view clojure/com/aurellem/run/adv_choreo.clj @ 576:376f282bcbf1

removed max-glyph-count handling code as it is unnecessary.
author Robert McIntyre <rlm@mit.edu>
date Sat, 01 Sep 2012 04:19:15 -0500
parents 15876b1a0906
children df3a7eac39d7
line wrap: on
line source
1 ;;;; "Advanced Choreography" -- this is the final video for this project.
3 (ns com.aurellem.run.adv-choreo
4 (:use (com.aurellem.gb saves gb-driver util constants
5 items vbm characters money
6 rlm-assembly))
7 (:use (com.aurellem.run util music title save-corruption
8 bootstrap-0 bootstrap-1 image
9 ram-display final-cut basic-choreo))
10 (:require clojure.string)
11 (:import java.awt.image.BufferedImage)
12 (:import (javax.imageio ImageWriteParam IIOImage ImageIO))
13 (:import [com.aurellem.gb.gb_driver SaveState])
14 (:import java.io.File))
18 ;; Use the gameboy's screen to display the new programming
19 ;; instead of a side window. This will make it look much
20 ;; cooler and create a terminal-like effect as the game is
21 ;; being reprogramed. To do this, use a fixed data entry
22 ;; region in ram, and run a program that translates this
23 ;; region into the screen. Every time this data entry region
24 ;; is full, run a program that copies the data to the
25 ;; appropriate region in memory. This will cost ~15 seconds
26 ;; at the beginning to set up, and then should have minimal
27 ;; overhead (~5%) for the rest of the data transfer, but
28 ;; will have a good psychological effect for the viewer
29 ;; since he can see that something is actually happening in
30 ;; the game.
33 ;; Symbol size and type.
35 ;; use fonts from zophar's domain:
36 ;; http://www.zophar.net/utilities/fonts/8x8-font-archive.html
38 ;; Green font on black background for matrix look.
41 (defn program-data [base-address]
42 (let [image-program
43 (display-image-kernel
44 base-address
46 ;;pinkie-pie-mark
47 test-image-color
49 )
52 music-base-address (+ (count image-program) base-address)
54 initial-music-data
55 (midi-bytes pony-csv 0 0 0 0)
57 data-lengths
58 (map (comp count :data)
59 [(:kernel initial-music-data)
60 (:voice-1 initial-music-data)
61 (:voice-2 initial-music-data)]);; noise not needed
62 addresses
63 (map (partial + music-base-address) (reductions + 0 data-lengths))
65 final-music-data
66 (apply (partial midi-bytes pony-csv) addresses)
68 music-program
69 (concat
70 (:data (:kernel final-music-data))
71 (:data (:voice-1 final-music-data))
72 (:data (:voice-2 final-music-data))
73 (:data (:noise final-music-data)))]
75 (concat
76 image-program ;; image program falls through to music program
78 (infinite-loop)
79 ;;music-program
81 )))
86 (def glyphs
87 "The sixteen 8x8 glyphs which make up the \"terminal\" font."
88 (mapv #(ImageIO/read
89 (File. user-home (str "proj/vba-clojure/font/" % ".png")))
90 ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "A" "B" "C" "D" "E" "F"]))
92 (defn glyph-init-program
93 [start-address]
94 (let [zero-glyph (image->gb-image (glyphs 0))
96 ;; write same pallet information to all pallettes
97 A (flatten
98 [(write-byte LCD-control-register 0x00);; disable LCD protection
99 (set-palettes bg-palette-select bg-palette-data
100 (repeat 8 (first (:palettes zero-glyph))))
101 (select-LCD-bank 0)
102 (write-byte SCX-register 0)
103 (write-byte SCY-register 0)])
104 B (flatten
105 [(write-data
106 (+ start-address (count A))
107 character-data-address
108 (flatten
109 (map (comp gb-tile->bytes first :tiles image->gb-image)
110 glyphs)))
113 (write-byte
114 LCD-control-register
115 (Integer/parseInt
116 (str
117 "1" ;; LCDC on/off
118 "0" ;; Window code area
119 "0" ;; Windowing on?
120 "1" ;; BG tile base (1 = 0x8000)
121 "0" ;; BG-1 or BG-2 ?
122 "0" ;; OBJ-block composition
123 "0" ;; OBJ-on flag
124 "1") ;; no-effect
125 2))])]
126 (concat A B )))
130 (defn glyph-display-program
131 [start-address
132 max-glyphs]
133 (let [data-start (+ 2 start-address)
134 [max-glyphs-high max-glyphs-low]
135 (disect-bytes-2 max-glyphs)
136 load-data
137 (flatten
138 [;; data region
139 0x18
140 2
141 0 0 ;; current row and column
142 ;; save all registers
143 0xC5 0xD5 0xE5 0xF5
145 ;; load data from data region into registers
147 0xF5 ;; push A
148 0x21 ;; begin data load
149 (reverse (disect-bytes-2 data-start))
151 0x2A 0x47 ;; glyphs-rendered -> BC
152 0x2A 0x4F
154 0x16 max-glyphs-high ;; load max-glyphs
155 0x1E max-glyphs-low ;; into DE
156 ])
159 display-glyph
160 (let [init*
161 (flatten
162 [;; BC is current number of glyphs rendered.
163 ;; each glyph is two characters, and the screen can hold up
164 ;; to 360 characters. Thus, if the current glyphs is a
165 ;; multiple of 180, the screen must be refreshed.
167 ;; DE contains max-glyphs and HL will be overwritten next
168 ;; section, so both are free to use here.
169 (repeat 100 0)
170 ;; Reset HL to initial value
171 0x21
172 (reverse (disect-bytes-2 data-start))
173 ;; load row and column into DE
174 0x2A 0x57 ;; row -> D
175 0x2A 0x5F ;; column -> E
177 ;; clear screen if we are at 0,0
178 0x57 0xB3 ;; D->A, OR E A ==> (= D E 0)
179 0x20 ;; skip clear-screen if D and E are not both zero
180 :clear-screen-length])
182 clear-screen
183 (flatten
184 [;; save all registers
185 0xC5 0xD5 0xE5 0xF5
187 (select-LCD-bank 0)
188 ;; write 0x00 to memory locations
189 ;; 0x9800 to 0x9A34
190 0x21
191 0x00 0x98 ;; load 0x9800 into HL
194 0x16 3 ;; 3 -> D
195 0x1E 190 ;; 188 -> E
197 0x3E 0 ;; 0-> A
199 ;; begin of do-while loop
200 0x22 ;; load 0 to 0x9800
201 0x1D ;; dec E
202 0x20
203 (->signed-8-bit -4)
204 0x15 ;; dec D
205 0x1E 190 ;; 188 -> E
206 0x20
207 (->signed-8-bit -8)
208 ;; end of do-while-loop
210 ;; restore all registers
211 0xF1 0xE1 0xD1 0xC1])
213 increment-row-column
214 [;; D contains row and E contains column
216 ;; every time column (E) reaches 20, set
217 ;; column to 0 and increment row
218 0x1C ;; inc E
219 0x3E 20 0xBB ;; compare E to 20
220 0x20 ;; if E is 20
221 3
222 0x1E 0 ;; set E to zero
223 0x14 ;; (inc D) -> D
225 ;; every time row (D) reaches 18, set row to 0
226 0x3E 18 0xBA ;; compare D to 18
227 0x20 ;; if D is 18
228 2
229 0x16 0] ;; set D to zero
231 set-HL-from-row-and-column
232 [;; formula for memory offset is:
233 ;; (+ 0x9800 (* 32 row) column)
234 0xD5 0xC5 ;; push D E B C
236 0x21 0x00 0x98 ;; load HL with 0x9800
238 0x01 32 00 ;; load 32 into BC
240 ;; do
241 0x09 ;; HL += 32
242 0x15 ;; dec D
243 ;; while D != 0
244 0x20
245 (->signed-8-bit -4)
247 0x4B ;; E->C
248 0x15 ;; add columns (E) to HL
250 0xC1 0xD1 ;; pop C B E D
251 ]
253 render-glyph
254 (flatten
255 [set-HL-from-row-and-column
256 0xF1 ;; pop A, now A is equal to key input
257 0xF5 ;; save A
259 0xE6 0xF0 ;; clear second nybble
260 0xCB 0x37 ;; swap nybbles
261 0x22 ;; store A in video as a character (pun)
263 0xF1 ;; restore A
264 0xE6 0x0F ;; select second nybble
265 0x22 ;; store second nybble as glyph
267 increment-row-column
268 increment-row-column
269 ;; Render each nybble of A as a character
270 ;; there are two characters to a glyph.
271 ])
274 init (replace
275 {:clear-screen-length (count clear-screen)} init*)
276 ]
278 (concat init clear-screen render-glyph))
280 cleanup
281 ;; restore all registers
282 (flatten
283 [;; Reset HL to initial value
284 0x21
285 (reverse (disect-bytes-2 data-start))
286 0x7A 0x22 ;; D -> rows -> to RAM
287 0x7B 0x22 ;; E -> columns
288 ])
290 stack-cleanup
291 [0xF1 0xE1 0xD1 0xC1]
292 ]
293 (concat load-data
294 display-glyph
295 cleanup stack-cleanup)))
297 (def main-program-base-address 0xC000)
299 (defn glyph-bootstrap-program
300 [start-address delay-count total-glyph-count]
301 (let [init [0xAF 0x4F 0x47] ;; 0->A; 0->C; 0->B
302 header (concat (frame-metronome) (read-user-input))
304 glyph-display (glyph-display-program
305 (+ (count init)
306 (count header)
307 start-address)
308 2000)
309 ;;(- (count (program-data 0)) 100))
311 state-machine-start-address
312 (+ start-address (count init) (count header) (count glyph-display))
313 state-machine
314 (bootstrap-state-machine state-machine-start-address)
316 return-to-header
317 (flatten
318 [0xC3
319 (reverse (disect-bytes-2
320 (+ (count init) start-address)))])]
321 (concat init header glyph-display state-machine return-to-header)))
325 (defn-memo begin-glyph-bootstrap
326 ([] (begin-glyph-bootstrap (launch-main-bootstrap-program)))
327 ([script]
328 (let [glyph-init (glyph-init-program relocated-bootstrap-start)
329 main-glyph-start (+ relocated-bootstrap-start
330 (count glyph-init))
331 glyph-program (glyph-bootstrap-program
332 main-glyph-start 0 0)]
333 (->> script
334 (do-nothing 2)
335 ;; begin glyph program
336 (write-RAM 0xFF1A [0 0 0]) ;; silence remnant music
338 (write-RAM
339 relocated-bootstrap-start
340 (concat glyph-init glyph-program))
341 (transfer-control relocated-bootstrap-start)
342 (do-nothing 1)
344 ))))
346 (defn write-all-program-data
347 ([] (write-all-program-data (begin-glyph-bootstrap)))
348 ([script]
349 (let [base-address main-program-base-address]
350 (->> script
351 (write-RAM base-address (program-data base-address))))))
353 (defn activate-program
354 ([] (activate-program (write-all-program-data)))
355 ([script]
356 (->> script
357 (transfer-control main-program-base-address)
358 ;;(do-nothing 1800)
359 (do-nothing 50)
360 )))
363 ;; possible screen writing programs
365 ;; (program needs to stop executing at some point)
366 ;; maybe have total length counter or something?
368 ;; automatic counter that reads from program-start and clears the
369 ;; screen every 360 (* 18 20) gliphs
371 ;; advantages -- very simple and low bandwidth
372 ;; disadvantages -- hard to align counter
374 ;; implementation -- refactor main-bootstrap-program to provide a
375 ;; state-machine code-section which can be recombined into another
376 ;; program.