view clojure/com/aurellem/run/adv_choreo.clj @ 570:a6dcb6236fbc

clear-screen complete
author Robert McIntyre <rlm@mit.edu>
date Sat, 01 Sep 2012 03:36:33 -0500
parents 3fcc395b76ef
children c6b01ff2f1e5
line wrap: on
line source
1 ;;;; "Advanced Choreography" -- this is the final video for this project.
3 (ns com.aurellem.run.adv-choreo
4 (:use (com.aurellem.gb saves gb-driver util constants
5 items vbm characters money
6 rlm-assembly))
7 (:use (com.aurellem.run util music title save-corruption
8 bootstrap-0 bootstrap-1 image
9 ram-display final-cut basic-choreo))
10 (:require clojure.string)
11 (:import java.awt.image.BufferedImage)
12 (:import (javax.imageio ImageWriteParam IIOImage ImageIO))
13 (:import [com.aurellem.gb.gb_driver SaveState])
14 (:import java.io.File))
18 ;; Use the gameboy's screen to display the new programming
19 ;; instead of a side window. This will make it look much
20 ;; cooler and create a terminal-like effect as the game is
21 ;; being reprogramed. To do this, use a fixed data entry
22 ;; region in ram, and run a program that translates this
23 ;; region into the screen. Every time this data entry region
24 ;; is full, run a program that copies the data to the
25 ;; appropriate region in memory. This will cost ~15 seconds
26 ;; at the beginning to set up, and then should have minimal
27 ;; overhead (~5%) for the rest of the data transfer, but
28 ;; will have a good psychological effect for the viewer
29 ;; since he can see that something is actually happening in
30 ;; the game.
33 ;; Symbol size and type.
35 ;; use fonts from zophar's domain:
36 ;; http://www.zophar.net/utilities/fonts/8x8-font-archive.html
38 ;; Green font on black background for matrix look.
41 (defn program-data [base-address]
42 (let [image-program
43 (display-image-kernel
44 base-address
46 ;;pinkie-pie-mark
47 test-image-color
49 )
52 music-base-address (+ (count image-program) base-address)
54 initial-music-data
55 (midi-bytes pony-csv 0 0 0 0)
57 data-lengths
58 (map (comp count :data)
59 [(:kernel initial-music-data)
60 (:voice-1 initial-music-data)
61 (:voice-2 initial-music-data)]);; noise not needed
62 addresses
63 (map (partial + music-base-address) (reductions + 0 data-lengths))
65 final-music-data
66 (apply (partial midi-bytes pony-csv) addresses)
68 music-program
69 (concat
70 (:data (:kernel final-music-data))
71 (:data (:voice-1 final-music-data))
72 (:data (:voice-2 final-music-data))
73 (:data (:noise final-music-data)))]
75 (concat
76 image-program ;; image program falls through to music program
78 (infinite-loop)
79 ;;music-program
81 )))
86 (def glyphs
87 "The sixteen 8x8 glyphs which make up the \"terminal\" font."
88 (mapv #(ImageIO/read
89 (File. user-home (str "proj/vba-clojure/font/" % ".png")))
90 ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "A" "B" "C" "D" "E" "F"]))
92 (defn glyph-init-program
93 [start-address]
94 (let [zero-glyph (image->gb-image (glyphs 0))
96 ;; write same pallet information to all pallettes
97 A (flatten
98 [(write-byte LCD-control-register 0x00);; disable LCD protection
99 (set-palettes bg-palette-select bg-palette-data
100 (repeat 8 (first (:palettes zero-glyph))))
101 (select-LCD-bank 0)
102 (write-byte SCX-register 0)
103 (write-byte SCY-register 0)])
104 B (flatten
105 [(write-data
106 (+ start-address (count A))
107 character-data-address
108 (flatten
109 (map (comp gb-tile->bytes first :tiles image->gb-image)
110 glyphs)))
113 (write-byte
114 LCD-control-register
115 (Integer/parseInt
116 (str
117 "1" ;; LCDC on/off
118 "0" ;; Window code area
119 "0" ;; Windowing on?
120 "1" ;; BG tile base (1 = 0x8000)
121 "0" ;; BG-1 or BG-2 ?
122 "0" ;; OBJ-block composition
123 "0" ;; OBJ-on flag
124 "1") ;; no-effect
125 2))])]
126 (concat A B )))
130 (defn glyph-display-program
131 [start-address
132 max-glyphs]
133 (let [data-start (+ 2 start-address)
134 [max-glyphs-high max-glyphs-low]
135 (disect-bytes-2 max-glyphs)
136 load-data
137 (flatten
138 [;; data region
139 0x18
140 2
141 0 0 ;; current num of glyphs-rendered
143 ;; save all registers
144 0xC5 0xD5 0xE5 0xF5
146 ;; load data from data region into registers
148 0xF5 ;; push A
149 0x21 ;; begin data load
150 (reverse (disect-bytes-2 data-start))
152 0x2A 0x47 ;; glyphs-rendered -> BC
153 0x2A 0x4F
155 0x16 max-glyphs-high ;; load max-glyphs
156 0x1E max-glyphs-low ;; into DE
157 ])
159 handle-glyph-count*
160 (flatten
161 [;; if glyphs-rendered = max-glyph count, go directly
162 ;; to stack-cleanup
164 0x47 0xBA ;; compare B to D
165 0x20 ;; skip next section B != D
166 8 ;; this is equal to the number of instructions in the next
167 ;; indented region!
169 0x79 0xBB ;; compare C to E
170 0x20 ;; JR NZ, skip if C != E
171 4
172 0xF1 ;; pop AF for stack maintainance!
173 0x18
174 :stack-cleanup-low
175 :stack-cleanup-high
176 ])
178 display-glyph
180 (let [init*
181 (flatten
182 [0xF1 ;; pop A, now A is equal to key input
183 ;; BC is current number of glyphs rendered.
184 ;; each glyph is two characters, and the screen can hold up
185 ;; to 360 characters. Thus, if the current glyphs is a
186 ;; multiple of 180, the screen must be refreshed.
188 ;; DE contains max-glyphs and HL will be overwritten next
189 ;; section, so both are free to use here.
190 (repeat 100 0)
191 ;; Reset HL to initial value
192 0x21
193 (reverse (disect-bytes-2 data-start))
194 ;; load row and column into DE
195 0x23 0x23 ;; HL += 2
196 0x2A 0x57 ;; row -> D
197 0x2A 0x5F ;; column -> E
199 ;; clear screen if we are at 0,0
200 0x57 0xB3 ;; D->A, OR E A ==> (= D E 0)
201 ;;0x20 ;; skip clear-screen if D and E are not both zero
202 ;;:clear-screen-length
204 ])
205 clear-screen
206 (flatten
207 [;; save all registers
208 0xC5 0xD5 0xE5 0xF5
210 (select-LCD-bank 0)
211 ;; write 0x00 to memory locations
212 ;; 0x9800 to 0x9A34
213 0x21
214 0x00 0x98 ;; load 0x9800 into HL
217 0x16 3 ;; 3 -> D
218 0x1E 190 ;; 188 -> E
220 0x3E 0 ;; 0-> A
222 ;; begin of do-while loop
223 0x22 ;; load 0 to 0x9800
224 0x1D ;; dec E
225 0x20
226 (->signed-8-bit -4)
227 0x15 ;; dec D
228 0x1E 190 ;; 188 -> E
229 0x20
230 (->signed-8-bit -8)
231 ;; end of do-while-loop
234 ;; restore all registers
235 0xF1 0xE1 0xD1 0xC1
236 ])
238 init (replace
239 {:clear-screen-length (count clear-screen)} init*)
240 ]
242 (concat init clear-screen))
246 cleanup
247 ;; restore all registers
248 (flatten
249 [0x03 ;; (inc glyphs-rednered) -> glyphs-rendered
251 ;; Reset HL to initial value
252 0x21
253 (reverse (disect-bytes-2 data-start))
254 0x78 0x22 ;; BC -> save glyphs-rendered
255 0x79 0x22 ;;
257 0x7A 0x22 ;; D -> rows
258 0x7B 0x22 ;; E -> columns
259 ])
261 stack-cleanup
262 [0xF1 0xE1 0xD1 0xC1]
264 [stack-cleanup-high
265 stack-cleanup-low]
266 (disect-bytes-2 (+ start-address (count load-data)
267 (count handle-glyph-count*)
268 (count cleanup)
269 (count display-glyph)))
271 handle-glyph-count
272 (replace {:stack-cleanup-high stack-cleanup-high
273 :stack-cleanup-low stack-cleanup-low}
274 handle-glyph-count*)]
275 (println (+ (count display-glyph) (count cleanup)))
276 (concat load-data
277 handle-glyph-count
278 display-glyph
279 cleanup stack-cleanup)))
281 (def main-program-base-address 0xC000)
283 (defn glyph-bootstrap-program
284 [start-address delay-count total-glyph-count]
285 (let [init [0xAF 0x4F 0x47] ;; 0->A; 0->C; 0->B
286 header (concat (frame-metronome) (read-user-input))
288 glyph-display (glyph-display-program
289 (+ (count init)
290 (count header)
291 start-address)
292 2000)
293 ;;(- (count (program-data 0)) 100))
295 state-machine-start-address
296 (+ start-address (count init) (count header) (count glyph-display))
297 state-machine
298 (bootstrap-state-machine state-machine-start-address)
300 return-to-header
301 (flatten
302 [0xC3
303 (reverse (disect-bytes-2
304 (+ (count init) start-address)))])]
305 (concat init header glyph-display state-machine return-to-header)))
309 (defn-memo begin-glyph-bootstrap
310 ([] (begin-glyph-bootstrap (launch-main-bootstrap-program)))
311 ([script]
312 (let [glyph-init (glyph-init-program relocated-bootstrap-start)
313 main-glyph-start (+ relocated-bootstrap-start
314 (count glyph-init))
315 glyph-program (glyph-bootstrap-program
316 main-glyph-start 0 0)]
317 (->> script
318 (do-nothing 2)
319 ;; begin glyph program
320 (write-RAM 0xFF1A [0 0 0]) ;; silence remnant music
322 (write-RAM
323 relocated-bootstrap-start
324 (concat glyph-init glyph-program))
325 (transfer-control relocated-bootstrap-start)
326 (do-nothing 1)
328 ))))
330 (defn write-all-program-data
331 ([] (write-all-program-data (begin-glyph-bootstrap)))
332 ([script]
333 (let [base-address main-program-base-address]
334 (->> script
335 (write-RAM base-address (program-data base-address))))))
337 (defn activate-program
338 ([] (activate-program (write-all-program-data)))
339 ([script]
340 (->> script
341 (transfer-control main-program-base-address)
342 ;;(do-nothing 1800)
343 (do-nothing 50)
344 )))
347 ;; possible screen writing programs
349 ;; (program needs to stop executing at some point)
350 ;; maybe have total length counter or something?
352 ;; automatic counter that reads from program-start and clears the
353 ;; screen every 360 (* 18 20) gliphs
355 ;; advantages -- very simple and low bandwidth
356 ;; disadvantages -- hard to align counter
358 ;; implementation -- refactor main-bootstrap-program to provide a
359 ;; state-machine code-section which can be recombined into another
360 ;; program.