Mercurial > vba-clojure
comparison src/lua/ltable.c @ 11:27763b933818
raise lua sources up one level
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Sat, 03 Mar 2012 11:07:39 -0600 |
parents | src/lua/src/ltable.c@f9f4f1b99eed |
children |
comparison
equal
deleted
inserted
replaced
10:48b74a4e4692 | 11:27763b933818 |
---|---|
1 /* | |
2 ** $Id: ltable.c,v 2.32.1.2 2007/12/28 15:32:23 roberto Exp $ | |
3 ** Lua tables (hash) | |
4 ** See Copyright Notice in lua.h | |
5 */ | |
6 | |
7 | |
8 /* | |
9 ** Implementation of tables (aka arrays, objects, or hash tables). | |
10 ** Tables keep its elements in two parts: an array part and a hash part. | |
11 ** Non-negative integer keys are all candidates to be kept in the array | |
12 ** part. The actual size of the array is the largest `n' such that at | |
13 ** least half the slots between 0 and n are in use. | |
14 ** Hash uses a mix of chained scatter table with Brent's variation. | |
15 ** A main invariant of these tables is that, if an element is not | |
16 ** in its main position (i.e. the `original' position that its hash gives | |
17 ** to it), then the colliding element is in its own main position. | |
18 ** Hence even when the load factor reaches 100%, performance remains good. | |
19 */ | |
20 | |
21 #include <math.h> | |
22 #include <string.h> | |
23 | |
24 #define ltable_c | |
25 #define LUA_CORE | |
26 | |
27 #include "lua.h" | |
28 | |
29 #include "ldebug.h" | |
30 #include "ldo.h" | |
31 #include "lgc.h" | |
32 #include "lmem.h" | |
33 #include "lobject.h" | |
34 #include "lstate.h" | |
35 #include "ltable.h" | |
36 | |
37 | |
38 /* | |
39 ** max size of array part is 2^MAXBITS | |
40 */ | |
41 #if LUAI_BITSINT > 26 | |
42 #define MAXBITS 26 | |
43 #else | |
44 #define MAXBITS (LUAI_BITSINT-2) | |
45 #endif | |
46 | |
47 #define MAXASIZE (1 << MAXBITS) | |
48 | |
49 | |
50 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) | |
51 | |
52 #define hashstr(t,str) hashpow2(t, (str)->tsv.hash) | |
53 #define hashboolean(t,p) hashpow2(t, p) | |
54 | |
55 | |
56 /* | |
57 ** for some types, it is better to avoid modulus by power of 2, as | |
58 ** they tend to have many 2 factors. | |
59 */ | |
60 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) | |
61 | |
62 | |
63 #define hashpointer(t,p) hashmod(t, IntPoint(p)) | |
64 | |
65 | |
66 /* | |
67 ** number of ints inside a lua_Number | |
68 */ | |
69 #define numints cast_int(sizeof(lua_Number)/sizeof(int)) | |
70 | |
71 | |
72 | |
73 #define dummynode (&dummynode_) | |
74 | |
75 static const Node dummynode_ = { | |
76 {{NULL}, LUA_TNIL}, /* value */ | |
77 {{{NULL}, LUA_TNIL, NULL}} /* key */ | |
78 }; | |
79 | |
80 | |
81 /* | |
82 ** hash for lua_Numbers | |
83 */ | |
84 static Node *hashnum (const Table *t, lua_Number n) { | |
85 unsigned int a[numints]; | |
86 int i; | |
87 if (luai_numeq(n, 0)) /* avoid problems with -0 */ | |
88 return gnode(t, 0); | |
89 memcpy(a, &n, sizeof(a)); | |
90 for (i = 1; i < numints; i++) a[0] += a[i]; | |
91 return hashmod(t, a[0]); | |
92 } | |
93 | |
94 | |
95 | |
96 /* | |
97 ** returns the `main' position of an element in a table (that is, the index | |
98 ** of its hash value) | |
99 */ | |
100 static Node *mainposition (const Table *t, const TValue *key) { | |
101 switch (ttype(key)) { | |
102 case LUA_TNUMBER: | |
103 return hashnum(t, nvalue(key)); | |
104 case LUA_TSTRING: | |
105 return hashstr(t, rawtsvalue(key)); | |
106 case LUA_TBOOLEAN: | |
107 return hashboolean(t, bvalue(key)); | |
108 case LUA_TLIGHTUSERDATA: | |
109 return hashpointer(t, pvalue(key)); | |
110 default: | |
111 return hashpointer(t, gcvalue(key)); | |
112 } | |
113 } | |
114 | |
115 | |
116 /* | |
117 ** returns the index for `key' if `key' is an appropriate key to live in | |
118 ** the array part of the table, -1 otherwise. | |
119 */ | |
120 static int arrayindex (const TValue *key) { | |
121 if (ttisnumber(key)) { | |
122 lua_Number n = nvalue(key); | |
123 int k; | |
124 lua_number2int(k, n); | |
125 if (luai_numeq(cast_num(k), n)) | |
126 return k; | |
127 } | |
128 return -1; /* `key' did not match some condition */ | |
129 } | |
130 | |
131 | |
132 /* | |
133 ** returns the index of a `key' for table traversals. First goes all | |
134 ** elements in the array part, then elements in the hash part. The | |
135 ** beginning of a traversal is signalled by -1. | |
136 */ | |
137 static int findindex (lua_State *L, Table *t, StkId key) { | |
138 int i; | |
139 if (ttisnil(key)) return -1; /* first iteration */ | |
140 i = arrayindex(key); | |
141 if (0 < i && i <= t->sizearray) /* is `key' inside array part? */ | |
142 return i-1; /* yes; that's the index (corrected to C) */ | |
143 else { | |
144 Node *n = mainposition(t, key); | |
145 do { /* check whether `key' is somewhere in the chain */ | |
146 /* key may be dead already, but it is ok to use it in `next' */ | |
147 if (luaO_rawequalObj(key2tval(n), key) || | |
148 (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) && | |
149 gcvalue(gkey(n)) == gcvalue(key))) { | |
150 i = cast_int(n - gnode(t, 0)); /* key index in hash table */ | |
151 /* hash elements are numbered after array ones */ | |
152 return i + t->sizearray; | |
153 } | |
154 else n = gnext(n); | |
155 } while (n); | |
156 luaG_runerror(L, "invalid key to " LUA_QL("next")); /* key not found */ | |
157 return 0; /* to avoid warnings */ | |
158 } | |
159 } | |
160 | |
161 | |
162 int luaH_next (lua_State *L, Table *t, StkId key) { | |
163 int i = findindex(L, t, key); /* find original element */ | |
164 for (i++; i < t->sizearray; i++) { /* try first array part */ | |
165 if (!ttisnil(&t->array[i])) { /* a non-nil value? */ | |
166 setnvalue(key, cast_num(i+1)); | |
167 setobj2s(L, key+1, &t->array[i]); | |
168 return 1; | |
169 } | |
170 } | |
171 for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */ | |
172 if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ | |
173 setobj2s(L, key, key2tval(gnode(t, i))); | |
174 setobj2s(L, key+1, gval(gnode(t, i))); | |
175 return 1; | |
176 } | |
177 } | |
178 return 0; /* no more elements */ | |
179 } | |
180 | |
181 | |
182 /* | |
183 ** {============================================================= | |
184 ** Rehash | |
185 ** ============================================================== | |
186 */ | |
187 | |
188 | |
189 static int computesizes (int nums[], int *narray) { | |
190 int i; | |
191 int twotoi; /* 2^i */ | |
192 int a = 0; /* number of elements smaller than 2^i */ | |
193 int na = 0; /* number of elements to go to array part */ | |
194 int n = 0; /* optimal size for array part */ | |
195 for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) { | |
196 if (nums[i] > 0) { | |
197 a += nums[i]; | |
198 if (a > twotoi/2) { /* more than half elements present? */ | |
199 n = twotoi; /* optimal size (till now) */ | |
200 na = a; /* all elements smaller than n will go to array part */ | |
201 } | |
202 } | |
203 if (a == *narray) break; /* all elements already counted */ | |
204 } | |
205 *narray = n; | |
206 lua_assert(*narray/2 <= na && na <= *narray); | |
207 return na; | |
208 } | |
209 | |
210 | |
211 static int countint (const TValue *key, int *nums) { | |
212 int k = arrayindex(key); | |
213 if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */ | |
214 nums[ceillog2(k)]++; /* count as such */ | |
215 return 1; | |
216 } | |
217 else | |
218 return 0; | |
219 } | |
220 | |
221 | |
222 static int numusearray (const Table *t, int *nums) { | |
223 int lg; | |
224 int ttlg; /* 2^lg */ | |
225 int ause = 0; /* summation of `nums' */ | |
226 int i = 1; /* count to traverse all array keys */ | |
227 for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */ | |
228 int lc = 0; /* counter */ | |
229 int lim = ttlg; | |
230 if (lim > t->sizearray) { | |
231 lim = t->sizearray; /* adjust upper limit */ | |
232 if (i > lim) | |
233 break; /* no more elements to count */ | |
234 } | |
235 /* count elements in range (2^(lg-1), 2^lg] */ | |
236 for (; i <= lim; i++) { | |
237 if (!ttisnil(&t->array[i-1])) | |
238 lc++; | |
239 } | |
240 nums[lg] += lc; | |
241 ause += lc; | |
242 } | |
243 return ause; | |
244 } | |
245 | |
246 | |
247 static int numusehash (const Table *t, int *nums, int *pnasize) { | |
248 int totaluse = 0; /* total number of elements */ | |
249 int ause = 0; /* summation of `nums' */ | |
250 int i = sizenode(t); | |
251 while (i--) { | |
252 Node *n = &t->node[i]; | |
253 if (!ttisnil(gval(n))) { | |
254 ause += countint(key2tval(n), nums); | |
255 totaluse++; | |
256 } | |
257 } | |
258 *pnasize += ause; | |
259 return totaluse; | |
260 } | |
261 | |
262 | |
263 static void setarrayvector (lua_State *L, Table *t, int size) { | |
264 int i; | |
265 luaM_reallocvector(L, t->array, t->sizearray, size, TValue); | |
266 for (i=t->sizearray; i<size; i++) | |
267 setnilvalue(&t->array[i]); | |
268 t->sizearray = size; | |
269 } | |
270 | |
271 | |
272 static void setnodevector (lua_State *L, Table *t, int size) { | |
273 int lsize; | |
274 if (size == 0) { /* no elements to hash part? */ | |
275 t->node = cast(Node *, dummynode); /* use common `dummynode' */ | |
276 lsize = 0; | |
277 } | |
278 else { | |
279 int i; | |
280 lsize = ceillog2(size); | |
281 if (lsize > MAXBITS) | |
282 luaG_runerror(L, "table overflow"); | |
283 size = twoto(lsize); | |
284 t->node = luaM_newvector(L, size, Node); | |
285 for (i=0; i<size; i++) { | |
286 Node *n = gnode(t, i); | |
287 gnext(n) = NULL; | |
288 setnilvalue(gkey(n)); | |
289 setnilvalue(gval(n)); | |
290 } | |
291 } | |
292 t->lsizenode = cast_byte(lsize); | |
293 t->lastfree = gnode(t, size); /* all positions are free */ | |
294 } | |
295 | |
296 | |
297 static void resize (lua_State *L, Table *t, int nasize, int nhsize) { | |
298 int i; | |
299 int oldasize = t->sizearray; | |
300 int oldhsize = t->lsizenode; | |
301 Node *nold = t->node; /* save old hash ... */ | |
302 if (nasize > oldasize) /* array part must grow? */ | |
303 setarrayvector(L, t, nasize); | |
304 /* create new hash part with appropriate size */ | |
305 setnodevector(L, t, nhsize); | |
306 if (nasize < oldasize) { /* array part must shrink? */ | |
307 t->sizearray = nasize; | |
308 /* re-insert elements from vanishing slice */ | |
309 for (i=nasize; i<oldasize; i++) { | |
310 if (!ttisnil(&t->array[i])) | |
311 setobjt2t(L, luaH_setnum(L, t, i+1), &t->array[i]); | |
312 } | |
313 /* shrink array */ | |
314 luaM_reallocvector(L, t->array, oldasize, nasize, TValue); | |
315 } | |
316 /* re-insert elements from hash part */ | |
317 for (i = twoto(oldhsize) - 1; i >= 0; i--) { | |
318 Node *old = nold+i; | |
319 if (!ttisnil(gval(old))) | |
320 setobjt2t(L, luaH_set(L, t, key2tval(old)), gval(old)); | |
321 } | |
322 if (nold != dummynode) | |
323 luaM_freearray(L, nold, twoto(oldhsize), Node); /* free old array */ | |
324 } | |
325 | |
326 | |
327 void luaH_resizearray (lua_State *L, Table *t, int nasize) { | |
328 int nsize = (t->node == dummynode) ? 0 : sizenode(t); | |
329 resize(L, t, nasize, nsize); | |
330 } | |
331 | |
332 | |
333 static void rehash (lua_State *L, Table *t, const TValue *ek) { | |
334 int nasize, na; | |
335 int nums[MAXBITS+1]; /* nums[i] = number of keys between 2^(i-1) and 2^i */ | |
336 int i; | |
337 int totaluse; | |
338 for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ | |
339 nasize = numusearray(t, nums); /* count keys in array part */ | |
340 totaluse = nasize; /* all those keys are integer keys */ | |
341 totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ | |
342 /* count extra key */ | |
343 nasize += countint(ek, nums); | |
344 totaluse++; | |
345 /* compute new size for array part */ | |
346 na = computesizes(nums, &nasize); | |
347 /* resize the table to new computed sizes */ | |
348 resize(L, t, nasize, totaluse - na); | |
349 } | |
350 | |
351 | |
352 | |
353 /* | |
354 ** }============================================================= | |
355 */ | |
356 | |
357 | |
358 Table *luaH_new (lua_State *L, int narray, int nhash) { | |
359 Table *t = luaM_new(L, Table); | |
360 luaC_link(L, obj2gco(t), LUA_TTABLE); | |
361 t->metatable = NULL; | |
362 t->flags = cast_byte(~0); | |
363 /* temporary values (kept only if some malloc fails) */ | |
364 t->array = NULL; | |
365 t->sizearray = 0; | |
366 t->lsizenode = 0; | |
367 t->node = cast(Node *, dummynode); | |
368 setarrayvector(L, t, narray); | |
369 setnodevector(L, t, nhash); | |
370 return t; | |
371 } | |
372 | |
373 | |
374 void luaH_free (lua_State *L, Table *t) { | |
375 if (t->node != dummynode) | |
376 luaM_freearray(L, t->node, sizenode(t), Node); | |
377 luaM_freearray(L, t->array, t->sizearray, TValue); | |
378 luaM_free(L, t); | |
379 } | |
380 | |
381 | |
382 static Node *getfreepos (Table *t) { | |
383 while (t->lastfree-- > t->node) { | |
384 if (ttisnil(gkey(t->lastfree))) | |
385 return t->lastfree; | |
386 } | |
387 return NULL; /* could not find a free place */ | |
388 } | |
389 | |
390 | |
391 | |
392 /* | |
393 ** inserts a new key into a hash table; first, check whether key's main | |
394 ** position is free. If not, check whether colliding node is in its main | |
395 ** position or not: if it is not, move colliding node to an empty place and | |
396 ** put new key in its main position; otherwise (colliding node is in its main | |
397 ** position), new key goes to an empty position. | |
398 */ | |
399 static TValue *newkey (lua_State *L, Table *t, const TValue *key) { | |
400 Node *mp = mainposition(t, key); | |
401 if (!ttisnil(gval(mp)) || mp == dummynode) { | |
402 Node *othern; | |
403 Node *n = getfreepos(t); /* get a free place */ | |
404 if (n == NULL) { /* cannot find a free place? */ | |
405 rehash(L, t, key); /* grow table */ | |
406 return luaH_set(L, t, key); /* re-insert key into grown table */ | |
407 } | |
408 lua_assert(n != dummynode); | |
409 othern = mainposition(t, key2tval(mp)); | |
410 if (othern != mp) { /* is colliding node out of its main position? */ | |
411 /* yes; move colliding node into free position */ | |
412 while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ | |
413 gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ | |
414 *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ | |
415 gnext(mp) = NULL; /* now `mp' is free */ | |
416 setnilvalue(gval(mp)); | |
417 } | |
418 else { /* colliding node is in its own main position */ | |
419 /* new node will go into free position */ | |
420 gnext(n) = gnext(mp); /* chain new position */ | |
421 gnext(mp) = n; | |
422 mp = n; | |
423 } | |
424 } | |
425 gkey(mp)->value = key->value; gkey(mp)->tt = key->tt; | |
426 luaC_barriert(L, t, key); | |
427 lua_assert(ttisnil(gval(mp))); | |
428 return gval(mp); | |
429 } | |
430 | |
431 | |
432 /* | |
433 ** search function for integers | |
434 */ | |
435 const TValue *luaH_getnum (Table *t, int key) { | |
436 /* (1 <= key && key <= t->sizearray) */ | |
437 if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) | |
438 return &t->array[key-1]; | |
439 else { | |
440 lua_Number nk = cast_num(key); | |
441 Node *n = hashnum(t, nk); | |
442 do { /* check whether `key' is somewhere in the chain */ | |
443 if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) | |
444 return gval(n); /* that's it */ | |
445 else n = gnext(n); | |
446 } while (n); | |
447 return luaO_nilobject; | |
448 } | |
449 } | |
450 | |
451 | |
452 /* | |
453 ** search function for strings | |
454 */ | |
455 const TValue *luaH_getstr (Table *t, TString *key) { | |
456 Node *n = hashstr(t, key); | |
457 do { /* check whether `key' is somewhere in the chain */ | |
458 if (ttisstring(gkey(n)) && rawtsvalue(gkey(n)) == key) | |
459 return gval(n); /* that's it */ | |
460 else n = gnext(n); | |
461 } while (n); | |
462 return luaO_nilobject; | |
463 } | |
464 | |
465 | |
466 /* | |
467 ** main search function | |
468 */ | |
469 const TValue *luaH_get (Table *t, const TValue *key) { | |
470 switch (ttype(key)) { | |
471 case LUA_TNIL: return luaO_nilobject; | |
472 case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key)); | |
473 case LUA_TNUMBER: { | |
474 int k; | |
475 lua_Number n = nvalue(key); | |
476 lua_number2int(k, n); | |
477 if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */ | |
478 return luaH_getnum(t, k); /* use specialized version */ | |
479 /* else go through */ | |
480 } | |
481 default: { | |
482 Node *n = mainposition(t, key); | |
483 do { /* check whether `key' is somewhere in the chain */ | |
484 if (luaO_rawequalObj(key2tval(n), key)) | |
485 return gval(n); /* that's it */ | |
486 else n = gnext(n); | |
487 } while (n); | |
488 return luaO_nilobject; | |
489 } | |
490 } | |
491 } | |
492 | |
493 | |
494 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { | |
495 const TValue *p = luaH_get(t, key); | |
496 t->flags = 0; | |
497 if (p != luaO_nilobject) | |
498 return cast(TValue *, p); | |
499 else { | |
500 if (ttisnil(key)) luaG_runerror(L, "table index is nil"); | |
501 else if (ttisnumber(key) && luai_numisnan(nvalue(key))) | |
502 luaG_runerror(L, "table index is NaN"); | |
503 return newkey(L, t, key); | |
504 } | |
505 } | |
506 | |
507 | |
508 TValue *luaH_setnum (lua_State *L, Table *t, int key) { | |
509 const TValue *p = luaH_getnum(t, key); | |
510 if (p != luaO_nilobject) | |
511 return cast(TValue *, p); | |
512 else { | |
513 TValue k; | |
514 setnvalue(&k, cast_num(key)); | |
515 return newkey(L, t, &k); | |
516 } | |
517 } | |
518 | |
519 | |
520 TValue *luaH_setstr (lua_State *L, Table *t, TString *key) { | |
521 const TValue *p = luaH_getstr(t, key); | |
522 if (p != luaO_nilobject) | |
523 return cast(TValue *, p); | |
524 else { | |
525 TValue k; | |
526 setsvalue(L, &k, key); | |
527 return newkey(L, t, &k); | |
528 } | |
529 } | |
530 | |
531 | |
532 static int unbound_search (Table *t, unsigned int j) { | |
533 unsigned int i = j; /* i is zero or a present index */ | |
534 j++; | |
535 /* find `i' and `j' such that i is present and j is not */ | |
536 while (!ttisnil(luaH_getnum(t, j))) { | |
537 i = j; | |
538 j *= 2; | |
539 if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ | |
540 /* table was built with bad purposes: resort to linear search */ | |
541 i = 1; | |
542 while (!ttisnil(luaH_getnum(t, i))) i++; | |
543 return i - 1; | |
544 } | |
545 } | |
546 /* now do a binary search between them */ | |
547 while (j - i > 1) { | |
548 unsigned int m = (i+j)/2; | |
549 if (ttisnil(luaH_getnum(t, m))) j = m; | |
550 else i = m; | |
551 } | |
552 return i; | |
553 } | |
554 | |
555 | |
556 /* | |
557 ** Try to find a boundary in table `t'. A `boundary' is an integer index | |
558 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). | |
559 */ | |
560 int luaH_getn (Table *t) { | |
561 unsigned int j = t->sizearray; | |
562 if (j > 0 && ttisnil(&t->array[j - 1])) { | |
563 /* there is a boundary in the array part: (binary) search for it */ | |
564 unsigned int i = 0; | |
565 while (j - i > 1) { | |
566 unsigned int m = (i+j)/2; | |
567 if (ttisnil(&t->array[m - 1])) j = m; | |
568 else i = m; | |
569 } | |
570 return i; | |
571 } | |
572 /* else must find a boundary in hash part */ | |
573 else if (t->node == dummynode) /* hash part is empty? */ | |
574 return j; /* that is easy... */ | |
575 else return unbound_search(t, j); | |
576 } | |
577 | |
578 | |
579 | |
580 #if defined(LUA_DEBUG) | |
581 | |
582 Node *luaH_mainposition (const Table *t, const TValue *key) { | |
583 return mainposition(t, key); | |
584 } | |
585 | |
586 int luaH_isdummy (Node *n) { return n == dummynode; } | |
587 | |
588 #endif |