annotate clojure/com/aurellem/run/image.clj @ 511:964957680c11

got an image to display, but it doesn't tile correctly.
author Robert McIntyre <rlm@mit.edu>
date Fri, 22 Jun 2012 15:03:41 -0500
parents b9814e3114e4
children 7ba07a6adb0c
rev   line source
rlm@488 1 (ns com.aurellem.run.image
rlm@486 2 (:use (com.aurellem.gb saves gb-driver util constants
rlm@486 3 items vbm characters money
rlm@486 4 rlm-assembly))
rlm@492 5 (:use (com.aurellem.run util music title save-corruption
rlm@486 6 bootstrap-0 bootstrap-1))
rlm@486 7 (:require clojure.string)
rlm@486 8 (:import [com.aurellem.gb.gb_driver SaveState])
rlm@486 9 (:import java.io.File))
rlm@486 10
rlm@486 11 ;; want to display an image onto the screen.
rlm@486 12 ;; probably will be the six ponies, possibly with scrolling.
rlm@486 13
rlm@486 14 ;; probably don't need hi-color mode since the images shuld be
rlm@486 15 ;; simple.
rlm@486 16
rlm@486 17 ;; use background tiles? they provide greater color depth than
rlm@486 18 ;; sprites, and can still be scrolled, so why not?
rlm@486 19
rlm@490 20 ;; could also use sprites to get 3 more colors per tile for a total of
rlm@490 21 ;; 7 colors per tile, although not for all tiles...
rlm@486 22
rlm@486 23
rlm@486 24
rlm@490 25 ;; want a function to
rlm@486 26
rlm@490 27 ;; 1. read an image
rlm@490 28 ;; 2. split into a grid of 8x8 pixels
rlm@490 29 ;; 3. convert all RGB colors to gb-RGB colors
rlm@490 30 ;; 4. determine efficient color palletes for the image
rlm@490 31 ;; 5. output efficient assembly code to draw the image to the gb
rlm@490 32 ;; screen.
rlm@486 33
rlm@488 34
rlm@488 35
rlm@488 36
rlm@488 37
rlm@488 38
rlm@488 39
rlm@488 40
rlm@488 41
rlm@488 42
rlm@488 43
rlm@488 44
rlm@488 45
rlm@491 46 (def image-program-target 0xB000)
rlm@486 47
rlm@491 48 (def display-width 160)
rlm@491 49 (def display-height 144)
rlm@491 50
rlm@491 51
rlm@491 52
rlm@491 53 ;{:r :g :b }
rlm@491 54
rlm@491 55 (def character-data 0x8000)
rlm@491 56 (def character-data-end 0x97FF)
rlm@491 57
rlm@491 58
rlm@491 59
rlm@491 60
rlm@491 61 (def BG-data-1 0x9800)
rlm@491 62
rlm@491 63 (def BG-data-2 0x9C00)
rlm@491 64
rlm@491 65 (def OAM 0xFE00)
rlm@491 66
rlm@491 67
rlm@491 68
rlm@491 69 (def video-bank-select-register 0xFF4F)
rlm@491 70
rlm@492 71 (defn gb-rgb->bits [[r g b]]
rlm@492 72 (assert (<= 0 r 31))
rlm@492 73 (assert (<= 0 g 31))
rlm@492 74 (assert (<= 0 b 31))
rlm@491 75 [(bit-and
rlm@491 76 0xFF
rlm@491 77 (+
rlm@491 78 r
rlm@491 79 (bit-shift-left g 5)))
rlm@491 80 (+
rlm@491 81 (bit-shift-right g 3)
rlm@491 82 (bit-shift-left b 2))])
rlm@491 83
rlm@492 84
rlm@492 85 (def bg-palette-select 0xFF68)
rlm@492 86 (def bg-palette-data 0xFF69)
rlm@492 87
rlm@492 88 (def obj-palette-select 0xFF6A)
rlm@492 89 (def obj-palette-data 0xFF6B)
rlm@492 90
rlm@492 91 (def max-palettes 8)
rlm@492 92
rlm@511 93 (defn write-byte [target data]
rlm@492 94 (flatten
rlm@492 95 [0x3E ;; load literal to A
rlm@492 96 data
rlm@492 97 0xEA ;; load A into target
rlm@493 98 (reverse (disect-bytes-2 target))]))
rlm@492 99
rlm@492 100 (defn begin-sequential-palette-write
rlm@492 101 [palette-num palette-select-address]
rlm@492 102 (assert (<= 0 palette-num max-palettes))
rlm@492 103 (assert
rlm@492 104 (or (= palette-select-address bg-palette-select)
rlm@492 105 (= palette-select-address obj-palette-select)))
rlm@492 106 (let [palette-write-data
rlm@492 107 (Integer/parseInt
rlm@492 108 (str "1" ;; auto increment
rlm@492 109 "0" ;; not used
rlm@492 110 (format
rlm@492 111 "%03d"
rlm@492 112 (Integer/parseInt
rlm@492 113 (Integer/toBinaryString palette-num) 10))
rlm@492 114 "00" ;; color num
rlm@492 115 "0" ;; H/L
rlm@492 116 ) 2)]
rlm@511 117 (write-byte palette-select-address palette-write-data)))
rlm@492 118
rlm@492 119 (defn set-palettes [palette-select palette-data palettes]
rlm@492 120 (assert (<= (count palettes)) max-palettes)
rlm@492 121 (flatten
rlm@492 122 [(begin-sequential-palette-write 0 palette-select)
rlm@511 123
rlm@511 124 0x21 ;; target address to HL
rlm@511 125 (reverse (disect-bytes-2 palette-data))
rlm@511 126
rlm@511 127
rlm@511 128 (for [palette palettes]
rlm@511 129 (map (fn [byte]
rlm@511 130 [0x3E ;; literal to A
rlm@511 131 byte
rlm@511 132 0x77]) ;; A -> (HL)
rlm@511 133
rlm@511 134 (flatten
rlm@511 135 (map #(gb-rgb->bits (get palette % [0 0 0]))
rlm@511 136 (range 4)))))]))
rlm@511 137
rlm@492 138
rlm@491 139 (defn display-one-color
rlm@507 140 "Displayes a single color onto the gameboy screen. Input rgb in
rlm@491 141 gameboy rgb."
rlm@498 142 ([state [r g b]]
rlm@498 143 ;; construct a kernel that displays a single color
rlm@498 144 (let
rlm@511 145 [palettes (repeat 8 [[r g b] [r g b] [r g b] [r g b]])
rlm@498 146 kernel-address 0xC000
rlm@498 147 kernel
rlm@498 148 [0xF3 ;; disable interrupts
rlm@498 149 (clear-music-registers)
rlm@498 150 (frame-metronome)
rlm@511 151 ;;(set-palettes
rlm@511 152 ;; obj-palette-select obj-palette-data palettes)
rlm@511 153 (set-palettes
rlm@511 154 bg-palette-select bg-palette-data palettes)
rlm@498 155 (infinite-loop)]]
rlm@498 156 (-> (set-memory-range state
rlm@498 157 kernel-address (flatten kernel))
rlm@498 158 (PC! kernel-address))))
rlm@498 159 ([[r g b]]
rlm@498 160 (display-one-color @current-state [r g b])))
rlm@492 161
rlm@505 162 ;;(require 'cortex.sense)
rlm@496 163 (import java.awt.image.BufferedImage)
rlm@492 164
rlm@505 165 ;; (defn show-screenshot []
rlm@505 166 ;; (let [im (BufferedImage. 160 144 BufferedImage/TYPE_INT_RGB)
rlm@505 167 ;; pix (vec (pixels))
rlm@505 168 ;; view (cortex.sense/view-image)]
rlm@505 169 ;; (dorun (for [x (range 160) y (range 144)]
rlm@505 170 ;; (.setRGB im x y (pix (+ x (* 160 y))))))
rlm@505 171 ;; (view im)))
rlm@496 172
rlm@500 173 (defn gb-rgb->vga-rgb [[r g b]]
rlm@498 174 (let [vga-rgb
rlm@498 175 (first (pixels
rlm@498 176 (run-moves
rlm@498 177 (display-one-color
rlm@498 178 (tick @current-state)
rlm@498 179 [r g b])
rlm@498 180 [[][]])))]
rlm@498 181 [(bit-shift-right (bit-and vga-rgb 0xFF0000) 16)
rlm@498 182 (bit-shift-right (bit-and vga-rgb 0xFF00) 8)
rlm@498 183 (bit-and vga-rgb 0xFF)]))
rlm@491 184
rlm@498 185 (defn generate-gb-color-map []
rlm@498 186 (set-state! (mid-game))
rlm@498 187 (let [gb-colors
rlm@498 188 (for [r (range 32)
rlm@498 189 g (range 32)
rlm@498 190 b (range 32)]
rlm@498 191 [r g b])]
rlm@498 192 (zipmap gb-colors
rlm@498 193 (map gb-rgb->vga-rgb
rlm@498 194 gb-colors))))
rlm@491 195
rlm@498 196 (import java.io.FileWriter)
rlm@491 197
rlm@498 198 (def gb-color-map-file
rlm@498 199 (File. user-home "proj/vba-clojure/gb-color-map"))
rlm@495 200
rlm@498 201 (defn write-gb-color-map! []
rlm@498 202 (binding [*out*(FileWriter. gb-color-map-file)]
rlm@498 203 (let [out-str
rlm@498 204 (.replace
rlm@498 205 (str
rlm@498 206 (into (sorted-map) (generate-gb-color-map)))
rlm@498 207 "," ",\n")]
rlm@498 208 (println out-str))))
rlm@498 209
rlm@499 210 (def gb-color-map
rlm@499 211 (read-string (slurp gb-color-map-file)))
rlm@499 212
rlm@499 213 (import javax.imageio.stream.FileImageOutputStream)
rlm@499 214 (import '(javax.imageio ImageWriteParam IIOImage ImageIO))
rlm@499 215
rlm@499 216
rlm@499 217 (defn gen-gb-color-image! []
rlm@500 218 (let [im (BufferedImage. 68 69 BufferedImage/TYPE_INT_RGB)
rlm@499 219 pix (vec
rlm@499 220
rlm@499 221 (reduce
rlm@499 222 concat
rlm@499 223 (map (partial
rlm@499 224 sort-by
rlm@499 225 (fn [[r g b]]
rlm@499 226 (let [s (max r g b)
rlm@499 227 det
rlm@499 228 (cond
rlm@499 229 (= s r)
rlm@499 230 (+ -1000 (- g) b)
rlm@499 231 (= s b)
rlm@499 232 (+ (- r) g)
rlm@499 233 (= s g)
rlm@499 234 (+ 1000 (- b) r))]
rlm@499 235 det)))
rlm@499 236 (partition
rlm@500 237 68 68 []
rlm@499 238 (sort-by
rlm@499 239 (fn euclidean-distance [[r g b]]
rlm@499 240 (Math/sqrt (+ (* r r) (* g g) (* b b))))
rlm@501 241 (filter
rlm@501 242 (fn [[r g b]]
rlm@501 243 (= (max r g b) b ))
rlm@501 244
rlm@501 245 (seq (set (vals gb-color-map)))))))))
rlm@505 246 ;;view (cortex.sense/view-image)
rlm@500 247 target (File. user-home "proj/vba-clojure/gb-color-map-unique.png")]
rlm@500 248 (dorun (for [x (range 68) y (range 69)]
rlm@500 249 (let [[r g b] (get pix (+ x (* 68 y)) [0 0 0])
rlm@499 250 rgb (+ (bit-shift-left r 16)
rlm@499 251 (bit-shift-left g 8)
rlm@499 252 b)]
rlm@505 253 (.setRGB im x y rgb))))
rlm@505 254 ;;(view im)
rlm@499 255 (doto
rlm@499 256 (.next (ImageIO/getImageWritersByFormatName "png"))
rlm@499 257 (.setOutput (FileImageOutputStream. target))
rlm@499 258 (.write (IIOImage. im nil nil))
rlm@499 259 (.dispose))
rlm@499 260 im))
rlm@499 261
rlm@499 262 (defn gen-gb-color-image*! []
rlm@499 263 (let [im (BufferedImage. 213 213 BufferedImage/TYPE_INT_RGB)
rlm@499 264 squares
rlm@499 265 (vec
rlm@499 266 (for [r (range 32)]
rlm@499 267 (vec
rlm@499 268 (for [b (range 32) g (range 32)]
rlm@499 269 (gb-color-map [r g b])))))
rlm@505 270 ;;view (cortex.sense/view-image)
rlm@499 271 target (File. user-home "proj/vba-clojure/gb-color-map.png")]
rlm@499 272
rlm@499 273 (dorun
rlm@499 274 (for [s-index (range 32)]
rlm@499 275 (dorun
rlm@499 276 (for [x (range 32) y (range 32)]
rlm@499 277
rlm@499 278 (let [[r g b] ((squares s-index) (+ x (* 32 y)))
rlm@499 279 rgb (+ (bit-shift-left r 16)
rlm@499 280 (bit-shift-left g 8)
rlm@499 281 b)]
rlm@499 282 (.setRGB im
rlm@499 283 (+ 3 (* 35 (rem s-index 6)) x)
rlm@499 284 (+ 3 (* 35 (int (/ s-index 6))) y)
rlm@499 285 rgb))))))
rlm@505 286 ;;(view im)
rlm@499 287 (doto
rlm@499 288 (.next (ImageIO/getImageWritersByFormatName "png"))
rlm@499 289 (.setOutput (FileImageOutputStream. target))
rlm@499 290 (.write (IIOImage. im nil nil))
rlm@499 291 (.dispose))
rlm@499 292 im))
rlm@501 293
rlm@502 294 (def test-image
rlm@502 295 (ImageIO/read
rlm@502 296 (File. user-home "/proj/vba-clojure/images/test-gb-image.png")))
rlm@502 297
rlm@502 298 (defn rgb->triplet [rgb]
rlm@502 299 (let [r (bit-shift-right (bit-and rgb 0xFF0000) 16)
rlm@502 300 g (bit-shift-right (bit-and rgb 0xFF00) 8)
rlm@502 301 b (bit-and rgb 0xFF)]
rlm@502 302 [r g b]))
rlm@502 303
rlm@502 304 (def reverse-gb-color-map
rlm@502 305 (zipmap (vals gb-color-map)
rlm@502 306 (keys gb-color-map)))
rlm@502 307
rlm@502 308 (defn vga-rgb->gb-rgb [[r g b]]
rlm@502 309 (reverse-gb-color-map [r g b]))
rlm@502 310
rlm@502 311 (defn gb-tiles [^BufferedImage image]
rlm@502 312 (for [tile (range 360)]
rlm@502 313 (for [x (range 8) y (range 8)]
rlm@502 314 (vga-rgb->gb-rgb
rlm@502 315 (rgb->triplet
rlm@503 316 (.getRGB image (+ x (* 8 (rem tile 20)))
rlm@503 317 (+ y (* 8 (int (/ tile 20))))))))))
rlm@503 318
rlm@503 319 (defn tile->palette [tile]
rlm@506 320 (vec (sort (set tile))))
rlm@503 321
rlm@503 322 (require 'clojure.set)
rlm@503 323
rlm@503 324 (defn absorb-contract [objs]
rlm@503 325 (reduce
rlm@503 326 (fn [accepted new-element]
rlm@503 327 (if (some
rlm@503 328 (fn [obj]
rlm@503 329 (clojure.set/subset? (set new-element) (set obj)))
rlm@503 330 accepted)
rlm@503 331 accepted
rlm@503 332 (conj accepted new-element)))
rlm@503 333 []
rlm@503 334 (sort-by (comp - count) objs)))
rlm@503 335
rlm@503 336 (defn absorb-combine-4 [objs]
rlm@504 337
rlm@503 338 )
rlm@503 339
rlm@503 340 (defn palettes [^BufferedImage image]
rlm@503 341 (let [palettes (map tile->palette (gb-tiles image))
rlm@503 342 unique-palettes (absorb-contract (set palettes))]
rlm@503 343 unique-palettes))
rlm@505 344
rlm@506 345 (defn tile-pallete
rlm@506 346 "find the first appropirate palette for the tile in the
rlm@506 347 provided list of palettes."
rlm@506 348 [tile palettes]
rlm@506 349 (let [tile-colors (set tile)]
rlm@506 350 (swank.util/find-first
rlm@506 351 #(clojure.set/subset? tile-colors (set %))
rlm@506 352 palettes)))
rlm@506 353
rlm@506 354
rlm@506 355 (defn image->gb-image
rlm@506 356 "Returns the image in a format amenable to the gameboy's
rlm@506 357 internal representation. The format is:
rlm@506 358 {:width -- width of the image
rlm@506 359 :height -- height of the image
rlm@506 360 :palettes -- vector of all the palettes the image
rlm@506 361 needs, in proper order
rlm@506 362 :tiles -- vector of all the tiles the image needs,
rlm@506 363 in proper order. A tile is 64 palette
rlm@506 364 indices.
rlm@506 365 :data -- vector of pairs of the format:
rlm@506 366 [tile-index, palette-index]
rlm@506 367 in row-oriented order}"
rlm@506 368 [^BufferedImage image]
rlm@506 369 (let [image-palettes (palettes image)
rlm@506 370 palette-index (zipmap
rlm@506 371 image-palettes
rlm@506 372 (range (count image-palettes)))
rlm@506 373 tiles (gb-tiles image)
rlm@506 374 unique-tiles (vec (distinct tiles))
rlm@506 375 tile-index (zipmap unique-tiles
rlm@506 376 (range (count unique-tiles)))]
rlm@506 377 {:width (.getWidth image)
rlm@506 378 :height (.getHeight image)
rlm@506 379 :palettes image-palettes
rlm@506 380 :tiles
rlm@506 381 (vec
rlm@506 382 (for [tile unique-tiles]
rlm@506 383 (let [colors
rlm@506 384 (vec (tile-pallete tile image-palettes))
rlm@506 385 color-index
rlm@506 386 (zipmap colors (range (count colors)))]
rlm@506 387 (mapv color-index tile))))
rlm@506 388 :data
rlm@506 389 (vec
rlm@506 390 (for [tile tiles]
rlm@506 391 (let [tile-colors (set (tile->palette tile))]
rlm@506 392 [(tile-index tile)
rlm@506 393 (palette-index
rlm@506 394 (tile-pallete tile image-palettes))])))}))
rlm@506 395
rlm@506 396
rlm@506 397
rlm@505 398 (defn wait-until-v-blank
rlm@505 399 "Modified version of frame-metronome. waits untill LY == 144,
rlm@505 400 indicating start of v-blank period."
rlm@505 401 []
rlm@505 402 (let [timing-loop
rlm@505 403 [0x01 ; \
rlm@505 404 0x44 ; | load 0xFF44 into BC
rlm@505 405 0xFF ; /
rlm@505 406 0x0A] ;; (BC) -> A, now A = LY (vertical line coord)
rlm@505 407 continue-if-144
rlm@505 408 [0xFE
rlm@505 409 144 ;; compare LY (in A) with 144
rlm@505 410 0x20 ;; jump back to beginning if LY != 144 (not-v-blank)
rlm@505 411 (->signed-8-bit
rlm@505 412 (+ -4 (- (count timing-loop))))]]
rlm@505 413 (concat timing-loop continue-if-144)))
rlm@503 414
rlm@503 415
rlm@507 416 (def bg-character-data 0x9000)
rlm@507 417
rlm@507 418 (defn gb-tile->bytes
rlm@507 419 "Tile is a vector of 64 numbers between 0 and 3 that
rlm@507 420 represent a single 8x8 color tile in the GB screen.
rlm@507 421 It gets bit-packed into to 16 8-bit numbers in the following
rlm@507 422 form:
rlm@507 423
rlm@507 424 0-low 1-low ... 7-low
rlm@507 425 0-high 1-high ... 7-high
rlm@507 426 .
rlm@507 427 .
rlm@507 428 .
rlm@507 429 55-low ........ 63-low
rlm@507 430 55-high ........ 63-high"
rlm@507 431 [tile]
rlm@507 432 (let [row->bits
rlm@507 433 (fn [row]
rlm@507 434 (mapv
rlm@507 435 (fn [row*]
rlm@507 436 (Integer/parseInt (apply str row*) 2))
rlm@507 437 [(map #(bit-and 0x01 %) row)
rlm@507 438 (map #(bit-shift-right (bit-and 0x02 %) 1)
rlm@507 439 row)]))]
rlm@507 440 (vec
rlm@507 441 (flatten
rlm@507 442 (map row->bits
rlm@507 443 (partition 8 tile))))))
rlm@507 444
rlm@502 445
rlm@508 446 (defn write-data
rlm@508 447 "Efficient assembly to write a sequence of values to
rlm@508 448 memory, starting at a target address."
rlm@508 449 [base-address target-address data]
rlm@510 450 (let [len (count data)
rlm@510 451 program-length 21] ;; change this if program length
rlm@510 452 ;; below changes!
rlm@510 453
rlm@508 454 (flatten
rlm@508 455 [0x21 ;; load data address start into HL
rlm@510 456 (reverse (disect-bytes-2 (+ base-address program-length)))
rlm@508 457
rlm@508 458 0x01 ;; load target address into BC
rlm@508 459 (reverse (disect-bytes-2 target-address))
rlm@508 460
rlm@510 461 0x11 ;; load len into DE
rlm@510 462 (reverse (disect-bytes-2 len))
rlm@508 463
rlm@508 464
rlm@508 465 ;; data x-fer loop start
rlm@508 466 0x2A ;; (HL) -> A; HL++;
rlm@508 467 0x02 ;; A -> (BC);
rlm@508 468 0x03 ;; INC BC;
rlm@510 469 0x1B ;; DEC DE
rlm@508 470
rlm@510 471 0xAF
rlm@510 472 0xB2 ;; (OR D E) -> A
rlm@510 473 0xB3
rlm@510 474
rlm@508 475
rlm@510 476 0x20 ;; if DE is not now 0,
rlm@510 477 (->signed-8-bit -9) ;; GOTO start
rlm@508 478
rlm@510 479 0xC3
rlm@510 480 (reverse
rlm@510 481 (disect-bytes-2
rlm@510 482 (+ len base-address program-length)))
rlm@510 483 data])))
rlm@510 484
rlm@508 485
rlm@508 486 (defn test-write-data []
rlm@510 487 (let [test-data (concat (range 256)
rlm@510 488 (reverse (range 256)))
rlm@510 489 base-address 0xC000
rlm@510 490 target-address 0xD000
rlm@508 491
rlm@508 492 test-kernel
rlm@508 493 (flatten
rlm@508 494 [0xF3 ;; disable interrupts
rlm@508 495 (write-data (+ 1 base-address)
rlm@508 496 target-address test-data)
rlm@508 497 (infinite-loop)])]
rlm@509 498 (assert
rlm@509 499 (= test-data
rlm@509 500 (-> (mid-game)
rlm@509 501 tick tick tick
rlm@509 502 (set-memory-range base-address test-kernel)
rlm@509 503 (PC! base-address)
rlm@509 504 (run-moves (repeat 100 []))
rlm@509 505 (memory)
rlm@509 506 vec
rlm@509 507 (subvec target-address
rlm@509 508 (+ target-address
rlm@509 509 (count test-data))))))))
rlm@508 510
rlm@511 511 (def LCD-bank-select-address 0xFF4F)
rlm@511 512
rlm@511 513 (def BG-1-address 0x9800)
rlm@511 514 (def BG-2-address 0x9C00)
rlm@511 515 (def character-data-address 0x8000)
rlm@511 516
rlm@511 517 (def LCD-control-register 0xFF40)
rlm@511 518 (def STAT-register 0xFF41)
rlm@511 519
rlm@511 520 (def SCX-register 0xFF42)
rlm@511 521 (def SCY-register 0xFF43)
rlm@511 522
rlm@511 523 (defn select-LCD-bank [n]
rlm@511 524 (assert (or (= n 0) (= n 1)))
rlm@511 525 (write-byte LCD-bank-select-address n))
rlm@511 526
rlm@508 527 (defn display-image-kernel [base-address ^BufferedImage image]
rlm@511 528 (let [gb-image (image->gb-image image)
rlm@511 529
rlm@511 530 A [(clear-music-registers)
rlm@511 531
rlm@511 532 ;; [X] disable LCD protection circuit.
rlm@511 533 (write-byte LCD-control-register 0x00)
rlm@511 534 ;; now we can write to all video RAM anytime with
rlm@511 535 ;; impunity.
rlm@511 536
rlm@511 537 ;; we're only using background palettes; just set the
rlm@511 538 ;; minimum required bg palettes for this image,
rlm@511 539 ;; starting with palette #0.
rlm@502 540
rlm@511 541 (set-palettes bg-palette-select bg-palette-data
rlm@511 542 (:palettes gb-image))
rlm@507 543
rlm@511 544 ;; [X] switch to bank 0 to set BG character data.
rlm@511 545 (select-LCD-bank 0)
rlm@507 546
rlm@511 547 ;; [X] set SCX and SCY to 0
rlm@511 548 (write-byte SCX-register 0)
rlm@511 549 (write-byte SCY-register 0)
rlm@507 550
rlm@511 551 ]
rlm@511 552 A (flatten A)
rlm@507 553
rlm@511 554 B [;; [X] write minimum amount of tiles to BG character
rlm@511 555 ;; section
rlm@511 556 (write-data
rlm@511 557 (+ base-address (count A))
rlm@511 558 character-data-address
rlm@511 559 (flatten
rlm@511 560 (map gb-tile->bytes (:tiles gb-image))))]
rlm@511 561 B (flatten B)
rlm@507 562
rlm@511 563
rlm@511 564 C [;; [ ] write image to the screen in terms of tiles
rlm@511 565 (write-data
rlm@511 566 (+ base-address (+ (count A) (count B)))
rlm@511 567 BG-1-address
rlm@511 568 (map first (:data gb-image)))]
rlm@507 569
rlm@511 570 C (flatten C)
rlm@507 571
rlm@511 572 D [;; [ ] specifiy pallets for each character
rlm@511 573 (select-LCD-bank 1)
rlm@511 574 (write-data
rlm@511 575 (+ base-address (+ (count A) (count B) (count C)))
rlm@511 576 BG-1-address
rlm@511 577 (map second (:data gb-image)))
rlm@507 578
rlm@505 579
rlm@511 580 ;; [X] reactivate the LCD display
rlm@511 581 ;; we're using only BG images, located at
rlm@511 582 ;; BG-1 (0x9800), with background character data
rlm@511 583 ;; stored starting at 0x8000
rlm@505 584
rlm@511 585 (write-byte
rlm@511 586 LCD-control-register
rlm@511 587 (Integer/parseInt
rlm@511 588 (str
rlm@511 589 "1" ;; LCDC on/off
rlm@511 590 "0" ;; Window code area
rlm@511 591 "0" ;; Windowing on?
rlm@511 592 "1" ;; BG tile base (1 = 0x8000)
rlm@511 593 "0" ;; BG-1 or BG-2 ?
rlm@511 594 "0" ;; OBJ-block composition
rlm@511 595 "0" ;; OBJ-on flag
rlm@511 596 "1") ;; no-effect
rlm@511 597 2))
rlm@511 598
rlm@505 599
rlm@511 600 (infinite-loop)]
rlm@511 601 D (flatten D)]
rlm@511 602
rlm@511 603 (concat A B C D)))
rlm@511 604
rlm@511 605
rlm@511 606 (defn display-image [#^BufferedImage image]
rlm@511 607 (let [kernel-address 0xB000]
rlm@511 608 (-> (tick (tick (tick (mid-game))))
rlm@511 609 (set-memory-range
rlm@511 610 kernel-address
rlm@511 611 (display-image-kernel kernel-address image))
rlm@511 612 (PC! kernel-address))))
rlm@511 613
rlm@511 614
rlm@511 615