view clojure/com/aurellem/run/image.clj @ 514:a00981db92da

can now display black and white images (still working on color).
author Robert McIntyre <rlm@mit.edu>
date Fri, 22 Jun 2012 21:03:04 -0500
parents 3dbb863eb801
children f68d600b089c
line wrap: on
line source
1 (ns com.aurellem.run.image
2 (:use (com.aurellem.gb saves gb-driver util constants
3 items vbm characters money
4 rlm-assembly))
5 (:use (com.aurellem.run util music title save-corruption
6 bootstrap-0 bootstrap-1))
7 (:require clojure.string)
8 (:import [com.aurellem.gb.gb_driver SaveState])
9 (:import java.io.File))
11 ;; want to display an image onto the screen.
12 ;; probably will be the six ponies, possibly with scrolling.
14 ;; probably don't need hi-color mode since the images shuld be
15 ;; simple.
17 ;; use background tiles? they provide greater color depth than
18 ;; sprites, and can still be scrolled, so why not?
20 ;; could also use sprites to get 3 more colors per tile for a total of
21 ;; 7 colors per tile, although not for all tiles...
25 ;; want a function to
27 ;; 1. read an image
28 ;; 2. split into a grid of 8x8 pixels
29 ;; 3. convert all RGB colors to gb-RGB colors
30 ;; 4. determine efficient color palletes for the image
31 ;; 5. output efficient assembly code to draw the image to the gb
32 ;; screen.
35 (def image-program-target 0xB000)
37 (def display-width 160)
38 (def display-height 144)
42 ;{:r :g :b }
44 (def character-data 0x8000)
45 (def character-data-end 0x97FF)
50 (def BG-data-1 0x9800)
52 (def BG-data-2 0x9C00)
54 (def OAM 0xFE00)
58 (def video-bank-select-register 0xFF4F)
60 (defn gb-rgb->bits [[r g b]]
61 (assert (<= 0 r 31))
62 (assert (<= 0 g 31))
63 (assert (<= 0 b 31))
64 [(bit-and
65 0xFF
66 (+
67 r
68 (bit-shift-left g 5)))
69 (+
70 (bit-shift-right g 3)
71 (bit-shift-left b 2))])
74 (def bg-palette-select 0xFF68)
75 (def bg-palette-data 0xFF69)
77 (def obj-palette-select 0xFF6A)
78 (def obj-palette-data 0xFF6B)
80 (def max-palettes 8)
82 (defn write-byte [target data]
83 (flatten
84 [0x3E ;; load literal to A
85 data
86 0xEA ;; load A into target
87 (reverse (disect-bytes-2 target))]))
89 (defn begin-sequential-palette-write
90 [palette-num palette-select-address]
91 (assert (<= 0 palette-num max-palettes))
92 (assert
93 (or (= palette-select-address bg-palette-select)
94 (= palette-select-address obj-palette-select)))
95 (let [palette-write-data
96 (Integer/parseInt
97 (str "1" ;; auto increment
98 "0" ;; not used
99 (format
100 "%03d"
101 (Integer/parseInt
102 (Integer/toBinaryString palette-num) 10))
103 "00" ;; color num
104 "0" ;; H/L
105 ) 2)]
106 (write-byte palette-select-address palette-write-data)))
108 (defn set-palettes [palette-select palette-data palettes]
109 (assert (<= (count palettes)) max-palettes)
110 (flatten
111 [(begin-sequential-palette-write 0 palette-select)
113 0x21 ;; target address to HL
114 (reverse (disect-bytes-2 palette-data))
117 (for [palette palettes]
118 (map (fn [byte]
119 [0x3E ;; literal to A
120 byte
121 0x77]) ;; A -> (HL)
123 (flatten
124 (map #(gb-rgb->bits (get palette % [0 0 0]))
125 (range 4)))))]))
128 (defn display-one-color
129 "Displayes a single color onto the gameboy screen. Input rgb in
130 gameboy rgb."
131 ([state [r g b]]
132 ;; construct a kernel that displays a single color
133 (let
134 [palettes (repeat 8 [[r g b] [r g b] [r g b] [r g b]])
135 kernel-address 0xC000
136 kernel
137 [0xF3 ;; disable interrupts
138 (clear-music-registers)
139 (frame-metronome)
140 ;;(set-palettes
141 ;; obj-palette-select obj-palette-data palettes)
142 (set-palettes
143 bg-palette-select bg-palette-data palettes)
144 (infinite-loop)]]
145 (-> (set-memory-range state
146 kernel-address (flatten kernel))
147 (PC! kernel-address))))
148 ([[r g b]]
149 (display-one-color @current-state [r g b])))
151 ;;(require 'cortex.sense)
152 (import java.awt.image.BufferedImage)
154 ;; (defn show-screenshot []
155 ;; (let [im (BufferedImage. 160 144 BufferedImage/TYPE_INT_RGB)
156 ;; pix (vec (pixels))
157 ;; view (cortex.sense/view-image)]
158 ;; (dorun (for [x (range 160) y (range 144)]
159 ;; (.setRGB im x y (pix (+ x (* 160 y))))))
160 ;; (view im)))
162 (defn gb-rgb->vga-rgb [[r g b]]
163 (let [vga-rgb
164 (first (pixels
165 (run-moves
166 (display-one-color
167 (tick @current-state)
168 [r g b])
169 [[][]])))]
170 [(bit-shift-right (bit-and vga-rgb 0xFF0000) 16)
171 (bit-shift-right (bit-and vga-rgb 0xFF00) 8)
172 (bit-and vga-rgb 0xFF)]))
174 (defn generate-gb-color-map []
175 (set-state! (mid-game))
176 (let [gb-colors
177 (for [r (range 32)
178 g (range 32)
179 b (range 32)]
180 [r g b])]
181 (zipmap gb-colors
182 (map gb-rgb->vga-rgb
183 gb-colors))))
185 (import java.io.FileWriter)
187 (def gb-color-map-file
188 (File. user-home "proj/vba-clojure/gb-color-map"))
190 (defn write-gb-color-map! []
191 (binding [*out*(FileWriter. gb-color-map-file)]
192 (let [out-str
193 (.replace
194 (str
195 (into (sorted-map) (generate-gb-color-map)))
196 "," ",\n")]
197 (println out-str))))
199 (def gb-color-map
200 (read-string (slurp gb-color-map-file)))
202 (import javax.imageio.stream.FileImageOutputStream)
203 (import '(javax.imageio ImageWriteParam IIOImage ImageIO))
206 (defn gen-gb-color-image! []
207 (let [im (BufferedImage. 68 69 BufferedImage/TYPE_INT_RGB)
208 pix (vec
210 (reduce
211 concat
212 (map (partial
213 sort-by
214 (fn [[r g b]]
215 (let [s (max r g b)
216 det
217 (cond
218 (= s r)
219 (+ -1000 (- g) b)
220 (= s b)
221 (+ (- r) g)
222 (= s g)
223 (+ 1000 (- b) r))]
224 det)))
225 (partition
226 68 68 []
227 (sort-by
228 (fn euclidean-distance [[r g b]]
229 (Math/sqrt (+ (* r r) (* g g) (* b b))))
230 (filter
231 (fn [[r g b]]
232 (= (max r g b) b ))
234 (seq (set (vals gb-color-map)))))))))
235 ;;view (cortex.sense/view-image)
236 target (File. user-home "proj/vba-clojure/gb-color-map-unique.png")]
237 (dorun (for [x (range 68) y (range 69)]
238 (let [[r g b] (get pix (+ x (* 68 y)) [0 0 0])
239 rgb (+ (bit-shift-left r 16)
240 (bit-shift-left g 8)
241 b)]
242 (.setRGB im x y rgb))))
243 ;;(view im)
244 (doto
245 (.next (ImageIO/getImageWritersByFormatName "png"))
246 (.setOutput (FileImageOutputStream. target))
247 (.write (IIOImage. im nil nil))
248 (.dispose))
249 im))
251 (defn gen-gb-color-image*! []
252 (let [im (BufferedImage. 213 213 BufferedImage/TYPE_INT_RGB)
253 squares
254 (vec
255 (for [r (range 32)]
256 (vec
257 (for [b (range 32) g (range 32)]
258 (gb-color-map [r g b])))))
259 ;;view (cortex.sense/view-image)
260 target (File. user-home "proj/vba-clojure/gb-color-map.png")]
262 (dorun
263 (for [s-index (range 32)]
264 (dorun
265 (for [x (range 32) y (range 32)]
267 (let [[r g b] ((squares s-index) (+ x (* 32 y)))
268 rgb (+ (bit-shift-left r 16)
269 (bit-shift-left g 8)
270 b)]
271 (.setRGB im
272 (+ 3 (* 35 (rem s-index 6)) x)
273 (+ 3 (* 35 (int (/ s-index 6))) y)
274 rgb))))))
275 ;;(view im)
276 (doto
277 (.next (ImageIO/getImageWritersByFormatName "png"))
278 (.setOutput (FileImageOutputStream. target))
279 (.write (IIOImage. im nil nil))
280 (.dispose))
281 im))
283 (def test-image
284 (ImageIO/read
285 (File. user-home "/proj/vba-clojure/images/test-gb-image.png")))
287 (def test-image-2
288 (ImageIO/read
289 (File. user-home "/proj/vba-clojure/images/test-gb-image-2.png")))
293 (defn rgb->triplet [rgb]
294 (let [r (bit-shift-right (bit-and rgb 0xFF0000) 16)
295 g (bit-shift-right (bit-and rgb 0xFF00) 8)
296 b (bit-and rgb 0xFF)]
297 [r g b]))
299 (def reverse-gb-color-map
300 (zipmap (vals gb-color-map)
301 (keys gb-color-map)))
303 (defn vga-rgb->gb-rgb [[r g b]]
304 (reverse-gb-color-map [r g b]))
306 (defn gb-tiles [^BufferedImage image]
307 (for [tile (range 360)]
308 (for [y (range 8) x (range 8)]
309 (vga-rgb->gb-rgb
310 (rgb->triplet
311 (.getRGB image (+ x (* 8 (rem tile 20)))
312 (+ y (* 8 (int (/ tile 20))))))))))
314 (defn tile->palette [tile]
315 (vec (sort (set tile))))
317 (require 'clojure.set)
319 (defn absorb-contract [objs]
320 (reduce
321 (fn [accepted new-element]
322 (if (some
323 (fn [obj]
324 (clojure.set/subset? (set new-element) (set obj)))
325 accepted)
326 accepted
327 (conj accepted new-element)))
328 []
329 (sort-by (comp - count) objs)))
331 (defn palettes [^BufferedImage image]
332 (let [palettes (map tile->palette (gb-tiles image))
333 unique-palettes (absorb-contract (set palettes))]
334 unique-palettes))
336 (defn tile-pallete
337 "find the first appropirate palette for the tile in the
338 provided list of palettes."
339 [tile palettes]
340 (let [tile-colors (set tile)]
341 (swank.util/find-first
342 #(clojure.set/subset? tile-colors (set %))
343 palettes)))
346 (defn image->gb-image
347 "Returns the image in a format amenable to the gameboy's
348 internal representation. The format is:
349 {:width -- width of the image
350 :height -- height of the image
351 :palettes -- vector of all the palettes the image
352 needs, in proper order
353 :tiles -- vector of all the tiles the image needs,
354 in proper order. A tile is 64 palette
355 indices.
356 :data -- vector of pairs of the format:
357 [tile-index, palette-index]
358 in row-oriented order}"
359 [^BufferedImage image]
360 (let [image-palettes (palettes image)
361 palette-index (zipmap
362 image-palettes
363 (range (count image-palettes)))
364 tiles (gb-tiles image)
365 unique-tiles (vec (distinct tiles))
366 tile-index (zipmap unique-tiles
367 (range (count unique-tiles)))]
368 {:width (.getWidth image)
369 :height (.getHeight image)
370 :palettes image-palettes
371 :tiles
372 (vec
373 (for [tile unique-tiles]
374 (let [colors
375 (vec (tile-pallete tile image-palettes))
376 color-index
377 (zipmap colors (range (count colors)))]
378 (mapv color-index tile))))
379 :data
380 (vec
381 (for [tile tiles]
382 (let [tile-colors (set (tile->palette tile))]
383 [(tile-index tile)
384 (palette-index
385 (tile-pallete tile image-palettes))])))}))
387 (defn wait-until-v-blank
388 "Modified version of frame-metronome. waits untill LY == 144,
389 indicating start of v-blank period."
390 []
391 (let [timing-loop
392 [0x01 ; \
393 0x44 ; | load 0xFF44 into BC
394 0xFF ; /
395 0x0A] ;; (BC) -> A, now A = LY (vertical line coord)
396 continue-if-144
397 [0xFE
398 144 ;; compare LY (in A) with 144
399 0x20 ;; jump back to beginning if LY != 144 (not-v-blank)
400 (->signed-8-bit
401 (+ -4 (- (count timing-loop))))]]
402 (concat timing-loop continue-if-144)))
404 (def bg-character-data 0x9000)
406 (defn gb-tile->bytes
407 "Tile is a vector of 64 numbers between 0 and 3 that
408 represent a single 8x8 color tile in the GB screen.
409 It gets bit-packed into to 16 8-bit numbers in the following
410 form:
412 0-low 1-low ... 7-low
413 0-high 1-high ... 7-high
414 .
415 .
416 .
417 55-low ........ 63-low
418 55-high ........ 63-high"
419 [tile]
420 (let [row->bits
421 (fn [row]
422 (mapv
423 (fn [row*]
424 (Integer/parseInt (apply str row*) 2))
425 [(map #(bit-and 0x01 %) row)
426 (map #(bit-shift-right (bit-and 0x02 %) 1)
427 row)]))]
428 (vec
429 (flatten
430 (map row->bits
431 (partition 8 tile))))))
433 (defn write-data
434 "Efficient assembly to write a sequence of values to
435 memory, starting at a target address."
436 [base-address target-address data]
437 (let [len (count data)
438 program-length 21] ;; change this if program length
439 ;; below changes!
440 (flatten
441 [0x21 ;; load data address start into HL
442 (reverse (disect-bytes-2 (+ base-address program-length)))
444 0x01 ;; load target address into BC
445 (reverse (disect-bytes-2 target-address))
447 0x11 ;; load len into DE
448 (reverse (disect-bytes-2 len))
451 ;; data x-fer loop start
452 0x2A ;; (HL) -> A; HL++;
453 0x02 ;; A -> (BC);
454 0x03 ;; INC BC;
455 0x1B ;; DEC DE
457 0xAF
458 0xB2 ;; (OR D E) -> A
459 0xB3
462 0x20 ;; if DE is not now 0,
463 (->signed-8-bit -9) ;; GOTO start
465 0xC3
466 (reverse
467 (disect-bytes-2
468 (+ len base-address program-length)))
469 data])))
471 (defn write-image
472 "Assume the image data is specified as 360 blocks."
473 [base-address target-address image-data]
475 (let [len (count image-data)
476 gen-program
477 (fn [program-length]
478 (flatten
479 [0x01 ;; load data address start into BC
480 (reverse
481 (disect-bytes-2 (+ base-address program-length)))
483 0x21 ;; load target address into HL
484 (reverse (disect-bytes-2 target-address))
486 0x1E ;; total-rows (18) -> E
487 18
489 0x16 ;; total columns (20) -> D
490 20
492 ;; data x-fer loop start
493 0x0A ;; (BC) -> A;
494 0x03 ;; INC BC;
495 0x22 ;; A -> (HL); HL++;
499 0x15 ;; dec D
500 0x20
501 (->signed-8-bit -6) ;; continue writing row
503 ;; row is complete, advance to next row
504 ;; HL += 12
506 0xC5 ;; push BC
508 0x06 ;; 0 -> B
509 0
511 0x0E
512 12 ;; 12 -> C
514 0x09 ;; HL + BC -> HL
516 0xC1 ;; pop BC
518 0x1D ;; dec E
519 0x20
520 (->signed-8-bit -18) ;; contunue writing image
522 0xC3
523 (reverse
524 (disect-bytes-2
525 (+ len base-address program-length)))]))]
526 (flatten (concat
527 (gen-program (count (gen-program 0)))
528 image-data))))
530 (defn test-write-data []
531 (let [test-data (concat (range 256)
532 (reverse (range 256)))
533 base-address 0xC000
534 target-address 0xD000
536 test-kernel
537 (flatten
538 [0xF3 ;; disable interrupts
539 (write-data (+ 1 base-address)
540 target-address test-data)
541 (infinite-loop)])]
542 (assert
543 (= test-data
544 (-> (mid-game)
545 tick tick tick
546 (set-memory-range base-address test-kernel)
547 (PC! base-address)
548 (run-moves (repeat 100 []))
549 (memory)
550 vec
551 (subvec target-address
552 (+ target-address
553 (count test-data))))))))
555 (def LCD-bank-select-address 0xFF4F)
557 (def BG-1-address 0x9800)
558 (def BG-2-address 0x9C00)
559 (def character-data-address 0x8000)
561 (def LCD-control-register 0xFF40)
562 (def STAT-register 0xFF41)
564 (def SCX-register 0xFF42)
565 (def SCY-register 0xFF43)
567 (defn select-LCD-bank [n]
568 (assert (or (= n 0) (= n 1)))
569 (write-byte LCD-bank-select-address n))
571 (defn write-image* [_ _ _] [])
573 (defn display-image-kernel [base-address ^BufferedImage image]
574 (let [gb-image (image->gb-image image)
576 A [(clear-music-registers)
578 ;; [X] disable LCD protection circuit.
579 (write-byte LCD-control-register 0x00)
580 ;; now we can write to all video RAM anytime with
581 ;; impunity.
583 ;; [ ] We're only using background palettes; just set the
584 ;; minimum required bg palettes for this image, starting
585 ;; with palette #0.
587 (set-palettes bg-palette-select bg-palette-data
588 (:palettes gb-image))
590 ;; [X] switch to bank 0 to set BG character data.
591 (select-LCD-bank 0)
592 ;; [X] set SCX and SCY to 0
593 (write-byte SCX-register 0)
594 (write-byte SCY-register 0)
595 ]
596 A (flatten A)
598 B [;; [X] write minimum amount of tiles to BG character
599 ;; section
600 (write-data
601 (+ base-address (count A))
602 character-data-address
603 (flatten
604 (map gb-tile->bytes (:tiles gb-image))))]
605 B (flatten B)
608 C [;; [ ] write image to the screen in terms of tiles
609 (write-image
610 (+ base-address (+ (count A) (count B)))
611 BG-1-address
612 (map first (:data gb-image)))]
614 C (flatten C)
616 D [;; [ ] specifiy pallets for each character
617 (select-LCD-bank 1)
618 ;;(write-image
619 ;; (+ base-address (+ (count A) (count B) (count C)))
620 ;; BG-1-address
621 ;;(map second (:data gb-image)))
624 ;; [X] reactivate the LCD display
625 ;; we're using only BG images, located at
626 ;; BG-1 (0x9800), with background character data
627 ;; stored starting at 0x8000
629 (write-byte
630 LCD-control-register
631 (Integer/parseInt
632 (str
633 "1" ;; LCDC on/off
634 "0" ;; Window code area
635 "0" ;; Windowing on?
636 "1" ;; BG tile base (1 = 0x8000)
637 "0" ;; BG-1 or BG-2 ?
638 "0" ;; OBJ-block composition
639 "0" ;; OBJ-on flag
640 "1") ;; no-effect
641 2))
643 (infinite-loop)]
644 D (flatten D)]
646 (concat A B C D)))
648 (defn display-image [#^BufferedImage image]
649 (let [kernel-address 0xB000]
650 (-> (tick (tick (tick (mid-game))))
651 (set-memory-range
652 kernel-address
653 (display-image-kernel kernel-address image))
654 (PC! kernel-address))))