rlm@1
|
1 /**
|
rlm@1
|
2 * @file SFMT.h
|
rlm@1
|
3 *
|
rlm@1
|
4 * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
|
rlm@1
|
5 * number generator
|
rlm@1
|
6 *
|
rlm@1
|
7 * @author Mutsuo Saito (Hiroshima University)
|
rlm@1
|
8 * @author Makoto Matsumoto (Hiroshima University)
|
rlm@1
|
9 *
|
rlm@1
|
10 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
rlm@1
|
11 * University. All rights reserved.
|
rlm@1
|
12 *
|
rlm@1
|
13 * The new BSD License is applied to this software.
|
rlm@1
|
14 * see LICENSE.txt
|
rlm@1
|
15 *
|
rlm@1
|
16 * @note We assume that your system has inttypes.h. If your system
|
rlm@1
|
17 * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
|
rlm@1
|
18 * and you have to define PRIu64 and PRIx64 in this file as follows:
|
rlm@1
|
19 * @verbatim
|
rlm@1
|
20 typedef unsigned int uint32_t
|
rlm@1
|
21 typedef unsigned long long uint64_t
|
rlm@1
|
22 #define PRIu64 "llu"
|
rlm@1
|
23 #define PRIx64 "llx"
|
rlm@1
|
24 @endverbatim
|
rlm@1
|
25 * uint32_t must be exactly 32-bit unsigned integer type (no more, no
|
rlm@1
|
26 * less), and uint64_t must be exactly 64-bit unsigned integer type.
|
rlm@1
|
27 * PRIu64 and PRIx64 are used for printf function to print 64-bit
|
rlm@1
|
28 * unsigned int and 64-bit unsigned int in hexadecimal format.
|
rlm@1
|
29 */
|
rlm@1
|
30
|
rlm@1
|
31 #ifndef SFMT_H
|
rlm@1
|
32 #define SFMT_H
|
rlm@1
|
33
|
rlm@1
|
34 #include <stdio.h>
|
rlm@1
|
35
|
rlm@1
|
36 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
|
rlm@1
|
37 #include <inttypes.h>
|
rlm@1
|
38 #elif defined(_MSC_VER) || defined(__BORLANDC__)
|
rlm@1
|
39 typedef unsigned int uint32_t;
|
rlm@1
|
40 typedef unsigned __int64 uint64_t;
|
rlm@1
|
41 #define inline __inline
|
rlm@1
|
42 #else
|
rlm@1
|
43 #include <inttypes.h>
|
rlm@1
|
44 #if defined(__GNUC__)
|
rlm@1
|
45 #define inline __inline__
|
rlm@1
|
46 #endif
|
rlm@1
|
47 #endif
|
rlm@1
|
48
|
rlm@1
|
49 #ifndef PRIu64
|
rlm@1
|
50 #if defined(_MSC_VER) || defined(__BORLANDC__)
|
rlm@1
|
51 #define PRIu64 "I64u"
|
rlm@1
|
52 #define PRIx64 "I64x"
|
rlm@1
|
53 #else
|
rlm@1
|
54 #define PRIu64 "llu"
|
rlm@1
|
55 #define PRIx64 "llx"
|
rlm@1
|
56 #endif
|
rlm@1
|
57 #endif
|
rlm@1
|
58
|
rlm@1
|
59 #if defined(__GNUC__)
|
rlm@1
|
60 #define ALWAYSINLINE __attribute__((always_inline))
|
rlm@1
|
61 #else
|
rlm@1
|
62 #define ALWAYSINLINE
|
rlm@1
|
63 #endif
|
rlm@1
|
64
|
rlm@1
|
65 #if defined(_MSC_VER)
|
rlm@1
|
66 #if _MSC_VER >= 1200
|
rlm@1
|
67 #define PRE_ALWAYS __forceinline
|
rlm@1
|
68 #else
|
rlm@1
|
69 #define PRE_ALWAYS inline
|
rlm@1
|
70 #endif
|
rlm@1
|
71 #else
|
rlm@1
|
72 #define PRE_ALWAYS inline
|
rlm@1
|
73 #endif
|
rlm@1
|
74
|
rlm@1
|
75 #if defined(__cplusplus) || defined(c_plusplus)
|
rlm@1
|
76 //extern "C" {
|
rlm@1
|
77 #endif
|
rlm@1
|
78
|
rlm@1
|
79 uint32_t gen_rand32(void);
|
rlm@1
|
80 uint64_t gen_rand64(void);
|
rlm@1
|
81 void fill_array32(uint32_t *array, int size);
|
rlm@1
|
82 void fill_array64(uint64_t *array, int size);
|
rlm@1
|
83 void init_gen_rand(uint32_t seed);
|
rlm@1
|
84 void init_by_array(uint32_t *init_key, int key_length);
|
rlm@1
|
85 const char *get_idstring(void);
|
rlm@1
|
86 int get_min_array_size32(void);
|
rlm@1
|
87 int get_min_array_size64(void);
|
rlm@1
|
88
|
rlm@1
|
89 #if defined(__cplusplus) || defined(c_plusplus)
|
rlm@1
|
90 //} // end extern
|
rlm@1
|
91 #endif
|
rlm@1
|
92
|
rlm@1
|
93 /* These real versions are due to Isaku Wada */
|
rlm@1
|
94 /** generates a random number on [0,1]-real-interval */
|
rlm@1
|
95 inline static double to_real1(uint32_t v)
|
rlm@1
|
96 {
|
rlm@1
|
97 return v * (1.0/4294967295.0);
|
rlm@1
|
98 /* divided by 2^32-1 */
|
rlm@1
|
99 }
|
rlm@1
|
100
|
rlm@1
|
101 /** generates a random number on [0,1]-real-interval */
|
rlm@1
|
102 inline static double genrand_real1(void)
|
rlm@1
|
103 {
|
rlm@1
|
104 return to_real1(gen_rand32());
|
rlm@1
|
105 }
|
rlm@1
|
106
|
rlm@1
|
107 /** generates a random number on [0,1)-real-interval */
|
rlm@1
|
108 inline static double to_real2(uint32_t v)
|
rlm@1
|
109 {
|
rlm@1
|
110 return v * (1.0/4294967296.0);
|
rlm@1
|
111 /* divided by 2^32 */
|
rlm@1
|
112 }
|
rlm@1
|
113
|
rlm@1
|
114 /** generates a random number on [0,1)-real-interval */
|
rlm@1
|
115 inline static double genrand_real2(void)
|
rlm@1
|
116 {
|
rlm@1
|
117 return to_real2(gen_rand32());
|
rlm@1
|
118 }
|
rlm@1
|
119
|
rlm@1
|
120 /** generates a random number on (0,1)-real-interval */
|
rlm@1
|
121 inline static double to_real3(uint32_t v)
|
rlm@1
|
122 {
|
rlm@1
|
123 return (((double)v) + 0.5)*(1.0/4294967296.0);
|
rlm@1
|
124 /* divided by 2^32 */
|
rlm@1
|
125 }
|
rlm@1
|
126
|
rlm@1
|
127 /** generates a random number on (0,1)-real-interval */
|
rlm@1
|
128 inline static double genrand_real3(void)
|
rlm@1
|
129 {
|
rlm@1
|
130 return to_real3(gen_rand32());
|
rlm@1
|
131 }
|
rlm@1
|
132 /** These real versions are due to Isaku Wada */
|
rlm@1
|
133
|
rlm@1
|
134 /** generates a random number on [0,1) with 53-bit resolution*/
|
rlm@1
|
135 inline static double to_res53(uint64_t v)
|
rlm@1
|
136 {
|
rlm@1
|
137 return v * (1.0/18446744073709551616.0L);
|
rlm@1
|
138 }
|
rlm@1
|
139
|
rlm@1
|
140 /** generates a random number on [0,1) with 53-bit resolution from two
|
rlm@1
|
141 * 32 bit integers */
|
rlm@1
|
142 inline static double to_res53_mix(uint32_t x, uint32_t y)
|
rlm@1
|
143 {
|
rlm@1
|
144 return to_res53(x | ((uint64_t)y << 32));
|
rlm@1
|
145 }
|
rlm@1
|
146
|
rlm@1
|
147 /** generates a random number on [0,1) with 53-bit resolution
|
rlm@1
|
148 */
|
rlm@1
|
149 inline static double genrand_res53(void)
|
rlm@1
|
150 {
|
rlm@1
|
151 return to_res53(gen_rand64());
|
rlm@1
|
152 }
|
rlm@1
|
153
|
rlm@1
|
154 /** generates a random number on [0,1) with 53-bit resolution
|
rlm@1
|
155 using 32bit integer.
|
rlm@1
|
156 */
|
rlm@1
|
157 inline static double genrand_res53_mix(void)
|
rlm@1
|
158 {
|
rlm@1
|
159 uint32_t x, y;
|
rlm@1
|
160
|
rlm@1
|
161 x = gen_rand32();
|
rlm@1
|
162 y = gen_rand32();
|
rlm@1
|
163 return to_res53_mix(x, y);
|
rlm@1
|
164 }
|
rlm@1
|
165 #endif
|