rlm@1
|
1 /*
|
rlm@1
|
2 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
|
rlm@1
|
3 ** Opcodes for Lua virtual machine
|
rlm@1
|
4 ** See Copyright Notice in lua.h
|
rlm@1
|
5 */
|
rlm@1
|
6
|
rlm@1
|
7 #ifndef lopcodes_h
|
rlm@1
|
8 #define lopcodes_h
|
rlm@1
|
9
|
rlm@1
|
10 #include "llimits.h"
|
rlm@1
|
11
|
rlm@1
|
12
|
rlm@1
|
13 /*===========================================================================
|
rlm@1
|
14 We assume that instructions are unsigned numbers.
|
rlm@1
|
15 All instructions have an opcode in the first 6 bits.
|
rlm@1
|
16 Instructions can have the following fields:
|
rlm@1
|
17 `A' : 8 bits
|
rlm@1
|
18 `B' : 9 bits
|
rlm@1
|
19 `C' : 9 bits
|
rlm@1
|
20 `Bx' : 18 bits (`B' and `C' together)
|
rlm@1
|
21 `sBx' : signed Bx
|
rlm@1
|
22
|
rlm@1
|
23 A signed argument is represented in excess K; that is, the number
|
rlm@1
|
24 value is the unsigned value minus K. K is exactly the maximum value
|
rlm@1
|
25 for that argument (so that -max is represented by 0, and +max is
|
rlm@1
|
26 represented by 2*max), which is half the maximum for the corresponding
|
rlm@1
|
27 unsigned argument.
|
rlm@1
|
28 ===========================================================================*/
|
rlm@1
|
29
|
rlm@1
|
30
|
rlm@1
|
31 enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
|
rlm@1
|
32
|
rlm@1
|
33
|
rlm@1
|
34 /*
|
rlm@1
|
35 ** size and position of opcode arguments.
|
rlm@1
|
36 */
|
rlm@1
|
37 #define SIZE_C 9
|
rlm@1
|
38 #define SIZE_B 9
|
rlm@1
|
39 #define SIZE_Bx (SIZE_C + SIZE_B)
|
rlm@1
|
40 #define SIZE_A 8
|
rlm@1
|
41
|
rlm@1
|
42 #define SIZE_OP 6
|
rlm@1
|
43
|
rlm@1
|
44 #define POS_OP 0
|
rlm@1
|
45 #define POS_A (POS_OP + SIZE_OP)
|
rlm@1
|
46 #define POS_C (POS_A + SIZE_A)
|
rlm@1
|
47 #define POS_B (POS_C + SIZE_C)
|
rlm@1
|
48 #define POS_Bx POS_C
|
rlm@1
|
49
|
rlm@1
|
50
|
rlm@1
|
51 /*
|
rlm@1
|
52 ** limits for opcode arguments.
|
rlm@1
|
53 ** we use (signed) int to manipulate most arguments,
|
rlm@1
|
54 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
|
rlm@1
|
55 */
|
rlm@1
|
56 #if SIZE_Bx < LUAI_BITSINT-1
|
rlm@1
|
57 #define MAXARG_Bx ((1<<SIZE_Bx)-1)
|
rlm@1
|
58 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
|
rlm@1
|
59 #else
|
rlm@1
|
60 #define MAXARG_Bx MAX_INT
|
rlm@1
|
61 #define MAXARG_sBx MAX_INT
|
rlm@1
|
62 #endif
|
rlm@1
|
63
|
rlm@1
|
64
|
rlm@1
|
65 #define MAXARG_A ((1<<SIZE_A)-1)
|
rlm@1
|
66 #define MAXARG_B ((1<<SIZE_B)-1)
|
rlm@1
|
67 #define MAXARG_C ((1<<SIZE_C)-1)
|
rlm@1
|
68
|
rlm@1
|
69
|
rlm@1
|
70 /* creates a mask with `n' 1 bits at position `p' */
|
rlm@1
|
71 #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
|
rlm@1
|
72
|
rlm@1
|
73 /* creates a mask with `n' 0 bits at position `p' */
|
rlm@1
|
74 #define MASK0(n,p) (~MASK1(n,p))
|
rlm@1
|
75
|
rlm@1
|
76 /*
|
rlm@1
|
77 ** the following macros help to manipulate instructions
|
rlm@1
|
78 */
|
rlm@1
|
79
|
rlm@1
|
80 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
|
rlm@1
|
81 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
|
rlm@1
|
82 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
|
rlm@1
|
83
|
rlm@1
|
84 #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
|
rlm@1
|
85 #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
|
rlm@1
|
86 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
|
rlm@1
|
87
|
rlm@1
|
88 #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
|
rlm@1
|
89 #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
|
rlm@1
|
90 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
|
rlm@1
|
91
|
rlm@1
|
92 #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
|
rlm@1
|
93 #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
|
rlm@1
|
94 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
|
rlm@1
|
95
|
rlm@1
|
96 #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
|
rlm@1
|
97 #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
|
rlm@1
|
98 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
|
rlm@1
|
99
|
rlm@1
|
100 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
|
rlm@1
|
101 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
|
rlm@1
|
102
|
rlm@1
|
103
|
rlm@1
|
104 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
|
rlm@1
|
105 | (cast(Instruction, a)<<POS_A) \
|
rlm@1
|
106 | (cast(Instruction, b)<<POS_B) \
|
rlm@1
|
107 | (cast(Instruction, c)<<POS_C))
|
rlm@1
|
108
|
rlm@1
|
109 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
|
rlm@1
|
110 | (cast(Instruction, a)<<POS_A) \
|
rlm@1
|
111 | (cast(Instruction, bc)<<POS_Bx))
|
rlm@1
|
112
|
rlm@1
|
113
|
rlm@1
|
114 /*
|
rlm@1
|
115 ** Macros to operate RK indices
|
rlm@1
|
116 */
|
rlm@1
|
117
|
rlm@1
|
118 /* this bit 1 means constant (0 means register) */
|
rlm@1
|
119 #define BITRK (1 << (SIZE_B - 1))
|
rlm@1
|
120
|
rlm@1
|
121 /* test whether value is a constant */
|
rlm@1
|
122 #define ISK(x) ((x) & BITRK)
|
rlm@1
|
123
|
rlm@1
|
124 /* gets the index of the constant */
|
rlm@1
|
125 #define INDEXK(r) ((int)(r) & ~BITRK)
|
rlm@1
|
126
|
rlm@1
|
127 #define MAXINDEXRK (BITRK - 1)
|
rlm@1
|
128
|
rlm@1
|
129 /* code a constant index as a RK value */
|
rlm@1
|
130 #define RKASK(x) ((x) | BITRK)
|
rlm@1
|
131
|
rlm@1
|
132
|
rlm@1
|
133 /*
|
rlm@1
|
134 ** invalid register that fits in 8 bits
|
rlm@1
|
135 */
|
rlm@1
|
136 #define NO_REG MAXARG_A
|
rlm@1
|
137
|
rlm@1
|
138
|
rlm@1
|
139 /*
|
rlm@1
|
140 ** R(x) - register
|
rlm@1
|
141 ** Kst(x) - constant (in constant table)
|
rlm@1
|
142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
|
rlm@1
|
143 */
|
rlm@1
|
144
|
rlm@1
|
145
|
rlm@1
|
146 /*
|
rlm@1
|
147 ** grep "ORDER OP" if you change these enums
|
rlm@1
|
148 */
|
rlm@1
|
149
|
rlm@1
|
150 typedef enum {
|
rlm@1
|
151 /*----------------------------------------------------------------------
|
rlm@1
|
152 name args description
|
rlm@1
|
153 ------------------------------------------------------------------------*/
|
rlm@1
|
154 OP_MOVE,/* A B R(A) := R(B) */
|
rlm@1
|
155 OP_LOADK,/* A Bx R(A) := Kst(Bx) */
|
rlm@1
|
156 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
|
rlm@1
|
157 OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
|
rlm@1
|
158 OP_GETUPVAL,/* A B R(A) := UpValue[B] */
|
rlm@1
|
159
|
rlm@1
|
160 OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
|
rlm@1
|
161 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
|
rlm@1
|
162
|
rlm@1
|
163 OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
|
rlm@1
|
164 OP_SETUPVAL,/* A B UpValue[B] := R(A) */
|
rlm@1
|
165 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
|
rlm@1
|
166
|
rlm@1
|
167 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
|
rlm@1
|
168
|
rlm@1
|
169 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
|
rlm@1
|
170
|
rlm@1
|
171 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
|
rlm@1
|
172 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
|
rlm@1
|
173 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
|
rlm@1
|
174 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
|
rlm@1
|
175 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
|
rlm@1
|
176 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
|
rlm@1
|
177 OP_UNM,/* A B R(A) := -R(B) */
|
rlm@1
|
178 OP_NOT,/* A B R(A) := not R(B) */
|
rlm@1
|
179 OP_LEN,/* A B R(A) := length of R(B) */
|
rlm@1
|
180
|
rlm@1
|
181 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
|
rlm@1
|
182
|
rlm@1
|
183 OP_JMP,/* sBx pc+=sBx */
|
rlm@1
|
184
|
rlm@1
|
185 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
|
rlm@1
|
186 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
|
rlm@1
|
187 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
|
rlm@1
|
188
|
rlm@1
|
189 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
|
rlm@1
|
190 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
|
rlm@1
|
191
|
rlm@1
|
192 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
|
rlm@1
|
193 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
|
rlm@1
|
194 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
|
rlm@1
|
195
|
rlm@1
|
196 OP_FORLOOP,/* A sBx R(A)+=R(A+2);
|
rlm@1
|
197 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
|
rlm@1
|
198 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
|
rlm@1
|
199
|
rlm@1
|
200 OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
|
rlm@1
|
201 if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */
|
rlm@1
|
202 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
|
rlm@1
|
203
|
rlm@1
|
204 OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
|
rlm@1
|
205 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
|
rlm@1
|
206
|
rlm@1
|
207 OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
|
rlm@1
|
208 } OpCode;
|
rlm@1
|
209
|
rlm@1
|
210
|
rlm@1
|
211 #define NUM_OPCODES (cast(int, OP_VARARG) + 1)
|
rlm@1
|
212
|
rlm@1
|
213
|
rlm@1
|
214
|
rlm@1
|
215 /*===========================================================================
|
rlm@1
|
216 Notes:
|
rlm@1
|
217 (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
|
rlm@1
|
218 and can be 0: OP_CALL then sets `top' to last_result+1, so
|
rlm@1
|
219 next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
|
rlm@1
|
220
|
rlm@1
|
221 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
|
rlm@1
|
222 set top (like in OP_CALL with C == 0).
|
rlm@1
|
223
|
rlm@1
|
224 (*) In OP_RETURN, if (B == 0) then return up to `top'
|
rlm@1
|
225
|
rlm@1
|
226 (*) In OP_SETLIST, if (B == 0) then B = `top';
|
rlm@1
|
227 if (C == 0) then next `instruction' is real C
|
rlm@1
|
228
|
rlm@1
|
229 (*) For comparisons, A specifies what condition the test should accept
|
rlm@1
|
230 (true or false).
|
rlm@1
|
231
|
rlm@1
|
232 (*) All `skips' (pc++) assume that next instruction is a jump
|
rlm@1
|
233 ===========================================================================*/
|
rlm@1
|
234
|
rlm@1
|
235
|
rlm@1
|
236 /*
|
rlm@1
|
237 ** masks for instruction properties. The format is:
|
rlm@1
|
238 ** bits 0-1: op mode
|
rlm@1
|
239 ** bits 2-3: C arg mode
|
rlm@1
|
240 ** bits 4-5: B arg mode
|
rlm@1
|
241 ** bit 6: instruction set register A
|
rlm@1
|
242 ** bit 7: operator is a test
|
rlm@1
|
243 */
|
rlm@1
|
244
|
rlm@1
|
245 enum OpArgMask {
|
rlm@1
|
246 OpArgN, /* argument is not used */
|
rlm@1
|
247 OpArgU, /* argument is used */
|
rlm@1
|
248 OpArgR, /* argument is a register or a jump offset */
|
rlm@1
|
249 OpArgK /* argument is a constant or register/constant */
|
rlm@1
|
250 };
|
rlm@1
|
251
|
rlm@1
|
252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
|
rlm@1
|
253
|
rlm@1
|
254 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
|
rlm@1
|
255 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
|
rlm@1
|
256 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
|
rlm@1
|
257 #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
|
rlm@1
|
258 #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
|
rlm@1
|
259
|
rlm@1
|
260
|
rlm@1
|
261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
|
rlm@1
|
262
|
rlm@1
|
263
|
rlm@1
|
264 /* number of list items to accumulate before a SETLIST instruction */
|
rlm@1
|
265 #define LFIELDS_PER_FLUSH 50
|
rlm@1
|
266
|
rlm@1
|
267
|
rlm@1
|
268 #endif
|