #define kDistTableSizeMax (kDicLogSizeMax * 2) rlm@1: rlm@1: rlm@1: #define kNumAlignBits 4 rlm@1: #define kAlignTableSize (1 << kNumAlignBits) rlm@1: #define kAlignMask (kAlignTableSize - 1) rlm@1: rlm@1: #define kStartPosModelIndex 4 rlm@1: #define kEndPosModelIndex 14 rlm@1: #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex) rlm@1: rlm@1: #define kNumFullDistances (1 << (kEndPosModelIndex / 2)) rlm@1: rlm@1: #ifdef _LZMA_PROB32 rlm@1: #define CLzmaProb UInt32 rlm@1: #else rlm@1: #define CLzmaProb UInt16 rlm@1: #endif rlm@1: rlm@1: #define LZMA_PB_MAX 4 rlm@1: #define LZMA_LC_MAX 8 rlm@1: #define LZMA_LP_MAX 4 rlm@1: rlm@1: #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) rlm@1: rlm@1: rlm@1: #define kLenNumLowBits 3 rlm@1: #define kLenNumLowSymbols (1 << kLenNumLowBits) rlm@1: #define kLenNumMidBits 3 rlm@1: #define kLenNumMidSymbols (1 << kLenNumMidBits) rlm@1: #define kLenNumHighBits 8 rlm@1: #define kLenNumHighSymbols (1 << kLenNumHighBits) rlm@1: rlm@1: #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) rlm@1: rlm@1: #define LZMA_MATCH_LEN_MIN 2 rlm@1: #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) rlm@1: rlm@1: #define kNumStates 12 rlm@1: rlm@1: typedef struct rlm@1: { rlm@1: CLzmaProb choice; rlm@1: CLzmaProb choice2; rlm@1: CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits]; rlm@1: CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits]; rlm@1: CLzmaProb high[kLenNumHighSymbols]; rlm@1: } CLenEnc; rlm@1: rlm@1: typedef struct rlm@1: { rlm@1: CLenEnc p; rlm@1: UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; rlm@1: UInt32 tableSize; rlm@1: UInt32 counters[LZMA_NUM_PB_STATES_MAX]; rlm@1: } CLenPriceEnc; rlm@1: rlm@1: typedef struct _CRangeEnc rlm@1: { rlm@1: UInt32 range; rlm@1: Byte cache; rlm@1: UInt64 low; rlm@1: UInt64 cacheSize; rlm@1: Byte *buf; rlm@1: Byte *bufLim; rlm@1: Byte *bufBase; rlm@1: ISeqOutStream *outStream; rlm@1: UInt64 processed; rlm@1: SRes res; rlm@1: } CRangeEnc; rlm@1: rlm@1: typedef struct _CSeqInStreamBuf rlm@1: { rlm@1: ISeqInStream funcTable; rlm@1: const Byte *data; rlm@1: SizeT rem; rlm@1: } CSeqInStreamBuf; rlm@1: rlm@1: static SRes MyRead(void *pp, void *data, size_t *size) rlm@1: { rlm@1: size_t curSize = *size; rlm@1: CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp; rlm@1: if (p->rem < curSize) rlm@1: curSize = p->rem; rlm@1: memcpy(data, p->data, curSize); rlm@1: p->rem -= curSize; rlm@1: p->data += curSize; rlm@1: *size = curSize; rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: typedef struct rlm@1: { rlm@1: CLzmaProb *litProbs; rlm@1: rlm@1: CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; rlm@1: CLzmaProb isRep[kNumStates]; rlm@1: CLzmaProb isRepG0[kNumStates]; rlm@1: CLzmaProb isRepG1[kNumStates]; rlm@1: CLzmaProb isRepG2[kNumStates]; rlm@1: CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; rlm@1: rlm@1: CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; rlm@1: CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; rlm@1: CLzmaProb posAlignEncoder[1 << kNumAlignBits]; rlm@1: rlm@1: CLenPriceEnc lenEnc; rlm@1: CLenPriceEnc repLenEnc; rlm@1: rlm@1: UInt32 reps[LZMA_NUM_REPS]; rlm@1: UInt32 state; rlm@1: } CSaveState; rlm@1: rlm@1: typedef struct _CLzmaEnc rlm@1: { rlm@1: IMatchFinder matchFinder; rlm@1: void *matchFinderObj; rlm@1: rlm@1: #ifdef COMPRESS_MF_MT rlm@1: Bool mtMode; rlm@1: CMatchFinderMt matchFinderMt; rlm@1: #endif rlm@1: rlm@1: CMatchFinder matchFinderBase; rlm@1: rlm@1: #ifdef COMPRESS_MF_MT rlm@1: Byte pad[128]; rlm@1: #endif rlm@1: rlm@1: UInt32 optimumEndIndex; rlm@1: UInt32 optimumCurrentIndex; rlm@1: rlm@1: UInt32 longestMatchLength; rlm@1: UInt32 numPairs; rlm@1: UInt32 numAvail; rlm@1: COptimal opt[kNumOpts]; rlm@1: rlm@1: #ifndef LZMA_LOG_BSR rlm@1: Byte g_FastPos[1 << kNumLogBits]; rlm@1: #endif rlm@1: rlm@1: UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; rlm@1: UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1]; rlm@1: UInt32 numFastBytes; rlm@1: UInt32 additionalOffset; rlm@1: UInt32 reps[LZMA_NUM_REPS]; rlm@1: UInt32 state; rlm@1: rlm@1: UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; rlm@1: UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances]; rlm@1: UInt32 alignPrices[kAlignTableSize]; rlm@1: UInt32 alignPriceCount; rlm@1: rlm@1: UInt32 distTableSize; rlm@1: rlm@1: unsigned lc, lp, pb; rlm@1: unsigned lpMask, pbMask; rlm@1: rlm@1: CLzmaProb *litProbs; rlm@1: rlm@1: CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; rlm@1: CLzmaProb isRep[kNumStates]; rlm@1: CLzmaProb isRepG0[kNumStates]; rlm@1: CLzmaProb isRepG1[kNumStates]; rlm@1: CLzmaProb isRepG2[kNumStates]; rlm@1: CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; rlm@1: rlm@1: CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; rlm@1: CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; rlm@1: CLzmaProb posAlignEncoder[1 << kNumAlignBits]; rlm@1: rlm@1: CLenPriceEnc lenEnc; rlm@1: CLenPriceEnc repLenEnc; rlm@1: rlm@1: unsigned lclp; rlm@1: rlm@1: Bool fastMode; rlm@1: rlm@1: CRangeEnc rc; rlm@1: rlm@1: Bool writeEndMark; rlm@1: UInt64 nowPos64; rlm@1: UInt32 matchPriceCount; rlm@1: Bool finished; rlm@1: Bool multiThread; rlm@1: rlm@1: SRes result; rlm@1: UInt32 dictSize; rlm@1: UInt32 matchFinderCycles; rlm@1: rlm@1: ISeqInStream *inStream; rlm@1: CSeqInStreamBuf seqBufInStream; rlm@1: rlm@1: CSaveState saveState; rlm@1: } CLzmaEnc; rlm@1: rlm@1: void LzmaEnc_SaveState(CLzmaEncHandle pp) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: CSaveState *dest = &p->saveState; rlm@1: int i; rlm@1: dest->lenEnc = p->lenEnc; rlm@1: dest->repLenEnc = p->repLenEnc; rlm@1: dest->state = p->state; rlm@1: rlm@1: for (i = 0; i < kNumStates; i++) rlm@1: { rlm@1: memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); rlm@1: memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); rlm@1: } rlm@1: for (i = 0; i < kNumLenToPosStates; i++) rlm@1: memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); rlm@1: memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); rlm@1: memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); rlm@1: memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); rlm@1: memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); rlm@1: memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); rlm@1: memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); rlm@1: memcpy(dest->reps, p->reps, sizeof(p->reps)); rlm@1: memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb)); rlm@1: } rlm@1: rlm@1: void LzmaEnc_RestoreState(CLzmaEncHandle pp) rlm@1: { rlm@1: CLzmaEnc *dest = (CLzmaEnc *)pp; rlm@1: const CSaveState *p = &dest->saveState; rlm@1: int i; rlm@1: dest->lenEnc = p->lenEnc; rlm@1: dest->repLenEnc = p->repLenEnc; rlm@1: dest->state = p->state; rlm@1: rlm@1: for (i = 0; i < kNumStates; i++) rlm@1: { rlm@1: memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); rlm@1: memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); rlm@1: } rlm@1: for (i = 0; i < kNumLenToPosStates; i++) rlm@1: memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); rlm@1: memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); rlm@1: memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); rlm@1: memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); rlm@1: memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); rlm@1: memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); rlm@1: memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); rlm@1: memcpy(dest->reps, p->reps, sizeof(p->reps)); rlm@1: memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb)); rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: CLzmaEncProps props = *props2; rlm@1: LzmaEncProps_Normalize(&props); rlm@1: rlm@1: if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX || rlm@1: props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30)) rlm@1: return SZ_ERROR_PARAM; rlm@1: p->dictSize = props.dictSize; rlm@1: p->matchFinderCycles = props.mc; rlm@1: { rlm@1: unsigned fb = props.fb; rlm@1: if (fb < 5) rlm@1: fb = 5; rlm@1: if (fb > LZMA_MATCH_LEN_MAX) rlm@1: fb = LZMA_MATCH_LEN_MAX; rlm@1: p->numFastBytes = fb; rlm@1: } rlm@1: p->lc = props.lc; rlm@1: p->lp = props.lp; rlm@1: p->pb = props.pb; rlm@1: p->fastMode = (props.algo == 0); rlm@1: p->matchFinderBase.btMode = props.btMode; rlm@1: { rlm@1: UInt32 numHashBytes = 4; rlm@1: if (props.btMode) rlm@1: { rlm@1: if (props.numHashBytes < 2) rlm@1: numHashBytes = 2; rlm@1: else if (props.numHashBytes < 4) rlm@1: numHashBytes = props.numHashBytes; rlm@1: } rlm@1: p->matchFinderBase.numHashBytes = numHashBytes; rlm@1: } rlm@1: rlm@1: p->matchFinderBase.cutValue = props.mc; rlm@1: rlm@1: p->writeEndMark = props.writeEndMark; rlm@1: rlm@1: #ifdef COMPRESS_MF_MT rlm@1: /* rlm@1: if (newMultiThread != _multiThread) rlm@1: { rlm@1: ReleaseMatchFinder(); rlm@1: _multiThread = newMultiThread; rlm@1: } rlm@1: */ rlm@1: p->multiThread = (props.numThreads > 1); rlm@1: #endif rlm@1: rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; rlm@1: static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; rlm@1: static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; rlm@1: static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; rlm@1: rlm@1: #define IsCharState(s) ((s) < 7) rlm@1: rlm@1: #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) rlm@1: rlm@1: #define kInfinityPrice (1 << 30) rlm@1: rlm@1: static void RangeEnc_Construct(CRangeEnc *p) rlm@1: { rlm@1: p->outStream = 0; rlm@1: p->bufBase = 0; rlm@1: } rlm@1: rlm@1: #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize) rlm@1: rlm@1: #define RC_BUF_SIZE (1 << 16) rlm@1: static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc) rlm@1: { rlm@1: if (p->bufBase == 0) rlm@1: { rlm@1: p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE); rlm@1: if (p->bufBase == 0) rlm@1: return 0; rlm@1: p->bufLim = p->bufBase + RC_BUF_SIZE; rlm@1: } rlm@1: return 1; rlm@1: } rlm@1: rlm@1: static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc) rlm@1: { rlm@1: alloc->Free(alloc, p->bufBase); rlm@1: p->bufBase = 0; rlm@1: } rlm@1: rlm@1: static void RangeEnc_Init(CRangeEnc *p) rlm@1: { rlm@1: /* Stream.Init(); */ rlm@1: p->low = 0; rlm@1: p->range = 0xFFFFFFFF; rlm@1: p->cacheSize = 1; rlm@1: p->cache = 0; rlm@1: rlm@1: p->buf = p->bufBase; rlm@1: rlm@1: p->processed = 0; rlm@1: p->res = SZ_OK; rlm@1: } rlm@1: rlm@1: static void RangeEnc_FlushStream(CRangeEnc *p) rlm@1: { rlm@1: size_t num; rlm@1: if (p->res != SZ_OK) rlm@1: return; rlm@1: num = p->buf - p->bufBase; rlm@1: if (num != p->outStream->Write(p->outStream, p->bufBase, num)) rlm@1: p->res = SZ_ERROR_WRITE; rlm@1: p->processed += num; rlm@1: p->buf = p->bufBase; rlm@1: } rlm@1: rlm@1: static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p) rlm@1: { rlm@1: if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0) rlm@1: { rlm@1: Byte temp = p->cache; rlm@1: do rlm@1: { rlm@1: Byte *buf = p->buf; rlm@1: *buf++ = (Byte)(temp + (Byte)(p->low >> 32)); rlm@1: p->buf = buf; rlm@1: if (buf == p->bufLim) rlm@1: RangeEnc_FlushStream(p); rlm@1: temp = 0xFF; rlm@1: } rlm@1: while (--p->cacheSize != 0); rlm@1: p->cache = (Byte)((UInt32)p->low >> 24); rlm@1: } rlm@1: p->cacheSize++; rlm@1: p->low = (UInt32)p->low << 8; rlm@1: } rlm@1: rlm@1: static void RangeEnc_FlushData(CRangeEnc *p) rlm@1: { rlm@1: int i; rlm@1: for (i = 0; i < 5; i++) rlm@1: RangeEnc_ShiftLow(p); rlm@1: } rlm@1: rlm@1: static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits) rlm@1: { rlm@1: do rlm@1: { rlm@1: p->range >>= 1; rlm@1: p->low += p->range & (0 - ((value >> --numBits) & 1)); rlm@1: if (p->range < kTopValue) rlm@1: { rlm@1: p->range <<= 8; rlm@1: RangeEnc_ShiftLow(p); rlm@1: } rlm@1: } rlm@1: while (numBits != 0); rlm@1: } rlm@1: rlm@1: static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol) rlm@1: { rlm@1: UInt32 ttt = *prob; rlm@1: UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt; rlm@1: if (symbol == 0) rlm@1: { rlm@1: p->range = newBound; rlm@1: ttt += (kBitModelTotal - ttt) >> kNumMoveBits; rlm@1: } rlm@1: else rlm@1: { rlm@1: p->low += newBound; rlm@1: p->range -= newBound; rlm@1: ttt -= ttt >> kNumMoveBits; rlm@1: } rlm@1: *prob = (CLzmaProb)ttt; rlm@1: if (p->range < kTopValue) rlm@1: { rlm@1: p->range <<= 8; rlm@1: RangeEnc_ShiftLow(p); rlm@1: } rlm@1: } rlm@1: rlm@1: static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol) rlm@1: { rlm@1: symbol |= 0x100; rlm@1: do rlm@1: { rlm@1: RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1); rlm@1: symbol <<= 1; rlm@1: } rlm@1: while (symbol < 0x10000); rlm@1: } rlm@1: rlm@1: static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte) rlm@1: { rlm@1: UInt32 offs = 0x100; rlm@1: symbol |= 0x100; rlm@1: do rlm@1: { rlm@1: matchByte <<= 1; rlm@1: RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1); rlm@1: symbol <<= 1; rlm@1: offs &= ~(matchByte ^ symbol); rlm@1: } rlm@1: while (symbol < 0x10000); rlm@1: } rlm@1: rlm@1: void LzmaEnc_InitPriceTables(UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 i; rlm@1: for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits)) rlm@1: { rlm@1: const int kCyclesBits = kNumBitPriceShiftBits; rlm@1: UInt32 w = i; rlm@1: UInt32 bitCount = 0; rlm@1: int j; rlm@1: for (j = 0; j < kCyclesBits; j++) rlm@1: { rlm@1: w = w * w; rlm@1: bitCount <<= 1; rlm@1: while (w >= ((UInt32)1 << 16)) rlm@1: { rlm@1: w >>= 1; rlm@1: bitCount++; rlm@1: } rlm@1: } rlm@1: ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); rlm@1: } rlm@1: } rlm@1: rlm@1: rlm@1: #define GET_PRICE(prob, symbol) \ rlm@1: p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; rlm@1: rlm@1: #define GET_PRICEa(prob, symbol) \ rlm@1: ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; rlm@1: rlm@1: #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] rlm@1: #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] rlm@1: rlm@1: #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits] rlm@1: #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] rlm@1: rlm@1: static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 price = 0; rlm@1: symbol |= 0x100; rlm@1: do rlm@1: { rlm@1: price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1); rlm@1: symbol <<= 1; rlm@1: } rlm@1: while (symbol < 0x10000); rlm@1: return price; rlm@1: } rlm@1: rlm@1: static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 price = 0; rlm@1: UInt32 offs = 0x100; rlm@1: symbol |= 0x100; rlm@1: do rlm@1: { rlm@1: matchByte <<= 1; rlm@1: price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1); rlm@1: symbol <<= 1; rlm@1: offs &= ~(matchByte ^ symbol); rlm@1: } rlm@1: while (symbol < 0x10000); rlm@1: return price; rlm@1: } rlm@1: rlm@1: rlm@1: static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) rlm@1: { rlm@1: UInt32 m = 1; rlm@1: int i; rlm@1: for (i = numBitLevels; i != 0;) rlm@1: { rlm@1: UInt32 bit; rlm@1: i--; rlm@1: bit = (symbol >> i) & 1; rlm@1: RangeEnc_EncodeBit(rc, probs + m, bit); rlm@1: m = (m << 1) | bit; rlm@1: } rlm@1: } rlm@1: rlm@1: static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) rlm@1: { rlm@1: UInt32 m = 1; rlm@1: int i; rlm@1: for (i = 0; i < numBitLevels; i++) rlm@1: { rlm@1: UInt32 bit = symbol & 1; rlm@1: RangeEnc_EncodeBit(rc, probs + m, bit); rlm@1: m = (m << 1) | bit; rlm@1: symbol >>= 1; rlm@1: } rlm@1: } rlm@1: rlm@1: static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 price = 0; rlm@1: symbol |= (1 << numBitLevels); rlm@1: while (symbol != 1) rlm@1: { rlm@1: price += GET_PRICEa(probs[symbol >> 1], symbol & 1); rlm@1: symbol >>= 1; rlm@1: } rlm@1: return price; rlm@1: } rlm@1: rlm@1: static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 price = 0; rlm@1: UInt32 m = 1; rlm@1: int i; rlm@1: for (i = numBitLevels; i != 0; i--) rlm@1: { rlm@1: UInt32 bit = symbol & 1; rlm@1: symbol >>= 1; rlm@1: price += GET_PRICEa(probs[m], bit); rlm@1: m = (m << 1) | bit; rlm@1: } rlm@1: return price; rlm@1: } rlm@1: rlm@1: rlm@1: static void LenEnc_Init(CLenEnc *p) rlm@1: { rlm@1: unsigned i; rlm@1: p->choice = p->choice2 = kProbInitValue; rlm@1: for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++) rlm@1: p->low[i] = kProbInitValue; rlm@1: for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++) rlm@1: p->mid[i] = kProbInitValue; rlm@1: for (i = 0; i < kLenNumHighSymbols; i++) rlm@1: p->high[i] = kProbInitValue; rlm@1: } rlm@1: rlm@1: static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState) rlm@1: { rlm@1: if (symbol < kLenNumLowSymbols) rlm@1: { rlm@1: RangeEnc_EncodeBit(rc, &p->choice, 0); rlm@1: RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol); rlm@1: } rlm@1: else rlm@1: { rlm@1: RangeEnc_EncodeBit(rc, &p->choice, 1); rlm@1: if (symbol < kLenNumLowSymbols + kLenNumMidSymbols) rlm@1: { rlm@1: RangeEnc_EncodeBit(rc, &p->choice2, 0); rlm@1: RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols); rlm@1: } rlm@1: else rlm@1: { rlm@1: RangeEnc_EncodeBit(rc, &p->choice2, 1); rlm@1: RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols); rlm@1: } rlm@1: } rlm@1: } rlm@1: rlm@1: static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 a0 = GET_PRICE_0a(p->choice); rlm@1: UInt32 a1 = GET_PRICE_1a(p->choice); rlm@1: UInt32 b0 = a1 + GET_PRICE_0a(p->choice2); rlm@1: UInt32 b1 = a1 + GET_PRICE_1a(p->choice2); rlm@1: UInt32 i = 0; rlm@1: for (i = 0; i < kLenNumLowSymbols; i++) rlm@1: { rlm@1: if (i >= numSymbols) rlm@1: return; rlm@1: prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices); rlm@1: } rlm@1: for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++) rlm@1: { rlm@1: if (i >= numSymbols) rlm@1: return; rlm@1: prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices); rlm@1: } rlm@1: for (; i < numSymbols; i++) rlm@1: prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices); rlm@1: } rlm@1: rlm@1: static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices) rlm@1: { rlm@1: LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices); rlm@1: p->counters[posState] = p->tableSize; rlm@1: } rlm@1: rlm@1: static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices) rlm@1: { rlm@1: UInt32 posState; rlm@1: for (posState = 0; posState < numPosStates; posState++) rlm@1: LenPriceEnc_UpdateTable(p, posState, ProbPrices); rlm@1: } rlm@1: rlm@1: static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices) rlm@1: { rlm@1: LenEnc_Encode(&p->p, rc, symbol, posState); rlm@1: if (updatePrice) rlm@1: if (--p->counters[posState] == 0) rlm@1: LenPriceEnc_UpdateTable(p, posState, ProbPrices); rlm@1: } rlm@1: rlm@1: rlm@1: rlm@1: rlm@1: static void MovePos(CLzmaEnc *p, UInt32 num) rlm@1: { rlm@1: #ifdef SHOW_STAT rlm@1: ttt += num; rlm@1: printf("\n MovePos %d", num); rlm@1: #endif rlm@1: if (num != 0) rlm@1: { rlm@1: p->additionalOffset += num; rlm@1: p->matchFinder.Skip(p->matchFinderObj, num); rlm@1: } rlm@1: } rlm@1: rlm@1: static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes) rlm@1: { rlm@1: UInt32 lenRes = 0, numPairs; rlm@1: p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); rlm@1: numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches); rlm@1: #ifdef SHOW_STAT rlm@1: printf("\n i = %d numPairs = %d ", ttt, numPairs / 2); rlm@1: ttt++; rlm@1: { rlm@1: UInt32 i; rlm@1: for (i = 0; i < numPairs; i += 2) rlm@1: printf("%2d %6d | ", p->matches[i], p->matches[i + 1]); rlm@1: } rlm@1: #endif rlm@1: if (numPairs > 0) rlm@1: { rlm@1: lenRes = p->matches[numPairs - 2]; rlm@1: if (lenRes == p->numFastBytes) rlm@1: { rlm@1: const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; rlm@1: UInt32 distance = p->matches[numPairs - 1] + 1; rlm@1: UInt32 numAvail = p->numAvail; rlm@1: if (numAvail > LZMA_MATCH_LEN_MAX) rlm@1: numAvail = LZMA_MATCH_LEN_MAX; rlm@1: { rlm@1: const Byte *pby2 = pby - distance; rlm@1: for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++); rlm@1: } rlm@1: } rlm@1: } rlm@1: p->additionalOffset++; rlm@1: *numDistancePairsRes = numPairs; rlm@1: return lenRes; rlm@1: } rlm@1: rlm@1: rlm@1: #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False; rlm@1: #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False; rlm@1: #define IsShortRep(p) ((p)->backPrev == 0) rlm@1: rlm@1: static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState) rlm@1: { rlm@1: return rlm@1: GET_PRICE_0(p->isRepG0[state]) + rlm@1: GET_PRICE_0(p->isRep0Long[state][posState]); rlm@1: } rlm@1: rlm@1: static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState) rlm@1: { rlm@1: UInt32 price; rlm@1: if (repIndex == 0) rlm@1: { rlm@1: price = GET_PRICE_0(p->isRepG0[state]); rlm@1: price += GET_PRICE_1(p->isRep0Long[state][posState]); rlm@1: } rlm@1: else rlm@1: { rlm@1: price = GET_PRICE_1(p->isRepG0[state]); rlm@1: if (repIndex == 1) rlm@1: price += GET_PRICE_0(p->isRepG1[state]); rlm@1: else rlm@1: { rlm@1: price += GET_PRICE_1(p->isRepG1[state]); rlm@1: price += GET_PRICE(p->isRepG2[state], repIndex - 2); rlm@1: } rlm@1: } rlm@1: return price; rlm@1: } rlm@1: rlm@1: static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState) rlm@1: { rlm@1: return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] + rlm@1: GetPureRepPrice(p, repIndex, state, posState); rlm@1: } rlm@1: rlm@1: static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur) rlm@1: { rlm@1: UInt32 posMem = p->opt[cur].posPrev; rlm@1: UInt32 backMem = p->opt[cur].backPrev; rlm@1: p->optimumEndIndex = cur; rlm@1: do rlm@1: { rlm@1: if (p->opt[cur].prev1IsChar) rlm@1: { rlm@1: MakeAsChar(&p->opt[posMem]) rlm@1: p->opt[posMem].posPrev = posMem - 1; rlm@1: if (p->opt[cur].prev2) rlm@1: { rlm@1: p->opt[posMem - 1].prev1IsChar = False; rlm@1: p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2; rlm@1: p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2; rlm@1: } rlm@1: } rlm@1: { rlm@1: UInt32 posPrev = posMem; rlm@1: UInt32 backCur = backMem; rlm@1: rlm@1: backMem = p->opt[posPrev].backPrev; rlm@1: posMem = p->opt[posPrev].posPrev; rlm@1: rlm@1: p->opt[posPrev].backPrev = backCur; rlm@1: p->opt[posPrev].posPrev = cur; rlm@1: cur = posPrev; rlm@1: } rlm@1: } rlm@1: while (cur != 0); rlm@1: *backRes = p->opt[0].backPrev; rlm@1: p->optimumCurrentIndex = p->opt[0].posPrev; rlm@1: return p->optimumCurrentIndex; rlm@1: } rlm@1: rlm@1: #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300) rlm@1: rlm@1: static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes) rlm@1: { rlm@1: UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur; rlm@1: UInt32 matchPrice, repMatchPrice, normalMatchPrice; rlm@1: UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS]; rlm@1: UInt32 *matches; rlm@1: const Byte *data; rlm@1: Byte curByte, matchByte; rlm@1: if (p->optimumEndIndex != p->optimumCurrentIndex) rlm@1: { rlm@1: const COptimal *opt = &p->opt[p->optimumCurrentIndex]; rlm@1: UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex; rlm@1: *backRes = opt->backPrev; rlm@1: p->optimumCurrentIndex = opt->posPrev; rlm@1: return lenRes; rlm@1: } rlm@1: p->optimumCurrentIndex = p->optimumEndIndex = 0; rlm@1: rlm@1: if (p->additionalOffset == 0) rlm@1: mainLen = ReadMatchDistances(p, &numPairs); rlm@1: else rlm@1: { rlm@1: mainLen = p->longestMatchLength; rlm@1: numPairs = p->numPairs; rlm@1: } rlm@1: rlm@1: numAvail = p->numAvail; rlm@1: if (numAvail < 2) rlm@1: { rlm@1: *backRes = (UInt32)(-1); rlm@1: return 1; rlm@1: } rlm@1: if (numAvail > LZMA_MATCH_LEN_MAX) rlm@1: numAvail = LZMA_MATCH_LEN_MAX; rlm@1: rlm@1: data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; rlm@1: repMaxIndex = 0; rlm@1: for (i = 0; i < LZMA_NUM_REPS; i++) rlm@1: { rlm@1: UInt32 lenTest; rlm@1: const Byte *data2; rlm@1: reps[i] = p->reps[i]; rlm@1: data2 = data - (reps[i] + 1); rlm@1: if (data[0] != data2[0] || data[1] != data2[1]) rlm@1: { rlm@1: repLens[i] = 0; rlm@1: continue; rlm@1: } rlm@1: for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++); rlm@1: repLens[i] = lenTest; rlm@1: if (lenTest > repLens[repMaxIndex]) rlm@1: repMaxIndex = i; rlm@1: } rlm@1: if (repLens[repMaxIndex] >= p->numFastBytes) rlm@1: { rlm@1: UInt32 lenRes; rlm@1: *backRes = repMaxIndex; rlm@1: lenRes = repLens[repMaxIndex]; rlm@1: MovePos(p, lenRes - 1); rlm@1: return lenRes; rlm@1: } rlm@1: rlm@1: matches = p->matches; rlm@1: if (mainLen >= p->numFastBytes) rlm@1: { rlm@1: *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; rlm@1: MovePos(p, mainLen - 1); rlm@1: return mainLen; rlm@1: } rlm@1: curByte = *data; rlm@1: matchByte = *(data - (reps[0] + 1)); rlm@1: rlm@1: if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2) rlm@1: { rlm@1: *backRes = (UInt32)-1; rlm@1: return 1; rlm@1: } rlm@1: rlm@1: p->opt[0].state = (CState)p->state; rlm@1: rlm@1: posState = (position & p->pbMask); rlm@1: rlm@1: { rlm@1: const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); rlm@1: p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + rlm@1: (!IsCharState(p->state) ? rlm@1: LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : rlm@1: LitEnc_GetPrice(probs, curByte, p->ProbPrices)); rlm@1: } rlm@1: rlm@1: MakeAsChar(&p->opt[1]); rlm@1: rlm@1: matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); rlm@1: repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); rlm@1: rlm@1: if (matchByte == curByte) rlm@1: { rlm@1: UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState); rlm@1: if (shortRepPrice < p->opt[1].price) rlm@1: { rlm@1: p->opt[1].price = shortRepPrice; rlm@1: MakeAsShortRep(&p->opt[1]); rlm@1: } rlm@1: } rlm@1: lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]); rlm@1: rlm@1: if (lenEnd < 2) rlm@1: { rlm@1: *backRes = p->opt[1].backPrev; rlm@1: return 1; rlm@1: } rlm@1: rlm@1: p->opt[1].posPrev = 0; rlm@1: for (i = 0; i < LZMA_NUM_REPS; i++) rlm@1: p->opt[0].backs[i] = reps[i]; rlm@1: rlm@1: len = lenEnd; rlm@1: do rlm@1: p->opt[len--].price = kInfinityPrice; rlm@1: while (len >= 2); rlm@1: rlm@1: for (i = 0; i < LZMA_NUM_REPS; i++) rlm@1: { rlm@1: UInt32 repLen = repLens[i]; rlm@1: UInt32 price; rlm@1: if (repLen < 2) rlm@1: continue; rlm@1: price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState); rlm@1: do rlm@1: { rlm@1: UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2]; rlm@1: COptimal *opt = &p->opt[repLen]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = 0; rlm@1: opt->backPrev = i; rlm@1: opt->prev1IsChar = False; rlm@1: } rlm@1: } rlm@1: while (--repLen >= 2); rlm@1: } rlm@1: rlm@1: normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); rlm@1: rlm@1: len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); rlm@1: if (len <= mainLen) rlm@1: { rlm@1: UInt32 offs = 0; rlm@1: while (len > matches[offs]) rlm@1: offs += 2; rlm@1: for (; ; len++) rlm@1: { rlm@1: COptimal *opt; rlm@1: UInt32 distance = matches[offs + 1]; rlm@1: rlm@1: UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN]; rlm@1: UInt32 lenToPosState = GetLenToPosState(len); rlm@1: if (distance < kNumFullDistances) rlm@1: curAndLenPrice += p->distancesPrices[lenToPosState][distance]; rlm@1: else rlm@1: { rlm@1: UInt32 slot; rlm@1: GetPosSlot2(distance, slot); rlm@1: curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot]; rlm@1: } rlm@1: opt = &p->opt[len]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = 0; rlm@1: opt->backPrev = distance + LZMA_NUM_REPS; rlm@1: opt->prev1IsChar = False; rlm@1: } rlm@1: if (len == matches[offs]) rlm@1: { rlm@1: offs += 2; rlm@1: if (offs == numPairs) rlm@1: break; rlm@1: } rlm@1: } rlm@1: } rlm@1: rlm@1: cur = 0; rlm@1: rlm@1: #ifdef SHOW_STAT2 rlm@1: if (position >= 0) rlm@1: { rlm@1: unsigned i; rlm@1: printf("\n pos = %4X", position); rlm@1: for (i = cur; i <= lenEnd; i++) rlm@1: printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price); rlm@1: } rlm@1: #endif rlm@1: rlm@1: for (;;) rlm@1: { rlm@1: UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen; rlm@1: UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice; rlm@1: Bool nextIsChar; rlm@1: Byte curByte, matchByte; rlm@1: const Byte *data; rlm@1: COptimal *curOpt; rlm@1: COptimal *nextOpt; rlm@1: rlm@1: cur++; rlm@1: if (cur == lenEnd) rlm@1: return Backward(p, backRes, cur); rlm@1: rlm@1: newLen = ReadMatchDistances(p, &numPairs); rlm@1: if (newLen >= p->numFastBytes) rlm@1: { rlm@1: p->numPairs = numPairs; rlm@1: p->longestMatchLength = newLen; rlm@1: return Backward(p, backRes, cur); rlm@1: } rlm@1: position++; rlm@1: curOpt = &p->opt[cur]; rlm@1: posPrev = curOpt->posPrev; rlm@1: if (curOpt->prev1IsChar) rlm@1: { rlm@1: posPrev--; rlm@1: if (curOpt->prev2) rlm@1: { rlm@1: state = p->opt[curOpt->posPrev2].state; rlm@1: if (curOpt->backPrev2 < LZMA_NUM_REPS) rlm@1: state = kRepNextStates[state]; rlm@1: else rlm@1: state = kMatchNextStates[state]; rlm@1: } rlm@1: else rlm@1: state = p->opt[posPrev].state; rlm@1: state = kLiteralNextStates[state]; rlm@1: } rlm@1: else rlm@1: state = p->opt[posPrev].state; rlm@1: if (posPrev == cur - 1) rlm@1: { rlm@1: if (IsShortRep(curOpt)) rlm@1: state = kShortRepNextStates[state]; rlm@1: else rlm@1: state = kLiteralNextStates[state]; rlm@1: } rlm@1: else rlm@1: { rlm@1: UInt32 pos; rlm@1: const COptimal *prevOpt; rlm@1: if (curOpt->prev1IsChar && curOpt->prev2) rlm@1: { rlm@1: posPrev = curOpt->posPrev2; rlm@1: pos = curOpt->backPrev2; rlm@1: state = kRepNextStates[state]; rlm@1: } rlm@1: else rlm@1: { rlm@1: pos = curOpt->backPrev; rlm@1: if (pos < LZMA_NUM_REPS) rlm@1: state = kRepNextStates[state]; rlm@1: else rlm@1: state = kMatchNextStates[state]; rlm@1: } rlm@1: prevOpt = &p->opt[posPrev]; rlm@1: if (pos < LZMA_NUM_REPS) rlm@1: { rlm@1: UInt32 i; rlm@1: reps[0] = prevOpt->backs[pos]; rlm@1: for (i = 1; i <= pos; i++) rlm@1: reps[i] = prevOpt->backs[i - 1]; rlm@1: for (; i < LZMA_NUM_REPS; i++) rlm@1: reps[i] = prevOpt->backs[i]; rlm@1: } rlm@1: else rlm@1: { rlm@1: UInt32 i; rlm@1: reps[0] = (pos - LZMA_NUM_REPS); rlm@1: for (i = 1; i < LZMA_NUM_REPS; i++) rlm@1: reps[i] = prevOpt->backs[i - 1]; rlm@1: } rlm@1: } rlm@1: curOpt->state = (CState)state; rlm@1: rlm@1: curOpt->backs[0] = reps[0]; rlm@1: curOpt->backs[1] = reps[1]; rlm@1: curOpt->backs[2] = reps[2]; rlm@1: curOpt->backs[3] = reps[3]; rlm@1: rlm@1: curPrice = curOpt->price; rlm@1: nextIsChar = False; rlm@1: data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; rlm@1: curByte = *data; rlm@1: matchByte = *(data - (reps[0] + 1)); rlm@1: rlm@1: posState = (position & p->pbMask); rlm@1: rlm@1: curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]); rlm@1: { rlm@1: const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); rlm@1: curAnd1Price += rlm@1: (!IsCharState(state) ? rlm@1: LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : rlm@1: LitEnc_GetPrice(probs, curByte, p->ProbPrices)); rlm@1: } rlm@1: rlm@1: nextOpt = &p->opt[cur + 1]; rlm@1: rlm@1: if (curAnd1Price < nextOpt->price) rlm@1: { rlm@1: nextOpt->price = curAnd1Price; rlm@1: nextOpt->posPrev = cur; rlm@1: MakeAsChar(nextOpt); rlm@1: nextIsChar = True; rlm@1: } rlm@1: rlm@1: matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]); rlm@1: repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); rlm@1: rlm@1: if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0)) rlm@1: { rlm@1: UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState); rlm@1: if (shortRepPrice <= nextOpt->price) rlm@1: { rlm@1: nextOpt->price = shortRepPrice; rlm@1: nextOpt->posPrev = cur; rlm@1: MakeAsShortRep(nextOpt); rlm@1: nextIsChar = True; rlm@1: } rlm@1: } rlm@1: numAvailFull = p->numAvail; rlm@1: { rlm@1: UInt32 temp = kNumOpts - 1 - cur; rlm@1: if (temp < numAvailFull) rlm@1: numAvailFull = temp; rlm@1: } rlm@1: rlm@1: if (numAvailFull < 2) rlm@1: continue; rlm@1: numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes); rlm@1: rlm@1: if (!nextIsChar && matchByte != curByte) /* speed optimization */ rlm@1: { rlm@1: /* try Literal + rep0 */ rlm@1: UInt32 temp; rlm@1: UInt32 lenTest2; rlm@1: const Byte *data2 = data - (reps[0] + 1); rlm@1: UInt32 limit = p->numFastBytes + 1; rlm@1: if (limit > numAvailFull) rlm@1: limit = numAvailFull; rlm@1: rlm@1: for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++); rlm@1: lenTest2 = temp - 1; rlm@1: if (lenTest2 >= 2) rlm@1: { rlm@1: UInt32 state2 = kLiteralNextStates[state]; rlm@1: UInt32 posStateNext = (position + 1) & p->pbMask; rlm@1: UInt32 nextRepMatchPrice = curAnd1Price + rlm@1: GET_PRICE_1(p->isMatch[state2][posStateNext]) + rlm@1: GET_PRICE_1(p->isRep[state2]); rlm@1: /* for (; lenTest2 >= 2; lenTest2--) */ rlm@1: { rlm@1: UInt32 curAndLenPrice; rlm@1: COptimal *opt; rlm@1: UInt32 offset = cur + 1 + lenTest2; rlm@1: while (lenEnd < offset) rlm@1: p->opt[++lenEnd].price = kInfinityPrice; rlm@1: curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); rlm@1: opt = &p->opt[offset]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = cur + 1; rlm@1: opt->backPrev = 0; rlm@1: opt->prev1IsChar = True; rlm@1: opt->prev2 = False; rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: rlm@1: startLen = 2; /* speed optimization */ rlm@1: { rlm@1: UInt32 repIndex; rlm@1: for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++) rlm@1: { rlm@1: UInt32 lenTest; rlm@1: UInt32 lenTestTemp; rlm@1: UInt32 price; rlm@1: const Byte *data2 = data - (reps[repIndex] + 1); rlm@1: if (data[0] != data2[0] || data[1] != data2[1]) rlm@1: continue; rlm@1: for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++); rlm@1: while (lenEnd < cur + lenTest) rlm@1: p->opt[++lenEnd].price = kInfinityPrice; rlm@1: lenTestTemp = lenTest; rlm@1: price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState); rlm@1: do rlm@1: { rlm@1: UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2]; rlm@1: COptimal *opt = &p->opt[cur + lenTest]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = cur; rlm@1: opt->backPrev = repIndex; rlm@1: opt->prev1IsChar = False; rlm@1: } rlm@1: } rlm@1: while (--lenTest >= 2); rlm@1: lenTest = lenTestTemp; rlm@1: rlm@1: if (repIndex == 0) rlm@1: startLen = lenTest + 1; rlm@1: rlm@1: /* if (_maxMode) */ rlm@1: { rlm@1: UInt32 lenTest2 = lenTest + 1; rlm@1: UInt32 limit = lenTest2 + p->numFastBytes; rlm@1: UInt32 nextRepMatchPrice; rlm@1: if (limit > numAvailFull) rlm@1: limit = numAvailFull; rlm@1: for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); rlm@1: lenTest2 -= lenTest + 1; rlm@1: if (lenTest2 >= 2) rlm@1: { rlm@1: UInt32 state2 = kRepNextStates[state]; rlm@1: UInt32 posStateNext = (position + lenTest) & p->pbMask; rlm@1: UInt32 curAndLenCharPrice = rlm@1: price + p->repLenEnc.prices[posState][lenTest - 2] + rlm@1: GET_PRICE_0(p->isMatch[state2][posStateNext]) + rlm@1: LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), rlm@1: data[lenTest], data2[lenTest], p->ProbPrices); rlm@1: state2 = kLiteralNextStates[state2]; rlm@1: posStateNext = (position + lenTest + 1) & p->pbMask; rlm@1: nextRepMatchPrice = curAndLenCharPrice + rlm@1: GET_PRICE_1(p->isMatch[state2][posStateNext]) + rlm@1: GET_PRICE_1(p->isRep[state2]); rlm@1: rlm@1: /* for (; lenTest2 >= 2; lenTest2--) */ rlm@1: { rlm@1: UInt32 curAndLenPrice; rlm@1: COptimal *opt; rlm@1: UInt32 offset = cur + lenTest + 1 + lenTest2; rlm@1: while (lenEnd < offset) rlm@1: p->opt[++lenEnd].price = kInfinityPrice; rlm@1: curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); rlm@1: opt = &p->opt[offset]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = cur + lenTest + 1; rlm@1: opt->backPrev = 0; rlm@1: opt->prev1IsChar = True; rlm@1: opt->prev2 = True; rlm@1: opt->posPrev2 = cur; rlm@1: opt->backPrev2 = repIndex; rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */ rlm@1: if (newLen > numAvail) rlm@1: { rlm@1: newLen = numAvail; rlm@1: for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2); rlm@1: matches[numPairs] = newLen; rlm@1: numPairs += 2; rlm@1: } rlm@1: if (newLen >= startLen) rlm@1: { rlm@1: UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); rlm@1: UInt32 offs, curBack, posSlot; rlm@1: UInt32 lenTest; rlm@1: while (lenEnd < cur + newLen) rlm@1: p->opt[++lenEnd].price = kInfinityPrice; rlm@1: rlm@1: offs = 0; rlm@1: while (startLen > matches[offs]) rlm@1: offs += 2; rlm@1: curBack = matches[offs + 1]; rlm@1: GetPosSlot2(curBack, posSlot); rlm@1: for (lenTest = /*2*/ startLen; ; lenTest++) rlm@1: { rlm@1: UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN]; rlm@1: UInt32 lenToPosState = GetLenToPosState(lenTest); rlm@1: COptimal *opt; rlm@1: if (curBack < kNumFullDistances) rlm@1: curAndLenPrice += p->distancesPrices[lenToPosState][curBack]; rlm@1: else rlm@1: curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask]; rlm@1: rlm@1: opt = &p->opt[cur + lenTest]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = cur; rlm@1: opt->backPrev = curBack + LZMA_NUM_REPS; rlm@1: opt->prev1IsChar = False; rlm@1: } rlm@1: rlm@1: if (/*_maxMode && */lenTest == matches[offs]) rlm@1: { rlm@1: /* Try Match + Literal + Rep0 */ rlm@1: const Byte *data2 = data - (curBack + 1); rlm@1: UInt32 lenTest2 = lenTest + 1; rlm@1: UInt32 limit = lenTest2 + p->numFastBytes; rlm@1: UInt32 nextRepMatchPrice; rlm@1: if (limit > numAvailFull) rlm@1: limit = numAvailFull; rlm@1: for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); rlm@1: lenTest2 -= lenTest + 1; rlm@1: if (lenTest2 >= 2) rlm@1: { rlm@1: UInt32 state2 = kMatchNextStates[state]; rlm@1: UInt32 posStateNext = (position + lenTest) & p->pbMask; rlm@1: UInt32 curAndLenCharPrice = curAndLenPrice + rlm@1: GET_PRICE_0(p->isMatch[state2][posStateNext]) + rlm@1: LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), rlm@1: data[lenTest], data2[lenTest], p->ProbPrices); rlm@1: state2 = kLiteralNextStates[state2]; rlm@1: posStateNext = (posStateNext + 1) & p->pbMask; rlm@1: nextRepMatchPrice = curAndLenCharPrice + rlm@1: GET_PRICE_1(p->isMatch[state2][posStateNext]) + rlm@1: GET_PRICE_1(p->isRep[state2]); rlm@1: rlm@1: /* for (; lenTest2 >= 2; lenTest2--) */ rlm@1: { rlm@1: UInt32 offset = cur + lenTest + 1 + lenTest2; rlm@1: UInt32 curAndLenPrice; rlm@1: COptimal *opt; rlm@1: while (lenEnd < offset) rlm@1: p->opt[++lenEnd].price = kInfinityPrice; rlm@1: curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); rlm@1: opt = &p->opt[offset]; rlm@1: if (curAndLenPrice < opt->price) rlm@1: { rlm@1: opt->price = curAndLenPrice; rlm@1: opt->posPrev = cur + lenTest + 1; rlm@1: opt->backPrev = 0; rlm@1: opt->prev1IsChar = True; rlm@1: opt->prev2 = True; rlm@1: opt->posPrev2 = cur; rlm@1: opt->backPrev2 = curBack + LZMA_NUM_REPS; rlm@1: } rlm@1: } rlm@1: } rlm@1: offs += 2; rlm@1: if (offs == numPairs) rlm@1: break; rlm@1: curBack = matches[offs + 1]; rlm@1: if (curBack >= kNumFullDistances) rlm@1: GetPosSlot2(curBack, posSlot); rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: } rlm@1: rlm@1: #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) rlm@1: rlm@1: static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes) rlm@1: { rlm@1: UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i; rlm@1: const Byte *data; rlm@1: const UInt32 *matches; rlm@1: rlm@1: if (p->additionalOffset == 0) rlm@1: mainLen = ReadMatchDistances(p, &numPairs); rlm@1: else rlm@1: { rlm@1: mainLen = p->longestMatchLength; rlm@1: numPairs = p->numPairs; rlm@1: } rlm@1: rlm@1: numAvail = p->numAvail; rlm@1: *backRes = (UInt32)-1; rlm@1: if (numAvail < 2) rlm@1: return 1; rlm@1: if (numAvail > LZMA_MATCH_LEN_MAX) rlm@1: numAvail = LZMA_MATCH_LEN_MAX; rlm@1: data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; rlm@1: rlm@1: repLen = repIndex = 0; rlm@1: for (i = 0; i < LZMA_NUM_REPS; i++) rlm@1: { rlm@1: UInt32 len; rlm@1: const Byte *data2 = data - (p->reps[i] + 1); rlm@1: if (data[0] != data2[0] || data[1] != data2[1]) rlm@1: continue; rlm@1: for (len = 2; len < numAvail && data[len] == data2[len]; len++); rlm@1: if (len >= p->numFastBytes) rlm@1: { rlm@1: *backRes = i; rlm@1: MovePos(p, len - 1); rlm@1: return len; rlm@1: } rlm@1: if (len > repLen) rlm@1: { rlm@1: repIndex = i; rlm@1: repLen = len; rlm@1: } rlm@1: } rlm@1: rlm@1: matches = p->matches; rlm@1: if (mainLen >= p->numFastBytes) rlm@1: { rlm@1: *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; rlm@1: MovePos(p, mainLen - 1); rlm@1: return mainLen; rlm@1: } rlm@1: rlm@1: mainDist = 0; /* for GCC */ rlm@1: if (mainLen >= 2) rlm@1: { rlm@1: mainDist = matches[numPairs - 1]; rlm@1: while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1) rlm@1: { rlm@1: if (!ChangePair(matches[numPairs - 3], mainDist)) rlm@1: break; rlm@1: numPairs -= 2; rlm@1: mainLen = matches[numPairs - 2]; rlm@1: mainDist = matches[numPairs - 1]; rlm@1: } rlm@1: if (mainLen == 2 && mainDist >= 0x80) rlm@1: mainLen = 1; rlm@1: } rlm@1: rlm@1: if (repLen >= 2 && ( rlm@1: (repLen + 1 >= mainLen) || rlm@1: (repLen + 2 >= mainLen && mainDist >= (1 << 9)) || rlm@1: (repLen + 3 >= mainLen && mainDist >= (1 << 15)))) rlm@1: { rlm@1: *backRes = repIndex; rlm@1: MovePos(p, repLen - 1); rlm@1: return repLen; rlm@1: } rlm@1: rlm@1: if (mainLen < 2 || numAvail <= 2) rlm@1: return 1; rlm@1: rlm@1: p->longestMatchLength = ReadMatchDistances(p, &p->numPairs); rlm@1: if (p->longestMatchLength >= 2) rlm@1: { rlm@1: UInt32 newDistance = matches[p->numPairs - 1]; rlm@1: if ((p->longestMatchLength >= mainLen && newDistance < mainDist) || rlm@1: (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) || rlm@1: (p->longestMatchLength > mainLen + 1) || rlm@1: (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist))) rlm@1: return 1; rlm@1: } rlm@1: rlm@1: data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; rlm@1: for (i = 0; i < LZMA_NUM_REPS; i++) rlm@1: { rlm@1: UInt32 len, limit; rlm@1: const Byte *data2 = data - (p->reps[i] + 1); rlm@1: if (data[0] != data2[0] || data[1] != data2[1]) rlm@1: continue; rlm@1: limit = mainLen - 1; rlm@1: for (len = 2; len < limit && data[len] == data2[len]; len++); rlm@1: if (len >= limit) rlm@1: return 1; rlm@1: } rlm@1: *backRes = mainDist + LZMA_NUM_REPS; rlm@1: MovePos(p, mainLen - 2); rlm@1: return mainLen; rlm@1: } rlm@1: rlm@1: static void WriteEndMarker(CLzmaEnc *p, UInt32 posState) rlm@1: { rlm@1: UInt32 len; rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); rlm@1: p->state = kMatchNextStates[p->state]; rlm@1: len = LZMA_MATCH_LEN_MIN; rlm@1: LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); rlm@1: RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1); rlm@1: RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits); rlm@1: RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); rlm@1: } rlm@1: rlm@1: static SRes CheckErrors(CLzmaEnc *p) rlm@1: { rlm@1: if (p->result != SZ_OK) rlm@1: return p->result; rlm@1: if (p->rc.res != SZ_OK) rlm@1: p->result = SZ_ERROR_WRITE; rlm@1: if (p->matchFinderBase.result != SZ_OK) rlm@1: p->result = SZ_ERROR_READ; rlm@1: if (p->result != SZ_OK) rlm@1: p->finished = True; rlm@1: return p->result; rlm@1: } rlm@1: rlm@1: static SRes Flush(CLzmaEnc *p, UInt32 nowPos) rlm@1: { rlm@1: /* ReleaseMFStream(); */ rlm@1: p->finished = True; rlm@1: if (p->writeEndMark) rlm@1: WriteEndMarker(p, nowPos & p->pbMask); rlm@1: RangeEnc_FlushData(&p->rc); rlm@1: RangeEnc_FlushStream(&p->rc); rlm@1: return CheckErrors(p); rlm@1: } rlm@1: rlm@1: static void FillAlignPrices(CLzmaEnc *p) rlm@1: { rlm@1: UInt32 i; rlm@1: for (i = 0; i < kAlignTableSize; i++) rlm@1: p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); rlm@1: p->alignPriceCount = 0; rlm@1: } rlm@1: rlm@1: static void FillDistancesPrices(CLzmaEnc *p) rlm@1: { rlm@1: UInt32 tempPrices[kNumFullDistances]; rlm@1: UInt32 i, lenToPosState; rlm@1: for (i = kStartPosModelIndex; i < kNumFullDistances; i++) rlm@1: { rlm@1: UInt32 posSlot = GetPosSlot1(i); rlm@1: UInt32 footerBits = ((posSlot >> 1) - 1); rlm@1: UInt32 base = ((2 | (posSlot & 1)) << footerBits); rlm@1: tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices); rlm@1: } rlm@1: rlm@1: for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++) rlm@1: { rlm@1: UInt32 posSlot; rlm@1: const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState]; rlm@1: UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState]; rlm@1: for (posSlot = 0; posSlot < p->distTableSize; posSlot++) rlm@1: posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices); rlm@1: for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++) rlm@1: posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits); rlm@1: rlm@1: { rlm@1: UInt32 *distancesPrices = p->distancesPrices[lenToPosState]; rlm@1: UInt32 i; rlm@1: for (i = 0; i < kStartPosModelIndex; i++) rlm@1: distancesPrices[i] = posSlotPrices[i]; rlm@1: for (; i < kNumFullDistances; i++) rlm@1: distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i]; rlm@1: } rlm@1: } rlm@1: p->matchPriceCount = 0; rlm@1: } rlm@1: rlm@1: void LzmaEnc_Construct(CLzmaEnc *p) rlm@1: { rlm@1: RangeEnc_Construct(&p->rc); rlm@1: MatchFinder_Construct(&p->matchFinderBase); rlm@1: #ifdef COMPRESS_MF_MT rlm@1: MatchFinderMt_Construct(&p->matchFinderMt); rlm@1: p->matchFinderMt.MatchFinder = &p->matchFinderBase; rlm@1: #endif rlm@1: rlm@1: { rlm@1: CLzmaEncProps props; rlm@1: LzmaEncProps_Init(&props); rlm@1: LzmaEnc_SetProps(p, &props); rlm@1: } rlm@1: rlm@1: #ifndef LZMA_LOG_BSR rlm@1: LzmaEnc_FastPosInit(p->g_FastPos); rlm@1: #endif rlm@1: rlm@1: LzmaEnc_InitPriceTables(p->ProbPrices); rlm@1: p->litProbs = 0; rlm@1: p->saveState.litProbs = 0; rlm@1: } rlm@1: rlm@1: CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc) rlm@1: { rlm@1: void *p; rlm@1: p = alloc->Alloc(alloc, sizeof(CLzmaEnc)); rlm@1: if (p != 0) rlm@1: LzmaEnc_Construct((CLzmaEnc *)p); rlm@1: return p; rlm@1: } rlm@1: rlm@1: void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc) rlm@1: { rlm@1: alloc->Free(alloc, p->litProbs); rlm@1: alloc->Free(alloc, p->saveState.litProbs); rlm@1: p->litProbs = 0; rlm@1: p->saveState.litProbs = 0; rlm@1: } rlm@1: rlm@1: void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: #ifdef COMPRESS_MF_MT rlm@1: MatchFinderMt_Destruct(&p->matchFinderMt, allocBig); rlm@1: #endif rlm@1: MatchFinder_Free(&p->matchFinderBase, allocBig); rlm@1: LzmaEnc_FreeLits(p, alloc); rlm@1: RangeEnc_Free(&p->rc, alloc); rlm@1: } rlm@1: rlm@1: void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig); rlm@1: alloc->Free(alloc, p); rlm@1: } rlm@1: rlm@1: static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize) rlm@1: { rlm@1: UInt32 nowPos32, startPos32; rlm@1: if (p->inStream != 0) rlm@1: { rlm@1: p->matchFinderBase.stream = p->inStream; rlm@1: p->matchFinder.Init(p->matchFinderObj); rlm@1: p->inStream = 0; rlm@1: } rlm@1: rlm@1: if (p->finished) rlm@1: return p->result; rlm@1: RINOK(CheckErrors(p)); rlm@1: rlm@1: nowPos32 = (UInt32)p->nowPos64; rlm@1: startPos32 = nowPos32; rlm@1: rlm@1: if (p->nowPos64 == 0) rlm@1: { rlm@1: UInt32 numPairs; rlm@1: Byte curByte; rlm@1: if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) rlm@1: return Flush(p, nowPos32); rlm@1: ReadMatchDistances(p, &numPairs); rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0); rlm@1: p->state = kLiteralNextStates[p->state]; rlm@1: curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset); rlm@1: LitEnc_Encode(&p->rc, p->litProbs, curByte); rlm@1: p->additionalOffset--; rlm@1: nowPos32++; rlm@1: } rlm@1: rlm@1: if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0) rlm@1: for (;;) rlm@1: { rlm@1: UInt32 pos, len, posState; rlm@1: rlm@1: if (p->fastMode) rlm@1: len = GetOptimumFast(p, &pos); rlm@1: else rlm@1: len = GetOptimum(p, nowPos32, &pos); rlm@1: rlm@1: #ifdef SHOW_STAT2 rlm@1: printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos); rlm@1: #endif rlm@1: rlm@1: posState = nowPos32 & p->pbMask; rlm@1: if (len == 1 && pos == (UInt32)-1) rlm@1: { rlm@1: Byte curByte; rlm@1: CLzmaProb *probs; rlm@1: const Byte *data; rlm@1: rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0); rlm@1: data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; rlm@1: curByte = *data; rlm@1: probs = LIT_PROBS(nowPos32, *(data - 1)); rlm@1: if (IsCharState(p->state)) rlm@1: LitEnc_Encode(&p->rc, probs, curByte); rlm@1: else rlm@1: LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1)); rlm@1: p->state = kLiteralNextStates[p->state]; rlm@1: } rlm@1: else rlm@1: { rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); rlm@1: if (pos < LZMA_NUM_REPS) rlm@1: { rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1); rlm@1: if (pos == 0) rlm@1: { rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0); rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1)); rlm@1: } rlm@1: else rlm@1: { rlm@1: UInt32 distance = p->reps[pos]; rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1); rlm@1: if (pos == 1) rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0); rlm@1: else rlm@1: { rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1); rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2); rlm@1: if (pos == 3) rlm@1: p->reps[3] = p->reps[2]; rlm@1: p->reps[2] = p->reps[1]; rlm@1: } rlm@1: p->reps[1] = p->reps[0]; rlm@1: p->reps[0] = distance; rlm@1: } rlm@1: if (len == 1) rlm@1: p->state = kShortRepNextStates[p->state]; rlm@1: else rlm@1: { rlm@1: LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); rlm@1: p->state = kRepNextStates[p->state]; rlm@1: } rlm@1: } rlm@1: else rlm@1: { rlm@1: UInt32 posSlot; rlm@1: RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); rlm@1: p->state = kMatchNextStates[p->state]; rlm@1: LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); rlm@1: pos -= LZMA_NUM_REPS; rlm@1: GetPosSlot(pos, posSlot); rlm@1: RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot); rlm@1: rlm@1: if (posSlot >= kStartPosModelIndex) rlm@1: { rlm@1: UInt32 footerBits = ((posSlot >> 1) - 1); rlm@1: UInt32 base = ((2 | (posSlot & 1)) << footerBits); rlm@1: UInt32 posReduced = pos - base; rlm@1: rlm@1: if (posSlot < kEndPosModelIndex) rlm@1: RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced); rlm@1: else rlm@1: { rlm@1: RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); rlm@1: RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); rlm@1: p->alignPriceCount++; rlm@1: } rlm@1: } rlm@1: p->reps[3] = p->reps[2]; rlm@1: p->reps[2] = p->reps[1]; rlm@1: p->reps[1] = p->reps[0]; rlm@1: p->reps[0] = pos; rlm@1: p->matchPriceCount++; rlm@1: } rlm@1: } rlm@1: p->additionalOffset -= len; rlm@1: nowPos32 += len; rlm@1: if (p->additionalOffset == 0) rlm@1: { rlm@1: UInt32 processed; rlm@1: if (!p->fastMode) rlm@1: { rlm@1: if (p->matchPriceCount >= (1 << 7)) rlm@1: FillDistancesPrices(p); rlm@1: if (p->alignPriceCount >= kAlignTableSize) rlm@1: FillAlignPrices(p); rlm@1: } rlm@1: if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) rlm@1: break; rlm@1: processed = nowPos32 - startPos32; rlm@1: if (useLimits) rlm@1: { rlm@1: if (processed + kNumOpts + 300 >= maxUnpackSize || rlm@1: RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize) rlm@1: break; rlm@1: } rlm@1: else if (processed >= (1 << 15)) rlm@1: { rlm@1: p->nowPos64 += nowPos32 - startPos32; rlm@1: return CheckErrors(p); rlm@1: } rlm@1: } rlm@1: } rlm@1: p->nowPos64 += nowPos32 - startPos32; rlm@1: return Flush(p, nowPos32); rlm@1: } rlm@1: rlm@1: #define kBigHashDicLimit ((UInt32)1 << 24) rlm@1: rlm@1: static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: UInt32 beforeSize = kNumOpts; rlm@1: Bool btMode; rlm@1: if (!RangeEnc_Alloc(&p->rc, alloc)) rlm@1: return SZ_ERROR_MEM; rlm@1: btMode = (p->matchFinderBase.btMode != 0); rlm@1: #ifdef COMPRESS_MF_MT rlm@1: p->mtMode = (p->multiThread && !p->fastMode && btMode); rlm@1: #endif rlm@1: rlm@1: { rlm@1: unsigned lclp = p->lc + p->lp; rlm@1: if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp) rlm@1: { rlm@1: LzmaEnc_FreeLits(p, alloc); rlm@1: p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); rlm@1: p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); rlm@1: if (p->litProbs == 0 || p->saveState.litProbs == 0) rlm@1: { rlm@1: LzmaEnc_FreeLits(p, alloc); rlm@1: return SZ_ERROR_MEM; rlm@1: } rlm@1: p->lclp = lclp; rlm@1: } rlm@1: } rlm@1: rlm@1: p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit); rlm@1: rlm@1: if (beforeSize + p->dictSize < keepWindowSize) rlm@1: beforeSize = keepWindowSize - p->dictSize; rlm@1: rlm@1: #ifdef COMPRESS_MF_MT rlm@1: if (p->mtMode) rlm@1: { rlm@1: RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)); rlm@1: p->matchFinderObj = &p->matchFinderMt; rlm@1: MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder); rlm@1: } rlm@1: else rlm@1: #endif rlm@1: { rlm@1: if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)) rlm@1: return SZ_ERROR_MEM; rlm@1: p->matchFinderObj = &p->matchFinderBase; rlm@1: MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder); rlm@1: } rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: void LzmaEnc_Init(CLzmaEnc *p) rlm@1: { rlm@1: UInt32 i; rlm@1: p->state = 0; rlm@1: for (i = 0 ; i < LZMA_NUM_REPS; i++) rlm@1: p->reps[i] = 0; rlm@1: rlm@1: RangeEnc_Init(&p->rc); rlm@1: rlm@1: rlm@1: for (i = 0; i < kNumStates; i++) rlm@1: { rlm@1: UInt32 j; rlm@1: for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) rlm@1: { rlm@1: p->isMatch[i][j] = kProbInitValue; rlm@1: p->isRep0Long[i][j] = kProbInitValue; rlm@1: } rlm@1: p->isRep[i] = kProbInitValue; rlm@1: p->isRepG0[i] = kProbInitValue; rlm@1: p->isRepG1[i] = kProbInitValue; rlm@1: p->isRepG2[i] = kProbInitValue; rlm@1: } rlm@1: rlm@1: { rlm@1: UInt32 num = 0x300 << (p->lp + p->lc); rlm@1: for (i = 0; i < num; i++) rlm@1: p->litProbs[i] = kProbInitValue; rlm@1: } rlm@1: rlm@1: { rlm@1: for (i = 0; i < kNumLenToPosStates; i++) rlm@1: { rlm@1: CLzmaProb *probs = p->posSlotEncoder[i]; rlm@1: UInt32 j; rlm@1: for (j = 0; j < (1 << kNumPosSlotBits); j++) rlm@1: probs[j] = kProbInitValue; rlm@1: } rlm@1: } rlm@1: { rlm@1: for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++) rlm@1: p->posEncoders[i] = kProbInitValue; rlm@1: } rlm@1: rlm@1: LenEnc_Init(&p->lenEnc.p); rlm@1: LenEnc_Init(&p->repLenEnc.p); rlm@1: rlm@1: for (i = 0; i < (1 << kNumAlignBits); i++) rlm@1: p->posAlignEncoder[i] = kProbInitValue; rlm@1: rlm@1: p->optimumEndIndex = 0; rlm@1: p->optimumCurrentIndex = 0; rlm@1: p->additionalOffset = 0; rlm@1: rlm@1: p->pbMask = (1 << p->pb) - 1; rlm@1: p->lpMask = (1 << p->lp) - 1; rlm@1: } rlm@1: rlm@1: void LzmaEnc_InitPrices(CLzmaEnc *p) rlm@1: { rlm@1: if (!p->fastMode) rlm@1: { rlm@1: FillDistancesPrices(p); rlm@1: FillAlignPrices(p); rlm@1: } rlm@1: rlm@1: p->lenEnc.tableSize = rlm@1: p->repLenEnc.tableSize = rlm@1: p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; rlm@1: LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices); rlm@1: LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices); rlm@1: } rlm@1: rlm@1: static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: UInt32 i; rlm@1: for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++) rlm@1: if (p->dictSize <= ((UInt32)1 << i)) rlm@1: break; rlm@1: p->distTableSize = i * 2; rlm@1: rlm@1: p->finished = False; rlm@1: p->result = SZ_OK; rlm@1: RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig)); rlm@1: LzmaEnc_Init(p); rlm@1: LzmaEnc_InitPrices(p); rlm@1: p->nowPos64 = 0; rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream, rlm@1: ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: p->inStream = inStream; rlm@1: p->rc.outStream = outStream; rlm@1: return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig); rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, rlm@1: ISeqInStream *inStream, UInt32 keepWindowSize, rlm@1: ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: p->inStream = inStream; rlm@1: return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); rlm@1: } rlm@1: rlm@1: static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen) rlm@1: { rlm@1: p->seqBufInStream.funcTable.Read = MyRead; rlm@1: p->seqBufInStream.data = src; rlm@1: p->seqBufInStream.rem = srcLen; rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen, rlm@1: UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: LzmaEnc_SetInputBuf(p, src, srcLen); rlm@1: p->inStream = &p->seqBufInStream.funcTable; rlm@1: return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); rlm@1: } rlm@1: rlm@1: void LzmaEnc_Finish(CLzmaEncHandle pp) rlm@1: { rlm@1: #ifdef COMPRESS_MF_MT rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: if (p->mtMode) rlm@1: MatchFinderMt_ReleaseStream(&p->matchFinderMt); rlm@1: #else rlm@1: pp = pp; rlm@1: #endif rlm@1: } rlm@1: rlm@1: typedef struct _CSeqOutStreamBuf rlm@1: { rlm@1: ISeqOutStream funcTable; rlm@1: Byte *data; rlm@1: SizeT rem; rlm@1: Bool overflow; rlm@1: } CSeqOutStreamBuf; rlm@1: rlm@1: static size_t MyWrite(void *pp, const void *data, size_t size) rlm@1: { rlm@1: CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp; rlm@1: if (p->rem < size) rlm@1: { rlm@1: size = p->rem; rlm@1: p->overflow = True; rlm@1: } rlm@1: memcpy(p->data, data, size); rlm@1: p->rem -= size; rlm@1: p->data += size; rlm@1: return size; rlm@1: } rlm@1: rlm@1: rlm@1: UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp) rlm@1: { rlm@1: const CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); rlm@1: } rlm@1: rlm@1: const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp) rlm@1: { rlm@1: const CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit, rlm@1: Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: UInt64 nowPos64; rlm@1: SRes res; rlm@1: CSeqOutStreamBuf outStream; rlm@1: rlm@1: outStream.funcTable.Write = MyWrite; rlm@1: outStream.data = dest; rlm@1: outStream.rem = *destLen; rlm@1: outStream.overflow = False; rlm@1: rlm@1: p->writeEndMark = False; rlm@1: p->finished = False; rlm@1: p->result = SZ_OK; rlm@1: rlm@1: if (reInit) rlm@1: LzmaEnc_Init(p); rlm@1: LzmaEnc_InitPrices(p); rlm@1: nowPos64 = p->nowPos64; rlm@1: RangeEnc_Init(&p->rc); rlm@1: p->rc.outStream = &outStream.funcTable; rlm@1: rlm@1: res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize); rlm@1: rlm@1: *unpackSize = (UInt32)(p->nowPos64 - nowPos64); rlm@1: *destLen -= outStream.rem; rlm@1: if (outStream.overflow) rlm@1: return SZ_ERROR_OUTPUT_EOF; rlm@1: rlm@1: return res; rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress, rlm@1: ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: SRes res = SZ_OK; rlm@1: rlm@1: #ifdef COMPRESS_MF_MT rlm@1: Byte allocaDummy[0x300]; rlm@1: int i = 0; rlm@1: for (i = 0; i < 16; i++) rlm@1: allocaDummy[i] = (Byte)i; rlm@1: #endif rlm@1: rlm@1: RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig)); rlm@1: rlm@1: for (;;) rlm@1: { rlm@1: res = LzmaEnc_CodeOneBlock(p, False, 0, 0); rlm@1: if (res != SZ_OK || p->finished != 0) rlm@1: break; rlm@1: if (progress != 0) rlm@1: { rlm@1: res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc)); rlm@1: if (res != SZ_OK) rlm@1: { rlm@1: res = SZ_ERROR_PROGRESS; rlm@1: break; rlm@1: } rlm@1: } rlm@1: } rlm@1: LzmaEnc_Finish(pp); rlm@1: return res; rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: int i; rlm@1: UInt32 dictSize = p->dictSize; rlm@1: if (*size < LZMA_PROPS_SIZE) rlm@1: return SZ_ERROR_PARAM; rlm@1: *size = LZMA_PROPS_SIZE; rlm@1: props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc); rlm@1: rlm@1: for (i = 11; i <= 30; i++) rlm@1: { rlm@1: if (dictSize <= ((UInt32)2 << i)) rlm@1: { rlm@1: dictSize = (2 << i); rlm@1: break; rlm@1: } rlm@1: if (dictSize <= ((UInt32)3 << i)) rlm@1: { rlm@1: dictSize = (3 << i); rlm@1: break; rlm@1: } rlm@1: } rlm@1: rlm@1: for (i = 0; i < 4; i++) rlm@1: props[1 + i] = (Byte)(dictSize >> (8 * i)); rlm@1: return SZ_OK; rlm@1: } rlm@1: rlm@1: SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, rlm@1: int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: SRes res; rlm@1: CLzmaEnc *p = (CLzmaEnc *)pp; rlm@1: rlm@1: CSeqOutStreamBuf outStream; rlm@1: rlm@1: LzmaEnc_SetInputBuf(p, src, srcLen); rlm@1: rlm@1: outStream.funcTable.Write = MyWrite; rlm@1: outStream.data = dest; rlm@1: outStream.rem = *destLen; rlm@1: outStream.overflow = False; rlm@1: rlm@1: p->writeEndMark = writeEndMark; rlm@1: res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable, rlm@1: progress, alloc, allocBig); rlm@1: rlm@1: *destLen -= outStream.rem; rlm@1: if (outStream.overflow) rlm@1: return SZ_ERROR_OUTPUT_EOF; rlm@1: return res; rlm@1: } rlm@1: rlm@1: SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, rlm@1: const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, rlm@1: ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) rlm@1: { rlm@1: CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc); rlm@1: SRes res; rlm@1: if (p == 0) rlm@1: return SZ_ERROR_MEM; rlm@1: rlm@1: res = LzmaEnc_SetProps(p, props); rlm@1: if (res == SZ_OK) rlm@1: { rlm@1: res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize); rlm@1: if (res == SZ_OK) rlm@1: res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, rlm@1: writeEndMark, progress, alloc, allocBig); rlm@1: } rlm@1: rlm@1: LzmaEnc_Destroy(p, alloc, allocBig); rlm@1: return res; rlm@1: }