rlm@0
|
1 // Core SPC emulation: CPU, timers, SMP registers, memory
|
rlm@0
|
2
|
rlm@0
|
3 // snes_spc 0.9.0. http://www.slack.net/~ant/
|
rlm@0
|
4
|
rlm@0
|
5 #include "SNES_SPC.h"
|
rlm@0
|
6
|
rlm@0
|
7 #include <string.h>
|
rlm@0
|
8
|
rlm@0
|
9 /* Copyright (C) 2004-2007 Shay Green. This module is free software; you
|
rlm@0
|
10 can redistribute it and/or modify it under the terms of the GNU Lesser
|
rlm@0
|
11 General Public License as published by the Free Software Foundation; either
|
rlm@0
|
12 version 2.1 of the License, or (at your option) any later version. This
|
rlm@0
|
13 module is distributed in the hope that it will be useful, but WITHOUT ANY
|
rlm@0
|
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
rlm@0
|
15 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
rlm@0
|
16 details. You should have received a copy of the GNU Lesser General Public
|
rlm@0
|
17 License along with this module; if not, write to the Free Software Foundation,
|
rlm@0
|
18 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
|
rlm@0
|
19
|
rlm@0
|
20 #include "blargg_source.h"
|
rlm@0
|
21
|
rlm@0
|
22 #define RAM (m.ram.ram)
|
rlm@0
|
23 #define REGS (m.smp_regs [0])
|
rlm@0
|
24 #define REGS_IN (m.smp_regs [1])
|
rlm@0
|
25
|
rlm@0
|
26 // (n ? n : 256)
|
rlm@0
|
27 #define IF_0_THEN_256( n ) ((uint8_t) ((n) - 1) + 1)
|
rlm@0
|
28
|
rlm@0
|
29 // Note: SPC_MORE_ACCURACY exists mainly so I can run my validation tests, which
|
rlm@0
|
30 // do crazy echo buffer accesses.
|
rlm@0
|
31 #ifndef SPC_MORE_ACCURACY
|
rlm@0
|
32 #define SPC_MORE_ACCURACY 0
|
rlm@0
|
33 #endif
|
rlm@0
|
34
|
rlm@0
|
35 #ifdef BLARGG_ENABLE_OPTIMIZER
|
rlm@0
|
36 #include BLARGG_ENABLE_OPTIMIZER
|
rlm@0
|
37 #endif
|
rlm@0
|
38
|
rlm@0
|
39
|
rlm@0
|
40 //// Timers
|
rlm@0
|
41
|
rlm@0
|
42 #if SPC_DISABLE_TEMPO
|
rlm@0
|
43 #define TIMER_DIV( t, n ) ((n) >> t->prescaler)
|
rlm@0
|
44 #define TIMER_MUL( t, n ) ((n) << t->prescaler)
|
rlm@0
|
45 #else
|
rlm@0
|
46 #define TIMER_DIV( t, n ) ((n) / t->prescaler)
|
rlm@0
|
47 #define TIMER_MUL( t, n ) ((n) * t->prescaler)
|
rlm@0
|
48 #endif
|
rlm@0
|
49
|
rlm@0
|
50 SNES_SPC::Timer* SNES_SPC::run_timer_( Timer* t, rel_time_t time )
|
rlm@0
|
51 {
|
rlm@0
|
52 int elapsed = TIMER_DIV( t, time - t->next_time ) + 1;
|
rlm@0
|
53 t->next_time += TIMER_MUL( t, elapsed );
|
rlm@0
|
54
|
rlm@0
|
55 if ( t->enabled )
|
rlm@0
|
56 {
|
rlm@0
|
57 int remain = IF_0_THEN_256( t->period - t->divider );
|
rlm@0
|
58 int divider = t->divider + elapsed;
|
rlm@0
|
59 int over = elapsed - remain;
|
rlm@0
|
60 if ( over >= 0 )
|
rlm@0
|
61 {
|
rlm@0
|
62 int n = over / t->period;
|
rlm@0
|
63 t->counter = (t->counter + 1 + n) & 0x0F;
|
rlm@0
|
64 divider = over - n * t->period;
|
rlm@0
|
65 }
|
rlm@0
|
66 t->divider = (uint8_t) divider;
|
rlm@0
|
67 }
|
rlm@0
|
68 return t;
|
rlm@0
|
69 }
|
rlm@0
|
70
|
rlm@0
|
71 inline SNES_SPC::Timer* SNES_SPC::run_timer( Timer* t, rel_time_t time )
|
rlm@0
|
72 {
|
rlm@0
|
73 if ( time >= t->next_time )
|
rlm@0
|
74 t = run_timer_( t, time );
|
rlm@0
|
75 return t;
|
rlm@0
|
76 }
|
rlm@0
|
77
|
rlm@0
|
78
|
rlm@0
|
79 //// ROM
|
rlm@0
|
80
|
rlm@0
|
81 void SNES_SPC::enable_rom( int enable )
|
rlm@0
|
82 {
|
rlm@0
|
83 if ( m.rom_enabled != enable )
|
rlm@0
|
84 {
|
rlm@0
|
85 m.rom_enabled = enable;
|
rlm@0
|
86 if ( enable )
|
rlm@0
|
87 memcpy( m.hi_ram, &RAM [rom_addr], sizeof m.hi_ram );
|
rlm@0
|
88 memcpy( &RAM [rom_addr], (enable ? m.rom : m.hi_ram), rom_size );
|
rlm@0
|
89 // TODO: ROM can still get overwritten when DSP writes to echo buffer
|
rlm@0
|
90 }
|
rlm@0
|
91 }
|
rlm@0
|
92
|
rlm@0
|
93
|
rlm@0
|
94 //// DSP
|
rlm@0
|
95
|
rlm@0
|
96 #if SPC_LESS_ACCURATE
|
rlm@0
|
97 int const max_reg_time = 29;
|
rlm@0
|
98
|
rlm@0
|
99 signed char const SNES_SPC::reg_times_ [256] =
|
rlm@0
|
100 {
|
rlm@0
|
101 -1, 0,-11,-10,-15,-11, -2, -2, 4, 3, 14, 14, 26, 26, 14, 22,
|
rlm@0
|
102 2, 3, 0, 1,-12, 0, 1, 1, 7, 6, 14, 14, 27, 14, 14, 23,
|
rlm@0
|
103 5, 6, 3, 4, -1, 3, 4, 4, 10, 9, 14, 14, 26, -5, 14, 23,
|
rlm@0
|
104 8, 9, 6, 7, 2, 6, 7, 7, 13, 12, 14, 14, 27, -4, 14, 24,
|
rlm@0
|
105 11, 12, 9, 10, 5, 9, 10, 10, 16, 15, 14, 14, -2, -4, 14, 24,
|
rlm@0
|
106 14, 15, 12, 13, 8, 12, 13, 13, 19, 18, 14, 14, -2,-36, 14, 24,
|
rlm@0
|
107 17, 18, 15, 16, 11, 15, 16, 16, 22, 21, 14, 14, 28, -3, 14, 25,
|
rlm@0
|
108 20, 21, 18, 19, 14, 18, 19, 19, 25, 24, 14, 14, 14, 29, 14, 25,
|
rlm@0
|
109
|
rlm@0
|
110 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
111 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
112 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
113 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
114 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
115 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
116 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
117 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
rlm@0
|
118 };
|
rlm@0
|
119
|
rlm@0
|
120 #define RUN_DSP( time, offset ) \
|
rlm@0
|
121 int count = (time) - (offset) - m.dsp_time;\
|
rlm@0
|
122 if ( count >= 0 )\
|
rlm@0
|
123 {\
|
rlm@0
|
124 int clock_count = (count & ~(clocks_per_sample - 1)) + clocks_per_sample;\
|
rlm@0
|
125 m.dsp_time += clock_count;\
|
rlm@0
|
126 dsp.run( clock_count );\
|
rlm@0
|
127 }
|
rlm@0
|
128 #else
|
rlm@0
|
129 #define RUN_DSP( time, offset ) \
|
rlm@0
|
130 {\
|
rlm@0
|
131 int count = (time) - m.dsp_time;\
|
rlm@0
|
132 if ( !SPC_MORE_ACCURACY || count )\
|
rlm@0
|
133 {\
|
rlm@0
|
134 assert( count > 0 );\
|
rlm@0
|
135 m.dsp_time = (time);\
|
rlm@0
|
136 dsp.run( count );\
|
rlm@0
|
137 }\
|
rlm@0
|
138 }
|
rlm@0
|
139 #endif
|
rlm@0
|
140
|
rlm@0
|
141 int SNES_SPC::dsp_read( rel_time_t time )
|
rlm@0
|
142 {
|
rlm@0
|
143 RUN_DSP( time, reg_times [REGS [r_dspaddr] & 0x7F] );
|
rlm@0
|
144
|
rlm@0
|
145 int result = dsp.read( REGS [r_dspaddr] & 0x7F );
|
rlm@0
|
146
|
rlm@0
|
147 #ifdef SPC_DSP_READ_HOOK
|
rlm@0
|
148 SPC_DSP_READ_HOOK( spc_time + time, (REGS [r_dspaddr] & 0x7F), result );
|
rlm@0
|
149 #endif
|
rlm@0
|
150
|
rlm@0
|
151 return result;
|
rlm@0
|
152 }
|
rlm@0
|
153
|
rlm@0
|
154 inline void SNES_SPC::dsp_write( int data, rel_time_t time )
|
rlm@0
|
155 {
|
rlm@0
|
156 RUN_DSP( time, reg_times [REGS [r_dspaddr]] )
|
rlm@0
|
157 #if SPC_LESS_ACCURATE
|
rlm@0
|
158 else if ( m.dsp_time == skipping_time )
|
rlm@0
|
159 {
|
rlm@0
|
160 int r = REGS [r_dspaddr];
|
rlm@0
|
161 if ( r == SPC_DSP::r_kon )
|
rlm@0
|
162 m.skipped_kon |= data & ~dsp.read( SPC_DSP::r_koff );
|
rlm@0
|
163
|
rlm@0
|
164 if ( r == SPC_DSP::r_koff )
|
rlm@0
|
165 {
|
rlm@0
|
166 m.skipped_koff |= data;
|
rlm@0
|
167 m.skipped_kon &= ~data;
|
rlm@0
|
168 }
|
rlm@0
|
169 }
|
rlm@0
|
170 #endif
|
rlm@0
|
171
|
rlm@0
|
172 #ifdef SPC_DSP_WRITE_HOOK
|
rlm@0
|
173 SPC_DSP_WRITE_HOOK( m.spc_time + time, REGS [r_dspaddr], (uint8_t) data );
|
rlm@0
|
174 #endif
|
rlm@0
|
175
|
rlm@0
|
176 if ( REGS [r_dspaddr] <= 0x7F )
|
rlm@0
|
177 dsp.write( REGS [r_dspaddr], data );
|
rlm@0
|
178 else if ( !SPC_MORE_ACCURACY )
|
rlm@0
|
179 dprintf( "SPC wrote to DSP register > $7F\n" );
|
rlm@0
|
180 }
|
rlm@0
|
181
|
rlm@0
|
182
|
rlm@0
|
183 //// Memory access extras
|
rlm@0
|
184
|
rlm@0
|
185 #if SPC_MORE_ACCURACY
|
rlm@0
|
186 #define MEM_ACCESS( time, addr ) \
|
rlm@0
|
187 {\
|
rlm@0
|
188 if ( time >= m.dsp_time )\
|
rlm@0
|
189 {\
|
rlm@0
|
190 RUN_DSP( time, max_reg_time );\
|
rlm@0
|
191 }\
|
rlm@0
|
192 }
|
rlm@0
|
193 #elif !defined (NDEBUG)
|
rlm@0
|
194 // Debug-only check for read/write within echo buffer, since this might result in
|
rlm@0
|
195 // inaccurate emulation due to the DSP not being caught up to the present.
|
rlm@0
|
196
|
rlm@0
|
197 bool SNES_SPC::check_echo_access( int addr )
|
rlm@0
|
198 {
|
rlm@0
|
199 if ( !(dsp.read( SPC_DSP::r_flg ) & 0x20) )
|
rlm@0
|
200 {
|
rlm@0
|
201 int start = 0x100 * dsp.read( SPC_DSP::r_esa );
|
rlm@0
|
202 int size = 0x800 * (dsp.read( SPC_DSP::r_edl ) & 0x0F);
|
rlm@0
|
203 int end = start + (size ? size : 4);
|
rlm@0
|
204 if ( start <= addr && addr < end )
|
rlm@0
|
205 {
|
rlm@0
|
206 if ( !m.echo_accessed )
|
rlm@0
|
207 {
|
rlm@0
|
208 m.echo_accessed = 1;
|
rlm@0
|
209 return true;
|
rlm@0
|
210 }
|
rlm@0
|
211 }
|
rlm@0
|
212 }
|
rlm@0
|
213 return false;
|
rlm@0
|
214 }
|
rlm@0
|
215
|
rlm@0
|
216 #define MEM_ACCESS( time, addr ) check( !check_echo_access( (uint16_t) addr ) );
|
rlm@0
|
217 #else
|
rlm@0
|
218 #define MEM_ACCESS( time, addr )
|
rlm@0
|
219 #endif
|
rlm@0
|
220
|
rlm@0
|
221
|
rlm@0
|
222 //// CPU write
|
rlm@0
|
223
|
rlm@0
|
224 #if SPC_MORE_ACCURACY
|
rlm@0
|
225 static unsigned char const glitch_probs [3] [256] =
|
rlm@0
|
226 {
|
rlm@0
|
227 0xC3,0x92,0x5B,0x1C,0xD1,0x92,0x5B,0x1C,0xDB,0x9C,0x72,0x18,0xCD,0x5C,0x38,0x0B,
|
rlm@0
|
228 0xE1,0x9C,0x74,0x17,0xCF,0x75,0x45,0x0C,0xCF,0x6E,0x4A,0x0D,0xA3,0x3A,0x1D,0x08,
|
rlm@0
|
229 0xDB,0xA0,0x82,0x19,0xD9,0x73,0x3C,0x0E,0xCB,0x76,0x52,0x0B,0xA5,0x46,0x1D,0x09,
|
rlm@0
|
230 0xDA,0x74,0x55,0x0F,0xA2,0x3F,0x21,0x05,0x9A,0x40,0x20,0x07,0x63,0x1E,0x10,0x01,
|
rlm@0
|
231 0xDF,0xA9,0x85,0x1D,0xD3,0x84,0x4B,0x0E,0xCF,0x6F,0x49,0x0F,0xB3,0x48,0x1E,0x05,
|
rlm@0
|
232 0xD8,0x77,0x52,0x12,0xB7,0x49,0x23,0x06,0xAA,0x45,0x28,0x07,0x7D,0x28,0x0F,0x07,
|
rlm@0
|
233 0xCC,0x7B,0x4A,0x0E,0xB2,0x4F,0x24,0x07,0xAD,0x43,0x2C,0x06,0x86,0x29,0x11,0x07,
|
rlm@0
|
234 0xAE,0x48,0x1F,0x0A,0x76,0x21,0x19,0x05,0x76,0x21,0x14,0x05,0x44,0x11,0x0B,0x01,
|
rlm@0
|
235 0xE7,0xAD,0x96,0x23,0xDC,0x86,0x59,0x0E,0xDC,0x7C,0x5F,0x15,0xBB,0x53,0x2E,0x09,
|
rlm@0
|
236 0xD6,0x7C,0x4A,0x16,0xBB,0x4A,0x25,0x08,0xB3,0x4F,0x28,0x0B,0x8E,0x23,0x15,0x08,
|
rlm@0
|
237 0xCF,0x7F,0x57,0x11,0xB5,0x4A,0x23,0x0A,0xAA,0x42,0x28,0x05,0x7D,0x22,0x12,0x03,
|
rlm@0
|
238 0xA6,0x49,0x28,0x09,0x82,0x2B,0x0D,0x04,0x7A,0x20,0x0F,0x04,0x3D,0x0F,0x09,0x03,
|
rlm@0
|
239 0xD1,0x7C,0x4C,0x0F,0xAF,0x4E,0x21,0x09,0xA8,0x46,0x2A,0x07,0x85,0x1F,0x0E,0x07,
|
rlm@0
|
240 0xA6,0x3F,0x26,0x07,0x7C,0x24,0x14,0x07,0x78,0x22,0x16,0x04,0x46,0x12,0x0A,0x02,
|
rlm@0
|
241 0xA6,0x41,0x2C,0x0A,0x7E,0x28,0x11,0x05,0x73,0x1B,0x14,0x05,0x3D,0x11,0x0A,0x02,
|
rlm@0
|
242 0x70,0x22,0x17,0x05,0x48,0x13,0x08,0x03,0x3C,0x07,0x0D,0x07,0x26,0x07,0x06,0x01,
|
rlm@0
|
243
|
rlm@0
|
244 0xE0,0x9F,0xDA,0x7C,0x4F,0x18,0x28,0x0D,0xE9,0x9F,0xDA,0x7C,0x4F,0x18,0x1F,0x07,
|
rlm@0
|
245 0xE6,0x97,0xD8,0x72,0x64,0x13,0x26,0x09,0xDC,0x67,0xA9,0x38,0x21,0x07,0x15,0x06,
|
rlm@0
|
246 0xE9,0x91,0xD2,0x6B,0x63,0x14,0x2B,0x0E,0xD6,0x61,0xB7,0x41,0x2B,0x0E,0x10,0x09,
|
rlm@0
|
247 0xCF,0x59,0xB0,0x2F,0x35,0x08,0x0F,0x07,0xB6,0x30,0x7A,0x21,0x17,0x07,0x09,0x03,
|
rlm@0
|
248 0xE7,0xA3,0xE5,0x6B,0x65,0x1F,0x34,0x09,0xD8,0x6B,0xBE,0x45,0x27,0x07,0x10,0x07,
|
rlm@0
|
249 0xDA,0x54,0xB1,0x39,0x2E,0x0E,0x17,0x08,0xA9,0x3C,0x86,0x22,0x16,0x06,0x07,0x03,
|
rlm@0
|
250 0xD4,0x51,0xBC,0x3D,0x38,0x0A,0x13,0x06,0xB2,0x37,0x79,0x1C,0x17,0x05,0x0E,0x06,
|
rlm@0
|
251 0xA7,0x31,0x74,0x1C,0x11,0x06,0x0C,0x02,0x6D,0x1A,0x38,0x10,0x0B,0x05,0x06,0x03,
|
rlm@0
|
252 0xEB,0x9A,0xE1,0x7A,0x6F,0x13,0x34,0x0E,0xE6,0x75,0xC5,0x45,0x3E,0x0B,0x1A,0x05,
|
rlm@0
|
253 0xD8,0x63,0xC1,0x40,0x3C,0x1B,0x19,0x06,0xB3,0x42,0x83,0x29,0x18,0x0A,0x08,0x04,
|
rlm@0
|
254 0xD4,0x58,0xBA,0x43,0x3F,0x0A,0x1F,0x09,0xB1,0x33,0x8A,0x1F,0x1F,0x06,0x0D,0x05,
|
rlm@0
|
255 0xAF,0x3C,0x7A,0x1F,0x16,0x08,0x0A,0x01,0x72,0x1B,0x52,0x0D,0x0B,0x09,0x06,0x01,
|
rlm@0
|
256 0xCF,0x63,0xB7,0x47,0x40,0x10,0x14,0x06,0xC0,0x41,0x96,0x20,0x1C,0x09,0x10,0x05,
|
rlm@0
|
257 0xA6,0x35,0x82,0x1A,0x20,0x0C,0x0E,0x04,0x80,0x1F,0x53,0x0F,0x0B,0x02,0x06,0x01,
|
rlm@0
|
258 0xA6,0x31,0x81,0x1B,0x1D,0x01,0x08,0x08,0x7B,0x20,0x4D,0x19,0x0E,0x05,0x07,0x03,
|
rlm@0
|
259 0x6B,0x17,0x49,0x07,0x0E,0x03,0x0A,0x05,0x37,0x0B,0x1F,0x06,0x04,0x02,0x07,0x01,
|
rlm@0
|
260
|
rlm@0
|
261 0xF0,0xD6,0xED,0xAD,0xEC,0xB1,0xEB,0x79,0xAC,0x22,0x47,0x1E,0x6E,0x1B,0x32,0x0A,
|
rlm@0
|
262 0xF0,0xD6,0xEA,0xA4,0xED,0xC4,0xDE,0x82,0x98,0x1F,0x50,0x13,0x52,0x15,0x2A,0x0A,
|
rlm@0
|
263 0xF1,0xD1,0xEB,0xA2,0xEB,0xB7,0xD8,0x69,0xA2,0x1F,0x5B,0x18,0x55,0x18,0x2C,0x0A,
|
rlm@0
|
264 0xED,0xB5,0xDE,0x7E,0xE6,0x85,0xD3,0x59,0x59,0x0F,0x2C,0x09,0x24,0x07,0x15,0x09,
|
rlm@0
|
265 0xF1,0xD6,0xEA,0xA0,0xEC,0xBB,0xDA,0x77,0xA9,0x23,0x58,0x14,0x5D,0x12,0x2F,0x09,
|
rlm@0
|
266 0xF1,0xC1,0xE3,0x86,0xE4,0x87,0xD2,0x4E,0x68,0x15,0x26,0x0B,0x27,0x09,0x15,0x02,
|
rlm@0
|
267 0xEE,0xA6,0xE0,0x5C,0xE0,0x77,0xC3,0x41,0x67,0x1B,0x3C,0x07,0x2A,0x06,0x19,0x07,
|
rlm@0
|
268 0xE4,0x75,0xC6,0x43,0xCC,0x50,0x95,0x23,0x35,0x09,0x14,0x04,0x15,0x05,0x0B,0x04,
|
rlm@0
|
269 0xEE,0xD6,0xED,0xAD,0xEC,0xB1,0xEB,0x79,0xAC,0x22,0x56,0x14,0x5A,0x12,0x26,0x0A,
|
rlm@0
|
270 0xEE,0xBB,0xE7,0x7E,0xE9,0x8D,0xCB,0x49,0x67,0x11,0x34,0x07,0x2B,0x0B,0x14,0x07,
|
rlm@0
|
271 0xED,0xA7,0xE5,0x76,0xE3,0x7E,0xC4,0x4B,0x77,0x14,0x34,0x08,0x27,0x07,0x14,0x04,
|
rlm@0
|
272 0xE7,0x8B,0xD2,0x4C,0xCA,0x56,0x9E,0x31,0x36,0x0C,0x11,0x07,0x14,0x04,0x0A,0x02,
|
rlm@0
|
273 0xF0,0x9B,0xEA,0x6F,0xE5,0x81,0xC4,0x43,0x74,0x10,0x30,0x0B,0x2D,0x08,0x1B,0x06,
|
rlm@0
|
274 0xE6,0x83,0xCA,0x48,0xD9,0x56,0xA7,0x23,0x3B,0x09,0x12,0x09,0x15,0x07,0x0A,0x03,
|
rlm@0
|
275 0xE5,0x5F,0xCB,0x3C,0xCF,0x48,0x91,0x22,0x31,0x0A,0x17,0x08,0x15,0x04,0x0D,0x02,
|
rlm@0
|
276 0xD1,0x43,0x91,0x20,0xA9,0x2D,0x54,0x12,0x17,0x07,0x09,0x02,0x0C,0x04,0x05,0x03,
|
rlm@0
|
277 };
|
rlm@0
|
278 #endif
|
rlm@0
|
279
|
rlm@0
|
280 // divided into multiple functions to keep rarely-used functionality separate
|
rlm@0
|
281 // so often-used functionality can be optimized better by compiler
|
rlm@0
|
282
|
rlm@0
|
283 // If write isn't preceded by read, data has this added to it
|
rlm@0
|
284 int const no_read_before_write = 0x2000;
|
rlm@0
|
285
|
rlm@0
|
286 void SNES_SPC::cpu_write_smp_reg_( int data, rel_time_t time, int addr )
|
rlm@0
|
287 {
|
rlm@0
|
288 switch ( addr )
|
rlm@0
|
289 {
|
rlm@0
|
290 case r_t0target:
|
rlm@0
|
291 case r_t1target:
|
rlm@0
|
292 case r_t2target: {
|
rlm@0
|
293 Timer* t = &m.timers [addr - r_t0target];
|
rlm@0
|
294 int period = IF_0_THEN_256( data );
|
rlm@0
|
295 if ( t->period != period )
|
rlm@0
|
296 {
|
rlm@0
|
297 t = run_timer( t, time );
|
rlm@0
|
298 #if SPC_MORE_ACCURACY
|
rlm@0
|
299 // Insane behavior when target is written just after counter is
|
rlm@0
|
300 // clocked and counter matches new period and new period isn't 1, 2, 4, or 8
|
rlm@0
|
301 if ( t->divider == (period & 0xFF) &&
|
rlm@0
|
302 t->next_time == time + TIMER_MUL( t, 1 ) &&
|
rlm@0
|
303 ((period - 1) | ~0x0F) & period )
|
rlm@0
|
304 {
|
rlm@0
|
305 //dprintf( "SPC pathological timer target write\n" );
|
rlm@0
|
306
|
rlm@0
|
307 // If the period is 3, 5, or 9, there's a probability this behavior won't occur,
|
rlm@0
|
308 // based on the previous period
|
rlm@0
|
309 int prob = 0xFF;
|
rlm@0
|
310 int old_period = t->period & 0xFF;
|
rlm@0
|
311 if ( period == 3 ) prob = glitch_probs [0] [old_period];
|
rlm@0
|
312 if ( period == 5 ) prob = glitch_probs [1] [old_period];
|
rlm@0
|
313 if ( period == 9 ) prob = glitch_probs [2] [old_period];
|
rlm@0
|
314
|
rlm@0
|
315 // The glitch suppresses incrementing of one of the counter bits, based on
|
rlm@0
|
316 // the lowest set bit in the new period
|
rlm@0
|
317 int b = 1;
|
rlm@0
|
318 while ( !(period & b) )
|
rlm@0
|
319 b <<= 1;
|
rlm@0
|
320
|
rlm@0
|
321 if ( (rand() >> 4 & 0xFF) <= prob )
|
rlm@0
|
322 t->divider = (t->divider - b) & 0xFF;
|
rlm@0
|
323 }
|
rlm@0
|
324 #endif
|
rlm@0
|
325 t->period = period;
|
rlm@0
|
326 }
|
rlm@0
|
327 break;
|
rlm@0
|
328 }
|
rlm@0
|
329
|
rlm@0
|
330 case r_t0out:
|
rlm@0
|
331 case r_t1out:
|
rlm@0
|
332 case r_t2out:
|
rlm@0
|
333 if ( !SPC_MORE_ACCURACY )
|
rlm@0
|
334 dprintf( "SPC wrote to counter %d\n", (int) addr - r_t0out );
|
rlm@0
|
335
|
rlm@0
|
336 if ( data < no_read_before_write / 2 )
|
rlm@0
|
337 run_timer( &m.timers [addr - r_t0out], time - 1 )->counter = 0;
|
rlm@0
|
338 break;
|
rlm@0
|
339
|
rlm@0
|
340 // Registers that act like RAM
|
rlm@0
|
341 case 0x8:
|
rlm@0
|
342 case 0x9:
|
rlm@0
|
343 REGS_IN [addr] = (uint8_t) data;
|
rlm@0
|
344 break;
|
rlm@0
|
345
|
rlm@0
|
346 case r_test:
|
rlm@0
|
347 if ( (uint8_t) data != 0x0A )
|
rlm@0
|
348 dprintf( "SPC wrote to test register\n" );
|
rlm@0
|
349 break;
|
rlm@0
|
350
|
rlm@0
|
351 case r_control:
|
rlm@0
|
352 // port clears
|
rlm@0
|
353 if ( data & 0x10 )
|
rlm@0
|
354 {
|
rlm@0
|
355 REGS_IN [r_cpuio0] = 0;
|
rlm@0
|
356 REGS_IN [r_cpuio1] = 0;
|
rlm@0
|
357 }
|
rlm@0
|
358 if ( data & 0x20 )
|
rlm@0
|
359 {
|
rlm@0
|
360 REGS_IN [r_cpuio2] = 0;
|
rlm@0
|
361 REGS_IN [r_cpuio3] = 0;
|
rlm@0
|
362 }
|
rlm@0
|
363
|
rlm@0
|
364 // timers
|
rlm@0
|
365 {
|
rlm@0
|
366 for ( int i = 0; i < timer_count; i++ )
|
rlm@0
|
367 {
|
rlm@0
|
368 Timer* t = &m.timers [i];
|
rlm@0
|
369 int enabled = data >> i & 1;
|
rlm@0
|
370 if ( t->enabled != enabled )
|
rlm@0
|
371 {
|
rlm@0
|
372 t = run_timer( t, time );
|
rlm@0
|
373 t->enabled = enabled;
|
rlm@0
|
374 if ( enabled )
|
rlm@0
|
375 {
|
rlm@0
|
376 t->divider = 0;
|
rlm@0
|
377 t->counter = 0;
|
rlm@0
|
378 }
|
rlm@0
|
379 }
|
rlm@0
|
380 }
|
rlm@0
|
381 }
|
rlm@0
|
382 enable_rom( data & 0x80 );
|
rlm@0
|
383 break;
|
rlm@0
|
384 }
|
rlm@0
|
385 }
|
rlm@0
|
386
|
rlm@0
|
387 void SNES_SPC::cpu_write_smp_reg( int data, rel_time_t time, int addr )
|
rlm@0
|
388 {
|
rlm@0
|
389 if ( addr == r_dspdata ) // 99%
|
rlm@0
|
390 dsp_write( data, time );
|
rlm@0
|
391 else
|
rlm@0
|
392 cpu_write_smp_reg_( data, time, addr );
|
rlm@0
|
393 }
|
rlm@0
|
394
|
rlm@0
|
395 void SNES_SPC::cpu_write_high( int data, int i, rel_time_t time )
|
rlm@0
|
396 {
|
rlm@0
|
397 if ( i < rom_size )
|
rlm@0
|
398 {
|
rlm@0
|
399 m.hi_ram [i] = (uint8_t) data;
|
rlm@0
|
400 if ( m.rom_enabled )
|
rlm@0
|
401 RAM [i + rom_addr] = m.rom [i]; // restore overwritten ROM
|
rlm@0
|
402 }
|
rlm@0
|
403 else
|
rlm@0
|
404 {
|
rlm@0
|
405 assert( RAM [i + rom_addr] == (uint8_t) data );
|
rlm@0
|
406 RAM [i + rom_addr] = cpu_pad_fill; // restore overwritten padding
|
rlm@0
|
407 cpu_write( data, i + rom_addr - 0x10000, time );
|
rlm@0
|
408 }
|
rlm@0
|
409 }
|
rlm@0
|
410
|
rlm@0
|
411 int const bits_in_int = CHAR_BIT * sizeof (int);
|
rlm@0
|
412
|
rlm@0
|
413 void SNES_SPC::cpu_write( int data, int addr, rel_time_t time )
|
rlm@0
|
414 {
|
rlm@0
|
415 MEM_ACCESS( time, addr )
|
rlm@0
|
416
|
rlm@0
|
417 // RAM
|
rlm@0
|
418 RAM [addr] = (uint8_t) data;
|
rlm@0
|
419 int reg = addr - 0xF0;
|
rlm@0
|
420 if ( reg >= 0 ) // 64%
|
rlm@0
|
421 {
|
rlm@0
|
422 // $F0-$FF
|
rlm@0
|
423 if ( reg < reg_count ) // 87%
|
rlm@0
|
424 {
|
rlm@0
|
425 REGS [reg] = (uint8_t) data;
|
rlm@0
|
426
|
rlm@0
|
427 // Ports
|
rlm@0
|
428 #ifdef SPC_PORT_WRITE_HOOK
|
rlm@0
|
429 if ( (unsigned) (reg - r_cpuio0) < port_count )
|
rlm@0
|
430 SPC_PORT_WRITE_HOOK( m.spc_time + time, (reg - r_cpuio0),
|
rlm@0
|
431 (uint8_t) data, ®S [r_cpuio0] );
|
rlm@0
|
432 #endif
|
rlm@0
|
433
|
rlm@0
|
434 // Registers other than $F2 and $F4-$F7
|
rlm@0
|
435 //if ( reg != 2 && reg != 4 && reg != 5 && reg != 6 && reg != 7 )
|
rlm@0
|
436 // TODO: this is a bit on the fragile side
|
rlm@0
|
437 if ( ((~0x2F00 << (bits_in_int - 16)) << reg) < 0 ) // 36%
|
rlm@0
|
438 cpu_write_smp_reg( data, time, reg );
|
rlm@0
|
439 }
|
rlm@0
|
440 // High mem/address wrap-around
|
rlm@0
|
441 else
|
rlm@0
|
442 {
|
rlm@0
|
443 reg -= rom_addr - 0xF0;
|
rlm@0
|
444 if ( reg >= 0 ) // 1% in IPL ROM area or address wrapped around
|
rlm@0
|
445 cpu_write_high( data, reg, time );
|
rlm@0
|
446 }
|
rlm@0
|
447 }
|
rlm@0
|
448 }
|
rlm@0
|
449
|
rlm@0
|
450
|
rlm@0
|
451 //// CPU read
|
rlm@0
|
452
|
rlm@0
|
453 inline int SNES_SPC::cpu_read_smp_reg( int reg, rel_time_t time )
|
rlm@0
|
454 {
|
rlm@0
|
455 int result = REGS_IN [reg];
|
rlm@0
|
456 reg -= r_dspaddr;
|
rlm@0
|
457 // DSP addr and data
|
rlm@0
|
458 if ( (unsigned) reg <= 1 ) // 4% 0xF2 and 0xF3
|
rlm@0
|
459 {
|
rlm@0
|
460 result = REGS [r_dspaddr];
|
rlm@0
|
461 if ( (unsigned) reg == 1 )
|
rlm@0
|
462 result = dsp_read( time ); // 0xF3
|
rlm@0
|
463 }
|
rlm@0
|
464 return result;
|
rlm@0
|
465 }
|
rlm@0
|
466
|
rlm@0
|
467 int SNES_SPC::cpu_read( int addr, rel_time_t time )
|
rlm@0
|
468 {
|
rlm@0
|
469 MEM_ACCESS( time, addr )
|
rlm@0
|
470
|
rlm@0
|
471 // RAM
|
rlm@0
|
472 int result = RAM [addr];
|
rlm@0
|
473 int reg = addr - 0xF0;
|
rlm@0
|
474 if ( reg >= 0 ) // 40%
|
rlm@0
|
475 {
|
rlm@0
|
476 reg -= 0x10;
|
rlm@0
|
477 if ( (unsigned) reg >= 0xFF00 ) // 21%
|
rlm@0
|
478 {
|
rlm@0
|
479 reg += 0x10 - r_t0out;
|
rlm@0
|
480
|
rlm@0
|
481 // Timers
|
rlm@0
|
482 if ( (unsigned) reg < timer_count ) // 90%
|
rlm@0
|
483 {
|
rlm@0
|
484 Timer* t = &m.timers [reg];
|
rlm@0
|
485 if ( time >= t->next_time )
|
rlm@0
|
486 t = run_timer_( t, time );
|
rlm@0
|
487 result = t->counter;
|
rlm@0
|
488 t->counter = 0;
|
rlm@0
|
489 }
|
rlm@0
|
490 // Other registers
|
rlm@0
|
491 else if ( reg < 0 ) // 10%
|
rlm@0
|
492 {
|
rlm@0
|
493 result = cpu_read_smp_reg( reg + r_t0out, time );
|
rlm@0
|
494 }
|
rlm@0
|
495 else // 1%
|
rlm@0
|
496 {
|
rlm@0
|
497 assert( reg + (r_t0out + 0xF0 - 0x10000) < 0x100 );
|
rlm@0
|
498 result = cpu_read( reg + (r_t0out + 0xF0 - 0x10000), time );
|
rlm@0
|
499 }
|
rlm@0
|
500 }
|
rlm@0
|
501 }
|
rlm@0
|
502
|
rlm@0
|
503 return result;
|
rlm@0
|
504 }
|
rlm@0
|
505
|
rlm@0
|
506
|
rlm@0
|
507 //// Run
|
rlm@0
|
508
|
rlm@0
|
509 // Prefix and suffix for CPU emulator function
|
rlm@0
|
510 #define SPC_CPU_RUN_FUNC \
|
rlm@0
|
511 BOOST::uint8_t* SNES_SPC::run_until_( time_t end_time )\
|
rlm@0
|
512 {\
|
rlm@0
|
513 rel_time_t rel_time = m.spc_time - end_time;\
|
rlm@0
|
514 assert( rel_time <= 0 );\
|
rlm@0
|
515 m.spc_time = end_time;\
|
rlm@0
|
516 m.dsp_time += rel_time;\
|
rlm@0
|
517 m.timers [0].next_time += rel_time;\
|
rlm@0
|
518 m.timers [1].next_time += rel_time;\
|
rlm@0
|
519 m.timers [2].next_time += rel_time;
|
rlm@0
|
520
|
rlm@0
|
521 #define SPC_CPU_RUN_FUNC_END \
|
rlm@0
|
522 m.spc_time += rel_time;\
|
rlm@0
|
523 m.dsp_time -= rel_time;\
|
rlm@0
|
524 m.timers [0].next_time -= rel_time;\
|
rlm@0
|
525 m.timers [1].next_time -= rel_time;\
|
rlm@0
|
526 m.timers [2].next_time -= rel_time;\
|
rlm@0
|
527 assert( m.spc_time <= end_time );\
|
rlm@0
|
528 return ®S [r_cpuio0];\
|
rlm@0
|
529 }
|
rlm@0
|
530
|
rlm@0
|
531 int const cpu_lag_max = 12 - 1; // DIV YA,X takes 12 clocks
|
rlm@0
|
532
|
rlm@0
|
533 void SNES_SPC::end_frame( time_t end_time )
|
rlm@0
|
534 {
|
rlm@0
|
535 // Catch CPU up to as close to end as possible. If final instruction
|
rlm@0
|
536 // would exceed end, does NOT execute it and leaves m.spc_time < end.
|
rlm@0
|
537 if ( end_time > m.spc_time )
|
rlm@0
|
538 run_until_( end_time );
|
rlm@0
|
539
|
rlm@0
|
540 m.spc_time -= end_time;
|
rlm@0
|
541 m.extra_clocks += end_time;
|
rlm@0
|
542
|
rlm@0
|
543 // Greatest number of clocks early that emulation can stop early due to
|
rlm@0
|
544 // not being able to execute current instruction without going over
|
rlm@0
|
545 // allowed time.
|
rlm@0
|
546 assert( -cpu_lag_max <= m.spc_time && m.spc_time <= 0 );
|
rlm@0
|
547
|
rlm@0
|
548 // Catch timers up to CPU
|
rlm@0
|
549 for ( int i = 0; i < timer_count; i++ )
|
rlm@0
|
550 run_timer( &m.timers [i], 0 );
|
rlm@0
|
551
|
rlm@0
|
552 // Catch DSP up to CPU
|
rlm@0
|
553 if ( m.dsp_time < 0 )
|
rlm@0
|
554 {
|
rlm@0
|
555 RUN_DSP( 0, max_reg_time );
|
rlm@0
|
556 }
|
rlm@0
|
557
|
rlm@0
|
558 // Save any extra samples beyond what should be generated
|
rlm@0
|
559 if ( m.buf_begin )
|
rlm@0
|
560 save_extra();
|
rlm@0
|
561 }
|
rlm@0
|
562
|
rlm@0
|
563 // Inclusion here allows static memory access functions and better optimization
|
rlm@0
|
564 #include "SPC_CPU.h"
|