view src/SFMT/SFMT-sse2.h @ 578:385799ea1e9c

implemented row glyph drawing.
author Robert McIntyre <rlm@mit.edu>
date Sat, 01 Sep 2012 05:14:37 -0500
parents f9f4f1b99eed
children
line wrap: on
line source
1 /**
2 * @file SFMT-sse2.h
3 * @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
4 *
5 * @author Mutsuo Saito (Hiroshima University)
6 * @author Makoto Matsumoto (Hiroshima University)
7 *
8 * @note We assume LITTLE ENDIAN in this file
9 *
10 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
11 * University. All rights reserved.
12 *
13 * The new BSD License is applied to this software, see LICENSE.txt
14 */
16 #ifndef SFMT_SSE2_H
17 #define SFMT_SSE2_H
19 PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, __m128i c,
20 __m128i d, __m128i mask) ALWAYSINLINE;
22 /**
23 * This function represents the recursion formula.
24 * @param a a 128-bit part of the interal state array
25 * @param b a 128-bit part of the interal state array
26 * @param c a 128-bit part of the interal state array
27 * @param d a 128-bit part of the interal state array
28 * @param mask 128-bit mask
29 * @return output
30 */
31 PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b,
32 __m128i c, __m128i d, __m128i mask) {
33 __m128i v, x, y, z;
35 x = _mm_load_si128(a);
36 y = _mm_srli_epi32(*b, SR1);
37 z = _mm_srli_si128(c, SR2);
38 v = _mm_slli_epi32(d, SL1);
39 z = _mm_xor_si128(z, x);
40 z = _mm_xor_si128(z, v);
41 x = _mm_slli_si128(x, SL2);
42 y = _mm_and_si128(y, mask);
43 z = _mm_xor_si128(z, x);
44 z = _mm_xor_si128(z, y);
45 return z;
46 }
48 /**
49 * This function fills the internal state array with pseudorandom
50 * integers.
51 */
52 inline static void gen_rand_all(void) {
53 int i;
54 __m128i r, r1, r2, mask;
55 mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
57 r1 = _mm_load_si128(&sfmt[N - 2].si);
58 r2 = _mm_load_si128(&sfmt[N - 1].si);
59 for (i = 0; i < N - POS1; i++) {
60 r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
61 _mm_store_si128(&sfmt[i].si, r);
62 r1 = r2;
63 r2 = r;
64 }
65 for (; i < N; i++) {
66 r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1 - N].si, r1, r2, mask);
67 _mm_store_si128(&sfmt[i].si, r);
68 r1 = r2;
69 r2 = r;
70 }
71 }
73 /**
74 * This function fills the user-specified array with pseudorandom
75 * integers.
76 *
77 * @param array an 128-bit array to be filled by pseudorandom numbers.
78 * @param size number of 128-bit pesudorandom numbers to be generated.
79 */
80 inline static void gen_rand_array(w128_t *array, int size) {
81 int i, j;
82 __m128i r, r1, r2, mask;
83 mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
85 r1 = _mm_load_si128(&sfmt[N - 2].si);
86 r2 = _mm_load_si128(&sfmt[N - 1].si);
87 for (i = 0; i < N - POS1; i++) {
88 r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
89 _mm_store_si128(&array[i].si, r);
90 r1 = r2;
91 r2 = r;
92 }
93 for (; i < N; i++) {
94 r = mm_recursion(&sfmt[i].si, &array[i + POS1 - N].si, r1, r2, mask);
95 _mm_store_si128(&array[i].si, r);
96 r1 = r2;
97 r2 = r;
98 }
99 /* main loop */
100 for (; i < size - N; i++) {
101 r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
102 mask);
103 _mm_store_si128(&array[i].si, r);
104 r1 = r2;
105 r2 = r;
106 }
107 for (j = 0; j < 2 * N - size; j++) {
108 r = _mm_load_si128(&array[j + size - N].si);
109 _mm_store_si128(&sfmt[j].si, r);
110 }
111 for (; i < size; i++) {
112 r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
113 mask);
114 _mm_store_si128(&array[i].si, r);
115 _mm_store_si128(&sfmt[j++].si, r);
116 r1 = r2;
117 r2 = r;
118 }
119 }
121 #endif