Mercurial > vba-clojure
comparison src/lua/lopcodes.h @ 11:27763b933818
raise lua sources up one level
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Sat, 03 Mar 2012 11:07:39 -0600 |
parents | src/lua/src/lopcodes.h@f9f4f1b99eed |
children |
comparison
equal
deleted
inserted
replaced
10:48b74a4e4692 | 11:27763b933818 |
---|---|
1 /* | |
2 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $ | |
3 ** Opcodes for Lua virtual machine | |
4 ** See Copyright Notice in lua.h | |
5 */ | |
6 | |
7 #ifndef lopcodes_h | |
8 #define lopcodes_h | |
9 | |
10 #include "llimits.h" | |
11 | |
12 | |
13 /*=========================================================================== | |
14 We assume that instructions are unsigned numbers. | |
15 All instructions have an opcode in the first 6 bits. | |
16 Instructions can have the following fields: | |
17 `A' : 8 bits | |
18 `B' : 9 bits | |
19 `C' : 9 bits | |
20 `Bx' : 18 bits (`B' and `C' together) | |
21 `sBx' : signed Bx | |
22 | |
23 A signed argument is represented in excess K; that is, the number | |
24 value is the unsigned value minus K. K is exactly the maximum value | |
25 for that argument (so that -max is represented by 0, and +max is | |
26 represented by 2*max), which is half the maximum for the corresponding | |
27 unsigned argument. | |
28 ===========================================================================*/ | |
29 | |
30 | |
31 enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */ | |
32 | |
33 | |
34 /* | |
35 ** size and position of opcode arguments. | |
36 */ | |
37 #define SIZE_C 9 | |
38 #define SIZE_B 9 | |
39 #define SIZE_Bx (SIZE_C + SIZE_B) | |
40 #define SIZE_A 8 | |
41 | |
42 #define SIZE_OP 6 | |
43 | |
44 #define POS_OP 0 | |
45 #define POS_A (POS_OP + SIZE_OP) | |
46 #define POS_C (POS_A + SIZE_A) | |
47 #define POS_B (POS_C + SIZE_C) | |
48 #define POS_Bx POS_C | |
49 | |
50 | |
51 /* | |
52 ** limits for opcode arguments. | |
53 ** we use (signed) int to manipulate most arguments, | |
54 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) | |
55 */ | |
56 #if SIZE_Bx < LUAI_BITSINT-1 | |
57 #define MAXARG_Bx ((1<<SIZE_Bx)-1) | |
58 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ | |
59 #else | |
60 #define MAXARG_Bx MAX_INT | |
61 #define MAXARG_sBx MAX_INT | |
62 #endif | |
63 | |
64 | |
65 #define MAXARG_A ((1<<SIZE_A)-1) | |
66 #define MAXARG_B ((1<<SIZE_B)-1) | |
67 #define MAXARG_C ((1<<SIZE_C)-1) | |
68 | |
69 | |
70 /* creates a mask with `n' 1 bits at position `p' */ | |
71 #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p) | |
72 | |
73 /* creates a mask with `n' 0 bits at position `p' */ | |
74 #define MASK0(n,p) (~MASK1(n,p)) | |
75 | |
76 /* | |
77 ** the following macros help to manipulate instructions | |
78 */ | |
79 | |
80 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | |
81 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | |
82 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | |
83 | |
84 #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0))) | |
85 #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ | |
86 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A)))) | |
87 | |
88 #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) | |
89 #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ | |
90 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) | |
91 | |
92 #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) | |
93 #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ | |
94 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) | |
95 | |
96 #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) | |
97 #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ | |
98 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) | |
99 | |
100 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) | |
101 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) | |
102 | |
103 | |
104 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | |
105 | (cast(Instruction, a)<<POS_A) \ | |
106 | (cast(Instruction, b)<<POS_B) \ | |
107 | (cast(Instruction, c)<<POS_C)) | |
108 | |
109 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | |
110 | (cast(Instruction, a)<<POS_A) \ | |
111 | (cast(Instruction, bc)<<POS_Bx)) | |
112 | |
113 | |
114 /* | |
115 ** Macros to operate RK indices | |
116 */ | |
117 | |
118 /* this bit 1 means constant (0 means register) */ | |
119 #define BITRK (1 << (SIZE_B - 1)) | |
120 | |
121 /* test whether value is a constant */ | |
122 #define ISK(x) ((x) & BITRK) | |
123 | |
124 /* gets the index of the constant */ | |
125 #define INDEXK(r) ((int)(r) & ~BITRK) | |
126 | |
127 #define MAXINDEXRK (BITRK - 1) | |
128 | |
129 /* code a constant index as a RK value */ | |
130 #define RKASK(x) ((x) | BITRK) | |
131 | |
132 | |
133 /* | |
134 ** invalid register that fits in 8 bits | |
135 */ | |
136 #define NO_REG MAXARG_A | |
137 | |
138 | |
139 /* | |
140 ** R(x) - register | |
141 ** Kst(x) - constant (in constant table) | |
142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) | |
143 */ | |
144 | |
145 | |
146 /* | |
147 ** grep "ORDER OP" if you change these enums | |
148 */ | |
149 | |
150 typedef enum { | |
151 /*---------------------------------------------------------------------- | |
152 name args description | |
153 ------------------------------------------------------------------------*/ | |
154 OP_MOVE,/* A B R(A) := R(B) */ | |
155 OP_LOADK,/* A Bx R(A) := Kst(Bx) */ | |
156 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ | |
157 OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ | |
158 OP_GETUPVAL,/* A B R(A) := UpValue[B] */ | |
159 | |
160 OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ | |
161 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ | |
162 | |
163 OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ | |
164 OP_SETUPVAL,/* A B UpValue[B] := R(A) */ | |
165 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ | |
166 | |
167 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ | |
168 | |
169 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ | |
170 | |
171 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ | |
172 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ | |
173 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ | |
174 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ | |
175 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ | |
176 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ | |
177 OP_UNM,/* A B R(A) := -R(B) */ | |
178 OP_NOT,/* A B R(A) := not R(B) */ | |
179 OP_LEN,/* A B R(A) := length of R(B) */ | |
180 | |
181 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ | |
182 | |
183 OP_JMP,/* sBx pc+=sBx */ | |
184 | |
185 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ | |
186 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ | |
187 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ | |
188 | |
189 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ | |
190 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ | |
191 | |
192 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ | |
193 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ | |
194 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ | |
195 | |
196 OP_FORLOOP,/* A sBx R(A)+=R(A+2); | |
197 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ | |
198 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ | |
199 | |
200 OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); | |
201 if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ | |
202 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ | |
203 | |
204 OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ | |
205 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ | |
206 | |
207 OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ | |
208 } OpCode; | |
209 | |
210 | |
211 #define NUM_OPCODES (cast(int, OP_VARARG) + 1) | |
212 | |
213 | |
214 | |
215 /*=========================================================================== | |
216 Notes: | |
217 (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, | |
218 and can be 0: OP_CALL then sets `top' to last_result+1, so | |
219 next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. | |
220 | |
221 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and | |
222 set top (like in OP_CALL with C == 0). | |
223 | |
224 (*) In OP_RETURN, if (B == 0) then return up to `top' | |
225 | |
226 (*) In OP_SETLIST, if (B == 0) then B = `top'; | |
227 if (C == 0) then next `instruction' is real C | |
228 | |
229 (*) For comparisons, A specifies what condition the test should accept | |
230 (true or false). | |
231 | |
232 (*) All `skips' (pc++) assume that next instruction is a jump | |
233 ===========================================================================*/ | |
234 | |
235 | |
236 /* | |
237 ** masks for instruction properties. The format is: | |
238 ** bits 0-1: op mode | |
239 ** bits 2-3: C arg mode | |
240 ** bits 4-5: B arg mode | |
241 ** bit 6: instruction set register A | |
242 ** bit 7: operator is a test | |
243 */ | |
244 | |
245 enum OpArgMask { | |
246 OpArgN, /* argument is not used */ | |
247 OpArgU, /* argument is used */ | |
248 OpArgR, /* argument is a register or a jump offset */ | |
249 OpArgK /* argument is a constant or register/constant */ | |
250 }; | |
251 | |
252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; | |
253 | |
254 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) | |
255 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) | |
256 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) | |
257 #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) | |
258 #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) | |
259 | |
260 | |
261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ | |
262 | |
263 | |
264 /* number of list items to accumulate before a SETLIST instruction */ | |
265 #define LFIELDS_PER_FLUSH 50 | |
266 | |
267 | |
268 #endif |