rlm@1: // Blip_Buffer 0.4.1. http://www.slack.net/~ant/ rlm@1: rlm@1: #include "Blip_Buffer.h" rlm@1: rlm@1: #include rlm@1: #include rlm@1: #include rlm@1: #include rlm@1: #include rlm@1: rlm@1: /* Copyright (C) 2003-2007 Shay Green. This module is free software; you rlm@1: can redistribute it and/or modify it under the terms of the GNU Lesser rlm@1: General Public License as published by the Free Software Foundation; either rlm@1: version 2.1 of the License, or (at your option) any later version. This rlm@1: module is distributed in the hope that it will be useful, but WITHOUT ANY rlm@1: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS rlm@1: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more rlm@1: details. You should have received a copy of the GNU Lesser General Public rlm@1: License along with this module; if not, write to the Free Software Foundation, rlm@1: Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ rlm@1: rlm@1: // TODO: use scoped for variables in treble_eq() rlm@1: rlm@1: #ifdef BLARGG_ENABLE_OPTIMIZER rlm@1: #include BLARGG_ENABLE_OPTIMIZER rlm@1: #endif rlm@1: rlm@1: int const silent_buf_size = 1; // size used for Silent_Blip_Buffer rlm@1: rlm@1: Blip_Buffer::Blip_Buffer() rlm@1: { rlm@1: factor_ = LONG_MAX; rlm@1: buffer_ = 0; rlm@1: buffer_size_ = 0; rlm@1: sample_rate_ = 0; rlm@1: bass_shift_ = 0; rlm@1: clock_rate_ = 0; rlm@1: bass_freq_ = 16; rlm@1: length_ = 0; rlm@1: rlm@1: // assumptions code makes about implementation-defined features rlm@1: #ifndef NDEBUG rlm@1: // right shift of negative value preserves sign rlm@1: buf_t_ i = -0x7FFFFFFE; rlm@1: assert( (i >> 1) == -0x3FFFFFFF ); rlm@1: rlm@1: // casting to short truncates to 16 bits and sign-extends rlm@1: i = 0x18000; rlm@1: assert( (short) i == -0x8000 ); rlm@1: #endif rlm@1: rlm@1: clear(); rlm@1: } rlm@1: rlm@1: Blip_Buffer::~Blip_Buffer() rlm@1: { rlm@1: if ( buffer_size_ != silent_buf_size ) rlm@1: free( buffer_ ); rlm@1: } rlm@1: rlm@1: Silent_Blip_Buffer::Silent_Blip_Buffer() rlm@1: { rlm@1: factor_ = 0; rlm@1: buffer_ = buf; rlm@1: buffer_size_ = silent_buf_size; rlm@1: clear(); rlm@1: } rlm@1: rlm@1: void Blip_Buffer::clear( int entire_buffer ) rlm@1: { rlm@1: offset_ = 0; rlm@1: reader_accum_ = 0; rlm@1: modified_ = 0; rlm@1: if ( buffer_ ) rlm@1: { rlm@1: long count = (entire_buffer ? buffer_size_ : samples_avail()); rlm@1: memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) ); rlm@1: } rlm@1: } rlm@1: rlm@1: Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec ) rlm@1: { rlm@1: if ( buffer_size_ == silent_buf_size ) rlm@1: { rlm@1: assert( 0 ); rlm@1: return "Internal (tried to resize Silent_Blip_Buffer)"; rlm@1: } rlm@1: rlm@1: // start with maximum length that resampled time can represent rlm@1: long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64; rlm@1: if ( msec != blip_max_length ) rlm@1: { rlm@1: long s = (new_rate * (msec + 1) + 999) / 1000; rlm@1: if ( s < new_size ) rlm@1: new_size = s; rlm@1: else rlm@1: assert( 0 ); // fails if requested buffer length exceeds limit rlm@1: } rlm@1: rlm@1: if ( buffer_size_ != new_size ) rlm@1: { rlm@1: void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ ); rlm@1: if ( !p ) rlm@1: return "Out of memory"; rlm@1: buffer_ = (buf_t_*) p; rlm@1: } rlm@1: rlm@1: buffer_size_ = new_size; rlm@1: assert( buffer_size_ != silent_buf_size ); // size should never happen to match this rlm@1: rlm@1: // update things based on the sample rate rlm@1: sample_rate_ = new_rate; rlm@1: length_ = new_size * 1000 / new_rate - 1; rlm@1: if ( msec ) rlm@1: assert( length_ == msec ); // ensure length is same as that passed in rlm@1: rlm@1: // update these since they depend on sample rate rlm@1: if ( clock_rate_ ) rlm@1: clock_rate( clock_rate_ ); rlm@1: bass_freq( bass_freq_ ); rlm@1: rlm@1: clear(); rlm@1: rlm@1: return 0; // success rlm@1: } rlm@1: rlm@1: blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const rlm@1: { rlm@1: double ratio = (double) sample_rate_ / rate; rlm@1: blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 ); rlm@1: assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large rlm@1: return (blip_resampled_time_t) factor; rlm@1: } rlm@1: rlm@1: void Blip_Buffer::bass_freq( int freq ) rlm@1: { rlm@1: bass_freq_ = freq; rlm@1: int shift = 31; rlm@1: if ( freq > 0 ) rlm@1: { rlm@1: shift = 13; rlm@1: long f = (freq << 16) / sample_rate_; rlm@1: while ( (f >>= 1) && --shift ) { } rlm@1: } rlm@1: bass_shift_ = shift; rlm@1: } rlm@1: rlm@1: void Blip_Buffer::end_frame( blip_time_t t ) rlm@1: { rlm@1: offset_ += t * factor_; rlm@1: assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer rlm@1: } rlm@1: rlm@1: long Blip_Buffer::count_samples( blip_time_t t ) const rlm@1: { rlm@1: blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY; rlm@1: blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY; rlm@1: return long (last_sample - first_sample); rlm@1: } rlm@1: rlm@1: blip_time_t Blip_Buffer::count_clocks( long count ) const rlm@1: { rlm@1: if ( !factor_ ) rlm@1: { rlm@1: assert( 0 ); // sample rate and clock rates must be set first rlm@1: return 0; rlm@1: } rlm@1: rlm@1: if ( count > buffer_size_ ) rlm@1: count = buffer_size_; rlm@1: blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY; rlm@1: return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_); rlm@1: } rlm@1: rlm@1: void Blip_Buffer::remove_samples( long count ) rlm@1: { rlm@1: if ( count ) rlm@1: { rlm@1: remove_silence( count ); rlm@1: rlm@1: // copy remaining samples to beginning and clear old samples rlm@1: long remain = samples_avail() + blip_buffer_extra_; rlm@1: memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ ); rlm@1: memset( buffer_ + remain, 0, count * sizeof *buffer_ ); rlm@1: } rlm@1: } rlm@1: rlm@1: // Blip_Synth_ rlm@1: rlm@1: Blip_Synth_Fast_::Blip_Synth_Fast_() rlm@1: { rlm@1: buf = 0; rlm@1: last_amp = 0; rlm@1: delta_factor = 0; rlm@1: } rlm@1: rlm@1: void Blip_Synth_Fast_::volume_unit( double new_unit ) rlm@1: { rlm@1: delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5); rlm@1: } rlm@1: rlm@1: #if !BLIP_BUFFER_FAST rlm@1: rlm@1: Blip_Synth_::Blip_Synth_( short* p, int w ) : rlm@1: impulses( p ), rlm@1: width( w ) rlm@1: { rlm@1: volume_unit_ = 0.0; rlm@1: kernel_unit = 0; rlm@1: buf = 0; rlm@1: last_amp = 0; rlm@1: delta_factor = 0; rlm@1: } rlm@1: rlm@1: #undef PI rlm@1: #define PI 3.1415926535897932384626433832795029 rlm@1: rlm@1: static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff ) rlm@1: { rlm@1: if ( cutoff >= 0.999 ) rlm@1: cutoff = 0.999; rlm@1: rlm@1: if ( treble < -300.0 ) rlm@1: treble = -300.0; rlm@1: if ( treble > 5.0 ) rlm@1: treble = 5.0; rlm@1: rlm@1: double const maxh = 4096.0; rlm@1: double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) ); rlm@1: double const pow_a_n = pow( rolloff, maxh - maxh * cutoff ); rlm@1: double const to_angle = PI / 2 / maxh / oversample; rlm@1: for ( int i = 0; i < count; i++ ) rlm@1: { rlm@1: double angle = ((i - count) * 2 + 1) * to_angle; rlm@1: double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle ); rlm@1: double cos_nc_angle = cos( maxh * cutoff * angle ); rlm@1: double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle ); rlm@1: double cos_angle = cos( angle ); rlm@1: rlm@1: c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle; rlm@1: double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle); rlm@1: double b = 2.0 - cos_angle - cos_angle; rlm@1: double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle; rlm@1: rlm@1: out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d rlm@1: } rlm@1: } rlm@1: rlm@1: void blip_eq_t::generate( float* out, int count ) const rlm@1: { rlm@1: // lower cutoff freq for narrow kernels with their wider transition band rlm@1: // (8 points->1.49, 16 points->1.15) rlm@1: double oversample = blip_res * 2.25 / count + 0.85; rlm@1: double half_rate = sample_rate * 0.5; rlm@1: if ( cutoff_freq ) rlm@1: oversample = half_rate / cutoff_freq; rlm@1: double cutoff = rolloff_freq * oversample / half_rate; rlm@1: rlm@1: gen_sinc( out, count, blip_res * oversample, treble, cutoff ); rlm@1: rlm@1: // apply (half of) hamming window rlm@1: double to_fraction = PI / (count - 1); rlm@1: for ( int i = count; i--; ) rlm@1: out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction ); rlm@1: } rlm@1: rlm@1: void Blip_Synth_::adjust_impulse() rlm@1: { rlm@1: // sum pairs for each phase and add error correction to end of first half rlm@1: int const size = impulses_size(); rlm@1: for ( int p = blip_res; p-- >= blip_res / 2; ) rlm@1: { rlm@1: int p2 = blip_res - 2 - p; rlm@1: long error = kernel_unit; rlm@1: for ( int i = 1; i < size; i += blip_res ) rlm@1: { rlm@1: error -= impulses [i + p ]; rlm@1: error -= impulses [i + p2]; rlm@1: } rlm@1: if ( p == p2 ) rlm@1: error /= 2; // phase = 0.5 impulse uses same half for both sides rlm@1: impulses [size - blip_res + p] += (short) error; rlm@1: //printf( "error: %ld\n", error ); rlm@1: } rlm@1: rlm@1: //for ( int i = blip_res; i--; printf( "\n" ) ) rlm@1: // for ( int j = 0; j < width / 2; j++ ) rlm@1: // printf( "%5ld,", impulses [j * blip_res + i + 1] ); rlm@1: } rlm@1: rlm@1: void Blip_Synth_::treble_eq( blip_eq_t const& eq ) rlm@1: { rlm@1: float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2]; rlm@1: rlm@1: int const half_size = blip_res / 2 * (width - 1); rlm@1: eq.generate( &fimpulse [blip_res], half_size ); rlm@1: rlm@1: int i; rlm@1: rlm@1: // need mirror slightly past center for calculation rlm@1: for ( i = blip_res; i--; ) rlm@1: fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i]; rlm@1: rlm@1: // starts at 0 rlm@1: for ( i = 0; i < blip_res; i++ ) rlm@1: fimpulse [i] = 0.0f; rlm@1: rlm@1: // find rescale factor rlm@1: double total = 0.0; rlm@1: for ( i = 0; i < half_size; i++ ) rlm@1: total += fimpulse [blip_res + i]; rlm@1: rlm@1: //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB rlm@1: //double const base_unit = 37888.0; // allows treble to +5 dB rlm@1: double const base_unit = 32768.0; // necessary for blip_unscaled to work rlm@1: double rescale = base_unit / 2 / total; rlm@1: kernel_unit = (long) base_unit; rlm@1: rlm@1: // integrate, first difference, rescale, convert to int rlm@1: double sum = 0.0; rlm@1: double next = 0.0; rlm@1: int const size = this->impulses_size(); rlm@1: for ( i = 0; i < size; i++ ) rlm@1: { rlm@1: impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 ); rlm@1: sum += fimpulse [i]; rlm@1: next += fimpulse [i + blip_res]; rlm@1: } rlm@1: adjust_impulse(); rlm@1: rlm@1: // volume might require rescaling rlm@1: double vol = volume_unit_; rlm@1: if ( vol ) rlm@1: { rlm@1: volume_unit_ = 0.0; rlm@1: volume_unit( vol ); rlm@1: } rlm@1: } rlm@1: rlm@1: void Blip_Synth_::volume_unit( double new_unit ) rlm@1: { rlm@1: if ( new_unit != volume_unit_ ) rlm@1: { rlm@1: // use default eq if it hasn't been set yet rlm@1: if ( !kernel_unit ) rlm@1: treble_eq( -8.0 ); rlm@1: rlm@1: volume_unit_ = new_unit; rlm@1: double factor = new_unit * (1L << blip_sample_bits) / kernel_unit; rlm@1: rlm@1: if ( factor > 0.0 ) rlm@1: { rlm@1: int shift = 0; rlm@1: rlm@1: // if unit is really small, might need to attenuate kernel rlm@1: while ( factor < 2.0 ) rlm@1: { rlm@1: shift++; rlm@1: factor *= 2.0; rlm@1: } rlm@1: rlm@1: if ( shift ) rlm@1: { rlm@1: kernel_unit >>= shift; rlm@1: assert( kernel_unit > 0 ); // fails if volume unit is too low rlm@1: rlm@1: // keep values positive to avoid round-towards-zero of sign-preserving rlm@1: // right shift for negative values rlm@1: long offset = 0x8000 + (1 << (shift - 1)); rlm@1: long offset2 = 0x8000 >> shift; rlm@1: for ( int i = impulses_size(); i--; ) rlm@1: impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2); rlm@1: adjust_impulse(); rlm@1: } rlm@1: } rlm@1: delta_factor = (int) floor( factor + 0.5 ); rlm@1: //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit ); rlm@1: } rlm@1: } rlm@1: #endif rlm@1: rlm@1: long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo ) rlm@1: { rlm@1: long count = samples_avail(); rlm@1: if ( count > max_samples ) rlm@1: count = max_samples; rlm@1: rlm@1: if ( count ) rlm@1: { rlm@1: int const bass = BLIP_READER_BASS( *this ); rlm@1: BLIP_READER_BEGIN( reader, *this ); rlm@1: BLIP_READER_ADJ_( reader, count ); rlm@1: blip_sample_t* BLIP_RESTRICT out = out_ + count; rlm@1: blip_long offset = (blip_long) -count; rlm@1: rlm@1: if ( !stereo ) rlm@1: { rlm@1: do rlm@1: { rlm@1: blip_long s = BLIP_READER_READ( reader ); rlm@1: BLIP_READER_NEXT_IDX_( reader, bass, offset ); rlm@1: BLIP_CLAMP( s, s ); rlm@1: out [offset] = (blip_sample_t) s; rlm@1: } rlm@1: while ( ++offset ); rlm@1: } rlm@1: else rlm@1: { rlm@1: do rlm@1: { rlm@1: blip_long s = BLIP_READER_READ( reader ); rlm@1: BLIP_READER_NEXT_IDX_( reader, bass, offset ); rlm@1: BLIP_CLAMP( s, s ); rlm@1: out [offset * 2] = (blip_sample_t) s; rlm@1: } rlm@1: while ( ++offset ); rlm@1: } rlm@1: rlm@1: BLIP_READER_END( reader, *this ); rlm@1: rlm@1: remove_samples( count ); rlm@1: } rlm@1: return count; rlm@1: } rlm@1: rlm@1: void Blip_Buffer::mix_samples( blip_sample_t const* in, long count ) rlm@1: { rlm@1: if ( buffer_size_ == silent_buf_size ) rlm@1: { rlm@1: assert( 0 ); rlm@1: return; rlm@1: } rlm@1: rlm@1: buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2; rlm@1: rlm@1: int const sample_shift = blip_sample_bits - 16; rlm@1: int prev = 0; rlm@1: while ( count-- ) rlm@1: { rlm@1: blip_long s = (blip_long) *in++ << sample_shift; rlm@1: *out += s - prev; rlm@1: prev = s; rlm@1: ++out; rlm@1: } rlm@1: *out -= prev; rlm@1: } rlm@1: rlm@1: blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1; rlm@1: rlm@1: void Blip_Buffer::save_state( blip_buffer_state_t* out ) rlm@1: { rlm@1: assert( samples_avail() == 0 ); rlm@1: out->offset_ = offset_; rlm@1: out->reader_accum_ = reader_accum_; rlm@1: memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf ); rlm@1: } rlm@1: rlm@1: void Blip_Buffer::load_state( blip_buffer_state_t const& in ) rlm@1: { rlm@1: clear( false ); rlm@1: rlm@1: offset_ = in.offset_; rlm@1: reader_accum_ = in.reader_accum_; rlm@1: memcpy( buffer_, in.buf, sizeof in.buf ); rlm@1: }