Mercurial > vba-clojure
diff src/lua/lopcodes.h @ 11:27763b933818
raise lua sources up one level
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Sat, 03 Mar 2012 11:07:39 -0600 |
parents | src/lua/src/lopcodes.h@f9f4f1b99eed |
children |
line wrap: on
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/src/lua/lopcodes.h Sat Mar 03 11:07:39 2012 -0600 1.3 @@ -0,0 +1,268 @@ 1.4 +/* 1.5 +** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $ 1.6 +** Opcodes for Lua virtual machine 1.7 +** See Copyright Notice in lua.h 1.8 +*/ 1.9 + 1.10 +#ifndef lopcodes_h 1.11 +#define lopcodes_h 1.12 + 1.13 +#include "llimits.h" 1.14 + 1.15 + 1.16 +/*=========================================================================== 1.17 + We assume that instructions are unsigned numbers. 1.18 + All instructions have an opcode in the first 6 bits. 1.19 + Instructions can have the following fields: 1.20 + `A' : 8 bits 1.21 + `B' : 9 bits 1.22 + `C' : 9 bits 1.23 + `Bx' : 18 bits (`B' and `C' together) 1.24 + `sBx' : signed Bx 1.25 + 1.26 + A signed argument is represented in excess K; that is, the number 1.27 + value is the unsigned value minus K. K is exactly the maximum value 1.28 + for that argument (so that -max is represented by 0, and +max is 1.29 + represented by 2*max), which is half the maximum for the corresponding 1.30 + unsigned argument. 1.31 +===========================================================================*/ 1.32 + 1.33 + 1.34 +enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */ 1.35 + 1.36 + 1.37 +/* 1.38 +** size and position of opcode arguments. 1.39 +*/ 1.40 +#define SIZE_C 9 1.41 +#define SIZE_B 9 1.42 +#define SIZE_Bx (SIZE_C + SIZE_B) 1.43 +#define SIZE_A 8 1.44 + 1.45 +#define SIZE_OP 6 1.46 + 1.47 +#define POS_OP 0 1.48 +#define POS_A (POS_OP + SIZE_OP) 1.49 +#define POS_C (POS_A + SIZE_A) 1.50 +#define POS_B (POS_C + SIZE_C) 1.51 +#define POS_Bx POS_C 1.52 + 1.53 + 1.54 +/* 1.55 +** limits for opcode arguments. 1.56 +** we use (signed) int to manipulate most arguments, 1.57 +** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) 1.58 +*/ 1.59 +#if SIZE_Bx < LUAI_BITSINT-1 1.60 +#define MAXARG_Bx ((1<<SIZE_Bx)-1) 1.61 +#define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ 1.62 +#else 1.63 +#define MAXARG_Bx MAX_INT 1.64 +#define MAXARG_sBx MAX_INT 1.65 +#endif 1.66 + 1.67 + 1.68 +#define MAXARG_A ((1<<SIZE_A)-1) 1.69 +#define MAXARG_B ((1<<SIZE_B)-1) 1.70 +#define MAXARG_C ((1<<SIZE_C)-1) 1.71 + 1.72 + 1.73 +/* creates a mask with `n' 1 bits at position `p' */ 1.74 +#define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p) 1.75 + 1.76 +/* creates a mask with `n' 0 bits at position `p' */ 1.77 +#define MASK0(n,p) (~MASK1(n,p)) 1.78 + 1.79 +/* 1.80 +** the following macros help to manipulate instructions 1.81 +*/ 1.82 + 1.83 +#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) 1.84 +#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 1.85 + ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 1.86 + 1.87 +#define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0))) 1.88 +#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ 1.89 + ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A)))) 1.90 + 1.91 +#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) 1.92 +#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ 1.93 + ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) 1.94 + 1.95 +#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) 1.96 +#define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ 1.97 + ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) 1.98 + 1.99 +#define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) 1.100 +#define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ 1.101 + ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) 1.102 + 1.103 +#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) 1.104 +#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) 1.105 + 1.106 + 1.107 +#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ 1.108 + | (cast(Instruction, a)<<POS_A) \ 1.109 + | (cast(Instruction, b)<<POS_B) \ 1.110 + | (cast(Instruction, c)<<POS_C)) 1.111 + 1.112 +#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ 1.113 + | (cast(Instruction, a)<<POS_A) \ 1.114 + | (cast(Instruction, bc)<<POS_Bx)) 1.115 + 1.116 + 1.117 +/* 1.118 +** Macros to operate RK indices 1.119 +*/ 1.120 + 1.121 +/* this bit 1 means constant (0 means register) */ 1.122 +#define BITRK (1 << (SIZE_B - 1)) 1.123 + 1.124 +/* test whether value is a constant */ 1.125 +#define ISK(x) ((x) & BITRK) 1.126 + 1.127 +/* gets the index of the constant */ 1.128 +#define INDEXK(r) ((int)(r) & ~BITRK) 1.129 + 1.130 +#define MAXINDEXRK (BITRK - 1) 1.131 + 1.132 +/* code a constant index as a RK value */ 1.133 +#define RKASK(x) ((x) | BITRK) 1.134 + 1.135 + 1.136 +/* 1.137 +** invalid register that fits in 8 bits 1.138 +*/ 1.139 +#define NO_REG MAXARG_A 1.140 + 1.141 + 1.142 +/* 1.143 +** R(x) - register 1.144 +** Kst(x) - constant (in constant table) 1.145 +** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) 1.146 +*/ 1.147 + 1.148 + 1.149 +/* 1.150 +** grep "ORDER OP" if you change these enums 1.151 +*/ 1.152 + 1.153 +typedef enum { 1.154 +/*---------------------------------------------------------------------- 1.155 +name args description 1.156 +------------------------------------------------------------------------*/ 1.157 +OP_MOVE,/* A B R(A) := R(B) */ 1.158 +OP_LOADK,/* A Bx R(A) := Kst(Bx) */ 1.159 +OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ 1.160 +OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ 1.161 +OP_GETUPVAL,/* A B R(A) := UpValue[B] */ 1.162 + 1.163 +OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ 1.164 +OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ 1.165 + 1.166 +OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ 1.167 +OP_SETUPVAL,/* A B UpValue[B] := R(A) */ 1.168 +OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ 1.169 + 1.170 +OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ 1.171 + 1.172 +OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ 1.173 + 1.174 +OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ 1.175 +OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ 1.176 +OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ 1.177 +OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ 1.178 +OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ 1.179 +OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ 1.180 +OP_UNM,/* A B R(A) := -R(B) */ 1.181 +OP_NOT,/* A B R(A) := not R(B) */ 1.182 +OP_LEN,/* A B R(A) := length of R(B) */ 1.183 + 1.184 +OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ 1.185 + 1.186 +OP_JMP,/* sBx pc+=sBx */ 1.187 + 1.188 +OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ 1.189 +OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ 1.190 +OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ 1.191 + 1.192 +OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ 1.193 +OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ 1.194 + 1.195 +OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ 1.196 +OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ 1.197 +OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ 1.198 + 1.199 +OP_FORLOOP,/* A sBx R(A)+=R(A+2); 1.200 + if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ 1.201 +OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ 1.202 + 1.203 +OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); 1.204 + if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ 1.205 +OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ 1.206 + 1.207 +OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ 1.208 +OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ 1.209 + 1.210 +OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ 1.211 +} OpCode; 1.212 + 1.213 + 1.214 +#define NUM_OPCODES (cast(int, OP_VARARG) + 1) 1.215 + 1.216 + 1.217 + 1.218 +/*=========================================================================== 1.219 + Notes: 1.220 + (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, 1.221 + and can be 0: OP_CALL then sets `top' to last_result+1, so 1.222 + next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. 1.223 + 1.224 + (*) In OP_VARARG, if (B == 0) then use actual number of varargs and 1.225 + set top (like in OP_CALL with C == 0). 1.226 + 1.227 + (*) In OP_RETURN, if (B == 0) then return up to `top' 1.228 + 1.229 + (*) In OP_SETLIST, if (B == 0) then B = `top'; 1.230 + if (C == 0) then next `instruction' is real C 1.231 + 1.232 + (*) For comparisons, A specifies what condition the test should accept 1.233 + (true or false). 1.234 + 1.235 + (*) All `skips' (pc++) assume that next instruction is a jump 1.236 +===========================================================================*/ 1.237 + 1.238 + 1.239 +/* 1.240 +** masks for instruction properties. The format is: 1.241 +** bits 0-1: op mode 1.242 +** bits 2-3: C arg mode 1.243 +** bits 4-5: B arg mode 1.244 +** bit 6: instruction set register A 1.245 +** bit 7: operator is a test 1.246 +*/ 1.247 + 1.248 +enum OpArgMask { 1.249 + OpArgN, /* argument is not used */ 1.250 + OpArgU, /* argument is used */ 1.251 + OpArgR, /* argument is a register or a jump offset */ 1.252 + OpArgK /* argument is a constant or register/constant */ 1.253 +}; 1.254 + 1.255 +LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; 1.256 + 1.257 +#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) 1.258 +#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) 1.259 +#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) 1.260 +#define testAMode(m) (luaP_opmodes[m] & (1 << 6)) 1.261 +#define testTMode(m) (luaP_opmodes[m] & (1 << 7)) 1.262 + 1.263 + 1.264 +LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ 1.265 + 1.266 + 1.267 +/* number of list items to accumulate before a SETLIST instruction */ 1.268 +#define LFIELDS_PER_FLUSH 50 1.269 + 1.270 + 1.271 +#endif