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1 Introduction

Bluespec SystemVerilog (BSV) is aimed at hardware designers who are using or expect to use
Verilog [IEE01], VHDL [IEE02], or SystemVerilog [Acc04] to design ASICs or FPGAs. BSV is
based on a synthesizable subset of SystemVerilog, including SystemVerilog types, modules, module
instantiation, interfaces, interface instantiation, parameterization, static elaboration, and “generate”
elaboration. BSV can significantly improve the hardware designer’s productivity with some key
innovations:

• It expresses synthesizable behavior with Rules instead of synchronous always blocks. Rules
are powerful concepts for achieving correct concurrency and eliminating race conditions. Each
rule can be viewed as a declarative assertion expressing a potential atomic state transition.
Although rules are expressed in a modular fashion, a rule may span multiple modules, i.e., it
can test and affect the state in multiple modules. Rules need not be disjoint, i.e., two rules
can read and write common state elements. The BSV compiler produces efficient RTL code
that manages all the potential interactions between rules by inserting appropriate arbitration
and scheduling logic, logic that would otherwise have to be designed and coded manually. The
atomicity of rules gives a scalable way to avoid unwanted concurrency (races) in large designs.

• It enables more powerful generate-like elaboration. This is made possible because in BSV,
actions, rules, modules, interfaces and functions are all first-class objects. BSV also has more
general type parameterization (polymorphism). These enable the designer to “compute with
design fragments,” i.e., to reuse designs and to glue them together in much more flexible ways.
This leads to much greater succinctness and correctness.

• It provides formal semantics, enabling formal verification and formal design-by-refinement.
BSV rules are based on Term Rewriting Systems, a clean formalism supported by decades
of theoretical research in the computer science community [Ter03]. This, together with a
judicious choice of a design subset of SystemVerilog, makes programs in BSV amenable to
formal reasoning.

This manual is meant to be a stand-alone reference for BSV, i.e., it fully describes the subset of
Verilog and SystemVerilog used in BSV. It is not intended to be a tutorial for the beginner. A reader
with a working knowledge of Verilog 1995 or Verilog 2001 should be able to read this manual easily.
Prior knowledge of SystemVerilog is not required.

1.1 Meta notation

The grammar in this document is given using an extended BNF (Backus-Naur Form). Grammar
alternatives are separated by a vertical bar (“|”). Items enclosed in square brackets (“[ ]”) are
optional. Items enclosed in curly braces (“{ }”) can be repeated zero or more times.

Another BNF extension is parameterization. For example, a moduleStmt can be a moduleIf, and an
actionStmt can be an actionIf. A moduleIf and an actionIf are almost identical; the only difference
is that the former can contain (recursively) moduleStmts whereas the latter can contain actionStmts.
Instead of tediously repeating the grammar for moduleIf and actionIf, we parameterize it by giving
a single grammar for <ctxt>If, where <ctxt> is either module or action. In the productions for
<ctxt>If, we call for <ctxt>Stmt which, therefore, either represents a moduleStmt or an actionStmt,
depending on the context in which it is used.

2 Lexical elements

BSV has the same basic lexical elements as Verilog.
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2.1 Whitespace and comments

Spaces, tabs, newlines, formfeeds, and carriage returns all constitute whitespace. They may be used
freely between all lexical tokens.

A comment is treated as whitespace (it can only occur between, and never within, any lexical token).
A one-line comment starts with // and ends with a newline. A block comment begins with /* and
ends with */ and may span any number of lines.

Comments do not nest. In a one-line comment, the character sequences //, /* and */ have no special
significance. In a block comment, the character sequences // and /* have no special significance.

2.2 Identifiers and keywords

An identifier in BSV consists of any sequence of letters, digits, dollar signs $ and underscore char-
acters (_). Identifiers are case-sensitive: glurph, gluRph and Glurph are three distinct identifiers.
The first character cannot be a digit.

BSV currently requires a certain capitalization convention for the first letter in an identifier. Identi-
fiers used for package names, type names, enumeration labels, union members and type classes must
begin with a capital letter. In the syntax, we use the non-terminal Identifier to refer to these. Other
identifiers (including names of variables, modules, interfaces, etc.) must begin with a lowercase letter
and, in the syntax, we use the non-terminal identifier to refer to these.

As in Verilog, identifiers whose first character is $ are reserved for so-called system tasks and functions
(see Section 12.8).

There are a number of keywords that are essentially reserved identifiers, i.e., they cannot be used by
the programmer as identifiers. Keywords generally do not use uppercase letters (the only exception
is the keyword valueOf). BSV includes all keywords in SystemVerilog. All keywords are listed in
Appendix A.

The types Action and ActionValue are special, and cannot be redefined.

2.3 Integer literals

Integer literals are written with the usual Verilog and C notations:

intLiteral ::= ’0 | ’1 | decLiteral | hexLiteral | octLiteral | binLiteral

decLiteral ::= decDigits
| [ bitWidth ] ( ’d | ’D ) decDigits

hexLiteral ::= [ bitWidth ] ( ’h | ’H ) hexDigits
octLiteral ::= [ bitWidth ] ( ’o | ’O ) octDigits
binLiteral ::= [ bitWidth ] ( ’b | ’B ) binDigits

bitWidth ::= decDigits

decDigits ::= 1 or more consecutive characters from the set 0...9
hexDigits ::= 1 or more consecutive characters from the sets 0...9, a...f, A...F
octDigits ::= 1 or more consecutive characters from the set 0...7
binDigits ::= 1 or more consecutive characters from the set 0...1

Note that there is no leading + or - in the syntax for integer literals. Instead, we provide unary
prefix + or - operators that can be used in front of any integer expression, including literals (see
Section 9).

Examples:
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125
’h48454a
32’h48454a
8’o255
12’b101010

2.3.1 Type conversion of integer literals

Integer literals can be used to specify values for various integer types and even for user-defined
types. BSV uses its systematic overloading resolution mechanism to perform these type conversions.
Overloading resolution is described in more detail in Section 14.1.

In an integer literal, if a specific width w is given (e.g., 8’o255), the literal is assumed to have type
bit [w − 1:0]. The compiler implicitly applies the overloaded function unpack to the literal to
convert it to the type required by the context. Thus, sized literals can be used for any type on which
the overloaded function unpack is defined, i.e., for any type in the Bits type class.

If a specific width is not given, the literal is assumed to have type Integer. The compiler implicitly
applies the overloaded function fromInteger to the literal to convert it to the type required by
the context. Thus, unsized literals can be used for any type on which the overloaded function
fromInteger is defined.

The literal ’0 just stands for 0. The literal ’1 stands for a value in which all bits are 1 (the width
depends on the context).

2.4 Real literals

Support for real (Verilog 2001) and shortreal (SystemVerilog) will be added to BSV in the future.

2.5 String literals

String literals are written enclosed in double quotes "· · ·" and must be contained on a single source
line.

stringLiteral ::= " · · · string characters · · · "

Special characters may be inserted in string literals with the following backslash escape sequences:

\n newline
\t tab
\\ backslash
\" double quote
\v vertical tab
\f form feed
\a bell
\OOO exactly 3 octal digits (8-bit character code)
\xHH exactly 2 hexadecimal digits (8-bit character code)

Example - printing characters using form feed.

module mkPrinter (Empty);
String display_value;

display_value = "a\nb\nc"; //prints a
// b

12 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

// c repeatedly
rule every;

$display(display_value);
endrule

endmodule

2.6 Don’t-care values

A lone question mark ? is treated as a special don’t-care value. For example, one may return ?
from an arm of a case statement that is known to be unreachable.

Example - Using ? as a don’t care value

module mkExample (Empty);
Reg#(Bit#(8)) r <- mkReg(?); // don’t care is used for the
rule every; // reset value of the Reg

$display("value is %h", r); // the value of r is displayed
endrule

endmodule

2.7 Compiler directives

The following compiler directives permit file inclusion, macro definition and substitution, and condi-
tional compilation. They follow the specifications given in the Verilog 2001 LRM plus the extensions
given in the SystemVerilog 3.1a LRM.

In general, these compiler directives can appear anywhere in the source text. In particular, they do
not need to be on lines by themselves, and they need not begin in the first column. Of course, they
should not be inside strings or comments, where the text remains uninterpreted.

2.7.1 File inclusion: ‘include and ‘line

compilerDirective ::= ‘include "filename"
| ‘include <filename>
| ‘include macroInvocation

In an ‘include directive, the contents of the named file are inserted in place of this line. The
included files may themselves contain compiler directives. Currently there is no difference between
the "..." and <...> forms. A macroInvocation should expand to one of the other two forms. The
file name may be absolute, or relative to the current directory.

compilerDirective ::= ‘line lineNumber "filename" level
lineNumber ::= decLiteral
level ::= 0 | 1 | 2

A ‘line directive is terminated by a newline, i.e., it cannot have any other source text after the level.
The compiler automatically keeps track of the source file name and line number for every line of
source text (including from included source files), so that error messages can be properly correlated to
the source. This directive effectively overrides the compiler’s internal tracking mechanism, forcing
it to regard the next line onwards as coming from the given source file and line number. It is
generally not necessary to use this directive explicitly; it is mainly intended to be generated by other
preprocessors that may themselves need to alter the source files before passing them through the
BSV compiler; this mechanism allows proper references to the original source.

The level specifier is either 0, 1 or 2:

c© 2005 Bluespec, Inc. All rights reserved 13



Reference Guide Bluespec SystemVerilog v3.8

• 1 indicates that an include file has just been entered

• 2 indicates that an include file has just been exited

• 0 is used in all other cases

2.7.2 Macro definition and substitution: ‘define and related directives

compilerDirective ::= ‘define macroName [ ( macroFormals ) ] macroText

macroName ::= identifier

macroFormals ::= identifier { , identifier }

The ‘define directive is terminated by a bare newline. A backslash (\) just before a newline
continues the directive into the next line. When the macro text is substituted, each such continuation
backslash-newline is replaced by a newline.

The macroName is an identifier and may be followed by formal arguments, which are a list of
comma-separated identifiers in parentheses. For both the macro name and the formals, lower and
upper case are acceptable (but case is distinguished). The macroName cannot be any of the compiler
directives (such as include, define, ...).

The scope of the formal arguments extends to the end of the macroText.

The macroText represents almost arbitrary text that is to be substituted in place of invocations of
this macro. The macroText can be empty.

One-line comments (i.e., beginning with //) may appear in the macroText ; these are not considered
part of the substitutable text and are removed during substitution. A one-line comment that is not
on the last line of a ‘define directive is terminated by a backslash-newline instead of a newline.

A block comment (/*...*/) is removed during substitution and replaced by a single space.

The macroText can also contain the following special escape sequences:

• ‘" Indicates that a double-quote (") should be placed in the expanded text.

• ‘\‘" Indicates that a backslash and a double-quote (\") should be placed in the expanded
text.

• ‘‘ Indicates that there should be no whitespace between the preceding and following
text. This allows construction of identifiers from the macro arguments.

A minimal amount of lexical analysis of macroText is done to identify comments, string literals,
identifiers representing macro formals, and macro invocations. As described earlier, one-line com-
ments are removed. The text inside string literals is not interpreted except for the usual string
escape sequences described in Section 2.5.

There are two define macros in the define environment initially; ‘bluespec and ‘BLUESPEC.

Once defined, a macro can be invoked anywhere in the source text (including within other macro
definitions) using the following syntax.

compilerDirective ::= macroInvocation

macroInvocation ::= ‘macroName [ ( macroActuals ) ]

macroActuals ::= substText { , substText }

The macroName must refer to a macro definition available at expansion time. The macroActuals,
if present, consist of substitution text substText that is arbitrary text, possibly spread over multiple
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lines, excluding commas. A minimal amount of parsing of this substitution text is done, so that
commas that are not at the top level are not interpreted as the commas separating macroActuals.
Examples of such “inner” uninterpreted commas are those within strings and within comments.

compilerDirective ::= ‘undef macroName
| ‘resetall

The ‘undef directive’s effect is that the specified macro (with or without formal arguments) is no
longer defined for the subsequent source text. Of course, it can be defined again with ‘define in the
subsequent text. The ‘resetall directive has the effect of undefining all currently defined macros,
i.e., there are no macros defined in the subsequent source text.

2.7.3 Conditional compilation: ‘ifdef and related directives

compilerDirective ::= ‘ifdef macroName
| ‘ifndef macroName
| ‘elsif macroName
| ‘else
| ‘endif

These directives are used together in either an ‘ifdef-endif sequence or an ifndef-endif sequence.
In either case, the sequence can contain zero or more elsif directives followed by zero or one else
directives. These sequences can be nested, i.e., each ‘ifdef or ifndef introduces a new, nested
sequence until a corresponding endif.

In an ‘ifdef sequence, if the macroName is currently defined, the subsequent text is processed until
the next corresponding elsif, else or endif. All text from that next corresponding elsif or else
is ignored until the endif.

If the macroName is currently not defined, the subsequent text is ignored until the next corresponding
‘elsif, ‘else or ‘endif. If the next corresponding directive is an ‘elsif, it is treated just as if it
were an ‘ifdef at that point.

If the ‘ifdef and all its corresponding ‘elsifs fail (macros were not defined), and there is an ‘else
present, then the text between the ‘else and ‘endif is processed.

An ‘ifndef sequence is just like an ‘ifdef sequence, except that the sense of the first test is
inverted, i.e., its following text is processes if the macroName is not defined, and its ‘elsif and
‘else arms are considered only if the macro is defined.

Example using ‘ifdef to determine the size of a register:

‘ifdef USE_16_BITS
Reg#(Bit#(16)) a_reg <- mkReg(0);

‘else
Reg#(Bit#(8)) a_reg <- mkReg(0);

‘endif

3 Packages and the outermost structure of a BSV design

A BSV program consists of one or more outermost constructs called packages. All BSV code is
assumed to be inside a package. Further, the BSV compiler and other tools assume that there is
one package per file, and they use the package name to derive the file name. For example, a package
called Foo is assumed to be located in a file Foo.bsv.

A BSV package is purely a linguistic namespace-management mechanism and is particularly useful
for programming in the large, so that the author of a package can choose identifiers for the package
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components freely without worrying about choices made by authors of other packages. Package
structure is usually uncorrelated with hardware structure, which is specified by the module construct.

A package contains a collection of top-level statements that include specifications of what it imports
from other packages, what it exports to other packages, and its definitions of types, interfaces,
functions, variables, and modules. BSV tools ensure that when a package is compiled, all the
packages that it imports have already been compiled.

package ::= package packageIde ;
{ exportDecl }
{ importDecl }
{ packageStmt }
endpackage [ : packageIde ]

exportDecl ::= export exportItem { , exportItem } ;
exportItem ::= identifier [ (..) ]

| Identifier [ (..) ]

importDecl ::= import importItem { , importItem } ;
importItem ::= packageIde :: *

packageStmt ::= moduleDef
| interfaceDecl
| typeDef
| varDecl | varAssign
| functionDef
| typeclassDef
| typeclassInstanceDef
| externModuleImport

packageIde ::= Identifier

The name of the package is the identifier following the package keyword. This name can optionally
be repeated after the endpackage keyword (and a colon). We recommend using an uppercase first
letter in package names. In fact, the package and endpackage lines are optional: if they are absent,
BSV derives the assumed package name from the filename.

Each export item specifies an identifier defined elsewhere within this package, optionally followed
by (..). The identifier then becomes accessible outside this package. If there are any export
statements, then only those items are exported. If there are no export statements, by default all
identifiers defined in this package are exported.

If the exported identifier is the name of a struct (structure) or union type definition, then the
members of that type will be visible only if (..) is used. By omitting the (..) suffix, only the
type, but not its members, are visible outside the package. This is a way to define abstract data
types, i.e., types whose internal structure is hidden.

Each import item specifies a package from which to import identifiers, i.e., to make them visible
locally within this package. For each imported package, all identifiers exported from that package
are made locally visible.

Example:

package Foo;
export x;
export y;

import Bar::*;

... top level definition ...
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... top level definition ...

... top level definition ...

endpackage: Foo

Here, Foo is the name of this package. The identifiers x and y, which must be defined by the top-level
definitions in this package are names exported from this package. From package Bar we import all
its definitions.

3.1 Scopes, name clashes and qualified identifiers

BSV uses standard static scoping (also known as lexical scoping). Many constructs introduce new
scopes nested inside their surrounding scopes. Identifiers can be declared inside nested scopes. Any
use of an identifier refers to its declaration in the nearest textually surrounding scope. Thus, an
identifier x declared in a nested scope“shadows”, or hides, any declaration of x in surrounding scopes
(however, we recommend that the programmer avoids such shadowing, because it often makes code
more difficult to read.)

Packages form the the outermost scopes. Examples of nested scopes include modules, interfaces,
functions, methods, rules, action and actionvalue blocks, begin-end statements and expressions,
bodies of for and while loops, and seq and par blocks.

When used in any scope, an identifier must have an unambiguous meaning. If there is name clash
for an identifier x because it is defined in the current package and/or it is available from one or more
imported packages, then the ambiguity can be resolved by using a qualified name of the form P :: x
to refer to the version of x contained in package P .

3.2 The Standard Prelude package

The Standard Prelude is a predefined package that is imported implicitly into every BSV package,
i.e., it does not need an explicit import statement. It contains a number of useful predefined entities
(types, values, functions, modules, etc.). The Standard Prelude package is described in more detail
in appendix B. Reusing the name of Prelude entity when defining other entities, which would require
the entity’s name to be qualified with the package name, is strongly discouraged.

4 Types

Every variable and every expression in BSV has a type. Almost all variables must be declared with
their type.

The syntax of types (type expressions) is given below:

type ::= typePrimary
| typePrimary ( type { , type } ) Function type

typePrimary ::= typeIde [ # ( type { , type } ) ]
| typeNat
| bit [ typeNat : typeNat ]

typeIde ::= Identifier
typeNat ::= decDigits

Examples of simple types:
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Integer // Unbounded signed integers, for static elaboration only
int // 32-bit signed integers
Bool
String
Action

Type expressions of the form X#(t1,· · ·,tN) are called parameterized types. X is called a type
constructor and the types t1,· · ·,tN are the parameters of X. Examples:

Tuple2#(int,Bool) // pair of items, an int and a Bool
Tuple3#(int,Bool,String) // triple of items, an int, a Bool and a String
List#(Bool) // list containing booleans
List#(List#(Bool)) // list containing lists of booleans
RegFile#(Integer, String) // a register file (array) indexed by integers, containing strings

Type parameters can be natural numbers (also known as size types). These usually indicate some
aspect of the size of the type, such as a bit-width or a table capacity. Examples:

Bit#(16) // 16-bit wide bit-vector
bit [15:0] // synonym for Bit#(16)
UInt#(32) // unsigned integers, 32 bits wide
Int#(29) // signed integers, 29 bits wide
Vector#(16,Int#(29) // Vector of size 16 containing Int#(29)’s

Currently the second index n in a bit[m:n] type must be 0. The type bit[m:0] represents the
type of bit vectors, with bits indexed from m (msb/left) down through 0 (lsb/right), for m ≥ 0.

4.1 Polymorphism

A type can be polymorphic. This is indicated by using type variables as parameters. Examples:

List#(a) // lists containing items of some type a
List#(List#(b)) // lists containing lists of items of some type a
RegFile#(i, List#(x)) // arrays indexed by some type i, containing

// lists that contain items of some type x

The type variables represent unknown (but specific) types. In other words, List#(a) represents
the type of a list containing items all of which have some type a. It does not mean that different
elements of a list can have different types.

4.2 Provisos (brief intro)

Provisos are described in detail in Section 14.1.1, and the general facility of type classes (overload-
ing groups), of which provisos form a part, is described in Section 14.1. Here we provide a brief
description, which is adequate for most uses and for continuity in a serial reading of this manual.

A proviso is a static condition attached to certain constructs, to impose certain restrictions on the
types involved in the construct. The restrictions are of two kinds:

• Require instance of a type class (overloading group): this kind of proviso states that certain
types must be instances of certain type classes, i.e., that certain overloaded functions are
defined on this type.
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• Require size relationships: this kind of proviso expresses certain constraints between the sizes
of certain types.

The most common overloading provisos are:

Bits#(t,n) // Type class (overloading group) Bits
// Meaning: overloaded operators pack/unpack are defined
// on type t to convert to/from Bit#(n)

Eq#(t) // Type class (overloading group) Eq
// Meaning: overloaded operators == and != are defined on type t

Literal#(t) // Type class (overloading group) Literal
// Meaning: Overloaded function fromInteger() defined on type t
// to convert an integer literal to type t

Ord#(t) // Type class (overloading group) Ord
// Meaning: Overloaded order-comparison operators <, <=,
// > and >= are defined on type t

Bounded#(t) // Type class (overloading group) Bounded
// Meaning: Overloaded identifiers minBound and maxBound
// are defined for type t

Bitwise#(t) // Type class (overloading group) Bitwise
// Meaning: Overloaded operators &, |, ^, ~^, ^~, ~, << and >>
// and overloaded function invert are defined on type t

BitReduction#(t)// Type class (overloading group) BitReduction
// Meaning: Overloaded prefix operators &, |, ^,
// ~&, ~|, ~^, and ^~ are defined on type t

BitExtend#(t) // Type class (overloading group) BitExtend
// Meaning: Overloaded functions zeroExtend, signExtend
// and truncate are defined on type t

Arith#(t) // Type class (overloading group) Arith
// Meaning: Overloaded operators +, -, and *, and overloaded
// prefix operator - (same as function negate), and
// overloaded function negate are defined on type t

The size relationship provisos are:

Add#(n1,n2,n3) // Meaning: assert n1 + n2 = n3

Mul#(n1,n2,n3) // Meaning: assert n1 * n2 = n3

Div#(n1,n2,n3) // Meaning: assert n1 / n2 = n3

Max#(n1,n2,n3) // Meaning: assert max(n1,n2) = n3

Log#(n1,n2) // Meaning: assert ceiling(log(n1)) = n2
// The logarithm is base 2
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Example:

module mkExample (ProvideCurrent#(a))
provisos(Bits#(a, sa), Arith#(a));

Reg#(a) value_reg <- mkReg(?); // requires that type "a" be in the Bits typeclass.
rule every;

value_reg <= value_reg + 1; // requires that type "a" be in the Arith typeclass.
endrule

Example:

function Bit#(m) pad0101 (Bit#(n) x)
provisos (Add#(n,4,m)); // m is 4 bits longer than n
pad0101 = { x, 0b0101 };

endfunction: pad0101

This defines a function pad0101 that takes a bit vector x and pads it to the right with the four bits
“0101” using the standard bit-concatenation notation. The types and proviso express the idea that
the function takes a bit vector of length n and returns a bit vector of length m, where n + 4 = m.
These provisos permit the BSV compiler to statically verify that entities (values, variables, registers,
memories, FIFOs, and so on) have the correct bit-width.

4.2.1 The pseudo-function valueof

To get the value that corresponds to a size type, there is a special pseudo-function, valueof that
takes a size type and gives the corresponding Integer value.

exprPrimary ::= valueof ( type )

In other words, it converts from a numeric type expression into an ordinary value. These mechanisms
can be used to do arithmetic to derive dependent sizes. Example:

function ... foo (Vector#(n,int) xs) provisos (Log#(n,k));
Int#(k) index;
index = valueof(n) - 1;
...

endfunction

This function takes a vector of length n as an argument. The proviso fixes k to be the (ceiling of
the) logarithm of n. The variable index has bit-width k, which will be adequate to hold an index
into the list. The variable is initialized to the maximum index.

Note that the function foo may be invoked in multiple contexts, each with a different vector length.
The compiler will statically verify that each use is correct (e.g., the index has the correct width).

The pseudo-function valueof, which converts a numeric type to a value, should not be confused
with the pseudo-function SizeOf, described in Section 14.1.5, which converts a type to a numeric
type.

4.3 A brief introduction to deriving clauses

The deriving clause is a part of the general facility of type classes (overloading groups), which is
described in detail in Section 14.1. Here we provide a brief description, which is adequate for most
uses and for continuity in a serial reading of this manual.
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It is possible to attach a deriving clause to a type definition (Section 7), thereby directing the
compiler to define automatically certain overloaded functions for that type. The most common
forms of these clauses are:

deriving(Eq) // Meaning: automatically define == and !=
// for equality and inequality comparisons

deriving(Bits) // Meaning: automatically define pack and unpack
// for converting to/from bits

deriving(Bounded) // Meaning: automatically define minBound and maxBound

Example:

typedef enum {LOW, NORMAL, URGENT} Severity deriving(Eq, Bits);
// == and != are defined for variables of type Severity
// pack and unpack are defined for variables of type Severity

module mkSeverityProcessor (SeverityProcessor);
method Action process(Severity value);

// value is a variable of type Severity
if (value == URGENT) $display("WARNING: Urgent severity encountered.");
// Since value is of the type Severity, == is defined

endmethod
endmodule

5 Modules and interfaces, and their instances

Modules and interfaces form the heart of BSV. Modules and interfaces turn into actual hardware.
An interface for a module m mediates between m and other, external modules that use the facilities
of m. We often refer to these other modules as clients of m.

In SystemVerilog and BSV we separate the declaration of an interface from module definitions.
There was no such separation in Verilog 1995 and Verilog 2001, where a module’s interface was
represented by its port list, which was part of the module definition itself. By separating the
interface declaration, we can express the idea of a common interface that may be offered by several
modules, without having to repeat that declaration in each of the implementation modules.

As in Verilog and SystemVerilog, it is important to distinguish between a module definition and
a module instantiation. A module definition can be regarded as specifying a scheme that can be
instantiated multiple times. For example, we may have a single module definition for a FIFO, and
a particular design may instantiate it multiple times for all the FIFOs it contains.

Similarly, we also distinguish interface declarations and instances, i.e., a design will contain interface
declarations, and each of these may have multiple instances. For example an interface declaration
I may have one instance i1 for communication between module instances a1 and b1, and another
instance i2 for communication between module instances a2 and b2.

Module instances form a pure hierarchy. Inside a module definition mkM , one can specify instantia-
tions of other modules. When mkM is used to instantiate a module m, it creates the specified inner
module instances. Thus, every module instance other than the top of the hierarchy unambiguously
has a single parent module instance. We refer to the top of the hierarchy as the root module. Every
module instance has a unique set, possibly empty, of child module instances. If there are no children,
we refer to it as a leaf module.
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A module consists of three things: state, rules that operate on that state, and the module’s interface
to the outside world (surrounding hierarchy). The state conceptually consists of all state in the
sub-hierarchy headed by this module; ultimately, it consists of all the lower leaf module instances
(see next section on state and module instantiation). Rules are the fundamental means to express
behavior in BSV (instead of the always blocks used in traditional Verilog). In BSV, an interface
consists of methods that encapsulate the possible transactions that clients can perform, i.e., the
micro-protocols with which clients interact with the module. When compiled into RTL, an interface
becomes a collection of wires.

5.1 Explicit state via module instantiation, not variables

In Verilog and SystemVerilog RTL, one simply declares variables, and a synthesis tool “infers” how
these variables actually map into state elements in hardware using, for example, their lifetimes
relative to events. A variable may map into a bus, a latch, a flip-flop, or even nothing at all. This
ambiguity is acknowledged in the Verilog 2001 and SystemVerilog LRMs.1

BSV removes this ambiguity and places control over state instantiation explicitly in the hands of
the designer. From the smallest state elements (such as registers) to the largest (such as memories),
all state instances are specified explicitly using module instantiation.

Conversely, an ordinary declared variable in BSV never implies state, i.e., it never holds a value
over time. Ordinary declared variables are always just convenient names for intermediate values in
a computation. Ordinary declared variables include variables declared in blocks, formal parameters,
pattern variables, loop iterators, and so on. Another way to think about this is that ordinary
variables play a role only in static elaboration, not in the dynamic semantics. This is one of the
aspects of BSV style that may initially appear unusual to the Verilog or SystemVerilog programmer.

Example:

module mkExample (Empty);
// Hardware registers are created here
Reg#(Bit#(8)) value_reg <- mkReg(0);

FIFO#(Bit#(8)) fifo <- mkFIFO;

rule pop;
let value = fifo.first(); // value is a ordinary declared variable

// no state is implied or created
value_reg <= fifo.first(); // value_reg is state variable
fifo.deq();

endrule
endmodule

5.2 Interface declaration

In BSV an interface contains members that are called methods (an interface may also contain subin-
terfaces, which are described in Section 5.2.1). To first order, a method can be regarded exactly
like a function, i.e., it is a procedure that takes zero or more arguments and returns a result. Thus,
method declarations inside interface declarations look just like function prototypes, the only differ-
ence being the use of the keyword method instead of the keyword function. Each method represents

1In the Verilog 2001 LRM, Section 3.2.2, Variable declarations, says: “A variable is an abstraction of a data storage
element.· · ·NOTE In previous versions of the Verilog standard, the term register was used to encompass both the reg,
integer, time, real and realtime types; but that term is no longer used as a Verilog data type.”

In the SystemVerilog LRM, Section 5.1 says: “Since the keyword reg no longer describes the user’s intent in many
cases,· · ·Verilog-2001 has already deprecated the use of the term register in favor of variable.”
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one kind of transaction between a module and its clients. When translated into RTL, each method
becomes a bundle of wires.

The fundamental difference between a method and a function is that a method also carries with it a
so-called implicit condition. These will be described later along with method definitions and rules.

An interface declaration also looks similar to a struct declaration. One can think of an interface
declaration as declaring a new type similar to a struct type (Section 7), where the members all
happen to be method prototypes. A method prototype is essentially the header of a method definition
(Section 5.5).

interfaceDecl ::= [ interfaceAttribute ]
interface typeDefType ;

{ interfaceMemberDecl }
endinterface [ : typeIde ]

typeDefType ::= typeIde [ typeFormals ]

typeFormals ::= # ( typeFormal { , typeFormal })

typeFormal ::= [ numeric ] type typeIde

interfaceMemberDecl ::= methodProto | subinterfaceDecl

methodProto ::= [ interfaceAttribute ]
method type identifier ( [ methodProtoFormals ] ) ;

methodProtoFormals ::= methodProtoFormal { , methodProtoFormal }

methodProtoFormal ::= [ interfaceAttribute ] type identifier

Example: a stack of integers:

interface IntStack;
method Action push (int x);
method Action pop;
method int top;

endinterface: IntStack

This describes an interface to a circuit that implements a stack (LIFO) of integers. The push method
takes an int argument, the item to be pushed onto the stack. Its output type is Action, namely it
returns an enable wire which, when asserted, will carry out the pushing action.2 The pop method
takes no arguments, and simply returns an enable wire which, when asserted, will discard the element
from the top of the stack. The top method takes no arguments, and returns a value of type int,
i.e., the element at the top of the stack.

What if the stack is empty? In that state, it should be illegal to use the pop and top methods.
This is exactly where the difference between methods and functions arises. Each method has an
implicit ready wire, which governs when it is legal to use it, and these wires for the pop and top
methods will presumably be de-asserted if the stack is empty. Exactly how this is accomplished is
an internal detail of the module, and is therefore not visible as part of the interface declaration. (We
can similarly discuss the case where the stack has a fixed, finite depth; in this situation, it should
be illegal to use the push method when the stack is full.)

One of the major advantages of BSV is that the compiler automatically generates all the control
circuitry needed to ensure that a method (transaction) is only used when it is legal to use it.

Interface types can be polymorphic, i.e., parameterized by other types. For example, the following
declaration describes an interface for a stack containing an arbitrary but fixed type:

2 The type Action is discussed in more detail in Section 9.6.
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interface Stack#(type a);
method Action push (a x);
method Action pop;
method a top;

endinterface: Stack

We have replaced the previous specific type int with a type variable a. By “arbitrary but fixed” we
mean that a particular stack will specify a particular type for a, and all items in that stack will have
that type. It does not mean that a particular stack can contain items of different types.

For example, using this more general definition, we can also define the IntStack type as follows:

typedef Stack#(int) IntStack;

i.e., we simply specialize the more general type with the particular type int. All items in a stack of
this type will have the int type.

Usually there is information within the interface declaration which indicates whether a polymorphic
interface type is numeric or nonnumeric. The optional numeric is required before the type when
the interface type is polymorphic and must be numeric but there is no information in the interface
declaration which would indicate that the type is numeric.

For example, in the following polymorphic interface, count_size must be numeric because it is
defined as a parameter to Bit#().

interface Counter#(type count_size);
method Action increment();
method Bit#(count_size) read();

endinterface

From this use, it can be deduced that Counter’s parameter count_size must be numeric. However,
sometimes you might want to encode a size in an interface type which isn’t visible in the methods,
but is used by the module implementing the interface. For instance:

interface SizedBuffer#(numeric type buffer_size, type element_type);
method Action enq(element_type e);
method ActionValue#(element_type) deq();

endinterface

In this interface, the depth of the buffer is encoded in the type. For instance, SizedBuffer#(8,
Bool) would be a buffer of depth 8 with elements of type Bool. The depth is not visible in the
interface, but is used by the module to know how much storage to instantiate.

Because the parameter is not mentioned anywhere else in the interface, there is no information
to determine whether the parameter is a numeric type or a non-numeric type. In this situation,
the default is to assume that the paramater is non-numeric. The user can override this default by
specifying numeric in the interface declaration.

5.2.1 Subinterfaces

Note: this is an advanced topic that may be skipped on first reading.

Interfaces can also be declared hierarchically, using subinterfaces.

subinterfaceDecl ::= [ interfaceAttribute ]
interface type identifier

where type is another interface type available in the current scope. Example:
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interface ILookup;
interface Server#( RequestType, ResponseType ) mif;
interface RAMclient#( AddrType, DataType ) ram;
method Bool initialized;

endinterface: ILookup

This declares an interface ILookup module that consists of three members: a Server subinterface
called mif, a RAMClient subinterface called ram, and a boolean method called initialized (the
Server and RAMClient interface types are defined in the libraries, see Appendix C). Methods of
subinterfaces are accessed using dot notation to select the desired component, e.g.,

ilookup.mif.request.put(...);

5.3 Module definition

A module definition begins with a module header containing the module keyword, the module name,
parameters, arguments, interface type and provisos. The header is followed by zero or more module
statements. Finally we have the closing endmodule keyword, optionally labelled again with the
module name.

moduleDef ::= [ modgenAttribute ] [ docAttribute ]
module [ [ type ] ] identifier
[ moduleFormalParams ] ( [ moduleFormalArgs ] ) [ provisos ];

{ moduleStmt }
endmodule [ : identifier ]

moduleFormalParams ::= # (moduleFormalParam { , moduleFormalParam })

moduleFormalParam ::= [ parameter ] type identifier

moduleFormalArgs ::= type
| type identifier { , type identifier }

As a stylistic convention, many BSV examples use module names like mkFoo, i.e., beginning with
the letters mk, suggesting the word make. This serves as a reminder that a module definition is not
a module instance. When the module is instantiated, one invokes mkFoo to actually create a module
instance.

The optional moduleFormalParams are exactly as in Verilog and SystemVerilog, i.e., they represent
module parameters that must be supplied at each instantiation of this module, and are resolved at
elaboration time.

The optional moduleFormalArgs represent the interfaces used by the module, such as clocks or wires.
The final argument is a single interface provided by the module instead of Verilog’s port list. The
interpretation is that this module will define and offer an interface of that type to its clients. If
the only argument is the interface, only the interface type is required. If there are other arguments,
both a type and an identifier must be specified for consistency, but the final interface name will not
be used in the body. Omitting the interface type completely is equivalent to using the pre-defined
Empty interface type, which is a trivial interface containing no methods.

The arguments and parameters may be enclosed in a single set of parentheses, in which case the #
would be omitted.

Provisos, which are optional, come next. These are part of an advanced feature called type classes
(overloading groups), and are discussed in more detail in Section 14.1.

Examples

A module with parameters and an interface.
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module mkFifo#(Int#(8) a) (Fifo);
...
endmodule

A module with arguments and an interface, but no parameters

module mkSyncPulse (Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncPulseIfc ifc);

...
endmodule

A module definition with parameters, arguments, and provisos

module mkSyncReg#(a_type initValue)
(Clock sClkIn, Reset sRstIn,
Clock dClkIn,
Reg#(a_type) ifc)

provisos (Bits#(a_type_sa));
...
endmodule

The above module definition may also be written with the arguments and parameters combined in
a single set of parentheses.

module mkSyncReg (a_type initValue,
Clock sClkIn, Reset sRstIn,
Clock dClkIn,
Reg#(a_type) ifc)

provisos (Bits#(a_type_sa));
...
endmodule

The body of the module consists of a sequence of moduleStmts:

moduleStmt ::= moduleInst
| methodDef
| subinterfaceDef
| rule
| <module>If | <module>Case
| <module>BeginEndStmt
| varDecl | varAssign
| varDo | varDeclDo
| functionDef
| functionCall
| systemTaskCall
| ( expression )
| returnStmt

Most of these are discussed elsewhere since they can also occur in other contexts (e.g., in packages,
function bodies, and method bodies). Below, we focus solely on those statements that are found
only in module bodies or are treated specially in module bodies.
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5.4 Module and interface instantiation

Module instances form a hierarchy. A module definition can contain specifications for instantiating
other modules, and in the process, instantiating their interfaces. A single module definition be
instantiated multiple times within a module.

5.4.1 Short form instantiation

There is a one-line shorthand for instantiating a module and its interfaces.

moduleInst ::= type identifier <- moduleApp ;

moduleApp ::= identifier ( [ moduleActualParam { , moduleActualParam } ]
[ moduleActualArg { , moduleActualArg } ] )

moduleActualParam ::= expression

moduleActualArg ::= expression
| clocked_by expression
| reset_by expression

The statement first declares an identifier with an interface type. After the <- symbol, we have a
module application, consisting of a module identifier optionally followed by a parameter list and an
argument list, if the module had been defined to have parameters and arguments. Note that the
parameters and the arguments are within a single set of parentheses and there is no # before the
actual parameter list.

Each module has an implicit clock and reset. These defaults can be changed by explicitly specifying
a clocked_by or reset_by argument in the module instantiation.

The following skeleton illustrates the structure and relationships between interface and module
definition and instantiation.

interface ArithIO#(type a); //interface type called ArithIO
method Action input (a x, a y); //parameterized by type a
method a output; //contains 2 methods, input and output

endinterface: ArithIO

module mkGCD#(int N) (ArithIO#(bit [31:0]));
... //module definition for mkGCD
... //one parameter, an integer N

endmodule: mkGCD //presents interface of type ArithIO#(bit{31:0])

//declare the interface instance gcdIFC, instantiate the module mkGCD, set N=5
module mkTest ();

...
ArithIO#(bit [31:0]) gcdIfc <- mkGCD (5, clocked_by dClkIn);
...

endmodule: mkTest

The following example shows an module instantiation using a clocked by statement.

interface Design_IFC;
method Action start(Bit#(3) in_data1, Bit#(3) in_data2, Bool select);
interface Clock clk_out;
method Bit#(4) out_data();

endinterface : Design_IFC
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module mkDesign(Clock prim_clk, Clock sec_clk, Design_IFC ifc);
...
RWire#(Bool) select <- mkRWire (select, clocked_by sec_clk);
...

endmodule:mkDesign

5.4.2 Long form instantiation

A module instantiation can also be written in its full form on two consecutive lines, as typical
in SystemVerilog. The full form specifies names for both the interface instance and the module
instance. In the shorthand described above, there is no name provided for the module instance
and the compiler infers one based on the interface name. This is often acceptable because module
instance names are used occasionally in debugging and in hierarchical names.

moduleInst ::= type identifier ( ) ;
moduleApp2 identifier( [ moduleActualArgs ] ) ;

moduleApp2 ::= identifier [ # ( moduleActualParam { , moduleActualParam } ) ]

moduleActualParam ::= expression

moduleActualArgs ::= moduleActualArg { , moduleActualArg }

moduleActualArg ::= expression
| clocked_by expression
| reset_by expression

The first line declares an identifier with an interface type. The second line actually instantiates
the module and defines the interface. The moduleApp2 is the module (definition) identifier, and
it must be applied to actual parameters (in #(..)) if it had been defined to have parameters.
After the moduleApp, the first identifier names the new module instance. This may be followed
by one or more moduleActualArg which define the arguments being used by the module. The
last identifier (in parentheses) of the moduleActualArg must be the same as the interface identifier
declared immediately above. It may be followed by a clocked_by or reset_by statement.

The following examples show the complete form of the module instantiations of the examples shown
above.

module mkTest (); //declares a module mkTest
... //
ArithIO#(bit [31:0]) gcdIfc(); //declares the interface instance
mkGCD#(5) a_GCD (gcdIfc); //instantiates module mkGCD
... //sets N=5, names module instance a_GCD

endmodule: mkTest //and interface instance gcdIfc

module mkDesign(Clock prim_clk, Clock sec_clk, Design_IFC ifc);
...
RWire#(Bool) select();
mkRWire t_select(select, clocked_by sec_clk);
...

endmodule:mkDesign

28 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

5.5 Interface definition (definition of methods)

A module definition contains a definition of its interface. Typically this takes the form of a collection
of definitions, one for each method in its interface. Each method definition begins with the keyword
method, followed optionally by the return-type of the method, then the method name, its formal
parameters, and an optional implicit condition. After this comes the method body which is exactly
like a function body. It ends with the keyword endmethod, optionally labelled again with the method
name.

moduleStmt ::= methodDef

methodDef ::= method [ type ] identifier ( methodFormals ) [ implicitCond ] ;
functionBody

endmethod [ : identifier ]

methodFormals ::= methodFormal { , methodFormal }

methodFormal ::= [ type ] identifier

implicitCond ::= if ( condPredicate )
condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern ::= expression

| expression matches pattern

The method name must be one of the methods in the interface whose type is specified in the module
header. Each of the module’s interface methods must be defined exactly once in the module body.

The compiler will issue a warning if a method is not defined within the body of the module.

The return type of the method and the types of its formal arguments are optional, and are present
for readability and documentation purposes only. The compiler knows these types from the method
prototypes in the interface declaration. If specified here, they must exactly match the corresponding
types in the method prototype.

The implicit condition, if present, may be a boolean expression, or it may be a pattern-match
(pattern matching is described in Section 10). Expressions in the implicit condition can use any of
the variables in scope surrounding the method definition, i.e., visible in the module body, but they
cannot use the formal parameters of the method itself. If the implicit condition is a pattern-match,
any variables bound in the pattern are available in the method body. Omitting the implicit condition
is equivalent to saying if (True). The semantics of implicit conditions are discussed in Section 9.13,
on rules.

Every method is ultimately invoked from a rule (a method m1 may be invoked from another method
m2 which, in turn, may be invoked from another method m3, and so on, but if you follow the chain,
it will end in a method invocation inside a rule). A method’s implicit condition controls whether
the invoking rule is enabled. Using implicit conditions, it is possible to write client code that is not
cluttered with conditionals that test whether the method is applicable. For example, a client of a
FIFO module can just call the enqueue or the dequeue method without having explicitly to test
whether the FIFO is full or empty, respectively; those predicates are usually specified as implicit
conditions attached to the FIFO methods.

Please note carefully that the implicit condition precedes the semicolon that terminates the method
definition header. There is a very big semantic difference between the following:

method ... foo (...) if (expr);
...

endmethod

and
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method ... foo (...); if (expr)
...

endmethod

The only syntactic difference is the position of the semicolon. In the first case, if (expr) is an
implicit condition on the method. In the second case the method has no implicit condition, and if
(expr) starts a conditional statement inside the method. In the first case, if the expression is false,
any rule that invokes this method cannot fire, i.e., no action in the rule or the rest of this method
is performed. In the second case, the method does not prevent an invoking rule from firing, and if
the rule does fire, the conditional statement is not executed but other actions in the rule and the
method may be performed.

The method body is exactly like a function body, which is discussed in Section 8.8 on function
definitions.

See also Section 9.12 for the more general concepts of interface expressions and expressions as first-
class objects.

Example:

interface GrabAndGive; // interface is declared
method Action grab(Bit#(8) value); // method grab is declared
method Bit#(8) give(); // method give is declared

endinterface

module mkExample (GrabAndGive);
Reg#(Bit#(8)) value_reg <- mkReg(?);
Reg#(Bool) not_yet <- mkReg(True);

// method grap is defined
method Action grab(Bit#(8) value) if (not_yet);

value_reg <= value;
not_yet <= False;

endmethod

//method give is defined
method Bit#(8) give() if (!not_yet);

return value_reg;
endmethod

endmodule

5.5.1 Shorthands for Action and ActionValue method definitions

If a method has type Action, then the following shorthand syntax may be used. Section 9.6 describes
action blocks in more detail.

methodDef ::= method Action identifier ( methodFormals ) [ implicitCond ] ;
{ actionStmt }

endmethod [ : identifier ]

i.e., if the type Action is used after the method keyword, then the method body can directly contain
a sequence of actionStmts without the enclosing action and endaction keywords.

Similarly, if a method has type ActionValue(t) (Section 9.7), the following shorthand syntax may
be used:

methodDef ::= method ActionValue #( type ) identifier ( methodFormals )
[ implicitCond ; ]
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{ actionValueStmt }
endmethod [ : identifier ]

i.e., if the type ActionValue(t) is used after the method keyword, then the method body can
directly contain a sequence of actionStmts without the enclosing actionvalue and endactionvalue
keywords.

Example: The long form definition of an Action method:

method grab(Bit#(8) value);
action

last_value <= value;
endaction

endmethod

can be replaced by the following shorthand definition:

method Action grab(Bit#(8) value);
last_value <= value;

endmethod

5.5.2 Definition of subinterfaces

Note: this is an advanced topic and can be skipped on first reading.

Declaration of subinterfaces (hierarchical interfaces) was described in Section 5.2.1. A subinterface
member of an interface can be defined using the following syntax.

moduleStmt ::= subinterfaceDef

subinterfaceDef ::= interface Identifier identifier ;
{ subinterfaceDefStmt }

endinterface [ : identifier ]

subinterfaceDefStmt ::= methodDef | subinterfaceDef

The subinterface member is defined within interface-endinterface brackets. The first Identifier
must be the name of the subinterface member’s type (an interface type), without any parame-
ters. The second identifier (and the optional identifier following the endinterface must be the
subinterface member name. The subinterfaceDefStmts then define the methods or further nested
subinterfaces of this member. Example (please refer to the ILookup interface defined in Section
5.2.1):

module ...
...
...
interface Server mif;

interface Put request;
method put(...);

...
endmethod: put

endinterface: request

interface Get response;
method get();

...
endmethod: get
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endinterface: response

endinterface: mif
...

endmodule

5.5.3 Definition of methods and subinterfaces by assignment

Note: this is an advanced topic and can be skipped on first reading.

A method can also be defined using the following syntax.

methodDef ::= method [ type ] identifier ( methodFormals ) [ implicitCond ]
= expression ;

The part up to and including the implicitCond is the same as the standard syntax shown in Section
5.5. Then, instead of a semicolon, we have an assignment to an expression that represents the
method body. The expression can of course use the method’s formal arguments, and it must have
the same type as the return type of the method. See Sections 9.6 and 9.7 for how to construct
expressions of Action type and ActionValue type, respectively.

A subinterface member can also be defined using the following syntax.

subinterfaceDef ::= interface identifier = expression ;

The identifier is just the subinterface member name. The expression is an interface expression
(described in Section 9.12) of the appropriate interface type.

For example, in the following module the subinterface Put is defined by assignment.

//in this module, there is an instanciated FIFO, and the Put interface
//of the "mkSameInterface" module is the same interface as the fifo’s:

interface IFC1 ;
interface Put#(int) in0 ;

endinterface

(*synthesize*)
module mkSameInterface (IFC1);

FIFO#(int) myFifo <- mkFIFO;
interface Put in0 = fifoToPut(myFifo);

endmodule

5.6 Rules in module definitions

The internal behavior of a module is described using zero or more rules.

moduleStmt ::= rule

rule ::= [ ruleAttribute ] [ docAttribute ]
rule identifier [ ruleCond ] ;

ruleBody
endrule [ : identifier ]

ruleCond ::= ( condPredicate )
condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern ::= expression

| expression matches pattern
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ruleBody ::= { actionStmt }
A rule is optionally preceded by a ruleAttribute; these are described in Section 13.3. Every rule must
have a name (the identifier). If the closing endrule is labelled with an identifier, it must be the
same name. Rule names need not be unique, since they do not have any semantic significance and
are only used for debugging; however, it is good style (and helps in debugging) to use unique names.

The ruleCond, if present, may be a boolean expression, or it may be a pattern-match (pattern
matching is described in Section 10). It can use any identifiers from the scope surrounding the rule,
i.e., visible in the module body. If it is a pattern-match, any variables bound in the pattern are
available in the rule body.

The ruleBody must be of type Action, using a sequence of zero or more actionStmts. We discuss
actionStmts in Section 9.6, but here we make a key observation. Actions include updates to state
elements (including register writes). There are no restrictions on different rules updating the same
state elements. The BSV compiler will generate all the control logic necessary for such shared
update, including multiplexing, arbitration, and resource control. The generated control logic will
ensure rule atomicity, discussed briefly in the next paragraphs.

A more detailed discussion of rule semantics is given in Section 6.2, Dynamic Semantics, but we
outline the key point briefly here. The ruleCond is called the explicit condition of the rule. Within
the ruleCond and ruleBody, there may be calls to various methods of various interfaces. Each such
method call has an associated implicit condition. The rule is enabled when its explicit condition and
all its implicit conditions are true. A rule can fire, i.e., execute the actions in its ruleBody, when the
rule is enabled and when the actions cannot “interfere” with the actions in the bodies of other rules.
Non-interference is described more precisely in Section 6.2 but, roughly speaking, it means that the
rule execution can be viewed as an atomic state transition, i.e., there cannot be any race conditions
between this rule and other rules.

This atomicity and the automatic generation of control logic to guarantee atomicity is a key benefit of
BSV. Note that because of method calls in the rule and, transitively, method calls in those methods,
a rule can touch (read/write) state that is distributed in several modules. Thus, a rule can express
a major state change in the design. The fact that it has atomic semantics guarantees the absence of
a whole class of race conditions that might otherwise bedevil the designer. Further, changes in the
design, whether in this module or in other modules, cannot introduce races, because the compiler
will verify atomicity.

See also Section 9.13 for a discussion of the more general concepts of rule expressions and rules as
first-class objects.

5.7 Examples

A register is primitive module with the following predefined interface:

interface Reg#(type a);
method Action _write (a x1);
method a _read ();

endinterface: Reg

It is polymorphic, i.e., it can contain values of any type a. It has two methods. The _write()
method takes an argument x1 of type a and returns an Action, i.e., an enable-wire that, when
asserted, will deposit the value into the register. The _read() method takes no arguments and
returns the value that is in the register.

The principal predefined module definition for a register has the following header:

// takes an initial value for the register
module mkReg#(a v) (Reg#(a)) provisos (Bits#(a, sa));
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The module parameter v of type a is specified when instantiating the module (creating the register),
and represents the initial value of the register. The module defines an interface of type Reg #(a).
The proviso specifies that the type a must be convertible into an sa-bit value. Provisos are discussed
in more detail in Sections 4.2 and 14.1.

Here is a module to compute the GCD (greatest common divisor) of two numbers using Euclid’s
algorithm.

interface ArithIO#(type a);
method Action start (a x, a y);
method a result;

endinterface: ArithIO

module mkGCD(ArithIO#(Bit#(size_t)));

Reg#(Bit#(size_t)) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_1 is the register instance

Reg #(Bit#(size_t)) y(); // y is the interface to the register
mkRegU reg_2(y); // reg_2 is the register instance

rule flip (x > y && y != 0);
x <= y;
y <= x;

endrule

rule sub (x <= y && y != 0);
y <= y - x;

endrule

method Action start(Bit#(size_t) num1, Bit#(size_t) num2) if (y == 0);
action

x <= num1;
y <= num2;

endaction
endmethod: start

method Bit#(size_t) result() if (y == 0);
result = x;

endmethod: result

endmodule: mkGCD

The interface type is called ArithIO because it expresses the interactions of modules that do any kind
of two-input, one-output arithmetic. Computing the GCD is just one example of such arithmetic.
We could define other modules with the same interface that do other kinds of arithmetic.

The module contains two rules, flip and sub, which implement Euclid’s algorithm. In other words,
assuming the registers x and y have been initialized with the input values, the rules repeatedly
update the registers with transformed values, terminating when the register y contains zero. At that
point, the rules stop firing, and the GCD result is in register x. Rule flip uses standard Verilog
non-blocking assignments to express an exchange of values between the two registers. As in Verilog,
the symbol <= is used both for non-blocking assignment as well as for the less-than-or-equal operator
(e.g., in rule sub’s explicit condition), and as usual these are disambiguated by context.

The start method takes two arguments num1 and num2 representing the numbers whose GCD is
sought, and loads them into the registers x and y, respectively. The result method returns the
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result value from the x register. Both methods have an implicit condition (y == 0) that prevents
them from being used while the module is busy computing a GCD result.

A test bench for this module might look like this:

module mkTest ();
ArithIO#(Bit#(32)) gcd; // declare ArithIO interface gcd
mkGCD the_gcd (gcd); // instantiate gcd module the_gcd

rule getInputs;
... read next num1 and num2 from file ...
the_gcd.start (num1, num2); // start the GCD computation

endrule

rule putOutput;
$display("Output is %d", the_gcd.result()); // print result

endrule
endmodule: mkTest

The first two lines instantiate a GCD module. The getInputs rule gets the next two inputs from
a file, and then initiates the GCD computation by calling the start method. The putOutput rule
prints the result. Note that because of the semantics of implicit conditions and enabling of rules,
the getInputs rule will not fire until the GCD module is ready to accept input. Similarly, the
putOutput rule will not fire until the output method is ready to deliver a result.3

The mkGCD module is trivial in that the rule conditions ((x > y) and (x <= y)) are mutually
exclusive, so they can never fire together. Nevertheless, since they both write to register y, the
compiler will insert the appropriate multiplexers and multiplexer control logic.

Similarly, the rule getInputs, which calls the start method, can never fire together with the mkGCD
rules because the implicit condition of getInputs, i.e., (y == 0) is mutually exclusive with the
explicit condition (y != 0) in flip and sub. Nevertheless, since getInputs writes into the_gcd’s
registers via the start method, the compiler will insert the appropriate multiplexers and multiplexer
control logic.

In general, many rules may be enabled simultaneously, and subsets of rules that are simultaneously
enabled may both read and write common state. The BSV compiler will insert appropriate schedul-
ing, datapath multiplexing, and control to ensure that when rules fire in parallel, the net state change
is consistent with the atomic semantics of rules.

5.8 Synthesizing Modules

In order to generate code for a BSV design (for either Verilog or Bluesim), it is necessary to indicate
to the complier which module(s) are to be synthesized. A BSV module that is marked for code
generation is said to be a synthesized module. A module can be marked for synthesis in one of two
ways.

1. A module can be annotated with the synthesize attribute (see section 13.1.1). The appro-
priate syntax is show below.

3The astute reader will recognize that in this small example, since the result method is initially ready, the test
bench will first output a result of 0 before initiating the first computation. Let us overlook this by imagining that
Euclid is clearing his throat before launching into his discourse.
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(* synthesize *)
module mkFoo (FooIfc);
...
endmodule

2. Alternatively, the -g compiler flag can be used on the bsc command line to indicate which
module is to be synthesized. In order to have the same effect as the attribute syntax shown
above, the flag would be used with the format -g mkFoo (the appropriate module name follows
the -g flag).

Note that multiple modules may be selected for code generation (by using multiple synthesize
attributes, multiple -g compiler flags, or a combination of the two).

5.8.1 Type Polymorphism

As discussed in section 4.1, BSV supports polymorphic types, including interfaces (which are them-
selves types). Thus, a single BSV module definition, which provides a polymorphic interface, in effect
defines a family of different modules with different characteristics based on the specific parameter(s)
of the polymorphic interface. Consider the module definition presented in section 5.7.

module mkGCD (ArithIO#(Bit#(size_t)));
...
endmodule

Based on the specific type parameter given to the ArithIO interface, the code required to implement
mkGCD will differ. Since the Bluespec compiler does not create ”parameterized” Verilog, in order for
a module to be synthesizable, the associated interface must be fully specified (i.e not polymorphic).
If the mkGCD module is annotated for code generation as is

(* synthesize *)
module mkGCD (ArithIO#(Bit#(size_t)));
...
endmodule

and we then run the compiler, we get the following error message.

Error: "GCD.bsv", line 7, column 8: (T0043)
Bad top level type: polymorphic type:
Prelude::Module#(GCD::ArithIO#(Prelude::Bit#(size_t)))

The compiler is telling us that the top level type of a synthesized module cannot be polymorphic. If
however we instead re-write the definition of mkGCD such that all the references to the type parameter
size_t are replaced by a specific value, in other words if we write something like,

(* synthesize *)
module mkGCD32 (ArithIO#(Bit#(32)));

Reg#(Bit#(32)) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_1 is the register instance

...

endmodule
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then the compiler will complete successfully and provide code for a 32-bit version of the module
(called mkGCD32). Equivalently, we can leave the code for mkGCD unchanged and instantiate it inside
another synthesized module which fully specifies the provided interface.

(* synthesize *)
module mkGCD32(ArithIO#(Bit#(32)));

let ifc();
mkGCD _temp(ifc);
return (ifc);

endmodule

6 Static and dynamic semantics

What is a legal BSV source text, and what are its legal behaviors? These questions are addressed by
the static and dynamic semantics of BSV. The BSV compiler checks that the design is legal according
to the static semantics, and produces RTL hardware that exhibits legal behaviors according to the
dynamic semantics.

Conceptually, there are three phases in processing a BSV design, just like in Verilog and SystemVer-
ilog:

• Static checking: this includes syntactic correctness, type checking and proviso checking.

• Static elaboration: actual instantiation of the design and propagation of parameters, producing
the module instance hierarchy.

• Execution: execution of the design, either in a simulator or as real hardware.

We refer to the first two as the static phase (i.e., pre-execution), and to the third as the dynamic
phase. Dynamic semantics are about the temporal behavior of the statically elaborated design,
that is, they describe the dynamic execution of rules and methods and their mapping into clocked
synchronous hardware.

A BSV program can also contain assertions; assertion checking can occur in all three phases, de-
pending on the kind of assertion.

6.1 Static semantics

The static semantics of BSV are about syntactic correctness, type checking, proviso checking, static
elaboration and static assertion checking. Syntactic correctness of a BSV design is checked by the
parser in the BSV compiler, according to the grammar described throughout this document.

6.1.1 Type checking

BSV is statically typed, just like Verilog, SystemVerilog, C, C++, and Java. This means the usual
things: every variable and every expression has a type; variables must be assigned values that have
compatible types; actual and formal parameters/arguments must have compatible types, etc. All
this checking is done on the original source code, before any elaboration or execution.

BSV uses SystemVerilog’s new tagged union mechanism instead of the older ordinary unions, thereby
closing off a certain kind of type loophole. BSV also allows more type parameterization (polymor-
phism), without compromising full static type checking.
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6.1.2 Proviso checking and bit-width constraints

In BSV, overloading constraints and bit-width constraints are expressed using provisos (Sections 4.2
and 14.1.1). Overloading constraints provide an extensible mechanism for overloading.

BSV is stricter about bit-width constraints than Verilog and SystemVerilog in that it avoids implicit
zero-extension, sign-extension and truncation of bit-vectors. These operations must be performed
consciously by the designer, using library functions, thereby avoiding another source of potential
errors.

6.1.3 Static elaboration

As in Verilog and SystemVerilog, static elaboration is the phase in which the design is instantiated,
starting with a top-level module instance, instantiating its immediate children, instantiating their
children, and so on to produce the complete instance hierarchy.

BSV has powerful generate-like facilities for succinctly expressing regular structures in designs. For
example, the structure of a linear pipeline may be expressed using a loop, and the structure of a
tree-structured reduction circuit may be expressed using a recursive function. All these are also
unfolded and instantiated during static elaboration. In fact, the BSV compiler unfolds all structural
loops and functions during static elaboration.

A fully elaborated BSV design consists of no more than the following components:

• A module instance hierarchy. There is a single top-level module instance, and each module
instance contains zero or more module instances as children.

• An interface instance. Each module instance presents an interface to its clients, and may itself
be a client of zero or more interfaces of other module instances.

• Method definitions. Each interface instance consists of zero or more method definitions.

A method’s body may contain zero or more invocations of methods in other interfaces.

Every method has an implicit condition, which can be regarded as a single output wire that
is asserted only when the method is ready to be invoked. The implicit condition may directly
test state internal to its module, and may indirectly test state of other modules by invoking
their interface methods.

• Rules. Each module instance contains zero or more rules, each of which contains a condition
and an action. The condition is a boolean expression. Both the condition and the action may
contain invocations of interface methods of other modules. Since those interface methods can
themselves contain invocations of other interface methods, the conditions and actions of a rule
may span many modules.

6.2 Dynamic semantics

The dynamic semantics of BSV specify the temporal behavior of rules and methods and their map-
ping into clocked synchronous hardware.

Every rule has a syntactically explicit condition and action. Both of these may contain invocations
of interface methods, each of which has an implicit condition. A rule’s composite condition consists
of its syntactically explicit condition ANDed with the implicit conditions of all the methods invoked
in the rule. A rule is said to be enabled if its composite condition is true.
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6.2.1 Reference semantics

The simplest way to understand the dynamic semantics is through a reference semantics, which is
completely sequential. However, please do not equate this with slow execution; the execution steps
described below are not the same as clocks; we will see in the next section that many steps can be
mapped into each clock. The execution of any BSV program can be understood using the following
very simple procedure:

Repeat forever:
Step: Pick any one enabled rule, and perform its action.
(We say that the rule is fired or executed.)

Note that after each step, a different set of rules may be enabled, since the current rule’s action will
typically update some state elements in the system which, in turn, may change the value of rule
conditions and implicit conditions.

Also note that this sequential, reference semantics does not specify how to choose which rule to
execute at each step. Thus, it specifies a set of legal behaviors, not just a single unique behavior.
The principles that determine which rules in a BSV program will be chosen to fire (and, hence, more
precisely constrain its behavior) are described in section 6.2.3.

Nevertheless, this simple reference semantics makes it very easy for the designer to reason about
invariants (correctness conditions). Since only one rule is executed in each step, we only have to
look at the actions of each rule in isolation to check how it maintains or transforms invariants. In
particular, we do not have to consider interactions with other rules executing simultaneously.

Another way of saying this is: each rule execution can be viewed as an atomic state transition.4 Race
conditions, the bane of the hardware designer, can generally be explained as an atomicity violation;
BSV’s rules are a powerful way to avoid most races.

The reference semantics is based on Term Rewriting Systems (TRSs), a formalism supported by
decades of research in the computer science community [Ter03]. For this reason, we also refer to the
reference semantics as “the TRS semantics of BSV.”

6.2.2 Mapping into efficient parallel clocked synchronous hardware

A BSV design is mapped by the BSV compiler into efficient parallel clocked synchronous hardware.
In particular, the mapping permits multiple rules to be executed in each clock cycle. This is done
in a manner that is consistent with the reference TRS semantics, so that any correctness properties
ascertained using the TRS semantics continue to hold in the hardware.

Standard clocked synchronous hardware imposes the following restrictions:

• Persistent state is updated only once per clock cycle, at a clock edge. During a clock cycle,
values read from persistent state elements are the ones that were registered in the last cycle.

• Clock-speed requirements place a limit on the amount of combinational computation that can
be performed between state elements, because of propagation delay.

The composite condition of each rule is mapped into a combinational circuit whose inputs, possibly
many, sense the current state and whose 1-bit output specifies whether this rule is enabled or not.

The action of each rule is mapped into a combinational circuit that represents the state transition
function of the action. It can have multiple inputs and multiple outputs, the latter being the
computed next-state values.

4 We use the term atomic as it is used in concurrency theory (and in operating systems and databases), i.e., to
mean indivisible.
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Figure 1: A general scheme for mapping an N-rule system into clocked synchronous hardware.

Figure 1 illustrates a general scheme to compose rule components when mapping the design to clocked
synchronous hardware. The State box lumps together all the state elements in the BSV design (as
described earlier, state elements are explicitly specified in BSV). The BSV compiler produces a
rule-control circuit which conceptually takes all the enable (cond) signals and all the data (action)
outputs and controls which of the data outputs are actually captured at the next clock in the state
elements. The enable signals feed a scheduler circuit that decides which of the rules will actually
fire. The scheduler, in turn, controls data multiplexers that select which data outputs reach the
data inputs of state elements, and controls which state elements are enabled to capture the new
data values. Firing a rule simply means that the scheduler selects its data output and clocks it into
the next state.

At each clock, the scheduler selects a subset of rules to fire. Not all subsets are legal. A subset is
legal if and only if the rules in the subset can be ordered with the following properties:

• A hypothetical sequential execution of the ordered subset of rules is legal at this point, ac-
cording to the TRS semantics. In particular, the first rule in the ordered subset is currently
enabled, and each subsequent rule would indeed be enabled when execution reaches it in the
hypothetical sequence.

A special case is where all rules in the subset are already currently enabled, and no rule would
be disabled by execution of prior rules in the order.

• The hardware execution produces the same net effect on the state as the hypothetical sequential
execution, even though the hardware execution performs reads and writes in a different order
from the hypothetical sequential execution.

The BSV compiler performs a very sophisticated analysis of the rules in a design and synthesizes an
efficient hardware scheduler that controls execution in this manner.

Note that the scheme in Figure 1 is for illustrative purposes only. First, it lumps together all the
state, shows a single rule-control box, etc., whereas in the real hardware generated by the BSV
compiler these are distributed, localized and modular. Second, it is not the only way to map the
design into clocked synchronous hardware. For example, any two enabled rules can also be executed
in a single clock by feeding the action outputs of the first rule into the action inputs of the second
rule, or by synthesizing hardware for a composite circuit that computes the same function as the
composition of the two actions, and so on. In general, these alternative schemes may be more
complex to analyze, or may increase total propagation delay, but the compiler may use them in
special circumstances.
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In summary, the BSV compiler performs a detailed and sophisticated analysis of rules and their
interactions, and maps the design into very efficient, highly parallel, clocked synchronous hardware
including a dynamic scheduler that allows many rules to fire in parallel in each clock, but always
in a manner that is consistent with the reference TRS semantics. The designer can use the simple
reference semantics to reason about correctness properties and be confident that the synthesized
parallel hardware will preserve those properties. (See Section 13.3 for the “scheduling attributes”
mechanism using which the designer can guide the compiler in implementing the mapping.)

When coding in other HDLs, the designer must maintain atomicity manually. He must recognize
potential race conditions, and design the appropriate data paths, control and synchronization to
avoid them. Reasoning about race conditions can cross module boundaries, and can be introduced
late in the design cycle as the problem specification evolves. The BSV compiler automates all of this
and, further, is capable of producing RTL that is competitive with hand-coded RTL.

6.2.3 How rules are chosen to fire

The previous section described how an efficient circuit can be built whose behavior will be consis-
tent with sequential TRS semantics of BSV. However, as noted previously, the sequential reference
semantics can be consistent with a range of different behaviors. There are two rule scheduling prin-
ciples that guide the BSV compiler in choosing which rules to schedule in a clock cycle (and help
a designer build circuits with predictable behavior). Except when overridden by an explicit user
command or annotation, the BSV compiler schedules rules according to the following two principles:

1. Every rule enabled during a clock cycle will either be fired as part of that clock cycle or a
warning will be issued during compilation.

2. A rule will fire at most one time during a particular clock cycle.

The first principle comes into play when two (or more) rules conflict - either because they are
competing for a limited resource or because the result of their simultaneous execution is not consistent
with any sequential rule execution. In the absence of a user annotation, the compiler will arbitrarily
choose 5 which rule to prioritize, but must also issue a warning. This guarantees the designer is
aware of the ambiguity in the design and can correct it. It might be corrected by changing the rules
themselves (rearranging their predicates so they are never simultaneously applicable, for example)
or by adding an urgency annotation which tells the compiler which rule to prefer (see section 13.3.3).
When there are no scheduling warnings, it is guaranteed that the compiler is making no arbitrary
choices about which rules to execute.

The second principle ensures that continuously enabled rules (like a counter increment rule) will
not executed an unpredictable number of time during a clock cycle. According to the first rule
scheduling principle, a rule that is always enabled will be executed at least once during a clock
cycle. However, since the rule remains enabled it theoretically could execute multiple times in a
clock cycle (since that behavior would be consistent with a sequential semantics). Since rules (even
simple things like a counter increment) consume limited resources (like register write ports) it is
pragmatically useful to restrict them to executing only once in a cycle (in the absence of specific
user instructions to the contrary). Executing a continuously enabled rule only once in a cycle is also
the more straightforward and intuitive behavior.

Together, these two principles allow a designer to completely determine the rules that will be chosen
to fire by the schedule (and, hence, the behavior of the resulting circuit).

5The compiler’s choice, while arbitrary, is deterministic. Given the same source and compiler version, the same
schedule (and, hence, the same hardware) will be produced. However, because it is an arbitrary choice, it can be
sensitive to otherwise irrelevant details of the program and is not guaranteed to remain the same if the source or
compiler version changes.
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7 User-defined types (type definitions)

User-defined types may appear at the top level of packages.

typeDef ::= typedefSynonym
| typedefEnum
| typedefStruct
| typedefTaggedUnion

As a matter of style, BSV requires that all enumerations, structs and unions be declared only via
typedef, i.e., it is not possible directly to declare a variable, formal parameter or formal argument
as an enum, struct or union without first giving that type a name using a typedef.

Each typedef of an enum, struct or union introduces a new type that is different from all other types.
For example, even if two typedefs give names to struct types with exactly the same corresponding
member names and types, they define two distinct types.

Other typedefs, i.e., not involving an enum, struct or union, merely introduce type synonyms for
existing types.

7.1 Type synonyms

Type synonyms are just for convenience and readability, allowing one to define shorter or more
meaningful names for existing types. The new type and the original type can be used interchangeably
anywhere.

typedefSynonym ::= typedef type typeDefType ;

typeDefType ::= typeIde [ typeFormals ]

typeFormals ::= # ( typeFormal { , typeFormal })
typeFormal ::= [ numeric ] type typeIde

Examples. Defining names for bit vectors of certain lengths:

typedef bit [7:0] Byte;
typedef bit [31:0] Word;
typedef bit [63:0] LongWord;

Examples. Defining names for polymorphic data types.

typedef Tuple#3(a, a, a) Triple#(type a);

typdef Int#(n) MyInt#(type n);

The above example could also be written as:

typedef Int#(n) MyInt#(numeric type n);

The numeric is not required because the parameter to Int will always be numeric. numeric is only
required when the compiler can’t determine whether the parameter is a numeric or non-numeric
type. It will then default to assuming it is non-numeric. The user can override this default by
specifying numeric in the typedef statement.

A typedef statement can be used to define a synonym for an already defined synonym. Example:

typedef Triple#(Longword) TLW;

Since an Interface is a type, we can have nested types:

typedef Reg#(Vector#(8, UInt#(8))) ListReg;
typedef List#(List#(Bit#(4))) ArrayOf4Bits;
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7.2 Enumerations

typedefEnum ::= enum { typedefEnumElement { , typedefEnumElement } } Identifier
[ derives ] ;

typedefEnumElement ::= Identifier [ = intLiteral ]
| Identifier[intLiteral] [ = intLiteral ]
| Identifier[intLiteral:intLiteral] [ = intLiteral ]

Enumerations (enums) provide a way to define a set of unique symbolic constants, also called labels
or member names. Each enum definition creates a new type different from all other types. The newly
defined labels must be unique (within a package), i.e., two different enums cannot use common labels.
Enumeration labels must begin with an uppercase letter.

The optional derives clause is discussed in more detail in Sections 4.3 and 14.1. One common form is
deriving (Bits), which tells the compiler to generate a bit-representation for this enum. Another
common form of the clause is deriving (Eq), which tells the compiler to pick a default equality
operation for these labels, so they can also be tested for equality and inequality. A third common
form is deriving (Bounded), which tells the compiler to define constants minBound and maxBound
for this type, equal in value to the first and last labels in the enumeration. These specifications can
be combined, e.g., deriving (Bits, Eq, Bounded). All these default choices for representation,
equality and bounds can be overridden (see Section 14.1).

The declaration may specify the encoding used by deriving(Bits) by assigning numbers to tags.
When an assignment is omitted, the tag receives an encoding of the previous tag incremented by one;
when the encoding for the initial tag is omitted, it defaults to zero. Specifying the same encoding
for more than one tag results in an error.

Multiple tags may be declared by using the index (Tag [ntags ]) or range (Tag [start :end ]) no-
tation. In the former case, ntags tags will be generated, from Tag0 to Tagn-1 ; in the latter case,
|end − start |+ 1 tags, from Tagstart to Tagend .

Example. The boolean type can be defined in the language itself:

typedef enum { False, True } Bool deriving (Bits, Eq);

The compiler will pick a one-bit representation, with 1’b0 and 1’b1 as the representations for False
and True, respectively. It will define the == and != operators to also work on Bool values.

Example. Excerpts from the specification of a processor:

typedef enum { R0, R1, ..., R31 } RegName deriving (Bits);
typedef RegName Rdest;
typedef RegName Rsrc;

The first line defines an enum type with 32 register names. The second and third lines define type
synonyms for RegName that may be more informative in certain contexts (“destination” and “source”
registers). Because of the deriving clause, the compiler will pick a five-bit representation, with
values 5’h00 through 5’h1F for R0 through R31.

Example. Tag encoding when deriving(Bits) can be specified manually:

typedef enum {
Add = 5,
Sub = 0,
Not,
Xor = 3,
...

} OpCode deriving (Bits);
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The Add tag will be encoded to five, Sub to zero, Not to one, and Xor to three.

Example. A range of tags may be declared in a single clause:

typedef enum {
Foo[2],
Bar[5:7],
Quux[3:2]

} Glurph;

This is equivalent to the declaration

typedef enum {
Foo0,
Foo1,
Bar5,
Bar6,
Bar7,
Quux3,
Quux2

} Glurph;

7.3 Structs and tagged unions

A struct definition introduces a new record type.

SystemVerilog has ordinary unions as well as tagged unions, but in BSV we only use tagged unions,
for several reasons. The principal benefit is safety (verification). Ordinary unions open a serious
type-checking loophole, whereas tagged unions are completely type-safe. Other reasons are that,
in conjunction with pattern matching (Section 10), tagged unions yield much more succinct and
readable code, which also improves correctness. In the text below, we may simply say “union” for
brevity, but it always means “tagged union.”

typedefStruct ::= typedef struct {
{ structMember }

} typeDefType [ derives ] ;

typedefTaggedUnion ::= typedef union tagged {
{ unionMember }

} typeDefType [ derives ] ;

structMember ::= type identifier ;
| subStruct identifier ;
| subUnion identifier ;

unionMember ::= type Identifier ;
| subStruct Identifier ;
| subUnion Identifier ;
| void Identifier ;

subStruct ::= struct {
{ structMember }

}

subUnion ::= union tagged {
{ unionMember }

}
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typeDefType ::= typeIde [ typeFormals ]

typeFormals ::= # ( typeFormal { , typeFormal })
typeFormal ::= [ numeric ] type typeIde

All types can of course be mutually nested if mediated by typedefs, but structs and unions can also
be mutually nested directly, as described in the syntax above. Structs and unions contain members.
A union member (but not a struct member) can have the special void type (see the types MaybeInt
and Maybe in the examples below for uses of void). All the member names in a particular struct or
union must be unique, but the same names can be used in other structs and members; the compiler
will try to disambiguate based on type.

A struct value contains the first member and the second member and the third member, and so on.
A union value contains just the first member or just the second member or just the third member,
and so on. Struct member names must begin with a lowercase letter, whereas union member names
must begin with an uppercase letter.

In a tagged union, the member names are also called tags. Tags play a very important safety role.
Suppose we had the following:

typedef union tagged { int Tagi; OneHot Tagoh; } U deriving (Bits);
U x;

The variable x not only contains the bits corresponding to one of its member types int or OneHot,
but also some extra bits (in this case just one bit) that remember the tag, 0 for Tagi and 1 for
Tagoh. When the tag is Tagi, it is impossible to read it as a OneHot member, and when the tag is
Tagoh it is impossible to read it as an int member, i.e., the syntax and type checking ensure this.
Thus, it is impossible accidentally to misread what is in a union value.

The optional derives clause is discussed in more detail in Section 14.1. One common form is deriving
(Bits), which tells the compiler to pick a default bit-representation for the struct or union. For
structs it is simply a concatenation of the representations of the members. For unions, the repre-
sentation consists of t + m bits, where t is the minimum number of bits to code for the tags in this
union and m is the number of bits for the largest member. Every union value has a code in the t-bit
field that identifies the tag, concatenated with the bits of the corresponding member, right-justified
in the m-bit field. If the member needs fewer than m bits, the remaining bits (between the tag and
the member bits) are undefined.

Struct and union typedefs can define new, polymorphic types, signalled by the presence of type
parameters in #(...). Polymorphic types are discussed in section 4.1.

Section 9.11 on struct and union expressions describes how to construct struct and union values and
to access and update members. Section 10 on pattern-matching describes a more high-level way to
access members from structs and unions and to test union tags.

Example. Ordinary, traditional record structures:

typedef struct { int x; int y; } Coord;
typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;

Example. Encoding instruction operands in a processor:

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] RegAddr;
bit [4:0] RegIndex;

} Indexed;
} InstrOperand;
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An instruction operand is either a 5-bit register specifier, a 22-bit literal value, or an indexed memory
specifier, consisting of two 5-bit register specifiers.

Example. Encoding instructions in a processor:

typedef union tagged {
struct {

Op op; Reg rs; CPUReg rt; UInt16 imm;
} Immediate;

struct {
Op op; UInt26 target;

} Jump;
} Instruction
deriving (Bits);

An Instruction is either an Immediate or a Jump. In the former case, it contains a field, op,
containing a value of type Op; a field, rs, containing a value of type Reg; a field, rt, containing a
value of type CPUReg; and a field, imm, containing a value of type UInt16. In the latter case, it
contains a field, op, containing a value of type Op, and a field, target, containing a value of type
UInt26.

Example. Optional integers (an integer together with a valid bit):

typedef union tagged {
void Invalid;
int Valid;

} MaybeInt
deriving (Bits);

A MaybeInt is either invalid, or it contains an integer (Valid tag). The representation of this type
will be 33 bits— one bit to represent Invalid or Valid tag, plus 32 bits for an int. When it carries
an invalid value, the remaining 32 bits are undefined. It will be impossible to read/interpret those
32 bits when the tag bit says it is Invalid.

This MaybeInt type is very useful, and not just for integers. We generalize it to a polymorphic type:

typedef union tagged {
void Invalid;
a Valid;

} Maybe#(type a)
deriving (Bits);

This Maybe type can be used with any type a. Consider a function that, given a key, looks up a
table and returns some value associated with that key. Such a function can return either an invalid
result (Invalid), if the table does not contain an entry for the given key, or a valid result Valid v
if v is associated with the key in the table. The type is polymorphic (type parameter a) because it
may be used with lookup functions for integer tables, string tables, IP address tables, etc. In other
words, we do not over-specify the type of the value v at which it may be used.

See Section 12.4 for an important, predefined set of struct types called Tuples for adhoc structs of
between two and seven members.
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8 Variable declarations and statements

Statements can occur in various contexts: in packages, modules, function bodies, rule bodies, action
blocks and actionvalue blocks. Some kinds of statements have been described earlier because they
were specific to certain contexts: module definitions (moduleDef ) and instantiation (moduleInst),
interface declarations (interfaceDecl), type definitions (typeDef ), method definitions (methodDef )
inside modules, rules (rule) inside modules, and action blocks (actionBlock) inside modules.

Here we describe variable declarations, register assignments, variable assignments, loops, and func-
tion definitions. These can be used in all statement contexts.

8.1 Variable and array declaration and initialization

Variables in BSV are used to name intermediate values. Unlike Verilog and SystemVerilog, variables
never represent state, i.e., they do not hold values over time. Every variable’s type must be declared,
after which it can be bound to a value one or more times.

One or more variables can be declared by giving the type followed by a comma-separated list of
identifiers with optional initializations:

varDecl ::= type varInit { , varInit } ;

varInit ::= identifier [ arrayDims ] [ = expression ]

arrayDims ::= [ expression ] { [ expression ] }

The declared identifier can be an array (when arrayDims is present). The expressions in arrayDims
represent the array dimensions, and must be constant expressions (i.e., computable during static
elaboration). The array can be multidimensional.

Note that array variables are distinct from the RegFile data type, which is described in Appendix C.
RegFile variables are just a structuring mechanism for values, whereas the RegFile type represents
a particular hardware module, like a register file, with a limited number of read and write ports. In
many programs, array variables are used purely for static elaboration, e.g., an array of registers is
just a convenient way to refer to a collection of registers with a numeric index.

Each declared variable can optionally have an initialization.

Example. Declare two integer variables and initialize them:

Integer x = 16, y = 32;

Example. Declare two array identifiers a and b containing int values at each index:

int a[20], b[40];

Example. Declare an array of 3 Int#(5) values and initialize them:

Int#(5) xs[3] = {14, 12, 9};

Example. Declare an array of 3 arrays of 4 Int#(5) values and initialize them:

Int#(5) xs[3][4] = {{1,2,3,4},
{5,6,7,8},
{9,10,11,12}};

Example. The array values can be polymorphic, but they must defined during elaboration:

Get #(a) gs[3] = {g0,g2, g2};

c© 2005 Bluespec, Inc. All rights reserved 47



Reference Guide Bluespec SystemVerilog v3.8

8.2 Variable assignment

A variable can be bound to a value using assignment:

varAssign ::= lValue = expression ;

lValue ::= identifier
| lValue . identifier
| lValue [ expression ]
| lValue [ expression : expression ]

The left-hand side (lValue) in its simplest form is a simple variable (identifier).

Example. Declare a variable wordSize to have type Integer and assign it the value 16:

Integer wordSize;
wordSize = 16;

Multiple assignments to the same variable are just a shorthand for a cascaded computation. Example:

int x;
x = 23;
// Here, x represents the value 23
x = ifc.meth (34);
// Here, x represents the value returned by the method call
x = x + 1;
// Here, x represents the value returned by the method call, plus 1

Note that these assignments are ordinary, zero-time assignments, i.e., they never represent a dynamic
assignment of a value to a register. These assignments only represent the convenient naming of an
intermediate value in some zero-time computation. Dynamic assignments are always written using
the non-blocking assignment operator <=, and are described in Section 8.4.

In general, the left-hand side (lValue) in an assignment statement can be a series of index- and field-
selections from an identifier representing a nesting of arrays, structs and unions. The array-indexing
expressions must be computable during static elaboration.

For bit vectors, the left-hand side (lValue) may also be a range between two indices. The indices must
be computable during static elaboration, and, if the indices are not literal constants, the right-hand
side of the assignment must have a defined bit width.

Example. Update an array variable b:

b[15] = foo.bar(x);

Example. Update bits 15 to 8 (inclusive) of a bit vector b:

b[15:8] = foo.bar(x);

Example. Update a struct variable (using the processor example from Section 7.3):

cpu.pc = cpu.pc + 4;

Semantically, this can be seen as an abbreviation for:

cpu = Proc { pc: cpu.pc + 4, rf: cpu.rf, mem: cpu.mem };
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i.e., it reassigns the struct variable to contain a new struct value in which all members other than
the updated member have their old values. The right-hand side is a struct expression; these are
described in Section 9.11.

Update of tagged union variables is done using normal assignment notation, i.e., one replaces the
current value in a tagged union variable by an entirely new tagged union value. In a struct it makes
sense to update a single member and leave the others unchanged, but in a union, one member
replaces another. Example (extending the previous processor example):

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;
...
InstrOperand orand;
...
orand = tagged Indexed { regAddr:3, regIndex:4 };
...
orand = tagged Register 23;

The right-hand sides of the assignments are tagged union expressions; these are described in Section
9.11.

8.3 Implicit declaration and initialization

The let statement is a shorthand way to declare and initialize a variable in a single statement. A
variable which has not been declared can be assigned an initial value and the compiler will infer the
type of the variable from the expression on the right hand side of the statement:

varDecl ::= let identifier = expression ;

Example:

let n = valueof(BuffSize);

The pseudo-function valueof returns an Integer value, which will be assigned to n at compile time.
Thus the variable n is assumed to have the type of Integer.

If the expression is the value returned by an actionvalue method, the notation will be:

varAssign ::= let identifier <- expression ;

Note the difference between this statement:

let m1 = m1displayfifo.first;

and this statement:

let z1 <- rndm.get;

In the first example, m1displayfifo.first is a value method; m1 is assigned the value and type
returned by the value method. In the latter, rndm.get is an actionvalue method; z1 is assigned the
value and type returned by the actionvalue method.
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8.4 Register reads and writes

Register writes occur primarily inside rules and methods.

regWrite ::= identifier <= expression
| ( expression ) <= expression

The left-hand side must have a register interface type, i.e., Reg#(t) for some type t that has a
representation in bits. It is either an identifier or a parenthesized expression (e.g., the register
interface could be selected from an array of register interfaces). The right-hand side must have the
same type t, i.e., it is an expression that evaluates to a value of type t. BSV allows only the so-called
non-blocking assignments of Verilog, i.e., the statement specifies that the register gets the new value
at the end of the current cycle, and is only available in the next cycle.

Following BSV’s principle that all state elements (including registers) are module instances, and
all interaction with a module happens through its interface, a register assignment r<=e is just a
convenient alternative notation for a method call:

r. write (e)

Similarly, if r is an expression of type Reg#(t), then mentioning r in an expression is just a convenient
alternative notation for a method call:

r. read ()

Example. Instantiating a register interface and a register, and using it:

Reg#(int) r(); // create a register interface
mkReg#(0) the_r (r); // create a register the_r with interface r
...
...
rule ...

r <= r + 1; // Convenient notation for: r._write (r._read() + 1)
endrule

Example. Updating a register in an array of registers:

RegFile#(Integer, Reg#(int)) regs;
...
(reg[3]) <= regs[3] + 1; // increment the fourth register

The register assignment notation can be used for partial register updates, when the register contains
an array of elements of some type t (in a particular case, this could be an array of bits).

regWrite ::= identifier arrayIndexes <= expression

arrayIndexes ::= [ expression ] { [ expression ] }

The expressions in arrayIndexes must be static expressions. This notation is just a shorthand for a
whole register update where only the selected element is updated. In other words,

x[j] <= v;

is a shorthand for:

x <= replace (x, j, v);
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where replace is a pure function that takes the whole value from register x and produces a whole
new value with the j’th element replaced by v. The statement then assigns this new value to the
register x.

It is important to understand the distinction between the following:

x[3] <= e;
(y[3]) <= e;

In the former case, x must be a register containing an array of items, and the statement updates
item “3” in the register. In the latter case, signalled by the parentheses, y is an array of registers,
and register “3” is updated. Currently, it is not possible to mix these notations, i.e., one cannot write
a single statement to perform a partial update of a register in an array of registers; this can always
be expressed with no overhead by splitting it into two statements, the first one binding a variable
to the particular register, and the second statement performing the partial update. Example:

RegFile#(Integer,Reg#(RegFile#(bit[3:0],int))) ys;
Reg#(RegFile#(bit[3:0],int)) y4;
...
y4 = ys[4]; // Let y4 refer to the fourth register
y4[3] <= e; // Update y4’s third element

8.5 Begin-end statements

A begin-end statement is a block that allows one to collect multiple statements into a single state-
ment, which can then be used in any context where a statement is required.

<ctxt>BeginEndStmt ::= begin [ : identifier ]
{ <ctxt>Stmt }

end [ : identifier ]

The optional identifier labels are currently used for documentation purposes only; in the future they
may be used for hierarchical references. The statements contained in the block can contain local
variable declarations and all the other kinds of statements. Example:

module mkBeginEnd#(Bit#(2) sel) ();
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bool) done <- mkReg(False);

rule decode (!done);
case (sel)

2’b00: a <= 0;
2’b01: a <= 1;
2’b10: a <= 2;
2’b11: begin

a <= 3; //in the 2’b11 case we don’t want more than
done <= True; //one action done, therefore we add begin/end

end
endcase

endrule
endmodule
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8.6 Conditional statements

Conditional statements include if statements and case statements. An if statement contains a
predicate, a statement representing the true arm and, optionally, the keyword else followed by a
statement representing the false arm.

<ctxt>If ::= if ( condPredicate )
<ctxt>Stmt

[ else
<ctxt>Stmt ]

condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern ::= expression

| expression matches pattern

If-statements have the usual semantics— the predicate is evaluated, and if true, the true arm is exe-
cuted, otherwise the false arm (if present) is executed. The predicate can be any boolean expression.
More generally, the predicate can include pattern matching, and this is described in Section 10, on
pattern matching.

There are two kinds of case statements: ordinary case statements and pattern-matching case state-
ments. Ordinary case statements have the following grammar:

<ctxt>Case ::= case ( expression )
{ <ctxt>CaseItem }
[ <ctxt>DefaultItem ]

endcase

<ctxt>CaseItem ::= expression [ , expression ] : <ctxt>Stmt

<ctxt>DefaultItem ::= default [ : ] <ctxt>Stmt

Each case item contains a left-hand side and a right-hand side, separated by a colon. The left-
hand side contains a series of expressions, separated by commas. The case items may optionally be
followed, finally, by a default item (the colon after the default keyword is optional).

Case statements are equivalent to an expansion into a series of nested if-then-else statements. For
example:

case (e1)
e2, e3 : s2;
e4 : s4;
e5, e6, e7: s5;
default : s6;

endcase

is equivalent to:

x1 = e1; // where x1 is a new variable:
if (x1 == e2) s2;
else if (x1 == e3) s2;
else if (x1 == e4) s4;
else if (x1 == e5) s5;
else if (x1 == e6) s5;
else if (x1 == e7) s5;
else s6;

The case expression (e1) is evaluated once, and tested for equality in sequence against the value
of each of the left-hand side expressions. If any test succeeds, then the corresponding right-hand
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side statement is executed. If no test succeeds, and there is a default item, then the default item’s
right-hand side is executed. If no test succeeds, and there is no default item, then no right-hand side
is executed.

Example:

module mkConditional#(Bit#(2) sel) ();
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bool) done <- mkReg(False);

rule decode ;
case (sel)

2’b00: a <= 0;
2’b01: a <= 1;
2’b10: a <= 2;
2’b11: a <= 3;

endcase
endrule

rule finish ;
if (a == 3)

done <= True;
else

done <= False;
endrule

endmodule

Pattern-matching case statements are described in Section 10.

8.7 Loop statements

BSV has for loops and while loops.

It is important to note that this use of loops does not express time-based behavior. Instead, they are
used purely as a means to express zero-time iterative computations, i.e., they are statically unrolled
and express the concatenation of multiple instances of the loop body statements. In particular, the
loop condition must be evaluable during static elaboration. For example, the loop condition can
never depend on a value in a register, or a value returned in a method call, which are only known
during execution and not during static elaboration.

See Section 11 on FSMs for an alternative use of loops to express time-based (temporal) behavior.

8.7.1 While loops

<ctxt>While ::= while ( expression )
<ctxt>Stmt

While loops have the usual semantics. The predicate expression is evaluated and, if true, the loop
body statement is executed, and then the while loop is repeated. Note that if the predicate initially
evaluates false, the loop body is not executed at all.

Example. Sum the values in an array:

int a[32];
int x = 0;
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int j = 0;
...
while (j < 32)

x = x + a[j];

8.7.2 For loops

<ctxt>For ::= for ( forInit ; forTest ; forIncr )
<ctxt>Stmt

forInit ::= forOldInit | forNewInit
forOldInit ::= simpleVarAssign [ , simpleVarAssign ]
simpleVarAssign ::= identifier = expression
forNewInit ::= type identifier = expression [ , simpleVarDeclAssign ]
simpleVarDeclAssign ::= [ type ] identifier = expression

forTest ::= expression

forIncr ::= varIncr [ , varIncr ]
varIncr ::= identifier = expression

The forInit phrase can either initialize previously declared variables (forOldInit), or it can declare
and initialize new variables whose scope is just this loop (forNewInit). They differ in whether or
not the first thing after the open parenthesis is a type.

In forOldInit, the initializer is just a comma-separated list of variable assignments.

In forNewInit, the initializer is a comma-separated list of variable declarations and initializations.
After the first one, not every initializer in the list needs a type; if missing, the type is the nearest
type earlier in the list. The scope of each variable declared extends to subsequent initializers, the
rest of the for-loop header, and the loop body statement.

Example. Copy values from one array to another:

int a[32], b[32];
...
...
for (int i = 0, j = i+offset; i < 32-offset; i = i+1, j = j+1)

a[i] = b[j];

8.8 Function definitions

A function definition is introduced by the function keyword. This is followed by the type of the
function return-value, the name of the function being defined, the formal arguments, and optional
provisos (provisos are discussed in more detail in Section 14.1). After this is the function body and,
finally, the endfunction keyword that is optionally labelled again with the function name. Each
formal argument declares an identifier and its type.

functionDef ::= [ modgenAttribute ]
functionProto

functionBody
endfunction [ : identifier ]

functionProto ::= function type identifier ( [ functionFormals ] ) [ provisos ] ;

functionFormals ::= functionFormal { , functionFormal }

functionFormal ::= type identifier
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The function body can contain the usual repertoire of statements:

functionBody ::= actionBlock
| actionValueBlock
| { functionBodyStmt }

functionBodyStmt ::= <functionBody>If | <functionBody>Case
| <functionBody>BeginEndStmt
| varDecl | varAssign
| varDo | varDeclDo
| functionDef
| functionCall
| systemTaskCall
| ( expression )
| returnStmt

returnStmt ::= return expression ;

A value can be returned from a function in two ways, as in SystemVerilog. The first method is to
assign a value to the function name used as an ordinary variable. This “variable” can be assigned
multiple times in the function body, including in different arms of conditionals, in loop bodies, and
so on. The function body is viewed as a traditional sequential program, and value in the special
variable at the end of the body is the value returned. However, the “variable” cannot be used in
an expression (e.g., on the right-hand side of an assignment) because of ambiguity with recursive
function calls.

Alternatively, one can use a return statement anywhere in the function body to return a value
immediately without any further computation. If the value is not explicitly returned nor bound, the
returned value is undefined.

Example. The boolean negation function:

function Bool notFn (Bool x);
if (x) notFn = False;
else notFn = True;

endfunction: notFn

Example. The boolean negation function, but using return instead:

function Bool notFn (Bool x);
if (x) return False;
else return True;

endfunction: notFn

Example. The factorial function, using a loop:

function int factorial (int n);
int f = 1, j = 0;
while (j < n)
begin
f = f * j;
j = j + 1;

end
factorial = f;

endfunction: factorial

Example. The factorial function, using recursion:
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function int factorial (int n);
if (n <= 1) return (1);
else return (n * factorial (n - 1));

endfunction: factorial

9 Expressions

Expressions occur on the right-hand sides of variable assignments, on the left-hand and right-hand
side of register assignments, as actual parameters and arguments in module instantiation, function
calls, method calls, array indexing, and so on.

There are many kinds of primary expressions. Complex expressions are built using the conditional
expressions and unary and binary operators.

expression ::= condExpr
| operatorExpr
| exprPrimary

exprPrimary ::= identifier
| intLiteral
| stringLiteral
| systemFunctionCall
| ( expression )
| · · · see other productions · · ·

9.1 Don’t-care expressions

When the value of an expression does not matter, a don’t-care expression can be used. It is written
with just a question mark and can be used at any type. The compiler will pick a suitable value.

exprPrimary ::= ?

A don’t-care expression is similar, but not identical to, the x value in Verilog, which represents an
unknown value. A don’t-care expression is unknown to the programmer, but represents a particular
fixed value chosen statically by the compiler.

The programmer is encouraged to use don’t-care values where possible, both because it is useful
documentation and because the compiler can often choose values that lead to better circuits.

Example:

module mkDontCare ();

// instantiating registers where the initial value is "Dontcare"
Reg#(Bit#(4)) a <- mkReg(?);
Reg#(Bit#(4)) b <- mkReg(?);

Bool done = (a==b);
// defining a Variable with an initial value of "Dontcare"

Bool mybool = ?;
endmodule
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9.2 Conditional expressions

Conditional expressions include the conditional operator and case expressions. The conditional
operator has the usual syntax:

condExpr ::= condPredicate ? expression : expression

condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }

exprOrCondPattern ::= expression
| expression matches pattern

Conditional expressions have the usual semantics. In an expression e1:e2:e3, e1 can be a boolean
expression. If it evaluates to True, then the value of e2 is returned; otherwise the value of e3 is
returned. More generally, e1 can include pattern matching, and this is described in Section 10, on
pattern matching

Example.

module mkCondExp ();

// instantiating registers
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bit#(4)) b <- mkReg(0);

rule dostuff;
a <= (b>4) ? 2 : 10;

endrule
endmodule

Case expressions are described in Section 10, on pattern matching.

9.3 Unary and binary operators

operatorExpr ::= unop expression
| expression binop expression

Binary operator expressions are built using the unop and binop operators listed in the following
table, which are a subset of the operators in SystemVerilog. The operators are listed here in order
of decreasing precedence.
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Operator Associativity Comments
+ - ! ~ n/a Unary: plus, minus, logical not, bitwise invert

& n/a Unary: and reduction
~& n/a Unary: nand reduction
| n/a Unary: or reduction
~| n/a Unary: nor reduction
^ n/a Unary: xor reduction

^~ ~^ n/a Unary: xnor reduction
* / % Left multiplication, division, modulus
+ - Left addition, subtraction
<< >> Left left and right logical shift

<= >= < > Left comparison ops
== != Left equality, inequality

& Left bitwise and
^ Left bitwise xor

^~ ~^ Left bitwise equivalence
| Left bitwise or
&& Left logical and
|| Left logical or

Constructs that do not have any closing token, such as conditional statements and expressions, have
lowest precedence so that, for example,

e1 ? e2 : e3 + e4

is parsed as follows:

e1 ? e2 : (e3 + e4)

and not as follows:

(e1 ? e2 : e3) + e4

9.4 Bit concatenation and selection

Bit concatenation and selection are expressed in the usual Verilog notation:

exprPrimary ::= bitConcat | bitSelect

bitConcat ::= { expression { , expression } }

bitSelect ::= exprPrimary [ expression [ : expression ] ]

In a bit concatenation, each component must have the type bit[m:0] (m≥0, width m + 1). The
result has type bit[n:0] where n + 1 is the sum of the individual bit-widths (n≥0).

In a bit or part selection, the exprPrimary must have type bit[m:0] (m≥0), and the index expres-
sions must have type bit[31:0]. With a single index ([e]), a single bit is selected, and the output
is of type bit[1:0]. With two indexes ([e1:e2]), e1 must be ≥ e2, and the indexes are inclusive,
i.e., the bits selected go from the low index to the high index, inclusively. The selection has type
bit[k:0] where k + 1 is the width of the selection. Since the index expressions can in general be
dynamic values (e.g., read out of a register), the type-checker may not be able to figure out this
type, in which case it may be necessary to use a type assertion to tell the compiler the desired result
type (see Section 9.10). The type specified by the type assertion need not agree with width specified
by the indexes— the system will truncate from the left (most-significant bits) or pad with zeros to
the left as necessary.

Example:
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module mkBitConcatSelect ();

Bit#(3) a = 3’b010; //a = 010
Bit#(7) b = 7’h5e; //b = 1011110

Bit#(10) abconcat = {a,b}; // = 0101011110
Bit#(4) bselect = b[6:3]; // = 1011

endmodule

In BSV programs one will sometimes encounter the Bit#(0) type. One common idiomatic example
is the type Maybe#(Bit#(0)) (see the Maybe#() type in Section 7.3). Here, the type Bit#(0) is just
used as a place holder, when all the information is being carried by the Maybe structure.

9.5 Begin-end expressions

A begin-end expression is like an “inline” function, i.e., it allows one to express a computation using
local variables and multiple variable assignments and then finally to return a value. A begin-end
expression is analogous to a “let block” commonly found in functional programming languages. It
can be used in any context where an expression is required.

exprPrimary ::= beginEndExpr

beginEndExpr ::= begin [ : identifier ]
{ beginEndExprStmt }
expression

end [ : identifier ]

Optional identifier labels are currently used for documentation purposes only. The statements con-
tained in the block can contain local variable declarations and all the other kinds of statements.

beginEndExprStmt ::= varDecl | varAssign
| functionDef
| functionCall
| systemTaskCall
| ( expression )

Example:

int z;
z = (begin

int x2 = x * x; // x2 is local, x from surrounding scope
int y2 = y * y; // y2 is local, y from surrounding scope
(x2 + y2); // returned value (sum of squares)

end);

9.6 Actions and action blocks

Any expression that is intended to act on the state of the circuit (at circuit execution time) is called
an action and has type Action. The type Action is special, and cannot be redefined.

Primitive actions are provided as methods in interfaces to predefined objects (such as registers or
arrays). For example, the predefined interface for registers includes a ._write() method of type
Action:
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interface Reg#(type a);
method Action _write (a x);
method a _read ();

endinterface: Reg

Section 8.4 describes special syntax for register reads and writes using non-blocking assignment so
that most of the time one never needs to mention these methods explicitly.

The programmer can create new actions only by building on these primitives, or by using Verilog
modules. Actions are combined by using action blocks:

exprPrimary ::= actionBlock

actionBlock ::= action [ : identifier ]
{ actionStmt }

endaction [ : identifier ]

actionStmt ::= <action>If | <action>Case
| <action>BeginEndStmt
| regWrite
| varDecl | varAssign
| varDo | varDeclDo
| functionCall
| systemTaskCall
| ( expression )
| actionBlock

The action block can be labelled with an identifier, and the endaction keyword can optionally be
labelled again with this identifier. Currently this is just for documentation purposes.

Example:

Action a;
a = (action

x <= x+1;
y <= z;

endaction);

The Standard Prelude package defines the trivial action that does nothing:

Action noAction;

which is equivalent to the expression:

action
endaction

The Action type is actually a special case of the more general type ActionValue, described in the
next section:

typedef ActionValue#(void) Action;
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9.7 Actionvalue blocks

Note: this is an advanced topic and can be skipped on first reading.

Actionvalue blocks express the concept of performing an action and simultaneously returning a value.
For example, the pop() method of a stack interface may both pop a value from a stack (the action)
and return what was at the top of the stack (the value). ActionValue is a predefined abstract type:

ActionValue#(a)

The type parameter a represents the type of the returned value. The type ActionValue is special,
and cannot be redefined.

Actionvalues are created using actionvalue blocks. The statements in the block contain the actions
to be performed, and a return statement specifies the value to be returned.

exprPrimary ::= actionValueBlock

actionValueBlock ::= actionvalue [ : identifier ]
{ actionValueStmt }

endactionvalue [ : identifier ]

actionValueStmt ::= <actionValue>If | <actionValue>Case
| <actionValue>BeginEndStmt
| regWrite
| varDecl | varAssign
| varDo | varDeclDo
| functionCall
| systemTaskCall
| ( expression )
| returnStmt

Given an actionvalue av, we use a special notation to perform the action and yield the value:

varDeclDo ::= type identifier <- expression ;

varDo ::= identifier <- expression ;

The first rule above declares the identifier, performs the actionvalue represented by the expression,
and assigns the returned value to the identifier. The second rule is similar and just assumes the
identifier has previously been declared.

Example. A stack:

interface IntStack;
method Action push (int x);
method ActionValue#(int) pop();

endinterface: IntStack

...
IntStack s1;

...
IntStack s2;

...
action

int x <- s1.pop; -- A
s2.push (x+1); -- B

endaction

c© 2005 Bluespec, Inc. All rights reserved 61



Reference Guide Bluespec SystemVerilog v3.8

In line A, we perform a pop action on stack s1, and the returned value is bound to x. If we wanted
to discard the returned value, we could have omitted the “x <-” part. In line B, we perform a push
action on s2.

Note the difference between this statement:

x <- s1.pop;

and this statement:

z = s1.pop;

In the former, x must be of type int; the statement performs the pop action and x is bound to
the returned value. In the latter, z must be of type Method#(ActionValue#(int)) and z is simply
bound to the method s1.pop. Later, we could say:

x <- z;

to perform the action and assign the returned value to x. Thus, the = notation simply assigns the
left-hand side to the right-hand side. The <- notation, which is only used with actionvalue right-hand
sides, performs the action and assigns the returned value to the left-hand side.

9.8 Function calls

Function calls are expressed in the usual notation, i.e., a function applied to its arguments, listed in
parentheses:

exprPrimary ::= functionCall

functionCall ::= exprPrimary ( expression { , expression } )

Note that the function position is specified as exprPrimary, of which identifier is just one special
case. This is because in BSV functions are first-class objects, and so the function position can be
an expression that evaluates to a function value. Function values and higher-order functions are
described in Section 14.2.

Example:

module mkFunctionCalls ();

function Bit#(4) everyOtherBit(Bit#(8) a);
let result = {a[7], a[5], a[3], a[1]};
return result;

endfunction

function Bool isEven(Bit#(8) b);
return (b[0] == 0);

endfunction

Reg#(Bit#(8)) a <- mkReg(0);
Reg#(Bit#(4)) b <- mkReg(0);

rule doSomething (isEven(a)); // calling "isEven" in predicate: fire if a is an even number
b <= everyOtherBit(a); // calling a function in the rule body

endrule
endmodule
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9.9 Method calls

Method calls are expressed by selecting a method from an interface using dot notation, and then
applying it to arguments, listed in parentheses:

exprPrimary ::= methodCall

methodCall ::= exprPrimary . identifier ( expression { , expression } )

The exprPrimary is any expression that represents an interface, of which identifier is just one special
case. This is because in BSV interfaces are first-class objects. The identifier must be a method in
the supplied interface. Example:

// consider the following stack interface

interface StackIFC #(type data_t);
method Action push(data_t data); // an Action method with an argument
method ActionValue#(data_t) pop(); // an actionvalue method
method data_t first; // a value method

endinterface

// when instantiated in a top module
module mkTop ();
StackIFC#(int) stack <- mkStack; // instantiating a stack module
Reg#(int) counter <- mkReg(0);// a counter register
Reg#(int) result <- mkReg(0);// a result register

rule pushdata;
stack.push(counter); // calling an Action method

endrule

rule popdata;
let x <- stack.pop; // calling an ActionValue method
result <= x;

endrule

rule readValue;
let temp_val = stack.first; // calling a value method

endrule

rule inc_counter;
counter <= counter +1;

endrule

endmodule

9.10 Static type assertions

We can assert that an expression must have a given type by using Verilog’s “type cast” notation:

exprPrimary ::= typeAssertion

typeAssertion ::= type ’ bitConcat
| type ’ ( expression )

bitConcat ::= { expression { , expression } }
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In most cases type assertions are used optionally just for documentation purposes. Type assertions
are necessary in a few places where the compiler cannot work out the type of the expression (an
example is a bit-selection with run-time indexes).

In BSV although type assertions use Verilog’s type cast notation, they are never used to change an
expression’s type. They are used either to supply a type that the compiler is unable to determine by
itself, or for documentation (to make the type of an expression apparent to the reader of the source
code).

9.11 Struct and union expressions

Section 7.3 describes how to define struct and union types. Section 8.1 describes how to declare
variables of such types. Section 8.2 describes how to update variables of such types.

9.11.1 Struct expressions

To create a struct value, e.g., to assign it to a struct variable or to pass it an actual argument for a
struct formal argument, we use the following notation:

exprPrimary ::= structExpr

structExpr ::= Identifier { memberBind { , memberBind } }

memberBind ::= identifier : expression

The leading Identifier is the type name to which the struct type was typedefed. Each memberBind
specifies a member name (identifier) and the value (expression) it should be bound to. The members
need not be listed in the same order as in the original typedef. If any member name is missing, that
member’s value is undefined.

Semantically, a structExpr creates a struct value, which can then be bound to a variable, passed as
an argument, stored in a register, etc.

Example (using the processor example from Section 7.3):

typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;
...
Proc cpu;

cpu = Proc { pc : 0, rf : ... };

In this example, the mem field is undefined since it is omitted from the struct expression.

9.11.2 Struct member selection

A member of a struct value can be selected with dot notation.

exprPrimary ::= exprPrimary . identifier

Example (using the processor example from Section 7.3):

cpu.pc

Since the same member name can occur in multiple types, the compiler uses type information to
resolve which member name you mean when you do a member selection. Occasionally, you may
need to add a type assertion to help the compiler resolve this.

Update of struct variables is described in Section 8.2.
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9.11.3 Tagged union expressions

To create a tagged union value, e.g., to assign it to a tagged union variable or to pass it an actual
argument for a tagged union formal argument, we use the following notation:

exprPrimary ::= taggedUnionExpr

taggedUnionExpr ::= tagged Identifier { memberBind { , memberBind } }
| tagged Identifier exprPrimary

memberBind ::= identifier : expression

The leading Identifier is a member name of a union type, i.e., it specifies which variant of the union
is being constructed.

The first form of taggedUnionExpr can be used when the corresponding member type is a struct.
In this case, one directly lists the struct member bindings, enclosed in braces. Each memberBind
specifies a member name (identifier) and the value (expression) it should be bound to. The members
do not need to be listed in the same order as in the original struct definition. If any member name
is missing, that member’s value is undefined.

Otherwise, one can use the second form of taggedUnionExpr , which is the more general notation,
where exprPrimary is directly an expression of the required member type.

Semantically, a taggedUnionExpr creates a tagged union value, which can then be bound to a variable,
passed as an argument, stored in a register, etc.

Example (extending the previous one-hot example):

typedef union tagged { int Tagi; OneHot Tagoh; } U deriving (Bits);
...
U x; // these lines are (e.g.) in a module body.
x = tagged Tagi 23;
...
x = tagged Tagoh (encodeOneHot (23));

Example (extending the previous processor example):

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;
...
InstrOperand orand;
...
orand = tagged Indexed { regAddr:3, regIndex:4 };

9.11.4 Tagged union member selection

A tagged union member can be selected with the usual dot notation. The selection is type safe, i.e.,
if the tagged union value does not have the tag corresponding to the member selection, an error is
raised. Example:
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InstrOperand orand;
...
... orand.Indexed.regAddr ...

In this expression, if orand does not currently have the Indexed tag, an error is raised. Otherwise,
the regAddr field of the contained struct is returned.

Selection of tagged union members is more often done with pattern matching, which is discussed in
Section 10.

Update of tagged union variables is described in Section 8.2.

9.12 Interface expressions

Note: this is an advanced topic that may be skipped on first reading.

Section 5.2 described top-level interface declarations. Section 5.5 described definition of the interface
offered by a module, by defining each of the methods in the interface, using methodDef s. That is
the most common way of defining interfaces, but it is actually just a convenient alternative notation
for the more general mechanism described in this section. In particular, method definitions in a
module are a convenient alternative notation for a return statement that returns an interface value
specified by an interface expression.

moduleStmt ::= returnStmt

returnStmt ::= return expression ;

expression ::= · · · see other productions · · ·
| exprPrimary

exprPrimary ::= interfaceExpr

interfaceExpr ::= interface Identifier ;
{ interfaceStmt }

endinterface [ : Identifier ]

interfaceStmt ::= varDecl | varAssign
| methodDef

An interface expression defines a value of an interface type. The Identifier must be an interface type
in an existing interface type definition.

Example. Defining the interface for a stack of depth one (using a register for storage):

module mkStack#(type a) (Stack#(a));
Reg#(Maybe#(a)) r;
...
Stack#(a) stkIfc;
stkIfc = interface Stack;

method push (x) if (r matches tagged Invalid);
r <= tagged Valid x;

endmethod: push

method pop if (r matches tagged Valid .*);
r <= tagged Invalid

endmethod: pop

method top if (r matches tagged Valid .v);
return v

66 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

endmethod: top
endinterface: Stack

return stkIfc;
endmodule: mkStack

The Maybe type is described in Section 7.3. Note that an interface expression looks similar to an
interface declaration (Section 5.2) except that it does not list type parameters and it contains method
definitions instead of method prototypes.

Interface values are first-class objects. For example, this makes it possible to write interface trans-
formers that convert one form of interface into another. Example:

interface FIFO#(type a); // define interface type FIFO
method Action enq (a x);
method Action deq;
method a first;

endinterface: FIFO

interface Get#(type a); // define interface type Get
ActionValue#(a) get;

endinterface: Get

// Function to transform a FIFO interface into a Get interface

function Get#(a) fifoToGet (FIFO#(a) f);
return (interface Get

method get();
actionValue

f.deq();
return f.first();

endactionValue
endmethod: get

endinterface);
endfunction: fifoToGet

9.12.1 Differences between interfaces and structs

Interfaces are similar to structs in the sense that both contain a set of named items—members in
structs, methods in interfaces. Both are first-class values—structs are created with struct expressions,
and interfaces are created with interface expressions. A named item is selected from both using the
same notation—struct.member or interface.method.

However, they are different in the following ways:

• Structs cannot contain methods; interfaces can contain nothing but methods (and subinter-
faces).

• Struct members can be updated; interface methods cannot.

• Struct members can be selected; interface methods cannot be selected, they can only be invoked
(inside rules or other interface methods).

• Structs can be used in pattern matching; interfaces cannot.
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9.13 Rule expressions

Note: This is an advanced topic that may be skipped on first reading.

Section 5.6 described definition of rules in a module. That is the most common way to define rules,
but it is actually just a convenient alternative notation for the more general mechanism described
in this section. In particular, rule definitions in a module are a convenient alternative notation for
a call to the built-in addRules() function passing it an argument value of type Rules. Such a value
is in general created using a rule expression. A rule expression has type Rules and consists of a
collection of individual rule constructs.

exprPrimary ::= rulesExpr

rulesExpr ::= [ ruleAttribute ] [ docAttribute ]
rules [ : identifier ]

rulesStmt
endrules [ : identifier ]

rulesStmt ::= varDecl | varAssign
| rule

A rule expression is optionally preceded by a ruleAttribute; these are described in Section 13.3. A
rule expression is a block, bracketed by rules and endrules keywords, and optionally labelled with
an identifier. Currently the identifier is used only for documentation. The individual rule construct
is described in Section 5.6.

Example. Executing a processor instruction:

rules
Word instr = mem[pc];

rule instrExec;
case (instr) matches

tagged Add { .r1, .r2, .r3 } : action
pc <= pc+1;
rf[r1] <= rf[r2] + rf[r3];

endaction;
tagged Jz {.r1, .r2} : if (r1 == 0)

action
pc <= r2;

endaction
else

noAction;
endcase

endrule
endrules

Example. Defining a counter:

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;
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// The next function returns the rule addOne
function Rules incReg(Reg#(CounterType) a);
return( rules
rule addOne;

a <= a + 1;
endrule

endrules);
endfunction

// Module counter using IfcCounter interface
(* synthesize,

RST_N = "reset_b",
CLK = "counter_clk",
always_ready, always_enabled *)

module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

// Add incReg rule to increment the counter
addRules(incReg(asReg(counter)));

// Next rule resets the counter to 1 when it reaches its limit
rule resetCounter (counter == ’1);
action
counter <= 0;

endaction
endrule

// Output the counters value
method CounterType readCounter;
return counter;

endmethod

endmodule

10 Pattern matching

Pattern matching provides a visual and succinct notation to compare a value against structs, tagged
unions and constants, and to access members of structs and tagged unions. Pattern matching can be
used in case statements, case expressions, if statements, conditional expressions, rule conditions,
and method conditions.

pattern ::= . identifier Pattern variable
| .* Wildcard
| constantPattern Constant
| taggedUnionPattern Tagged union
| structPattern Struct
| tuplePattern Tuple

constantPattern ::= intLiteral
| Identifier Enum label
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taggedUnionPattern ::= tagged Identifier [ pattern ]

structPattern ::= tagged Identifier { identifier : pattern { , identifier : pattern } }

tuplePattern ::= { pattern { , pattern } }

A pattern is a nesting of tagged union and struct patterns with the leaves consisting of pattern
variables, constant expressions, and the wildcard pattern .*.

In a pattern .x, the variable x is declared at that point as a pattern variable, and is bound to the
corresponding component of the value being matched.

A constant pattern is an integer literal, or an enumeration label (such as True or False).

A tagged union pattern consists of the tagged keyword followed by an identifier which is a union
member name. If that union member is not a void member, it must be followed by a pattern for
that member.

In a struct pattern, the Identifier following the tagged keyword is the type name of the struct as
given in its typedef declaration. Within the braces are listed, recursively, the member name and a
pattern for each member of the struct. The members can be listed in any order, and members can
be omitted.

A tuple pattern is enclosed in braces and lists, recursively, a pattern for each member of the tuple
(tuples are described in Section 12.4).

A pattern always occurs in a context of known type because it is matched against an expression of
known type. Recursively, its nested patterns also have known type. Thus a pattern can always be
statically type-checked.

Each pattern introduces a new scope; the extent of this scope is described separately for each of
the contexts in which pattern matching may be used. Each pattern variable is implicitly declared
as a new variable within the pattern’s scope. Its type is uniquely determined by its position in the
pattern. Pattern variables must be unique in the pattern, i.e., the same pattern variable cannot be
used in more than one position in a single pattern.

In pattern matching, the value V of an expression is matched against a pattern. Note that static
type checking ensures that V and the pattern have the same type. The result of a pattern match is:

• A boolean value, True, if the pattern match succeeds, or False, if the pattern match fails.

• If the match succeeds, the pattern variables are bound to the corresponding members from V ,
using ordinary assignment.

Each pattern is matched using the following simple recursive rule:

• A pattern variable always succeeds (matches any value), and the variable is bound to that
value (using ordinary procedural assignment).

• The wildcard pattern .* always succeeds.

• A constant pattern succeeds if V is equal to the value of the constant.

• A tagged union pattern succeeds if the value has the same tag and, recursively, if the nested
pattern matches the member value of the tagged union.

• A struct or tuple pattern succeeds if, recursively, each of the nested member patterns matches
the corresponding member values in V . In struct patterns with named members, the textual
order of members does not matter, and members may be omitted. Omitted members are
ignored.

Conceptually, if the value V is seen as a flattened vector of bits, the pattern specifies the following:
which bits to match, what values they should be matched with and, if the match is successful, which
bits to extract and bind to the pattern identifiers.
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10.1 Case statements with pattern matching

Case statements can occur in various contexts, such as in modules, function bodies, action and
actionValue blocks, and so on. Ordinary case statements are described in Section 8.6. Here we
describe pattern-matching case statements.

<ctxt>Case ::= case ( expression ) matches
{ <ctxt>CasePatItem }
[ <ctxt>DefaultItem ]

endcase

<ctxt>CasePatItem ::= pattern [ &&& expression ] : <ctxt>Stmt

<ctxt>DefaultItem ::= default [ : ] <ctxt>Stmt

The keyword matches after the main expression (following the case keyword) signals that this is a
pattern-matching case statement instead of an ordinary case statement.

Each case item contains a left-hand side and a right-hand side, separated by a colon. The left-hand
side contains a pattern and an optional filter (&&& followed by a boolean expression). The right-hand
side is a statement. The pattern variables in a pattern may be used in the corresponding filter and
right-hand side. The case items may optionally be followed, finally, by a default item (the colon
after the default keyword is optional).

The value of the main expression (following the case keyword) is matched against each case item, in
the order given, until an item is selected. A case item is selected if and only if the value matches the
pattern and the filter (if present) evaluates to True. Note that there is a left-to-right sequentiality
in each item— the filter is evaluated only if the pattern match succeeds. This is because the filter
expression may use pattern variables that are meaningful only if the pattern match succeeds. If none
of the case items matches, and a default item is present, then the default item is selected.

If a case item (or the default item) is selected, the right-hand side statement is executed. Note that
the right-hand side statement may use pattern variables bound on the left hand side. If none of the
case items succeed, and there is no default item, no statement is executed.

Example (uses the Maybe type definition of Section 7.3):

case (f(a)) matches
tagged Valid .x : return x;
tagged Invalid : return 0;

endcase

First, the expression f(a) is evaluated. In the first arm, the value is checked to see if it has the form
tagged Valid .x, in which case the pattern variable x is assigned the component value. If so, then
the case arm succeeds and we execute return x. Otherwise, we fall through to the second case arm,
which must match since it is the only other possibility, and we return 0.

Example:

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;
...
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InstrOperand orand;
...

case (orand) matches
tagged Register .r : x = rf [r];
tagged Literal .n : x = n;
tagged Indexed { .ra, .ri } : x = mem[ra+ri];

endcase

10.2 Case expressions with pattern matching

caseExpr ::= case ( expression ) matches
{ caseExprItem }

endcase

caseExprItem ::= pattern [ &&& expression ] : expression
| default [ : ] expression

Case expressions with pattern matching are similar to case statements with pattern matching. In
fact, the process of selecting a case item is identical, i.e., the main expression is evaluated and
matched against each case item in sequence until one is selected. Case expressions can occur in
any expression context, and the right-hand side of each case item is an expression. The whole case
expression returns a value, which is the value of the right-hand side expression of the selected item.
It is an error if no case item is selected and there is no default item.

In contrast, case statements can only occur in statement contexts, and the right-hand side of each
case arm is a statement that is executed for side effect. The difference between case statements and
case expressions is analogous to the difference between if statements and conditional expressions.

Example. Rules and rule composition for Pipeline FIFO using case statements with pattern match-
ing.

package PipelineFIFO;

import RWire::*;
import FIFO::*;

module mkPipelineFIFO (FIFO#(a))
provisos (Bits#(a,sa));

// STATE ----------------

Reg#(Maybe#(a)) taggedReg <- mkReg (tagged Invalid); // the FIFO
RWire#(a) rw_enq <- mkRWire; // enq method signal
RWire#(Bit#(0)) rw_deq <- mkRWire; // deq method signal

// RULES and RULE COMPOSITION ----------------

Maybe#(a) taggedReg_post_deq = case (rw_deq.wget) matches
tagged Invalid : return taggedReg;
tagged Valid .x : return tagged Invalid;

endcase;

Maybe#(a) taggedReg_post_enq = case (rw_enq.wget) matches
tagged Invalid : return taggedReg_post_deq;
tagged Valid .v : return tagged Valid v;
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endcase;

rule update_final (isValid(rw_enq.wget) || isValid(rw_deq.wget));
taggedReg <= taggedReg_post_enq;

endrule

10.3 Pattern matching in if statements and other contexts

If statements are described in Section 8.6. As the grammar shows, the predicate (condPredicate)
can be a series of pattern matches and expressions, separated by &&&. Example:

if ( e1 matches p1 &&& e2 &&& e3 matches p3 )
stmt1

else
stmt2

Here, the value of e1 is matched against the pattern p1; if it succeeds, the expression e2 is evaluated;
if it is true, the value of e3 is matched against the pattern p3; if it succeeds, stmt1 is executed,
otherwise stmt2 is executed. The sequential order is important, because e2 and e3 may use pattern
variables bound in p1, and stmt1 may use pattern variables bound in p1 and p3, and pattern variables
are only meaningful if the pattern matches. Of course, stmt2 cannot use any of the pattern variables,
because none of them may be meaningful when it is executed.

In general the condPredicate can be a series of terms, where each term is either a pattern match
or a filter expression (they do not have to alternate). These are executed sequentially from left to
right, and the condPredicate succeeds only if all of them do. In each pattern match e matches p, the
value of the expression e is matched against the pattern p and, if successful, the pattern variables are
bound appropriately and are available for the remaining terms. Filter expressions must be boolean
expressions, and succeed if they evaluate to True. If the whole condPredicate succeeds, the bound
pattern variables are available in the corresponding “consequent” arm of the construct.

The following contexts also permit a condPredicate cp with pattern matching:

• Conditional expressions (Section 9.2):

cp ? e2 : e3

The pattern variables from cp are available in e2 but not in e3.

• Conditions of rules (Sections 5.6 and 9.13):

rule r (cp);
... rule body ...

endrule

The pattern variables from cp are available in the rule body.

• Conditions of methods (Sections 5.5 and 9.12):

method t f (...) if (cp);
... method body ...

endmethod

The pattern variables from cp are available in the method body.

Example. Continuing the Pipeline FIFO example from the previous section (10.2).

c© 2005 Bluespec, Inc. All rights reserved 73



Reference Guide Bluespec SystemVerilog v3.8

// INTERFACE ----------------

method Action enq(v) if (taggedReg_post_deq matches tagged Invalid);
rw_enq.wset(v);

endmethod

method Action deq() if (taggedReg matches tagged Valid .v);
rw_deq.wset(?);

endmethod

method first() if (taggedReg matches tagged Valid .v);
return v;

endmethod

method Action clear();
taggedReg <= tagged Invalid;

endmethod

endmodule: mkPipelineFIFO

endpackage: PipelineFIFO

10.4 Pattern matching assignment statements

Pattern matching can be used in variable assignments for convenient access to the components of a
struct or union value.

varAssign ::= match pattern = expression ;

The pattern variables in the left-hand side pattern are declared at this point and their scope extends
to subsequent statements in the same statement sequence. The types of the pattern variables are
determined by their position in the pattern.

The left-hand side pattern is matched against the value of the right-hand side expression. On a
successful match, the pattern variables are assigned the corresponding components in the value. It
is an error if the pattern does not match (this can only occur if there are constants in the pattern
that do not match, or if the pattern and value contain tagged unions with different tags.

Example:

// Type Frame
typedef struct{ Bit#(32) payload;

} Frame deriving(Bits);

...
// Get the data from Rx1 and assign it to variable a
match tagged Frame {payload: .a} = rx1.getData;

// Get the data from Rx2 and assign it to variable b
match tagged Frame {payload: .b} = rx2.getData;

11 Finite state machines

BSV contains a powerful and convenient notation for expressing finite state machines (FSMs). FSMs
are essentially well-structured processes involving sequencing, parallelism, conditions and loops, with
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a precise compositional model of time. In principle, FSMs can be coded with rules, which are strictly
more powerful, but the FSM sublanguage herein provides a succinct notation for FSM structures
and automates all the generation and management of the actual FSM state. In fact, the BSV
compiler translates all the constructs described here internally into rules. In particular, the primitive
statements in these FSMs are standard actions (Section 9.6), obeying all the scheduling semantics
of actions (Section 6.2).

First, one uses the Stmt sublanguage, described in Section C.3.1 to compose the actions of an
FSM using sequential, parallel, conditional and looping structures. This sublanguage is within the
expression syntactic category, i.e., a term in the sublanguage is an expression whose value is of type
Stmt. This value can be bound to identifiers, passed as arguments and results of functions, held in
static data structures, etc., like any other value. Finally, the FSM can be instantiated into hardware,
multiple times if desired, by passing the Stmt value to the module constructor mkFSM. The resulting
module interface has type FSM, which has methods to start the FSM and to wait until it completes.

In order to use this sublanguage, it is necessary to import the StmtFSM package, which is described
in more detail in Section C.3.1.

12 Important primitives

These primitives are available via the Standard Prelude package and other standard libraries. See
also Appendix C more useful libraries.

12.1 The types bit and Bit

The type bit[m:0] and its synonym Bit#(Mplus1) represents bit-vectors of width m+1, provided
the type Mplus1 has been suitably defined. The lower (lsb) index must be zero. Example:

bit [15:0] zero;
zero = 0

typedef bit [50:0] BurroughsWord;

Syntax for bit concatenation and selection is described in Section 9.4.

There is also a useful function, split, to split a bit-vector into two sub-vectors:

function Tuple2#(Bit#(m), Bit#(n)) split (Bit#(mn) xy)
provisos (Add#(m,n,mn));

It takes a bit-vector of size mn and returns a 2-tuple (a pair, see Section 12.4) of bit-vectors of size
m and n, respectively. The proviso expresses the size constraints using the built-in Add type class.

The function split is polymorphic, i.e, m and n may be different in different applications of the func-
tion, but each use is fully type-checked statically, i.e., the compiler verifies the proviso, performing
any calculations necessary to do so.

12.1.1 Bit-width compatibility

BSV is currently very strict about bit-width compatibility compared to Verilog and SystemVerilog,
in order to reduce the possibility of unintentional errors. In BSV, the types bit[m:0] and bit[n:0]
are compatible only if m = n. For example, an attempt to assign from one type to the other, when
m6=n, will be reported by the compiler as a type-checking error—there is no automatic padding or
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truncation. The Standard Prelude package (see Section B) contains functions such as zeroExtend()
and truncate(), which may be used explicitly to extend or truncate to a required bit-width. These
functions, being overloaded over all bit widths, are convenient to use, i.e., you do not have to
constantly calculate the amount by which to extend or truncate; the type checker will do it for you.

12.2 UInt, Int, int and Integer

The types UInt#(n) and Int#(n), respectively, represent unsigned and signed integer data types of
width n bits. These types have all the operations from the type classes (overloading groups) Bits,
Literal, Eq, Arith, Ord, Bounded, Bitwise, BitReduction, and BitExtend. (See Appendix B for
the specifications of these type classes and their associated operations.)

Note that the types UInt and Int are not really primitive; they are defined completely in BSV.

The type int is just a synonym for Bit#(32) (i.e., it is typedefed thus).

The type Integer represents unbounded integers. Because they are unbounded, they are only used
to represent static values used during static elaboration. The overloaded function fromInteger
allows conversion from an Integer to various other types.

12.3 String

The type String is defined in the Standard Prelude package. Strings are mostly used in system
tasks (such as $display). Strings can be concatenated using the strConcat function, and they
can be tested for equality and inequality using the == and != operators. String literals, written in
double-quotes, are described in Section 2.5.

12.4 Tuples

It is frequently necessary to group a small number of values together, e.g., when returning multiple
results from a function. Of course, one could define a special struct type for this purpose, but BSV
predefines a number of structs called tuples that are convenient:

typedef struct {a _1; b _2;} Tuple2#(type a, type b) deriving (Bits,Eq,Bounded);
typedef ... Tuple3#(type a, type b, type c) ...;
typedef ... ... ...;
typedef ... Tuple7#(type a, ..., type g) ...;

Values of these types can be created by applying a predefined family of constructor functions:

tuple2 (e1, e2)
tuple3 (e1, e2, e3)
...
tuple7 (e1, e2, e3, ..., e7)

where the expressions eJ evaluate to the component values of the tuples.

Components of tuples can be extracted using a predefined family of selector functions:

tpl_1 (e)
tpl_2 (e)
...
tpl_7 (e)

76 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

where the expression e evaluates to tuple value. Of course, only the first two are applicable to
Tuple2 types, only the first three are applicable to Tuple3 types, and so on.

In using a tuple component selector, it is sometimes necessary to use a static type assertion to help
the compiler work out the type of the result. Example:

UInt#(6)’(tpl_2 (e))

Tuple components are more conveniently selected using pattern matching. Example:

Tuple2#(int, Bool) xy;
...

case (xy) matches
{ .x, .y } : ... use x and y ...

endcase

12.5 Registers

The most elementary module available in BSV is the register, which has a Reg interface. Registers
are instantiated using the mkReg module, whose single parameter is the initial value of the register.
Registers can also be instantiated using the mkRegU module, which takes no parameters (don’t-care
initial value). The Reg interface type and the module types are shown below.

interface Reg#(type a);
Action _write (a x);
a _read;

endinterface: Reg

module mkReg#(a initVal) (Reg#(a))
provisos

(Bits#(a, sa));

module mkRegU (Reg#(a))
provisos

(Bits#(a, sa));

Registers are polymorphic, i.e., in principle they can hold a value of any type but, of course, ulti-
mately registers store bits. Thus, the provisos on the modules indicate that the type must be in the
Bits type class (overloading group), i.e., the operations pack() and unpack() must be defined on
this type to convert into to bits and back.

Section 8.4 describes special notation whereby one rarely uses the _write() and _read methods
explicitly. Instead, one more commonly uses the traditional non-blocking assignment notation for
writes and, for reads, one just mentions the register interface in an expression.

Since mentioning the register interface in an expression is shorthand for applying the _read method,
BSV also provides a notation for overriding this implicit read, producing an expression representing
the register interface itself:

asReg (r)
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12.6 FIFOs

Package FIFO defines several useful interfaces and modules for FIFOs:

interface FIFO#(type a);
Action enq (a x);
Action deq;
a first;
Action clear;

endinterface: FIFO

module mkFIFO (FIFO#(a))
provisos (Bits#(a, as));

module mkSizedFIFO#(Integer depth) (FIFO#(a))
provisos (Bits#(a, as));

The FIFO interface type is polymorphic, i.e., the FIFO contents can be of any type a. However,
since FIFOs ultimately store bits, the content type a must be in the Bits type class (overloading
group); this is specified in the provisos for the modules.

The module mkFIFO leaves the capacity of the FIFO unspecified (the number of entries in the FIFO
before it becomes full).

The module mkSizedFIFO takes the desired capacity of the FIFO explicitly as a parameter.

Of course, when compiled, mkFIFO will pick a particular capacity, but for formal verification purposes
it is useful to leave this undetermined. It is often useful to be able to prove the correctness of a design
without relying on the capacity of the FIFO. Then the choice of FIFO depth can only affect circuit
performance (speed, area) and cannot affect functional correctness, so it enables one to separate the
questions of correctness and “performance tuning.” Thus, it is good design practice initially to use
mkFIFO and address all functional correctness questions. Then, if performance tuning is necessary,
it can be replaced with mkSizedFIFO.

12.7 FIFOFs

Package FIFOF defines several useful interfaces and modules for FIFOs. The FIFOF interface is like
FIFO, but it also has methods to test whether the FIFO is full or empty:

interface FIFOF a =
Action enq (a x);
Action deq;
a first;
Action clear;
Bool notFull;
Bool notEmpty;

endinterface

module mkFIFOF (FIFOF#(a))
provisos (Bits#(a, as));

module mkSizedFIFOF#(Integer depth) (FIFOF#(a))
provisos (Bits#(a, as));

The module mkFIFOF leaves the capacity of the FIFO unspecified (the number of entries in the FIFO
before it becomes full). The module mkSizedFIFOF takes the desired capacity of the FIFO as an
argument.
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12.8 System tasks and functions

BSV supports a number of Verilog’s system tasks and functions.

12.8.1 System tasks for displaying information

systemTaskCall ::= displayTaskName ( [ expression [ , expression ] ] )

displayTaskName ::= $display | $displayb | $displayo | $displayh
| $write | $writeb | $writeo | $writeh

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.

The only difference between the $display family and the $write family is that members of the
former always output a newline after displaying the arguments, whereas members of the latter do
not.

The only difference between the ordinary, b, o and h variants of each family is the format in which
numeric expressions are displayed if there is no explicit format specifier. The ordinary $display
and $write will output, by default, in decimal format, whereas the b, o and h variants will output
in binary, octal and hexadecimal formats, respectively.

There can be any number of argument expressions between the parentheses. The arguments are
displayed in the order given. If there are no arguments, $display just outputs a newline, whereas
$write outputs nothing.

The argument expressions can be of type String, Bit#(n) (i.e., of type bit[n-1:0]), Integer,
or any type that is a member of the overloading group Bits. Members of Bits will display their
packed representation. The output will be interpreted as a signed number for the types Integer
and Int#(n). Arguments can also be literals. Integers and literals are limited to 32 bits.

Arguments of type String are interpreted as they are displayed. The characters in the string are
output literally, except for certain special character sequences beginning with a % character, which
are interpreted as format-specifiers for subsequent arguments. The following format specifiers are
supported6:

%d Output a number in decimal format
%b Output a number in binary format
%o Output a number in octal format
%h Output a number in hexadecimal format

%c Output a character with given ASCII code

%s Output a string (argument must be a string)

%t Output a number in time format

Actionvalues (see Section 9.7) whose returned type is displayable can also be directly displayed. This
is done by performing the associated action (as part of the action invoking $display) and displaying
the returned value.

6Displayed strings are passed through the compiler unchanged, so other format specifiers may be supported by
your Verilog simulator. Only the format specifiers above are supported by Bluespec’s C-based simulator.
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12.8.2 System tasks for stopping simulation

systemTaskCall ::= $finish [ ( expression ) ]
| $stop [ ( expression ) ]

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.

The $finish task causes simulation to stop immediately and exit back to the operating system. The
$stop task causes simulation to suspend immediately and enter an interactive mode. The optional
argument expressions can be 0, 1 or 2, and control the verbosity of the diagnostic messages printed
by the simulator. the default (if there is no argument expression) is 1.

12.8.3 System tasks for VCD dumping

systemTaskCall ::= $dumpvars | $dumpon | $dumpoff

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.

A call to $dumpvars starts dumping the changes of all the state elements in the design to the
VCD file. BSV’s $dumpvars does not currently support arguments that control the specific module
instances or levels of hierarchy that are dumped.

Subsequently, a call to $dumpoff stops dumping, and a call to $dumpon resumes dumping.

12.8.4 System functions returning the current time

systemFunctionCall ::= $time | $stime

These system function calls are conceptually of ActionValue type (see Section 9.7), and can be used
anywhere an ActionValue is expected. The time returned is the time when the associated action
was performed.

The $time function returns a 64-bit integer (specifically, of type Bit#(64)) representing time, scaled
to the timescale unit of the module that invoked it.

The $stime function returns a 32-bit integer (specifically, of type Bit#(32)) representing time,
scaled to the timescale unit of the module that invoked it. If the actual simulation time does not fit
in 32 bits, the lower-order 32 bits are returned.

12.8.5 System functions for testing command line input

Information for use in simulation can be provided on the command line. This information is spec-
ified via optional arguments in the command used to invoke the simulator. These arguments are
distinguished from other simulator arguments by starting with a plus (+) character and are therefore
known as plusargs. Following the plus is a string which can be examined during simulation via
system functions.

systemTaskCall ::= $test$plusargs ( expression )

The $test$plusargs system function call is conceptually of ActionValue type (see Section 9.7),
and can be used anywhere an ActionValue is expected. An argument of type String is expected
and a boolean value is returned indicating whether the provided string matches the beginning of any
plusarg from the command line.
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13 Guiding the compiler with attributes

This section describes how to guide the compiler in some of its decisions using attributes, which are
expressed with Verilog’s attribute syntax.

attributeInstance ::= (* attrSpec { , attrSpec } *)

attrSpec ::= attrName [ = expression ]

attrName ::= identifier |Identifier

Multiple attributes can be written together on a single line
(* synthesize, always_ready = "read, subifc.enq" *)

Or attributes can be written on multiple lines
(* synthesize *)
(* always_ready = "read, subifc.enq" *)

Attributes can be associated with a number of different language constructs such as module, interface,
and function definitions. A given attribute declaration is applied to the first attribute construct that
follows the declaration. The following table summarizes the available attributes and the language
constructs to which they may be applied. Each attribute is described in more detail in the referenced
section.

Attribute Name Section Modules Methods Interfaces Functions Rules

synthesize 13.1.1
√

noinline 13.1.2
√

RST N= 13.1.3
√

CLK= 13.1.3
√

always ready 13.1.4, 13.2.4
√ √ √

always enabled 13.1.4, 13.2.4
√ √ √

ready= 13.2.1
√

enable= 13.2.1
√

result= 13.2.2
√

prefix= 13.2.3
√

port= 13.2.3
√

fire when enabled 13.3.1
√

no implicit conditions 13.3.2
√

descending urgency 13.3.3
√ √

preempts 13.3.4
√ √

doc= 13.4
√ √

13.1 Verilog module generation attributes

In addition to compiler flags on the command line, it is possible to guide the compiler with attributes
that are included in the BSV source code.

modgenAttribute ::= attributeInstance

The attributes synthesize and noinline control code generation for modules and functions, respec-
tively. The remaining attributes, RST_N=, CLK=, always_enabled and always_ready are dependent
on the synthesize attribute. If the synthesize attribute is not specified for the module, they are
ignored.
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13.1.1 Module generation attribute synthesize

When the compiler is directed to generate Verilog or Bluesim code for a BSV module, by default it
tries to integrate all definitions into one big module. The synthesize attribute marks a module for
code generation and ensures that, when generated, instantiations of the module are not flattened but
instead remain as references to a separate module definition. Modules that are annotated with the
synthesize attribute are said to be synthesized modules. The BSV hierarchy boundaries associated
with synthesized modules are maintained during code generation. Not all BSV modules can be
synthesized modules (i.e.,can maintain a module boundary during code generation). Section 5.8
describes in more detail which modules are synthesizable.

13.1.2 Module generation attribute noinline

The noinline attribute is applied to functions. It tells the compiler not to inline the function, but
to generate a separate module for it, whose single instantiation is shared among all the callers of
the function. The function has the same type restrictions as interface methods that are involved in
code generation. The noinline attribute can only be applied to functions that are defined at the
top level. Example:

(* noinline *)
function Bit#(LogK) popCK(Bit#(K) x);
return (popCountTable(x));

endfunction: popCK

13.1.3 Generated port renaming attributes RST_N= and CLK=

The generated port renaming attributes allow renaming of the default ports for the low reset and
clock signals. The attributes are associated with a module and are only applied when the synthesize
attribute is specified for the module.

By default, the BSV compiler names the asserted low reset signal associated with each module RST_N.
The RST_N= attribute is used to specify an alternate name for the reset signal.

By default, the BSV compiler names the clock signal associated with each module CLK. The CLK=
attribute is used to specify an alternate name for the clock signal.

Example

( * synthesize, CLK = "clock", RST_N = "reset" * )

13.1.4 Port protocol attributes always_enabled and always_ready

The port protocol attributes always_enabled and always_ready allow the removal of unnecessary
ports. In both cases the compiler will verify that the attribute is correct.

always_enabled specifies that there should be no enable signal generated for the associated interface
methods. The methods will be executed on every clock cycle, and the compiler verifies that the caller
does this.

always_ready specifies that no ready signals should be generated. The compiler verifies that the
associated interface methods are permanently ready. always_enabled implies always_ready.

These attributes can be applied either to an entire interface or to an individual interface method. If
applied to the entire interface, the attributes affect all the methods included in that interface.

The attributes are applied when the interface is implemented within a module, not at the declaration
of the interface. Example:
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interface ILookup; //the definition of the interface
interface Fifo#(int) subifc;
method Action read ();

endinterface: ILookup

(* always_ready = "read, subifc.enq" * )//the attribute is applied when the
module mkServer (ILookup); //interface is implemented within

... //a module.
endmodule: mkServer

In the above example, note that only the subifc.enq method of the subifc interface is always_ready.
Other methods of the interface, such as subifc.deq, are not always_ready.

If every method of the interface is always_ready or always_enabled, individual methods don’t have
to be specified:

(* always_enabled *)
module mkServer (ILookup);

13.2 Interface attributes

Interface attributes are used to express protocol and naming requirements for generated Verilog
interfaces.

interfaceAttribute ::= attributeInstance

Interface attributes are not considered until the generation of the Verilog module which uses the
interface.

There is a direct correlation between interfaces in Bluespec and ports in the generated Verilog.
Several attributes can be annotated in interfaces to directly guide the naming and the protocols of
the generated Verilog ports.

Bluespec uses a simple Ready-Enable micro-protocol for each method within the module’s interface.
Each method contains both a output Ready (RDY) signal and an input Enable (EN) signal in
addition to any needed directional data lines. When a method can be safely called it asserts its
RDY signal. When an external caller sees the RDY signal it may then call (in the same cycle) the
method by asserting the method’s EN signal and providing any required data.

Generated Verilog ports names are based the method name and argument names, with some standard
prefixes. This ActionValue method generates the following ports

method ActionValue#( type_out ) method1 ( type_in data_in ) ;

RDY_method1 Output ready signal of the protocol
EN_method1 Input signal for Action and Action Value methods
method1 Output signal of ActionValue and Value methods
method1_data_in Input signal for method arguments

Interface attributes allow control over the naming and protocols of individual methods or entire
interfaces.
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13.2.1 Interface attributes ready= and enable=

Ready and enable ports use RDY_ and EN_ as their default prefix to the method names. Using
attributes ready = "string" and enable = "string" will stop the prefix annotation and use
the string as listed. These attributes may be associated with method declarations (methodProto)
only, see Section 5.2.

In the above example, the following attribute would replace the RDY_method1 with avMethodIsReady
and EN_method1 with GO.

(* ready = "avMethodIsReady", enable = "GO" *)

Note that the ready= attribute is ignored if the method or module is annotated as always_ready
or always_enabled, while the enable= attribute is ignored for value methods, and those annotated
as always_enabled.

13.2.2 Interface attribute result=

By default the output port for value methods and ActionValue methods use the method name. Using
the attribute result = "string" causes the output to be renamed to "string". This is useful when
the desired port names must begin a upper case letter, which is not valid for a method name. These
attributes may be associated with method declarations (methodProto) only, see Section 5.2.

In the above example, the following attribute would replace the method1 port with OUT.

(* result = "OUT" *)

Note that the result= attribute is ignored if the method is an Action method which does not
return a result.

13.2.3 Interface attributes prefix= and port=

By default input ports for methods are named as methodName_argumentName Using the combination
of attributes prefix = "string" and port = "string" can cause any strings to be generated for the
Verilog ports. The prefix= attribute replaces the methodName prefix for the generated and name.
The prefix string may be empty, in which case the joining underscore is not added. The port=
attribute is associated with each formal port declaration of the method, and replaces argumentName
in the generated Verilog port name.

The prefix= attribute may be associated with method declarations (methodProto) or sub-interface
declarations (subinterfaceDecl). The port= attribute may be associate with each method prototype
argument in the interface declaration (methodProtoFormal ), see Section 5.2.

In the above example, the following attribute would replace the method1_data_in port with IN_DATA.

(* prefix = "" *)
method ActionValue#( type_out )

method1( (* port="IN_DATA" *) type_in data_in ) ;

Note that the prefix= attribute is ignored if the method does not have any arguments.

The prefix= attribute may also be used on sub-interface declarations to aid the renaming of interface
hierarchies. By default, interface hierarchies are named by prefixing the sub-interface name to names
of the methods within that interface. (See Section 5.2.1.) Using the prefix attribute, will replace
the sub-interface name. See the example later in this section.
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13.2.4 Interface attributes always_ready and always_enabled

The port protocol attributes always_enabled and always_ready allow the removal of unnecessary
ports. In all cases the compiler verifies that the attribute and design are correctly applied.

always_enabled specifies that there should be no enable signal generated for the associated interface
methods. The methods will be executed on every clock cycle, and the compiler verifies that the caller
does this.

always_ready specifies that no ready signals should be generated. The compiler verifies that the
associated interface methods are permanently ready. always_enabled implies always_ready.

The always_ready and always_enabled attributes can be associate with the method declarations
(methodProto), the sub-interface declarations (subinterfaceDecl), or the interface declaration (inter-
faceDecl) itself.

13.2.5 Interface attributes example

(* always_ready *) // all methods in this and all sub-interface
// have this property
// always_enabled is also allowed here

interface ILookup;
(* prefix = "" *) // subifc_ will not be used in naming

// always_enabled and always_ready are allowed.
interface Fifo#(int) subifc;

(* enable = "GOread" *) // EN_read becomes GOread
method Action read ();

(* always_enabled *) // always_enabled and always_ready
// are allowed on any individual method

(* result = "CHECKOK" *) // output checkData becomes CHECKOK
(* prefix = "" *) // checkData_datain1 becomes DIN1

// checkData_datain2 becomes DIN2
method ActionValue#(Bool) checkData ( (* port= "DIN1" *) int datain1

(* port= "DIN2" *) int datain2 ) ;

endinterface: ILookup

13.3 Scheduling attributes

Scheduling attributes are used to express certain performance requirements. When the compiler
maps rules into clocks, as described in Section 6.2.2, scheduling attributes guide or constrain its
choices, in order to produce a schedule that will meet performance goals.

Scheduling attributes are most often attached to rules or to rule expressions.

ruleAttribute ::= attributeInstance

Scheduling attributes are not considered until the generation of Verilog or C code for the module
that includes them.
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13.3.1 Scheduling attribute fire_when_enabled

The fire_when_enabled scheduling attribute immediately precedes a rule (just before the rule
keyword) and governs the rule.

It asserts that this rule must fire whenever its predicate and its implicit conditions are true, i.e.,
when they are true, there are no scheduling conflicts with other rules that will prevent it from firing.
This is statically verified by the compiler, and it will report an error if necessary.

Example. Using fire_when_enabled to ensure the counter is reset.

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface. It never contains 0.

(* synthesize,
RST_N = "reset_b",
CLK = "counter_clk",
always_ready = "readCounter",
always_enabled= "readCounter" *)

module counter (IfcCounter#(CounterType));
// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

// Next rule resets the counter to 1 when it reaches its limit.
// The attribute fire_when_enabled will check that this rule will fire
// if counter == ’1
(* fire_when_enabled *)
rule resetCounter (counter == ’1);
action
counter <= 1;

endaction
endrule

// Next rule updates the counter.
rule updateCounter;
action
counter <= counter + 1;

endaction
endrule

// Method to output the counter’s value
method CounterType readCounter;
return counter;

endmethod
endmodule

Rule resetCounter conflicts with rule updateCounter because both try to modify the counter
register when it contains all its bits set to one. The rule updateCounter rule will obtain more
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urgency, meaning that if the predicate of resetCounter is met, only the rule updateCounter will
fire. The assertion fire_when_enabled will be violated and the compiler will produce an error
message. Please note that without the assertion fire_when_enabled the compilation process will
be correct and the designer will be only warned about the scheduling of the conflicting rules.

13.3.2 Scheduling attribute no_implicit_conditions

The no_implicit_conditions scheduling attribute immediately precedes a rule (just before the
rule keyword) and governs the rule.

It asserts that the implicit conditions of all interface methods called within the rule must always be
true, and therefore do not control its enabling. Only the explicit rule predicate controls whether it
is enabled or not. This is statically verified by the compiler, and it will report an error if necessary.

Example.

// Import the FIFO package
import FIFO :: *;

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;
method Action setReset(t a);

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface
(* synthesize,

RST_N = "reset_b",
CLK = "counter_clk",
always_ready = "readCounter",
always_enabled = "readCounter" *)

module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

// The 4 depth valueFifo contains a list of reset values
FIFO#(CounterType) valueFifo <- mkSizedFIFO(4);

/* Next rule increases the counter with each counter_clk rising edge
if the maximum has not been reached */

(* no_implicit_conditions *)
rule updateCounter;
action
if (counter != ’1)
counter <= counter + 1;

endaction
endrule

// Next rule resets the counter to a value stored in the valueFifo
(* no_implicit_conditions *)

c© 2005 Bluespec, Inc. All rights reserved 87



Reference Guide Bluespec SystemVerilog v3.8

rule resetCounter (counter == ’1);
action
counter <= valueFifo.first();
valueFifo.deq();

endaction
endrule

// Output the counters value
method CounterType readCounter;
return counter;

endmethod

// Update the valueFifo
method Action setReset(CounterType a);
action
valueFifo.enq(a);

endaction
endmethod

endmodule

Assertion no_implicit_conditions will not be met for the rule resetCounter resulting in a com-
pilation error. This rule has the implicit condition in the FIFO module due to the fact that the deq
method cannot be invoked if the fifo valueFifo is empty. Please note that without the assertion
no error will be produced and that the condition if (counter != ’1) is not considered an implicit
one.

13.3.3 Scheduling attribute descending_urgency

The compiler maps rules into clocks, as described in Section 6.2.2. In each clock, amongst all the
rules enabled in that clock, the system picks a subset of rules that do not conflict with each other,
so that their parallel execution is consistent with the reference TRS semantics. The order in which
rules are considered for selection can affect the subset chosen. For example, suppose rules r1 and
r2 conflict, and both are enabled. If r1 is considered first and selected, it may disqualify r2 from
consideration, and vice versa. Note that the urgency ordering is independent of the TRS ordering
of the rules, i.e., the TRS ordering may be r1-before-r2, but either one could be considered first by
the compiler.

The designer can specify that one rule is more urgent than another, so that it is always considered
for scheduling before the other. The relationship is transitive, i.e., if rule r1 is more urgent than rule
r2, and rule r2 is more urgent than rule r3, then r1 is considered more urgent than r3.

Urgency is specified with the descending_urgency attribute. Its argument is a string containing a
comma-separated list of rule names (see Section 5.6 for rule syntax, including rule names). Example:

(* descending_urgency = "r1, r2, r3" *)

This example specifies that r1 is more urgent than r2 which, in turn, is more urgent than r3.

If urgency attributes are contradictory, i.e., they specify both that one rule is more urgent than
another and its converse, the compiler will report an error. Note that such a contradiction may
be a consequence of a collection of urgency attributes, because of transitivity. One attribute may
specify r1 more urgent than r2, another attribute may specify r2 more urgent than r3, and another
attribute may specify r3 more urgent than r1, leading to a cycle, which is a contradiction.

The descending_urgency attribute can be placed in any of three syntactic positions:
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• It can be placed just before the rules keyword in a rules-endrules expression (Section 9.13),
in which case it can refer directly to any of the rules in the expression.

• It can be placed just before the rule keyword in a rule-endrule construct, (Section 5.6) in
which case it can refer directly to the rule or any other rules at the same level.

• It can be placed just before the module keyword in a module-endmodule construct (Section
5.3), in which case it can refer directly to any of the rules inside the module.

In addition, an urgency attribute can refer to any rule in the module hierarchy at or below the
current module, using a hierarchical name. For example, suppose we have:

module mkFoo ...;

mkBar the_bar (barInterface);

(* descending_urgency = "r1, the_bar.r2" *)
rule r1 ...

...
endrule

endmodule: mkFoo

The hierarchical name the_bar.r2 refers to a rule named r2 inside the module instance the_bar.
This can be several levels deep, i.e., the scheduling attribute can refer to a rule deep in the module
hierarchy, not just the sub-module immediately below. In general a hierarchical rule name is a
sequence of module instance names and finally a rule name, separated by periods.

A reference to a rule in a sub-module cannot cross synthesis boundaries. This is because synthesis
boundaries are also scheduler boundaries. Each separately synthesized part of the module hierarchy
contains its own scheduler, and cannot directly affect other schedulers. Urgency can only apply to
rules considered within the same scheduler.

If rule urgency is not specified, and it impacts the choice of schedule, the compiler will print a
notification to this effect during compilation.

Example. Using descending_urgency to control the scheduling of conflicting rules.

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface. It never contains 0.
(* synthesize,

RST_N = "reset_b",
CLK = "counter_clk",
always_ready = "readCounter",
always_enabled= "readCounter" *)

module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
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Reg#(CounterType) counter <- mkRegA(1);

/* The descending_urgency attribute will indicate the scheduling
order for the indicated rules. */

(* descending_urgency = "resetCounter, updateCounter" *)

// Next rule resets the counter to 1 when it reaches its limit.
rule resetCounter (counter == ’1);
action
counter <= 1;

endaction
endrule

// Next rule updates the counter.
rule updateCounter;
action
counter <= counter + 1;

endaction
endrule

// Method to output the counter’s value
method CounterType readCounter;
return counter;

endmethod

endmodule

Rule resetCounter conflicts with rule updateCounter because both try to modify the counter
register when it contains all its bits set to one. Without any descending_urgency attribute, the
updateCounter rule will obtain more urgency, meaning that if the predicate of resetCounter is met,
only the rule updateCounter will fire. By setting the descending_urgency attribute the designer
can control the scheduling in the case of conflicting rules.

13.3.4 Scheduling attribute preempts

The designer can also prevent a rule from firing whenever another rule (or set of rules) fires. The
preempts attribute accepts two elements as arguments. Each element may be either a rule name or
a list of rule names. A list of rule names must be separated by commas and enclosed in parentheses.
In each cycle, if any of the rule names specified in the first element can be executed and are scheduled
to fire, then none of the rules specified in the second element will be allowed to fire.

The preempts attribute is similar to the descending_urgency attribute (section 13.3.3), and may
occur in the same syntactic positions. The preempts attribute is equivalent to forcing a conflict and
adding descending_urgency. With descending_urgency, if two rules do not conflict, then both
would be allowed to fire even if an urgency order had been specified; with preempts, if one rule
preempts the other, they can never fire together. If rule1 preempts rule2, then the compiler forces a
conflict and gives rule1 priority. If rule1 is able to fire, but is not scheduled to, then rule2 can still
fire.

Examples

(* preempts = "r1, r2" *)

If r1 will fire, r2 will not.
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(* preempts = "(r1, r2), r3" *)

If either r1 or r2 (or both) will fire, r3 will not.

(* preempts = "(the_bar.r1, (r2, r3)" *)

If the rule r1 in the submodule the bar will fire, then neither r2 nor r3 will fire.

13.4 Documentation attributes

A BSV design can specify comments to be included in the generated Verilog by use of the doc
attribute.

docAttribute ::= attributeInstance

where

attrSpec ::= attrName [ = expression ]

and expression is a text string.

Example:

(* doc = "This is a user-provided comment" *)

To provide a multi-line comment, either include a \n character:

(* doc = "This is one line\nAnd this is another" *)

Or provide several instances of the doc attribute:

(* doc = "This is one line" *)
(* doc = "And this is another" *)

Or:

(* doc = "This is one line",
doc = "And this is another" *)

Multiple doc attributes will appear together in the order that they are given. doc attributes can be
added to modules, module instantiations, and rules, as described in the following sections.

13.4.1 Documentation attribute - modules

The Verilog file that is generated for a synthesized BSV module contains a header comment prior to
the Verilog module definition. A designer can include additional comments between this header and
the module by attaching a doc attribute to the module being synthesized. This attribute is like the
modgenAttributes described in Section 13.1, in that it is dependent on the synthesize attribute. If
the synthesize attribute is not specified for the module, the doc attributes are ignored.

Example:

(* synthesize *)
(* doc = "This is important information about the following module" *)
module mkMod (IFC);
...

endmodule
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13.4.2 Documentation attribute - module instantiation

In generated Verilog, a designer might want to include a comment on submodule instantiations,
to document something about that submodule. This can be achieved with a doc attribute on the
corresponding BSV module. There are three ways to express instantiation in BSV syntax, and the
doc attribute can be attached to all three.

(* doc = "This submodule does something" *)
FIFO#(Bool) f();
mkFIFO the_f(f);

(* doc = "This submodule does something else" *)
Server srv <- mkServer;

Client c;
...
(* doc = "This submodule does a third thing" *)
c <- mkClient;

The syntax also works if the type of the module interface is given with let, a variable, or the current
module type. Example:

(* doc = "This submodule does something else" *)
let srv <- mkServer;

If the submodule being instantiated is a separately synthesized module or primitive, then its corre-
sponding Verilog instantiation will be preceded by the comments. Example:

// submodule the_f
// This submodule does something
wire the_f$CLR, the_f$DEQ, the_f$ENQ;
FIFO2 #(.width(1)) the_f(...);

If the submodule is not separately synthesized, then there is no place in the Verilog module to attach
the comment. Instead, the comment is included in the header at the beginning of the module.
For example, assume that the module the_sub was instantiated inside mkTop with a user-provided
comment but was not separately synthesized. The generated Verilog would include these lines:

// ...
// Comments on the inlined module ‘the_sub’:
// This is the submodule
//
module mkTop(...);

The doc attribute can be attached to submodule instantiations inside functions and for-loops.

If several submodules are inlined and their comments carry to the top-module’s header comment, all
of their comments are printed. To save space, if the comments on several modules are the same, the
comment is only displayed once. This can occur, for instance, with doc attributes on instantiations
inside for-loops. For example:

// Comments on the inlined modules ‘the_sub_1‘, ‘the_sub_2‘,
// ‘the_sub_3‘:
// ...
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If the doc attribute is attached to a register instantiation, the Verilog comment is included with the
declaration of the register signals. Example:

// register the_r
// This is a register
reg the_r;
wire the_r$D_IN, the_r$EN;

If the doc attribute is attached to an RWire instantiation, and the wire instantiation is inlined (as
is the default), then the comment is carried to the top-module’s header comment.

If the doc attribute is attached to a probe instantiation, the comment appears in the Verilog above
the declaration of the probe signals. Since the probe signals are declared as a group, the comments
are listed at the start of the group. Example:

// probes
//
// Comments for probe ‘the_r’:
// This is a probe
//
wire the_s$PROBE;
wire the_r$PROBE;
...

13.4.3 Documentation attribute - rules

In generated Verilog, a designer might want to include a comment on rule scheduling signals (such as
CAN_FIRE_ and WILL_FIRE_ signals), to say something about the actions that are performed when
that rule is scheduled. This can be achieved with a doc attribute attached to a BSV rule declaration.

The doc attribute can be attached to any rule..endrule statement. Example:

(* doc = "This rule is important" *)
rule do_something (b);

x <= !x;
endrule

If any scheduling signals for the rule are explicit in the Verilog output, their definition will be
preceeded by the comment. Example:

// rule RL_do_something
// This rule is important
assign CAN_FIRE_RL_do_something = b ;
assign WILL_FIRE_RL_do_something = CAN_FIRE_RL_do_something ;

If the signals have been inlined or otherwise optimized away and thus do not appear in the Verilog,
then there is no place to attach the comments. In that case, the comments are carried to the top
module’s header. Example:

// ...
// Comments on the inlined rule ‘RL_do_something’:
// This rule is important
//
module mkTop(...);
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The designer can ensure that the signals will exist in the Verilog by using an appropriate compiler
flag, the -keep-fires flag which is documented in the Bluespec SystemVerilog User Guide.

The doc attribute can be attached to any rule..endrule expression, such as inside a function or
inside a for-loop.

As with comments on submodules, if the comments on several rules are the same, and those comments
are carried to the top-level module header, the comment is only displayed once.

// ...
// Comments on the inlined rules ‘RL_do_something_2’, ‘RL_do_something_1’,
// ‘RL_do_something’:
// This rule is important
//
module mkTop(...);

14 Advanced topics

This section can be skipped on first reading.

14.1 Type classes (overloading groups) and provisos

Note that for most BSV programming, one just needs to know about a few predefined type classes
such as Bits and Eq, about provisos, and about the automatic mechanism for defining the overloaded
functions in those type classes using a deriving clause. The brief introduction in Sections 4.2 and
4.3 should suffice.

This section is intended for the advanced programmer who may wish to define new type classes
(using a typeclass declaration), or explicitly to define overloaded functions using an instance
declaration.

In programming languages, the term overloading refers to the use of a common function name or
operator symbol to represent some number (usually finite) of functions with distinct types. For
example, it is common to overload the operator symbol + to represent integer addition, floating
point addition, complex number addition, matrix addition, and so on.

Note that overloading is distinct from polymorphism, which is used to describe a single function
or operator that can operate at an infinity of types. For example, in many languages, a single
polymorphic function arraySize() may be used to determine the number of elements in any array,
no matter what the type of the contents of the array.

A type class (or overloading group) further recognizes that overloading is often performed with
related groups of function names or operators, giving the group of related functions and operators a
name. For example, the type class Ord contains the overloaded operators for order-comparison: <,
<=, > and >=.

If we specify the functions represented by these operator symbols for the types int, Bool, bit[m:0]
and so on, we say that those types are instances of the Ord type class.

A proviso is a (static) condition attached to some constructs. A proviso requires that certain types
involved in the construct must be instances of certain type classes. For example, a generic sort
function for sorting lists of type List#(t) will have a proviso (condition) that t must be an instance
of the Ord type class, because the generic function uses an overloaded comparison operator from
that type class, such as the operator < or >.

Type classes are created explicitly using a typeclass declaration (Section 14.1.2). Further, a type
class is explicitly populated with a new instance type t, using an instance declaration (Section
14.1.3), in which the programmer provides the specifications for the overloaded functions for the
type t.

94 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

14.1.1 Provisos

Consider the following function prototype:

function List#(t) sort (List#(t) xs)
provisos (Ord#(t));

This prototype expresses the idea that the sorting function takes an input list xs of items of type
t (presumably unsorted), and produces an output list of type t (presumably sorted). In order to
perform its function it needs to compare elements of the list against each other using an overloaded
comparison operator such as <. This, in turn, requires that the overloaded operator be defined on
objects of type t. This is exactly what is expressed in the proviso, i.e., that t must be an instance
of the type class (overloading group) Ord, which contains the overloaded operator <.

Thus, it is permissible to apply sort to lists of Integers or lists of Bools, because those types are
instances of Ord, but it is not permissible to apply sort to a list of, say, some interface type Ifc
(assuming Ifc is not an instance of the Ord type class).

The syntax of provisos is the following:

provisos ::= provisos ( proviso { , proviso } )

proviso ::= Identifier #(type { , type } )

In each proviso, the Identifier is the name of type class (overloading group). In most provisos, the
type class name T is followed by a single type t, and can be read as a simple assertion that t is an
instance of T , i.e., that the overloaded functions of type class T are defined for the type t. In some
provisos the type class name T may be followed by more than one type t1, ..., tn and these express
more general relationships. For example, a proviso like this:

provisos (Bits#(macAddress, 48))

can be read literally as saying that the types macAddress and 48 are in the Bits type class, or
can be read more generally as saying that values of type macAddress can be converted to and from
values of the type bit[47:0] using the pack and unpack overloaded functions of type class Bits.

We sometimes also refer to provisos as contexts, meaning that they constrain the types that may be
used within the construct to which the provisos are attached.

Occasionally, if the context is too weak, the compiler may be unable to figure out how to resolve an
overloading. Usually the compiler’s error message will be a strong hint about what information is
missing. In these situations it may be necessary for the programmer to guide the compiler by adding
more type information to the program, in either or both of the following ways:

• Add a static type assertion (Section 9.10) to some expression that narrows down its type.

• Add a proviso to the surrounding construct.

14.1.2 Type class declarations

A new class is declared using the following syntax:

typeclassDef ::= typeclass typeclassIde typeFormals [ provisos ]
[ typedepends ] ;

{ overloadedDef }
endtypeclass [ : typeclassIde ]

typeclassIde ::= Identifier
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typeFormals ::= # ( typeFormal { , typeFormal })

typeFormal ::= [ numeric ] type typeIde

typedepends ::= dependencies ( typedepend { , typedepend } )

typedepend ::= type determines type

overloadedDef ::= functionProto
| varDecl

The typeclassIde is the newly declared class name. The typeFormals represent the types that will be
instances of this class. These typeFormals may themselves be constrained by provisos, in which case
the classes named in provisos are called the“super type classes”of this type class. Type dependencies
(typedepends) are relevant only if there are two or more type parameters; the typedepends comes after
the typeclass’s provisos (if any) and before the semicolon. The overloadedDef s declare the overloaded
variables or function names, and their types.

Example (from the Standard Prelude package):

typeclass Literal#(type a);
function a fromInteger (Integer x);

endtypeclass: Literal

This defines the type class Literal. Any type a that is an instance of Literal must have an
overloaded function called fromInteger that converts an Integer value into the type a. In fact,
this is the mechanism that BSV uses to interpret integer literal constants, e.g., to resolve whether a
literal like 6847 is to be interpreted as a signed integer, an unsigned integer, a floating point number,
a bit value of 10 bits, a bit value of 8 bits, etc. (See Section 2.3.1 for a more detailed description.)

Example (from a predefined type class in BSV):

typeclass Bounded#(type a);
a minBound;
a maxBound;

endtypeclass

This defines the type class Bounded. Any type a that is an instance of Bounded will have two values
called minBound and maxBound that, respectively, represent the minimum and maximum of all values
of this type.

Example (from a predefined type class in BSV):7

typeclass Arith#(type a) provisos (Literal#(a));
function a \+ (a x1, a x2);
function a \- (a x1, a x2);
function a negate (a x1); // available as prefix "-"
function a \* (a x1, a x2);

endtypeclass

This defines the type class Arith with super type class Literal, i.e., the proviso states that in
order for a type a to be an instance of Arith it must also be an instance of the type class Literal.
Further, it has four overloaded functions with the given names and types. Said another way, a type
that is an instance of the Arith type class must have a way to convert integer literals into that type,
and it must have addition, subtraction, negation and multiplication defined on it.

7 We are using Verilog’s notation for escaped identifiers to treat operator symbols as ordinary identifiers. The
notation allows an identifier to be constructed from arbitrary characters beginning with a backslash and ending with
a whitespace (the backslash and whitespace are not part of the identifier.)
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The semantics of a dependency says that once the types on the left of the colon are fixed, the types
on the right are also uniquely determined. For example, for any type t we know that Get#(t)
and Put#(t) are connectable (because there’s an instance delcaration in the GetPut package that
says so); then the dependency specification above syas that if you know that a is Get#(t), the only
possibility for b is Put#(t).

An example of a typeclass definition specifying type dependencies:

typeclass Connectable #(type a, type b)
dependencies (a determines b, b determines a);

module mkConnections#(a x1, b x2) (Empty);
endtypeclass

An example of a case where the dependencies are not commutative:

typeclass Bita#(type a, type sa)
dependencies (a determines sa);

function Bit#(sa) pack(a x);
function a unpack (Bit#(sa) x);

endtypeclass

In the above example, if a were UInt#(16) the dependency would requrie that b had to be 16; but
that fact that something occupies 16 bits by no means implies that it has to be a UInt.

14.1.3 Instance declarations

A type can be declared to be an instance of a class in two ways, with a general mechanism or with
a convenient shorthand. The general mechanism of instance declarations is the following:

typeclassInstanceDef ::= instance typeclassIde # ( type { , type } ) [ provisos ] ;
{ varAssign ; | functionDef | BSVmoduleHead }

endinstance [ : typeclassIde ]

This says that the types are an instance of type class typeclassIde with the given provisos. The varAs-
signs, functionDef s and BSVmoduleHeads specify the implementation of the overloaded identifiers
of the type class.

Example, declaring a type as an instance of the Eq typeclass:

typedef enum { Red, Blue, Green } Color;

instance Eq#(Color);
function Bool \== (Color x, Color y); //must use \== with a trailing
return True; //space to define custom instances

endfunction //of the Eq typeclass
endinstance

The shorthand mechanism is to attach a deriving clause to a typedef of an enum, struct or tagged
union and let the compiler do the work. In this case the compiler chooses the “obvious” implementa-
tion of the overloaded functions (details in the following sections). The only type classes for which
deriving can be used for general types are Bits, Eq and Bounded. Furthermore, deriving can be
used for any class if the type is a data type that is isomorphic to a type that has an instance for the
derived class.

derives ::= deriving ( typeclassIde { , typeclassIde } )

Example:

typedef enum { Red, Blue, Green } Color deriving (Eq);
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14.1.4 The Bits type class (overloading group)

The type class Bits contains the types that are convertible to bit strings of a certain size. Many
constructs have membership in the Bits class as a proviso, such as putting a value into a register,
array, or FIFO.

Example. The Bits type class definition (which is actually predefined in BSV) looks something like
this:

typeclass Bits#(type a, type n);
function Bit#(n) pack (a x);
function a unpack (Bit#(n) y);

endtypeclass

Here, a represents the type that can be converted to/from bits, and n is always instantiated by a
size type (Section 4) representing the number of bits needed to represent it. Implementations of
modules such as registers and FIFOs use these functions to convert between values of other types
and the bit representations that are really stored in those elements.

Example. The most trivial instance declaration states that a bit-vector can be converted to a bit
vector, by defining both the pack and unpack functions to be identity functions:

instance Bits#(Bit#(k), k);
function Bit#(k) pack (Bit#(k) x);

return x;
endfunction: pack

function Bit#(k) unpack (Bit#(k) x);
return x;

endfunction: unpack
endinstance

Example:

typedef enum { Red, Green, Blue } Color deriving (Eq);

instance Bits#(Color, 2);
function Bits#(2) pack (Color c);

if (c == Red) return 3;
else if (c == Green) return 2;
else return 1; // (c == Blue)

endfunction: pack

function Color unpack (Bits#(2) x);
if (x == 3) return Red;
else if (x == 2) return Green;
else if (x == 1) return Blue;
else $error("Illegal code 0 for unpacking a Color’’);

endfunction: unpack
endinstance

Note that the deriving (Eq) phrase permits us to use the equality operator == on Color types
in the pack function. Red, Green and Blue are coded as 3, 2 and 1, respectively. If we had used
the deriving(Bits) shorthand in the Color typedef, they would have been coded as 0, 1 and 2,
respectively (Section 14.1.6).
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14.1.5 The SizeOf pseudo-function

The pseudo-function SizeOf(t) can be applied to a type t to get the numeric type representing its
bit size. The type t must be in the Bits class, i.e., it must already be an instance of Bits#(t,n),
either through a deriving clause or through an explicit instance declaration. The SizeOf function
then returns the corresponding bit size n. Note that SizeOf returns a numeric type, not a numeric
value, i.e., the output of SizeOf can be used in a type expression, and not in a value expression.

SizeOf, which converts a type to a (numeric) type, should not be confused with the pseudo-function
valueof, described in Section 4.2.1, which converts a numeric type to a numeric value.

14.1.6 Deriving Bits

When attaching a deriving(Bits) clause to a user-defined type, the instance derived for the Bits
type class can be described as follows:

• For an enum type it is simply an integer code, starting with zero for the first enum constant
and incrementing by one for each subsequent enum constant. The number of bits used is the
minimum number of bits needed to represent distinct codes for all the enum constants.

• For a struct type it is simply the concatenation of the bits for all the members. The first
member is in the leftmost bits (most significant) and the last member is in the rightmost bits
(least significant).

• For a tagged union type, all values of the type occupy the same number of bits, regardless of
which member it belongs to. The bit representation consists of two parts—a tag on the left
(most significant) and a member value on the right (least significant).

The tag part uses the minimum number of bits needed to code for all the member names. The
first member name is given code zero, the next member name is given code one, and so on.

The size of the member value part is always the size of the largest member. The member value
is stored in this field, right-justified (i.e., flush with the least-significant end). If the member
value requires fewer bits than the size of the field, the intermediate bits are don’t-care bits.

Example. Symbolic names for colors:

typedef enum { Red, Green, Blue } Color deriving (Eq, Bits);

This is the same type as in Section 14.1.4 except that Red, Green and Blue are now coded as 0, 1
and 2, instead of 3, 2, and 1, respectively, because the canonical choice made by the compiler is to
code consecutive labels incrementing from 0.

Example. The boolean type can be defined in the language itself:

typedef enum { False, True} Bool deriving (Bits);

The type Bool is represented with one bit. False is represented by 0 and True by 1.

Example. A struct type:

typedef struct { Bit#(8) foo; Bit#(16) bar } Glurph deriving (Bits);

The type Glurph is represented in 24 bits, with foo in the upper 8 bits and bar in the lower 16 bits.

Example. Another struct type:
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typedef struct{ int x; int y } Coord deriving (Bits);

The type Coord is represented in 64 bits, with x in the upper 32 bits and y in the lower 32 bits.

Example. The Maybe type from Section 7.3:

typedef union tagged {
void Invalid;
a Valid;

} Maybe#(type a)
deriving (Bits);

is represented in 1 + n bits, where n bits are needed to represent values of type a. If the leftmost
bit is 0 (for Invalid) the remaining n bits are unspecified (don’t-care). If the leftmost bit is 1 (for
Valid) then the remaining n bits will contain a value of type a.

14.1.7 Deriving Eq

The Eq type class contains the overloaded operators == (logical equality) and != (logical inequality):

typeclass Eq#(type a);
function Bool \== (a x1, a x2);
function Bool \!= (a x1, a x2);

endtypeclass: Eq

When deriving(Eq) is present on a a user-defined type definition t, the compiler defines these
equality/inequality operators for values of type t. It is the natural recursive definition of these
operators, i.e.,

• If t is an enum type, two values of type t are equal if they represent the same enum constant.

• If t is a struct type, two values of type t are equal if the corresponding members are pairwise
equal.

• If t is a tagged union type, two values of type t are equal if they have the same tag (member
name) and the two corresponding member values are equal.

14.1.8 Deriving Bounded

The predefined type class Bounded contains two overloaded identifiers minBound and maxBound rep-
resenting the minimum and maximum values of a type a:

typeclass Bounded#(type a);
a minBound;
a maxBound;

endtypeclass

The clause deriving(Bounded) can be attached to any user-defined enum definition t, and the
compiler will define the values minBound and maxBound for values of type t as the first and last enum
constants, respectively.

The clause deriving(Bounded) can be attached to any user-defined struct definition t with the
proviso that the type of each member is also an instance of Bounded. The compiler-defined minBound
(or maxBound) will be the struct with each member having its respective minBound (respectively,
maxBound).
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14.1.9 Deriving type class instances for isomorphic types

Generally speaking, the deriving(...) clause can only be used for the predefined type classes Bits,
Eq and Bounded. However there is a special case where it can be used for any type class. When a
user-defined type t is isomorphic to an existing type t′, then all the functions on t′ automatically
work on t, and so the compiler can trivially derive a function for t by just using the corresponding
function for t′.

There are two situations where a newly defined type is isomorphic to an old type: a struct or tagged
union with precisely one member. For example:

typedef struct { t′ x; } t deriving (anyClass);
typedef union tagged { t′ X; } t deriving (anyClass);

One sometimes defines such a type precisely for type-safety reasons because the new type is distinct
from the old type although isomorphic to it, so that it is impossible to accidentally use a t value in
a t′ context and vice versa. Example:

typedef struct { UInt#(32) x; } Apples deriving (Literal, Arith);
...
Apples five;
...
five = 5; // ok, since RHS applies ’fromInteger()’ from Literal

// class to Integer 5 to create an Apples value

function Apples eatApple (Apples n);
return n - 1; // ’1’ is converted to Apples by fromInteger()

// ’-’ is available on Apples from Arith class
endfunction: eatApple

The typedef could also have been written with a singleton tagged union instead of a singleton struct:

typedef union tagged { UInt#(32) X; } Apples deriving (Literal, Arith);

14.2 Higher-order functions

In BSV it is possible to write an expression whose value is a function value. These function values
can be passed as arguments to other functions, returned as results from functions, and even carried
in data structures. Example:

function Arr#(n,b) mapArr (function b f (a x),
Arr#(n,a) xs);

Arr#(n,b) ys;

for (Bit#(n) j = 0; j < n; j=j+1)
ys [j] = f (xs [j]);

return ys;
endfunction: mapArr

function int sqr (int x);
return x * x;
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endfunction: sqr

Arr#(100,int) as = ...; // initialize array as

Arr#(100,int) bs = mapArr (sqr, as);

The function mapArr is polymorphic, i.e., is defined for any size type n and value types a and b. It
takes two arguments:

• A function f with input of type a and output of type b.

• An array xs of size n containing values of type a.

Its result is a new array ys that is also of size n and containing values of type b, such that
ys[j]=f(xs[j]). In the last line of the example, we call mapArr passing it the sqr function and the
array as to produce an array bs that contains the squared versions of all the elements of array as.

Observe that in the last line, the expression sqr is a function-valued expression, representing the
squaring function. It is not an invocation of the sqr function. Similarly, inside mapArr, the identifier
f is a function-valued identifier, and the expression f (xs [j]) invokes the function.

The function mapArr could be called with a variety of arguments:

// shift all elements of as left by 2
Arr#(100,int) bs = mapArr (shiftLeft2, as);

or

// test all elements of as for even-ness
Arr#(100,Bool) bs = mapArr (isEven, as);

In other words, mapArr captures, in one definition, the generic idea of applying some function to
all elements of an array and returning all the results in another array. This is a very powerful idea
enabled by treating functions as first-class values. Here is another example, which may be useful in
many hardware designs:

interface SearchableFIFO#(type a);
... usual enq() and deq() methods ...

method Bool search (a y);

endinterface: SearchableFIFO

module mkSearchableFIFO#(function Bool f(a x, a y))
(SearchableFIFO#(a));

...
method search (a y);

... apply f(x, y) to each element of the FIFO, ...

... return OR of all results ...
endmethod: search

endmodule: mkSearchableFIFO
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The SearchableFIFO interface is like a normal FIFO interface (contains usual enq() and deq()
methods), but it has an additional bit of functionality. It has a search() method to which you can
pass a search key y, and it searches the FIFO using that key, returning True if the search succeeds.

Inside the mkSearchableFIFO module, the method applies some element test f to the search key and
each element of the FIFO and ORs all the results. The particular element-test function f to be used is
passed in as a parameter to mkSearchableFIFO. In one instantiation of mkSearchableFIFO we might
pass in the equality function for this parameter (“search this FIFO for this particular element”). In
another instantiation of mkSearchableFIFO we might pass in the “greater-than” function (“search
this FIFO for any element greater than the search key”). Thus, a single FIFO definition captures
the general idea of being able to search a FIFO, and can be customized for different applications by
passing in different search functions to the module constructor.

A final important point is that all this is perfectly synthesizable in BSV, i.e., the compiler can produce
RTL hardware for such descriptions.

14.3 Calling foreign functions

This section describes how to encapsulate a Verilog function inside a BSV wrapper.

TBD: This section needs to be updated.

15 Interfacing to Verilog

This section describes two related mechanisms:

• How to embed a Verilog module in a BSV module, i.e., how to encapsulate a Verilog module
inside a BSV shim. This is the method to utilize existing Verilog components, or Verilog
components generated by other tools or how to define a custom set of primitives to be used
in multiple designs. One example is the BSV primitives (registers, FIFOs, etc.) which are
implemented this way.

• How to embed a BSV module in a Verilog module, i.e., how a surrounding Verilog module can
use a BSV module as a client.

15.1 Embedding Verilog in a BSV design

This is used when there are existing Verilog components which the designer would like to include in
a BSV module.

externModuleImport ::= import ”BVI” [ identifier ] = BSVmoduleHead
{ moduleStmt }
{ importBVIStmt }

endmodule [ : identifier ]

The body consists of a sequence of importBVIStmts:

importBVIStmt ::= parameter ...
| port ...
| default_clock ...
| input_clock ...
| output_clock ...
| no_reset ...
| default_reset ...
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| input_reset ...
| ouput_reset ...
| ancestor ...
| same_family ...
| method ...
| schedule ...
| path ...

A general example of embedding Verilog in BSV follows; the meaning of each line is explained in
the following sections. This example is unusually complex in order to show many statements.

import "BVI" VerilogModule =
module mkModule#(Integer start) (Clock sClkIn, Reset sRstIn,

Clock dClkIn, Bool oscillator,
SyncBitIfc#(a_type) ifc )
provisos( Bits#(a_type, awidth)) ;

default_clock clk_(CLK200);
input_clock dstclk(CLK400) = dCLKIn;
method D_OUT bsv_name(D_IN) enable(EN) ready(RDY) clocked_by(dstclk);
parameter VPARAM = valueOf(awidth);
port VPORT = oscillator;
schedule (first_, notEmpty_, notFull_) CF (first_, notEmpty_, notFull_);
schedule first_ SB (clear_, deq_);
path (ENQ, D_OUT);

endmodule: mkModule

15.1.1 Header

The header takes the form

externModuleImport ::= import ”BVI” [ identifier = ] BSVmoduleHead

BSVmoduleHead ::= module identifier
[ moduleFormalParams ] ( [ moduleFormalArgs ] ) [ provisos ];

The identifier is the name of the Verilog module to be imported. This will usually be found in a file
called identifier.v, normally in the home directory or the Verilog sub-directory of the BSV system
directory. If the identifier is excluded, it is assumed that the Verilog module name is the same as
the BSV name of the module.

The BSVmoduleHead is the usual first line in the module definition as explained in 5.3.

The BSV module may be of any module type. Note that the BSV module’s parameters have no
inherent relationship to the Verilog module’s parameters.

Example:

import "BVI" SyncBit15 =
module SyncBit15 #(Integer start)

(Clock sClkIn, Reset sRstIn, Clock dClkIn,
SyncBitIfc#(a_type) ifc )

provisos( Bits#(a_type, awidth)) ;

Since the Verilog module’s name matches the BSV name, the header could be also written as:
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import "BVI"
module SyncBit15 #(Integer start)

(Clock sClkIn, Reset sRstIn, Clock dClkIn,
SyncBitIfc#(a_type) ifc )

provisos( Bits#(a_type, awidth)) ;

15.1.2 Body

The module body may contain both moduleStmts and importBVIStmts. Typically, when including
a Verilog module, the only module statements would be a few local definitions. However, all module
statements, except for method and sub-interface definitions and return statements are valid, though
most are rarely used in this instance. Only the statements specific to importBVIStmt bodies are
described below.

The importBVIStmts must occur at the end of the body, after the moduleStmts. They may be
written in any order. If any contain expressions with side effects, these side effects will occur in the
order given.

15.1.3 parameter

The form is

parameter name = expression ;

The value of the expression is supplied to the Verilog module as the parameter named name. The
expression must be a compile-time constant. If the compiler cannot infer its type, it will default
to Integer, but the value will later be converted to Bit#(32). Note that the String type is also
supported.

Example:

import "BVI" ClockGen =
module vAbsoluteClock#(Integer start,

Integer period) ( ClockGenIfc );
let halfPeriod = div( period, 2) ;

parameter initDelay = start; //the parameters start,
parameter v1Width = halfPeriod ; //halfPeriod and period
parameter v2Width = period - halfPeriod ; //must be compile-time constants

endmodule

15.1.4 port

The form is

port name = expression ;

The value of the expression is supplied to the Verilog port named name. The operator <- may be
used as an alternative to =, where appropriate. The type of the expression must be in the Bits
typeclass. It may even be dynamic (e.g. the _read method of a register instantiated elsewhere in
the module body). If the width of the value is not the same as that of the port, the normal Verilog
linking convention will be followed; the value will be truncated or zero-extended to fit.

Example:
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import "BVI" MakeClock =
module vClock( Bit#(1) oscillator, Bool gate, ClockGenIfc ifc);

default_clock no_clock ;
no_reset;
port OSSC_IN = oscillator;
port GATE_IN = gate;
output_clock gen_clk(CLK, CLKGATE);

endmodule

15.1.5 clock statements

The following sections describe statements which define the clock signals in the module. A clock
consists of two signals, or ports. The first is an oscillator (clock) and the second is a gating signal
(gate). In general these are implemented as two wires. In many statements, the second port may
be optional. If there is only one port specified, it is the oscillator.

This example shows an importBVI statement defining clocks.

import "BVI" ClockSelect = module vClockSelect( Integer stages,
Clock aClk, Clock bClk,
SelectClkIfc ifcout ) ;

default_clock xclk(CLK) ;
default_reset xrst(RST_N) ;

input_clock aClk(A_CLK, A_CLKGATE) = aClk ;
input_clock bClk(B_CLK, B_CLKGATE) = bClk ;

// Generate the clock output interface
output_clock clock_out( OUT_CLK, OUT_CLKGATE) ;

output_reset reset_out( OUT_RST_N ) clocked_by(clock_out);

endmodule

15.1.6 default_clock

Each module has a default clock, which is the clock signal which will be passed to any interior
instantiations of the module, unless another clock is explicitly specified. Each clock consists of two
ports, the oscillator and the gate. If there is only one port specified, it is the oscillator.

The form is

default_clock name ( portname, portname ) = expression ;

This is precisely equivalent to

default_clock name ;

input_clock name ( portname, portname ) = expression ;

The name of the default_clock specifies the clock which is to be associated with any method which
is not given an explicit clocked_by statement.

The defining operator = or <- may be used. <- indicates that the expression is a procedure with
side effects, that must be evaluated to produce the value of the clock.
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If either the parentheses and their contents or the = expression is omitted (but not both), a default
value is used instead. In this case the name also may be omitted. (If everything except the name
is omitted, no default values are supplied, and there is no implicit input_clock definition as in the
equivalent form given above. It is an error to omit all three items—the intended effect is probably
the same as omitting the default clock statement altogether.)

The = expression in the default_clock statement defaults to <- exposeCurrentClock. The paren-
theses and their contents default to CLK, CLK_GATE.

If the name is omitted, and if the expression is an identifier and the defining operator is =, that
identifier is used as the name. Otherwise a new unique name is invented. Example

default_clock (OSC, GATE) = clk;

is equivalent to

default_clock clk (OSC, GATE) = clk;

Omitting the entire statement is equivalent to

default_clock (CLK, CLK_GATE) <- exposeCurrentClock;

specifying that the current clock is to be associated with all methods which do not specify otherwise.

There is one exceptional case: the statement

default_clock no_clock;

is valid, and one may assume that the clock no_clock is implicitly defined.

Example:

import "BVI" GatedClock =
module vGatedClock2( Clock clk_in, Bool gate, ClockGenIfc ifc );

default_clock clk_in(CLK, CLK_GATE) = clk_in;
no_reset;
port COND = gate ;
output_clock gen_clk(CLK_OUT, CLK_GATE_OUT);
ancestor(gen_clk, clk_in);

endmodule

15.1.7 input_clock

The input clock is defined as

input_clock name ( portname, portname ) = expression ;

where the = may be replaced by <-. The form specifies that the clock given by expression is to be
connected to the two Verilog ports specified in the parentheses (the first being the oscillator and
the second the gate). The name may be used to associate the clock with methods using it in a
clocked_by argument.

The = expression may not be omitted.

Either or both of the portnames may be omitted, indicating that the wire concerned is not connected
to any Verilog port. It is the designer’s responsibility to ensure that this does not lead to incorrect
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behavior. For example, if the Verilog module is purely combinational, there is no requirement to
connect a clock, though there may still be a need to associate its methods with a clock, to ensure
that they are in the correct clock domain. Similarly, if a Verilog module has no internal transitions
and responds only to method calls, it might be unnecessary to connect the gating signal, as the
implicit condition mechanism will ensure that no method is invoked if its clock is off. Note that if
only one portname is specified it is assumed to be the clock, not the gate. If both portnames are
given, but the expression specifies a clock which is ungated, the gate port is tied to logical 1. The
parentheses themselves may not be omitted.

The name associated with the input_clock name may be omitted. In this case, if the expression is
actually an identifier and the defining operator is =, that identifier is used instead as the name (and
may be used for the clocked_by argument of methods). Otherwise, no name is associated with the
clock and, accordingly, no method may be associated with it either. It is an error if both portnames
and the name are omitted, as the clock is then unusable.

Example:

import "BVI" JoinClock =
module vJoinedClock(Clock c, ClockGenIfc ifc );

default_clock clk(CLK, CLK_GATE);
no_reset;
input_clock c(JOIN_CLK, JOIN_CLK_GATE) = c;
output_clock gen_clk(NEW_CLK, NEW_CLK_GATE);
same_family(clk, c);

ancestor(gen_clk, clk);
ancestor(gen_clk, c);

endmodule

15.1.8 output_clock

The output clock is the named instance of a clock being provided by the BSV module.

The form is

output_clock name ( portname, portname );

The second portname may be omitted, indicating that the clock being provided is ungated. It is an
error for the same name to be declared by more than one output_clock statement.

Example:

import "BVI" ClockMux =
module vClockMux( Bool ab, Clock aClk, Clock bClk, ClockGenIfc ifc ) ;

default_clock clk() ;
default_reset rst() ;

input_clock aClkX(A_CLK, A_CLKGATE) = aClk ;
input_clock bClkX(B_CLK, B_CLKGATE) = bClk ;
port SELECT = ab ;

// Generate the clock output interface
output_clock gen_clk( CLK, CLKGATE) ;

endmodule
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15.1.9 no_reset

The form is

no_reset ;

no_reset specifies that the reset signal is not connected to any port.

Example:

import "BVI" ClockGen =
module vAbsoluteClock#(Integer start,

Integer period) ( ClockGenIfc );
no_reset;

endmodule

15.1.10 default_reset

Each module has a default reset, which is the reset signal which will be passed to any interior
instantiations of the module, unless another reset signal is explicitly specified or no reset is specified.

The form is

default_reset name ( portname ) = expression ;

The name of the default_reset specifies the reset which is to be associated with any method which
is not given an explicit reset_by statement.

The defining operator = or <- may be used. <- indicates that the expression is a procedure with
side effects, that must be evaluated to produce the value of the reset.

The = expression in the default_reset statement may be omitted and defaults to <- exposeCurrentReset.

Example:

import "BVI" GatedClock =
module vGatedClock ( ClockTickIfc );

default_clock clk_in(CLK, CLK_GATE);
default_reset rst() ;

endmodule

15.1.11 input_reset

The input reset is defined as

input_reset name ( portname ) = expression ;

where the = may be replaced by <-. The form specifies that the reset given by expression is to be
connected to the Verilog port specified in the parentheses. The name may be used to associate the
reset with methods using it in a reset_by argument.

The = expression may not be omitted.

Example:

import "BVI" SyncBit =
module vSyncBit( Clock sClkIn, Reset sRstIn,

Clock dClkIn,
SyncBitIfc#(a_type) ifc )
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provisos( Bits#(a_type, awidth)) ;

default_clock clk() ;
default_reset rst() ;

parameter init = 0;

input_clock clk_src( sCLK ) = sClkIn ;
input_clock clk_dst( dCLK ) = dClkIn ;

input_reset (sRST_N)= sRstIn ;

endmodule

15.1.12 output_reset

The output reset is the named instance of a reset signal being provided by the BSV module.

The form is

output_reset name ( portname );

Example:

import "BVI" SyncResetA =
module vResetAB#(Integer stages ) ( Bool rstIn, ResetGenIfc rstOut ) ;

default_clock clk(CLK) ;
no_reset ;
port IN_RST_N = rstIn ;

output_reset gen_rst(OUT_RST_N) clocked_by(clk) ;

endmodule

15.1.13 ancestor, same family

The statement

ancestor name name;

indicates that the first named clock is an ancestor of the second named clock.

The statement

same_family name name;

indicates that they are in the same family. Note that ancestor implies same_family, which then
need not be explicitly stated.

Example:

import "BVI" JoinClock =
module vJoinedClock(Clock c, ClockGenIfc ifc );

default_clock clk(CLK, CLK_GATE);
no_reset;
input_clock c(JOIN_CLK, JOIN_CLK_GATE) = c;
output_clock gen_clk(NEW_CLK, NEW_CLK_GATE);
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same_family(clk, c);

ancestor(gen_clk, clk);
ancestor(gen_clk, c);

endmodule

15.1.14 method

The method statement is used to connect methods in a Bluespec interface to the appropriate Verilog
wires. The syntax imitates a function prototype, and is as follows:

method portname name ( portname , ..., portname )
enable (portname) ready ( portname) clocked_by (name) reset_by ( name);

The first portname is the output port for the method, and is optional; the next name is the method’s
name according to the BSV interface definition. The parenthesized list is the input port names
corresponding to the method’s arguments. There may follow up to four optional annotations (in
any order): enable (for the enable input port), ready (for the ready output port), clocked_by (to
indicate the clock of the method, otherwise the default clock will be assumed) and reset_by (for
the reset signal). If the input port list is empty, its parentheses may optionally be omitted, except
that they may not be omitted (that is, the empty list () must be shown) if any of the optional
annotations are present. The BSV types of all the method’s arguments and its result (if any) must
all be in the Bits typeclass.

Example:

import "BVI" ClockInverter =
module vClockInverter ( ClockDivider_internal ifc ) ;

default_clock clk(IN_CLK) ;
default_reset rst() = noReset ;

output_clock slowClock(CLK) ;

//the empty list () is required
method PREEDGE clockReady() clocked_by( clk ) reset_by(rst) ;

endmodule

Any of the port names may have an attribute attached to them. The allowable attributes are const,
reg, inhigh, and unused. The attributes are translated into port descriptions.

Example:

import "BVI" odd_div_duty50 =
module v_div (I_div);

method load(flopA, flopB) enable((*inhigh*)EN);
method clk_out clk_out();
method reset_out reset_out();

endmodule
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Note that only action or actionvalue methods can have an enable signal. If an enable signal has
the inhigh attribute, the method is assumed to be always enabled, and the compiler will check that
this is the case. If no output ready signal is specified, the method is assumed to be always ready
(and the Verilog code must ensure that this is the case, as the compiler cannot check).

Note that output ports may be shared across methods (and ready signals). This may be used, for
example, to give FIFO methods different scheduling annotations (so FIFOF can have CF methods
for the implicit condition tests, while having SB notFull and notEmpty methods).

15.1.15 schedule

The form is

schedule ( name, name, ...) op ( name, name, ...);

The parenthesized lists are sets of names, and the order is unimportant; the parentheses may be
omitted if there is only one name in the set. The acceptable list of operators is CF, SB, SBR, C, all
spelled like that. These operators relate two sets of methods; the specified relation is understood to
hold between each element of the first set and each element of the second set.

The meanings of the operators are

CF conflict-free

SB sequences before

SBR sequences before, with range conflict (that is, not composable in parallel)

C conflicts

It is an error to specify a scheduling annotation other than CF for methods clocked by unrelated
clocks. For such methods, CF is the default; for methods clocked by related clocks the default is C.

Example:

import "BVI" FIFO2 =
module vFIFOF2_MC ( Clock sClkIn, Reset sRstIn,

Clock dClkIn, Reset dRstIn,
Clock realClock, Reset realReset,
FIFOF_MC#(a) ifc )

provisos (Bits#(a,sa));

method enq( D_IN ) enable(ENQ) clocked_by( clk_src ) reset_by( srst ) ;
method FULL_N notFull clocked_by( clk_src ) reset_by( srst ) ;
method FULL_N i_notFull clocked_by( clk_src ) reset_by( srst ) ;

method deq() enable(DEQ) clocked_by( clk_dst ) reset_by( drst ) ;
method D_OUT first clocked_by( clk_dst ) reset_by( drst ) ;
method EMPTY_N notEmpty clocked_by( clk_dst ) reset_by( drst ) ;
method EMPTY_N i_notEmpty clocked_by( clk_dst ) reset_by( drst ) ;

schedule (enq, notFull, i_notFull) CF (deq, first, notEmpty, i_notEmpty ) ;

schedule deq CF (i_notEmpty) ;
schedule enq CF (i_notFull) ;
schedule (first, notEmpty) CF

(first, i_notEmpty, notEmpty) ;
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schedule first SB deq ;
schedule (notEmpty) SB (deq) ;
schedule (notFull) SB (enq) ;

endmodule

15.1.16 path

The form is

path portname portname ;

and indicates that there is a combinational path from the first port to the second port. It is an error
to specify a path between ports that are connected to methods clocked by unrelated clocks. This
would be, by definition, an unsafe clock domain crossing. Note that the compiler assumes that there
will be a path between a value or actionvalue method’s input parameters and its result, so this need
not be explicitly specified.

Example:

import "BVI" EnabletoReady =
module mkEn2Rdy3v (En2Rdy3Interv);

method start() enable(En_start);
method Rdy_start rdy_start();
method Result result();
method Rdy_result rdy_result();
path (En_start, Rdy_start);

endmodule
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A Keywords

In general, keywords do not use uppercase letters (the only exception is the keyword valueOf). The
following are the keywords in BSV (and so they cannot be used as identifiers).

Action
ActionValue
action endaction
actionvalue endactionvalue
ancestor
begin
bit
case endcase
clocked_by
default
default_clock
default_reset
dependencies
deriving
determines
else
end
enum
export
for
function endfunction
if
import
input_clock
input_reset
instance endinstance
interface endinterface
let
match
matches
method endmethod
module endmodule
no_reset
numeric
ouput_reset
output_clock
package endpackage
parameter
path
port
provisos
reset_by
return
rule endrule
rules endrules
same_family
schedule
struct
tagged
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type
typeclass endtypeclass
typedef
union
valueof
void
while
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The following are keywords in SystemVerilog (which includes all the keywords in Verilog). Although
most of them are not used in BSV, for compatibility reasons they are not allowed as identifiers in
BSV either.

alias

always

always_comb

always_ff

always_latch

and

assert

assert_strobe

assign

assume

automatic

before

begin end

bind

bins

binsof

bit

break

buf

bufif0

bufif1

byte

case endcase

casex

casez

cell

chandle

class endclass

clocking endclocking

cmos

config endconfig

const

constraint

context

continue

cover

covergroup endgroup

coverpoint

cross

deassign

default

defparam

design

disable

dist

do

edge

else

enum

event

expect

export

extends

extern

final

first_match

for

force

foreach

forever

fork

forkjoin

function endfunction

generate endgenerate

genvar

highz0

highz1

if

iff

ifnone

ignore_bins

illegal_bins

import

incdir

include

initial

inout

input

inside

instance

int

integer

interface endinterface

intersect

join

join_any

join_none

large

liblist

library

local

localparam

logic

longint

macromodule

matches

medium

modport

module endmodule

nand

negedge

new

nmos

nor

noshowcancelled

not

notif0

notif1

null

or

output

package endpackage

packed

parameter

pmos

posedge

primitive endprimitive

priority

program endprogram

property endproperty

protected

pull0

pull1

pulldown

pullup

pulsestyle_onevent

pulsestyle_ondetect

pure

rand

randc

randcase

randsequence

rcmos

real

realtime

ref

reg

release

repeat

return

rnmos

rpmos

rtran

rtranif0

rtranif1

scalared

sequence endsequence

shortint

shortreal

showcancelled
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signed

small

solve

specify endspecify

specparam

static

string

strong0

strong1

struct

super

supply0

supply1

table endtable

tagged

task endtask

this

throughout

time

timeprecision

timeunit

tran

tranif0

tranif1

tri

tri0

tri1

triand

trior

trireg

type

typedef

union

unique

unsigned

use

var

vectored

virtual

void

wait

wait_order

wand

weak0

weak1

while

wildcard

wire

with

within

wor

xnor

xor
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B The Standard Prelude package

This sections describes the type classes, data types, interfaces and functions which are provided by
the Standard Prelude package, and therefore always available to the programmer.

The Standard Prelude package is automatically included in all packages, i.e., the programmer does
not need to take any special action to use any of the features described here. Please see also Section
C for a number of useful libraries that must be explicitly imported into a package in order to use
them.

B.1 Type classes

A type class groups related functions and operators and allows for instances across the various
datatypes which are members of the typeclass. Hence the function names within a type class are
overloaded across the various type class members.

A typeclass declaration creates a type class. An instance declaration defines a datatype as
belonging to a type class. A datatype may belong to zero or many type classes. A brief introduction
to types and type classes can be found in Section 4, with a more detailed explaination of type classes
in Section 14.1.

The Prelude package declares the following type classes:

Prelude Type Classes
Bits Types that can be converted to bit vectors and back.
Eq Types on which equality is defined.
Literal Types which can be created from integer literals.
Arith Types on which arithmetic operations are defined.
Ord Types on which comparison operations are defined.
Bounded Types with a finite range.
Bitwise Types on which bitwise operations are defined.
BitReduction Types on which bitwise operations on a single operand to produce

a single bit result are defined.
BitExtend Types on which extend operations are defined.

B.1.1 Bits

Bits defines the class of types that can be converted to bit vectors and back. Membership in this
class is required for a data type to be stored in a state, such as a Register or a FIFO, or to be used
at a synthesized module boundary. Often instance of this class can be automatically derived using
the deriving statement (Section 4.3).

typeclass Bits #(type a, numeric type n)
function Bit#(n) pack(a x);
function a unpack(Bit#(n) x);

endtypeclass

Note: the numeric keyword is not required

The functions pack and unpack are provided to convert elements to Bit#() and to convert Bit#()
elements to another datatype.
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Bits Functions
pack Converts element a of datatype data_t to a element of datatype

Bit#() of size_a.

function Bit#(size_a) pack(data_t a);

unpack Converts an element a of datatype Bit#() and size_a into an
element with of element type data_t.

function data_t unpack(Bit#(size_a) a);

B.1.2 Eq

Eq defines the class of types whose values can be compared for equality. Instances of the Eq class
are often automatically derived using the deriving statement (Section 4.3).

typeclass Eq #(type data_t);
function Bool \== (data_t x, data_t y);
function Bool \/= (data_t x, data_t y);

endtypeclass

The equality functions == and != are Boolean functions which return a value of True if the equality
condition is met. When defining an instance of an Eq typeclass, the \== and \/= notations must be
used. If using or referring to the functions, the standard Verilog operators == and != may be used.

Eq Functions
== Returns True if x is equal to y.

function Bool \== (data_t x, data_t y,);

!= Returns True if x is not equal to y.

function Bool \/= (data_t x, data_t y,);

B.1.3 Literal

Literal defines the class of types which can be created from integer literals.

typeclass Literal #(type data_t);
function data_t fromInteger(Integer x);

endtypeclass

The fromInteger function converts an Integer into an element of datatype data_t. Whenever
your write an integer literal in BSV(such as “0” or “1”), there is an implied fromInteger applied
to it, which turns the literal inot the type you are using it as (such as Int, UInt, Bit, etc.). By
defining an instance of Literal for your own datatypes, you can create vlaues from literals just as
for these predefined types.
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Literal Functions
fromInteger Converts an element x of datatype Integer into an element of data

type data_t

function data_t fromInteger(Integer x);

B.1.4 Arith

Arith defines the class of types on which arithmetic operations are defined.
typeclass Arith #(type data_t)
provisos (Literal#(data_t));
function data_t \+ (data_t x, data_t y);
function data_t \- (data_t x, data_t y);
function data_t negate (data_t x);
function data_t \* (data_t x, data_t y);

endtypeclass

The Arith functions provide arithmetic operations. When defining an instance of an Arith typeclass,
the escaped operator names must be used (and the negate name for negation). If using or referring
to the functions, the standard (non-escaped) Verilog operators can be used.

Arith Functions
+ Element x is added to element y.

function data_t \+ (data_t x, data_t y);

- Element y is subtracted from element x.

function data_t \- (data_t x, data_t y);

negate Change the sign of the number. When using the function the Ver-
ilog negate operator, -, may be used.

-

function data_t negate (data_t x);

* Element x is multiplied by y.

function data_t \* (data_t x, data_t y);

B.1.5 Ord

Ord defines the class of types for which an order is defined, which allows comparison operations.
typpeclass Ord #(type data_t);

function Bool \< (data_t x, data_t y);
function Bool \<= (data_t x, data_t y);
function Bool \> (data_t x, data_t y);
function Bool \>= (data_t x, data_t y);

endtypeclass
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The Ord functions are Boolean functions which return a value of True if the comparison condition
is met.

Ord Functions
< Returns True if x is less than y.

function Bool \< (data_t x, data_t y);

<= Returns True if x is less than or equal to y.

function Bool \<= (data_t x, data_t y);

> Returns True if x is greater than y.

function Bool \> (data_t x, data_t y);

>= Returns True if x is greater than or equal to y.

function Bool \>= (data_t x, data_t y);

B.1.6 Bounded

Bounded defines the class of types with a finite range and provides functions to define the range.
typeclass Bounded #(type data_t);

data_t minBound;
data_t maxBound;

endtypeclass

The Bounded functions minBound and maxBound define the minimum and maximum values for the
type data_t.

Bounded Functions
minBound The minimum value the type data_t can have.

data_t minBound;

maxBound The maximum value the type data_t can have.

data_t maxBound;

B.1.7 Bitwise

Bitwise defines the class of types on which bitwise operations are defined.

typeclass Bitwise #(type data_t);
function data_t \& (data_t x1, data_t x2);
function data_t \| (data_t x1, data_t x2);
function data_t \^ (data_t x1, data_t x2);
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function data_t \~^ (data_t x1, data_t x2);
function data_t \^~ (data_t x1, data_t x2);
function data_t invert (data_t x1);
function data_t \<< (data_t x1, Nat x2);
function data_t \>> (data_t x1, Nat x2);

endtypeclass

The Bitwise functions compare two operands bit by bit to calculate a result. That is, the bit in the
first operand is compared to its equivalent bit in the second operand to calculate a single bit for the
result.

Bitwise Functions
& Performs an and operation on each bit in x1 and x2 to calculate

the result.

function data_t \& (data_t x1, data_t x2);

| Performs an or operation on each bit in x1 and x2 to calculate the
result.

function data_t \| (data_t x1, data_t x2);

^ Performs an exclusive or operation on each bit in x1 and x2 to
calculate the result.

function data_t \^ (data_t x1, data_t x2);

~^ Performs an exclusive nor operation on each bit in x1 and x2 to
calculate the result.

^~

function data_t \~^ (data_t x1, data_t x2);
function data_t \^~ (data_t x1, data_t x2);

~ Performs a unary negation operation on each bit in x1. When using
this function, the corresponding Verilog operator, ~, may be used.

invert

function data_t invert (data_t x1);

<< Performs a left shift operation of x1 by the number of bit positions
given by x2.

function data_t \<< (data_t x1, Nat x2);

>> Performs a right shift operation of x1 by the number of bit positions
given by x2.

function data_t \>> (data_t x1, Nat x2);
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B.1.8 BitReduction

BitReduction defines the class of types on which the Verilog bit reduction operations are defined.

typeclass BitReduction #(type x, numeric type n)
function x#(1) reduceAnd (x#(n) d);
function x#(1) reduceOr (x#(n) d);
function x#(1) reduceXor (x#(n) d);
function x#(1) reduceNand (x#(n) d);
function x#(1) reduceNor (x#(n) d);
function x#(1) reduceXnor (x#(n) d);

endtypeclass

Note: the numeric keyword is not required

The BitReduction functions take a sized type and reduce it to one element. The most common
example is to operate on a Bit#() to produce a single bit result. The first step of the operation
applies the operator between the first bit of the operand and the second bit of the operand to produce
a result. The function then applies the operator between the result and the next bit of the operand,
until the final bit is processed.

Typically the bit reduction operators will be accessed through their Verilog operators. When defining
a new instance of the BitReduction type class the BSV names must be used. The table below lists
both values. For example, the BSV bit reduction and operator is reduceAnd and the corresponding
Verilog operator is &.

BitReduction Functions
reduceAnd Performs an and bit reduction operation between the elements of

d to calculate the result.
&

function x#(1) reduceAnd (x#(n) d);

reduceOr Performs an or bit reduction operation between the elements of d
to calculate the result.

|

function x#(1) reduceOr (x#(n) d);

reduceXor Performs an xor bit reduction operation between the elements of d
to calculate the result.

^

function x#(1) reduceXor (x#(n) d);

reduceNand Performs an nand bit reduction operation between the elements of
d to calculate the result.

^&

function x#(1) reduceNand (x#(n) d);
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reduceNor Performs an nor bit reduction operation between the elements of d
to calculate the result.

~|

function x#(1) reduceNor (x#(n) d);

reduceXnor Performs an xnor bit reduction operation between the elements of
d to calculate the result.

~^
^~

function x#(1) reduceXnor (x#(n) d);

B.1.9 BitExtend

BitExtend defines types on which bit extension operations are defined.

typeclass BitExtend #(type x, numeric type n, numeric type m); // n > m
function x#(n) zeroExtend (x#(m) d);
function x#(n) signExtend (x#(m) d);
function x#(m) truncate (x#(n) d);

endtypeclass

The BitExtend operations take as input a datatype of size n and changes it to a datatype of size m.

BitExtend Functions
zeroExtend Adds extra zero bits to the MSB of argument d of size m to make

the datatype size n.

function x#(n) zeroExtend (x#(m) d)
provisos (Add#(k, n, m));

signExtend Adds extra zero bits to the MSB of argument d of size m to make
the datatype size n by replicating the sign bit.

function x#(n) signExtend (x#(m) d)
provisos (Add#(k, n, m));

truncate Removes bits from the MSB of argument d of size m to make the
datatype size n.

function x#(m) truncate (x#(n) d)
provisos (Add#(k, m, n));

B.2 Data Types

Every variable and every expression in BSV has a type. Prelude defines the data types which are
always available. Each data type may belong to one or more type classes; all functions, modules,
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and operators declared for the type class are then defined for the data type. A data type does not
have to belong to any type classes.

Data type identifiers must always begin with a capital letter. There are two exceptions; bit and
int, which are predefined for backwards compatibility.

An instance declaration defines a data type as belonging to a type class. The following table
summarizes which type classes each data type in Prelude belongs to.

Type Classes by Data Types

Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit
Reduction Extend

Bit
√ √ √ √ √ √ √ √ √

Int
√ √ √ √ √ √ √ √ √

UInt
√ √ √ √ √ √ √ √ √

Integer
√ √ √ √

Bool
√ √

String
√ √ √

Maybe
√ √

Action
Rules

B.2.1 Bit

To define a value of type Bit:

Bit#(type n);

Type Classes for Bit
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Bit

√ √ √ √ √ √ √ √ √

Bit type aliases
bit The data type bit is defined as a single bit. This is a special case

of Bit.

typedef Bit#(1) bit;

Nat The data type Nat is defined as a 32 bit wide bit-vector. This is a
special case of Bit.

typedef Bit#(32) Nat;

The Bit data type provides functions to concatenate and split bit-vectors.
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Bit Functions
{x,y} Concatenate two bit vectors, x of size n and y of size m returning a

bit vector of size k. The Verilog operator { } is used.

function Bit#(k) bitconcat(Bit#(n) x, Bit#(m) y)
provisos (Add#(n, m, k));

split Split a bit vector into two bit vectors (higher-order bits (n), lower-
order bits (m)).

function Tuple2 #(Bit#(n), Bit#(m)) split(Bit#(k) x)
provisos (Add#(n, m, k));

B.2.2 UInt

The UInt type is an unsigned fixed width representation of an integer value.

Type Classes for UInt
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
UInt

√ √ √ √ √ √ √ √ √

B.2.3 Int

The Int type is a signed fixed width representation of an integer value.

Type Classes for Int
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Int

√ √ √ √ √ √ √ √ √

Int type aliases
int The data type int is defined as a 32-bit signed integer. This is a

special case of Int.

typedef Int#(32) int;

B.2.4 Integer

The Integer type is a data type used for integer values and functions. Because Integer is not
part of the Bits typeclass, the Integer type is used for static elaboration only; all values must be
resolved at compile time.

Type Classes for Integer
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Integer

√ √ √ √
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Integer Functions
div Element x is divided by element y. Any fractional remiander is

truncated.

function Integer div(Integer x, Integer y);

mod Element x is divided by element y and the remainder is returned
as an Integer value.

function Integer mod(Integer x, Integer y);

exp The element base is raised to the pwr power and the exponential
value is returned as type Integer, exp.

function Integer exp(Integer base, Integer pwr);

log2 Takes the base 2 logarithm of the Integer x and returns the closest
higher Integer value, if the result itself is not an Integer.

function Integer log2(Integer x) ;

B.2.5 Bool

The Bool type is defined to have two values, True and False.

typedef enum {False, True} Bool;

Type Classes for Bool
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Bool

√ √

The Bool functions return either a value of True or False.

Bool Functions
not Returns True if x is false, returns False if x is true.
!

function Bool not (Bool x);

&& Returns True if x and y are true, else it returns False.

function Bool \&& (Bool x, Bool y);

|| Returns True if x or y is true, else it returns False.

function Bool \|| (Bool x, Bool y);
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B.2.6 String

Strings are mostly used in system tasks (such as $display). The String type belongs to the Eq type
class; strings can be tested for equality and inequality using the == and != operators. The String
type is also part of the Arith class, but only the addition (+) operator is defined. All other Arith
operators will produce an error message.

Type Classes for String
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
String

√ √ √

The strConcat function is provided for combining String values.

String Functions
strConcat Concatenates two elements of type String, x and y.
+

function String strConcat(String x, String y);

B.2.7 Maybe

The Maybe type is used for tagging values as either Valid or Invalid. If the value is Valid, the value
contains a datatype data_t.

typedef union tagged {
void Invalid;
data_t Valid;

} Maybe #(type data_t) deriving (Eq, Bits);

Type Classes for Maybe
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Maybe

√ √

The Maybe data type provides functions to check if the value is Valid and to extract the valid value.

Maybe Functions
fromMaybe Extracts the Valid value out of a Maybe argument. If the tag is

Invalid the default value, defaultval, is returned.

function data_t fromMaybe( data_t defaultval,
Maybe#(data_t) val ) ;

isValid Returns a value of True if the Maybe argument is Valid.

function Bool isValid( Maybe#(data_t) val ) ;
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B.2.8 Action/ActionValue

Any expression that is intended to act on the state of the circuit (at circuit execution time) is called
an action and has type Action or ActionValue#(a). The type parameter a represents the type of
the returned value.

Type Classes for Action/ActionValue
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Action

The types Action and ActionValue are special keywords, and therefore cannot be redefined. Section
9.6 describes Action and ActionValue expressions in more detail.

typedef · · · abstract · · · struct ActionValue#(type a);

ActionValue type aliases
Action The Action type is a special case of the more general type

ActionValue where nothing is returned. That is, the returns type
is (void).

typedef ActionValue#(void) Action;

Action Functions
noAction An empty Action, this is an Action that does nothing.

function Action noAction();

B.2.9 Rules

A rule expression has type Rules and consists of a collection of individual rule constructs. Rules
are first class objects, hence variables of type Rules may be created and manipulated. Rules values
must eventually be added to a module in order to appear in synthesized hardware.

Type Classes for Rules
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Rules

The Rules data type provides functions to create, manipulate, and combine values of the type Rules.

Rules Functions
emptyRules An empty rules variable.

function Rules emptyRules();

addRules Takes rules r and adds them into a module. This function may only
be called from within a module. The return type void indicates
that the instantiation does not return anything.

function module addRules#(Rules r) (void);
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rJoin Symmetric union of two sets of rules. A symmetric union means
that neither set is implied to have any relation to the other: not
more urgent, not execute before, etc.

function Rules rJoin(Rules x, Rules y);

rJoinPreempts Union of two sets of rules, with rules on the left getting scheduling
precedence and blocking the rules on the right. That is, if a rule in
set x fires, then all rules in set y are prevented from firing. This is
the same as specifying descending_urgency plus a forced conflict.

function Rules rJoinPreempts(Rules x, Rules y);

rJoinDescendingUrgency
Union of two sets of rule, with rules in the left having higher urgency.
That is, if some rules compete for resources, then scheduling will select
rules in set x set before set y. If the rules do not conflict, no conflict is
added; the rules can fire together.

function Rules rJoinDescendingUrgency(Rules x, Rules y);

B.3 Operations on Numeric Types

B.3.1 Size Relationship/Provisos

These classes are used in provisos to express constraints between the sizes of types.

Class Proviso Description
Add Add#(n1,n2,n3) Assert n1 + n2 = n3
Max Max#(n1,n2,n3) Assert max(n1, n2) = n3
Log Log#(n1,n2) Assert ceiling log2(n1) = n2.
Mul Mul#(n1,n2,n3) Assert n1 ∗ n2 = n3
Div Div#(n1,n2,n3) Assert n1/n2 = n3

Only integer results are provided, any fractional
remainder is truncated.

Examples of Provisos using size relationships:

instance Bits #( Vector#(vsize, element_type), tsize)
provisos (Bits#(element_type, sizea),

Mul#(vsize, sizea, tsize)); // vsize * sizea = tsize

function Vector#(vsize1, element_type)
cons (element_type elem, Vector#(vsize, element_type) vect)

provisos (Add#(1, vsize, vsize1)); // 1 + vsize = vsize1

function Vector#(mvsize,element_type)
concat(Vector#(m,Vector#(n,element_type)) xss)

provisos (Mul#(m,n,mvsize)); // m * n = mvsize
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B.3.2 Size Relationship Type Functions

These type functions are used when “defining” size relationships between data types, where the
defined value need not (or cannot) be named in a proviso. They may be used in datatype definition
statements when the size of the datatype may be calculated from other parameters.

Type Function Size Relationship Description
TAdd TAdd#(n1,n2) Calculate n1 + n2
TSub TSub#(n1,n2) Calculate n1− n2
TLog TLog#(n1) Calculate ceiling log2(n1)
TExp TExp#(n1) Calculate 2n1

TMul TMul#(n1,n2) Calculate n1 ∗ n2
TDiv TDiv#(n1,n2) Calculate n1/n2

Examples using other arithmetic functions:

Int#(TAdd#(5,n)); // defines a signed integer n+5 bits wide
// n must be in scope somewhere

typedef bigsize TAdd#(vsize, 8); // defines a new type bigsize which
// is 8 bits wider than vsize

typedef Bit#(TLog#(n)) CBToken#(type n); // defines a new parameterized type,
// CBToken, which is log(n) bits wide.

typedef 8 wordsize; // blocksize is based on wordsize
typedef TAdd#(wordsize, 1) blocksize;

B.4 Registers and Wires

Prelude provides the following interfaces and wires: Reg, RWire, Wire, BypassWire, and PulseWire.

Interfaces
Name Description
Reg Register interface
RWire Similar to a register with output wrapped in a Maybe type to indi-

cate validity
Wire Interchangeable with a Reg interface, validity of the data is implicit
BypassWire Implementation of the Wire interface where the write method is

always enabled.
PulseWire RWire without any data

B.4.1 Reg

The most elementary module available in BSV is the register, which has a Reg interface. Registers
are polymorphic, i.e., in principle they can hold a value of any type but, of course, ultimately registers
store bits. Thus, the provisos on register modules indicate that the type of the value stored in the
register must be in the Bits type class, i.e., the operations pack and unpack are defined on the type
to convert into bits and back.

Note that all Bluespec registers are considered atomic units, which means that even if one bit is
updated (written), then all the bits are considered updated. This prevents multiple rules from
updating register fields in an inconsistent manner.
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Interfaces and Methods

The Reg interface contains two methods, _write and _read.
interface Reg #(type a_type);

method Action _write(a_type x1);
method a_type _read();

endinterface: Reg

The _write and _read methods are rarely used. Instead, for writes, one uses the non-blocking
assignment notation and, for reads, one just mentions the register interface in an expression. Both
these notations are described in more detail in Section 8.4.

Reg Interface
Method Arguments

Name Type Description Name Description
_write Action writes a value x1 x1 data to be written
_read a_type returns the value of the

register

Modules

Prelude provides three modules to create a register: mkReg creates a register with a given reset value,
mkRegU creates a register without any reset, and mkRegA creates a register with a given reset value
and with asynchronous reset logic.

mkReg Make a register with a given reset value. Reset logic is synchronous.

module mkReg#(a_type resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkRegU Make a register without any reset; initial simulation value is alternating
01 bits.

module mkRegU(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkRegA Make a register with a given reset value. Reset logic is asynchronous.

module mkRegA#(a_type resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

Functions

Three functions are provided for using registers: asReg returns the register interface instead of the
value of the register; readReg reads the value of a register, useful when managing arrays or lists of
registers; and writeReg to write a value into a register, also useful when managing arrays or lists of
registers.

asReg Treat a register as a register, i.e., suppress the normal behavior where the
interface name implicitly represents the value that the register contains
(the _read value). This function returns the register interface, not the
value of the register.

function Reg#(a_type) asReg(Reg#(a_type) regIfc);
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readReg Read the value out of a register. Useful for giving as the argument to
higher-order array and list functions.

function a_type readReg(Reg#(a_type) regIfc);

writeReg Write a value into a register. Useful for giving as the argument to higher-
order array and list functions.

function Action writeReg(Reg#(a_atype) regIfc, a_type din);

B.4.2 RWire

An RWire is a primitive stateless module whose purpose is to allow data transfer between methods
and rules without the cycle latency of a register. That is, a RWire may be written in a cycle and
that value can be read out in the same cycle; values are not stored across clock cycles.

Interfaces and Methods

The RWire interface is conceptually similar to a register’s interface, but the output value is wrapped
in a Maybe type. The wset method places a value on the wire and sets the valid signal. The read-like
method, wget, returns the value and a valid signal in a Maybe type. The output is only Valid if a
write has a occurred in the same clock cycle, otherwise the output is Invalid.

RWire Interface
Method Arguments

Name Type Description Name Description
wset Action writes a value and sets the valid

signal
datain data to be sent

on the wire
wget Maybe returns the value and the valid

signal

interface RWire#(type element_type) ;
method Action wset(element_type datain) ;
method Maybe#(element_type) wget() ;

endinterface: RWire

Modules

The mkRWire module is proivded to create an RWire.

mkRWire Creates an RWire. Output is only valid if a write has occurred in
the same clock cycle.

module mkRWire(RWire#(element_type))
provisos (Bits#(element_type, element_width)) ;

B.4.3 Wire

The Wire interface and module are simular to RWire, but the valid bit is hidden from the user and
the validity of the read is considered an implicit condition. The Wire interface works like the Reg
interface, so mentioning the name of the wire gets (reads) its contents whenever they’re valid, and
using <= writes the wire. Wire is an RWire that is designed to be interchangeable with Reg. You
can replace a Reg with an Wire without changing the syntax.
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typedef Reg#(element_type) Wire#(type element_type);

Modules

The mkWire module is provided to create a Wire.

mkWire Creates a Wire. Validity of the output is automatically checked as
an implicit condition of the read method.

module mkWire(Wire#(element_type))
provisos (Bits#(element_type, element_width));

B.4.4 BypassWire

BypassWire is an implementation of the Wire interface where the _write method is an always_enabled
method. The compiler will issue a warning if the method does not appear to be called every clock
cycle. The advantage of this tradeoff is that the _read method of this interface does not carry
any implicit condition (so it can satisfy a no_implicit_conditions assertion or an always_ready
method). See sections 13.1.4 and 13.3.2 for more discussion on the always_ready, always_enabled,
and no_implicit_conditions attributes.

mkBypassWire Creates a BypassWire. The write method is always enabled.

module mkBypassWire(Wire#(element_type))
provisos (Bits#(element_type, element_width));

B.4.5 PulseWire

Interfaces and Methods

The PulseWire interface is an RWire without any data. It is useful within rules and action methods
to signal other methods or rules in the same clock cycle. Note that because the read method is called
_read, the register shorthand can be used to get its value without mentioning the method _read (it
is implicitly added).

PulseWire Interface
Name Type Description
send Action sends a signal down the wire
_read Bool returns the valid signal

interface PulseWire;
method Action send();
method Bool _read();

endinterface

Modules

The mkPulsewire module is provided to create a PulseWire.

mkPulseWire The writing to this type of wire is used in rules and action methods
to send a single bit to signal other methods or rules in the same
clock cycle.

module mkPulseWire(PulseWire);
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Counter Example - Using Reg and PulseWire

interface Counter#(type size_t);
method Bit#(size_t) read();
method Action load(Bit#(size_t) newval);
method Action increment();
method Action decrement();

endinterface

module mkCounter(Counter#(size_t));
Reg#(Bit#(size_t)) value <- mkReg(0); // define a Reg

PulseWire increment_called <- mkPulseWire(); // define the PulseWires used
PulseWire decrement_called <- mkPulseWire(); // to signal other methods or rules

// whether rules fire is based on values of PulseWires
rule do_increment(increment_called && !decrement_called);

value <= value + 1;
endrule

rule do_decrement(!increment_called && decrement_called);
value <= value - 1;

endrule

method Bit#(size_t) read(); // read the register
return value;

endmethod

method Action load(Bit#(size_t) newval); // load the register
value <= newval; // with a new value

endmethod

method Action increment(); // sends the signal on the
increment_called.send(); // PulseWire increment_called

endmethod

method Action decrement(); / sends the signal on the
decrement_called.send(); // PulseWire decrement_called

endmethod
endmodule

B.5 Miscellaneous Functions

Compile-time Messages

error Generate a compile-time error message, s, and halt compilation.

function a_type error(String s);

warning When applied to a value v of type a, generate a compile-time warn-
ing message, s, and continue compilation, returning v.

function a_type warning(String s, a_type v);
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message When applied to a value v of type a, generate a compile-time in-
formative message, s, and continue compilation, returning v.

function a_type message(String s, a_type v);

Arithmetic Functions

max Returns the maximum of two values, x and y.

function a_type max(a_type x, a_type y)
provisos (Ord#(a_type));

min Returns the minimum of two values, x and y.

function a_type min(a_type x, a_type y)
provisos (Ord#(a_type));

abs Returns the absolute value of x.

function a_type abs(a_type x)
provisos (Arith#(a_type), Ord#(a_type));

Operations on Functions

These are useful with higher-order list and array functions.

compose Creates a new function, c, made up of functions, f and g.
c(a) = f(g(a))

function (function c_type (a_type x0))
compose(function c_type f(b_type x1),

function b_type g(a_type x2));

id Identity function, returns x when given x. This function is useful
when the argument requrires a function which doesn’t do anything.

function a_type id(a_type x);

constFn Constant function, returns x.

function a_type constFn(a_type x, b_type y);

flip Flips the arguments x and y.

function c_type flip (a_type x, b_type y);
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Example - using function constFn to set the initial values of the registers in a list:
List#(Reg#(Resource)) items <- mapM( constFn(mkReg(initRes)), upto(1,numAdd) );

Control Flow Function

while Repeat a function while a predicate holds

function a_type while(function Bool pred(a_type x1),
function a_type f(a_type x1), a_type x);

B.6 Environment Values

The Environment section of the Prelude contains some value definitions that remain static within a
compilation, but may vary between compilations.

Test whether the compiler is generating C.

genC Returns True if the compiler is generating C.

function Bool genC();

Test whether the compiler is generating Verilog.

genVerilog Returns True if the compiler is generating Verilog.

function Bool genVerilog();

Return the version of the compiler.

compilerVersion Returns a String containing the compiler version. This si the same
string used with the -v flag.

String compilerVersion;

Example:
the statement:

$display("compilerversion = %d", compilerVersion);
produces this output:

Bluespec Compiler, version 3.8.56 (build 7084, 2005-07-22)

Get the current date and time.

date Returns a String containing the date.

String date;

Example:
the statement:

$display("date = %s", date);
produces this output:

"Mon Feb 6 08:39:59 EST 2006"
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C Libraries

Note: this section is currently under revision to improve the documentation.

Section 12 defined some important primitives. Section B defined the Standard Prelude package,
which is automatically imported into every package. This section describes BSV’s large and con-
tinuously growing collection of libraries that provide common and useful programming idioms and
hardware idioms.

To use any of these libraries in a package, the programmer must explicitly import it into the package
using an import clause.

C.1 Data Structures and Containers

C.1.1 Register File

Package Name

import RegFile :: * ;

Description

This package provides 5-read-port 1-write-port register array modules.

Note: In a design that uses RegFiles, some of the read ports may remain unused. This may generate
a warning in various downstream tool. Downstream tools should be instructed to optimize away the
unused ports.

Interfaces and Methods

The RegFile package defines one interface, RegFile. The RegFile interface provides two methods,
upd and sub. The upd method is an Action method used to modify (or update) the value of an
element in the register file. The sub method (from ”sub”script) is a Value method which reads and
returns the value of an element in the register file. The value returned is of a datatype data_t.

Interface Name Parameter name Parameter Description Restrictions
RegFile index type datatype of the index must be in the Bits class

data t datatype of the element values must be in the Bits class

interface RegFile #(type index_t, type data_t);
method Action upd(index_t addr, data_t d);
method data_t sub(index_t addr);

endinterface: RegFile

Method Arguments
Name Type Description Name Description
upd Action Change or update an el-

ement within the register
file.

addr index of the element to be
changed, with a datatype of
index_t

d new value to be stored, with a
datatype of data_t

sub data t Read an element from
the register file and re-
turn it.

addr index of the element, with a
datatype of index_t

Modules
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The RegFile package provides three modules: mkRegFile creates a RegFile with registers allocated
from the lo_index to the hi_index; mkRegFileFull creates a RegFile from the minimum index to
the maximum index; and mkRegFileWCF creates a RegFile from lo_index to hi_index for which
the reads and the write are scheduled conflict-free. There is a second set of these modules, the
RegFileLoad variants, which take as an argument a file containing the initial contents of the array.

mkRegFile Create a RegFile with registers allocated from lo_index to hi_index.
lo_index and hi_index are of the index_t datatype and the elements
are of the data_t datatype.

module mkRegFile#( index_t lo_index, index_t hi_index )
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

mkRegFileFull Create a RegFile from min to max index where the index is of a datatype
index_t and the elements are of datatype data_t. The min and max are
specified by the Bounded typeclass instance (0 to N-1 for N-bit numbers).

module mkRegFileFull#( RegFile#(index_t, data_t) )
provisos (Bits#(index_t, size_index),

Bits#(data_t, size_data)
Bounded#(index_t) );

mkRegFileWCF Create a RegFile from lo_index to hi_index for which the reads and the
write are scheduled conflict-free. For the implications of this scheduling,
see the documentation for ConfigReg (Section C.1.5).

module mkRegFileWCF#( index_t lo_index, index_t hi_index )
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

The RegFileLoad variants provide the same functionality as RegFile, but each constructor function
takes an additional file name argument. The file contains the initial contents of the array using the
Verilog hex memory file syntax.

mkRegFileLoad Create a RegFile using the file to provide the initial contents of the array.

module mkRegFileLoad#
( String file, index_t lo_index, index_t hi_index)
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));
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mkRegFileFullLoad Create a RegFile from min to max index using the file to provide the initial
contents of the array. The min and max are specified by the Bounded
typeclass instance (0 to N-1 for N-bit numbers).

module mkRegFileFullLoad#( String file)
( RegFile#(index_t, data_t))

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data),
Bounded#(index_t) );

mkRegFileWCFLoad Create a RegFile from lo_index to hi_index for which the reads and
the write are scheduled conflict-free (see Section C.1.5), using the file to
provide the initial contents of the array.

module mkRegFileWCFLoad#
( String file, index_t lo_index, index_t hi_index)
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

Examples

Use mkRegFileLoad to create Register files and then read the values.

Reg#(Cntr) count <- mkReg(0);

// Create Register files to use as inputs in a testbench
RegFile#(Cntr, Fp64) vecA <- mkRegFileLoad("vec.a.txt", 0, 9);
RegFile#(Cntr, Fp64) vecB <- mkRegFileLoad("vec.b.txt", 0, 9);

//read the values from the Register files
rule drivein (count < 10);

Fp64 a = vecA.sub(count);
Fp64 b = vecB.sub(count);
uut.start(a, b);
count <= count + 1;

endrule

Verilog Modules

RegFile modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name Defined in File

mkRegFile RegFile RegFile.v
mkRegFileFull
mkRegFileWCF
mkRegFileLoad RegFileLoad RegFileLoad.v
mkRegFileFullLoad
mkRegFileWCFLoad
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C.1.2 FIFO Overview

There are three FIFO packages, FIFO, FIFOF, and LevelFIFO. The following table shows when to use
each FIFO, and which methods are in implemented in each FIFO. All FIFOs include the methods
enq, deq, first, clear. These are referred to as the common methods in the table.

Package Name Description Methods
All FIFO common methods in all FIFOs enq
packages deq

first
clear

FIFO Implicit full and empty signals common methods
FIFOF Explicit full and empty signals common methods

notFull
notEmpty

LevelFIFO Indicates the level or current number common methods
of items stored in the FIFO notFull

notEmpty
isLessThan
isGreaterThan
fifoDepth

Common Methods

The following four methods are provided in all FIFO packages.

Method Argument
Name Type Description Name Description
enq Action adds an entry to the FIFO x1 variable to be added to the FIFO

must be of type element type
deq Action removes first entry from

the FIFO
first element type returns first entry the entry returned is of

element type
clear Action clears all entries from the

FIFO

C.1.3 FIFO and FIFOF packages

Package Name

import FIFO :: * ;
import FIFOF :: * ;

Description

The FIFO package defines the FIFO interface and four module constructors. The FIFO package is
for fifos with implicit full and empty signals.

The FIFOF package defines fifos with explicit full and empty signals.

The standard version of FIFOF has fifos with the enq, deq and first methods guarded by the ap-
propriate (notFull or notEmpty) implicit condition for safety and improved scheduling. Unguarded
(UG) versions of FIFOF are available for the rare cases when implicit conditions are not desired.
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Interfaces and methods

Interface Name Parameter name Parameter Description Restrictions
FIFO element type type of the elements must be in Bits class

stored in the FIFO
FIFOF element type type of the elements must be in Bits class

stored in the FIFO

The four common methods, enq, deq, first and clear are provided by the FIFO and FIFOF inter-
faces.

Method Argument
Name Type Description Name Description
enq Action adds an entry to the FIFO x1 variable to be added to the FIFO

must be of type element type
deq Action removes first entry from

the FIFO
first element type returns first entry the entry returned is of ele-

ment type
clear Action clears all entries from the

FIFO

interface FIFO #(type element_type);
method Action enq(element_type x1);
method Action deq();
method element_type first();
method Action clear();

endinterface: FIFO

FIFOF provides two additional methods, notFull and notEmpty.

Method Argument
Name Type Description Name Description
notFull Bool returns a True value if there is space,

you can enqueue an entry into the fifo
notEmpty Bool returns a True value if there are elements

in the fifo, you can dequeue from the fifo

interface FIFOF #(type element_type);
method Action enq(element_type x1);
method Action deq();
method element_type first();
method Bool notFull();
method Bool notEmpty();
method Action clear();

endinterface: FIFOF

Modules

The FIFO and FIFOF interface types are provided by the module constructors: mkFIFO, mkFIFO1,
mkSizedFIFO, and mkLFIFO. Each FIFO is safe with implicit conditions; it does not allow an enq when
the FIFO is full and does not allow a deq or first when the FIFO is empty. Except for mkLFIFO,
when the FIFO is full it does not allow simultaneous enqueue and dequeue operations.
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For creating a FIFOF interface use the "F" version of the module, such as mkFIFO.

Unguarded (UG) versions of FIFOF are available for the rare cases when implicit conditions are not
desired. During rule and method processing the implicit conditions for correct fifo operations are
NOT considered. That is, with an unguarded fifo, it is possible to enqueue when full, and to dequeue
when empty. The Unguarded versions of the FIFOF modules provide the FIFOF interface.

Module Name BSV Module Declaration Description
For all modules, width_any may be 0

mkFIFO
mkFIFOF
mkUGFIFOF

module mkFIFO#
(FIFO#(element_type))
provisos

(Bits#(element_type, width_any));

FIFO of depth 2.

mkFIFO1
mkFIFOF1
mkUGFIFOF1

module mkFIFO1#
(FIFO#(element_type))
provisos

(Bits#(element_type, width_any));

FIFO of depth 1

mkSizedFIFO
mkSizedFIFOF
mkUGSizedFIFOF

module mkSizedFIFO#
(Integer n)(FIFO#(element_type))
provisos

(Bits#(element_type, width_any));

FIFO of given depth n

mkLFIFO
mkLFIFOF
mkUGLFIFOF

module mkLFIFO#
(FIFO#(element_type))
provisos

(Bits#(element_type, width_any));

FIFO of depth 1. deq and
enq can be simultaneously
applied in the same clock
cycle when the FIFO is full.

Example using the FIFO package

This example creates 2 input FIFOs and moves data from the input FIFOs to the output FIFOs.

import FIFO::*;

typedef Bit#(24) DataT;

// define a single interface into our example block
interface BlockIFC;

method Action push1 (DataT a);
method Action push2 (DataT a);
method ActionValue#(DataT) get();
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endinterface

module mkBlock1( BlockIFC );
Integer fifo_depth = 16;

// create the first inbound FIFO instance
FIFO#(DataT) inbound1 <- mkSizedFIFO(fifo_depth);

// create the second inbound FIFO instance
FIFO#(DataT) inbound2 <- mkSizedFIFO(fifo_depth);

// create the outbound instance
FIFO#(DataT) outbound <- mkSizedFIFO(fifo_depth);

// rule for enqueue of outbound from inbound1
// implicit conditions ensure correct behavior
rule enq1 (True);

DataT in_data = inbound1.first;
DataT out_data = in_data;
outbound.enq(out_data);
inbound1.deq;

endrule: enq1

// rule for enqueue of outbound from inbound2
// implicit conditions ensure correct behavior
rule enq2 (True);

DataT in_data = inbound2.first;
DataT out_data = in_data;
outbound.enq(out_data);
inbound2.deq;

endrule: enq2

//Add an entry to the inbound1 FIFO
method Action push1 (DataT a);

inbound1.enq(a);
endmethod

//Add an entry to the inbound2 FIFO
method Action push2 (DataT a);

inbound2.enq(a);
endmethod

//Remove first value from outbound and return it
method ActionValue#(DataT) get();

outbound.deq();
return outbound.first();

endmethod
endmodule

Verilog Modules

FIFO and FIFOF modules correspond to the following Verilog modules, which are found in the Blue-
spec Verilog library, $BLUESPECDIR/Verilog/.
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BSV Module Name Verilog Module Names

mkFIFO
mkFIFOF
mkUGFIFOF

FIFO2.v FIFO20.v

mkFIFO1
mkFIFOF1
mkUGFIFOF1

FIFO1.v FIFO10.v

mkSizedFIFO
mkSizedFIFOF
mkUGSizedFIFOF

SizedFIFO.v SizedFIFO0.v

mkLFIFO
mkLFIFOF
mkUGLFIFOF

FIFOL1.v FIFOL10.v

C.1.4 Level FIFO

Package Name

import LevelFIFO :: * ;

Description

The BSV LevelFIFO library provides enhanced FIFO interfaces and modules which include methods
to indicate the level or the current number of items stored in the FIFO. Two versions are included
in this package; FIFOLevelIfc for a single clock, and SyncFIFOLevelIfc with dual clocks, that is
separate clocks for the enqueue side and dequeue side.

Interfaces and methods

Interface Name Parameter
name

Parameter Description Restrictions

FIFOLevelIfc element type type of the elements stored in the
FIFO

must be in Bits class

fifoDepth the depth of the FIFO must be numeric
type

SyncFIFOLevelIfc element type type of the elements stored in the
FIFO

must be in Bits class

fifoDepth the depth of the FIFO must be numeric
type

• FIFOLevelIfc

In addition to common FIFO methods, the FIFOLevelIfc interface defines methods to compare
the current level to Integer constants. See Section C.1.2 for details on enq, deq, first, clear,
notFull, and notEmpty. Note that FIFOLevelIfc interface has a type parameter for the
fifoDepth. This numeric type parameter is needed, since the width of the counter is dependant
on the FIFO depth.

c© 2005 Bluespec, Inc. All rights reserved 145



Reference Guide Bluespec SystemVerilog v3.8

FIFOLevelIfc
Method Argument

Name Type Description Name Description
isLessThan Bool Returns True if the depth

of the FIFO is less than the
Integer constant, c1.

c1 an Integer constant

isGreaterThan Bool Returns True if the depth of
the FIFO is greater than the
Integer constant, c1.

c1 an Integer constant

interface FIFOLevelIfc#( type element_type, parameter type fifoDepth ) ;
method Action enq( element_type x1 );
method Action deq();
method element_type first();
method Action clear();

method Bool notFull ;
method Bool notEmpty ;

method Bool isLessThan ( Integer c1 ) ;
method Bool isGreaterThan( Integer c1 ) ;

method UInt#(TLog#(fifoDepth)) maxDepth ;
endinterface

• SyncFIFOLevelIfc

In addition to common FIFO methods (Section C.1.2), the SyncFIFOLevelIfc interface de-
fines methods to compare the current level to Integer constants. Methods are provided for
both the source (enqueue side) and destination (dequeue side) clock domains. Note that
SyncFIFOLevelIfc interface has a type parameter for the fifoDepth. This numeric type pa-
rameter is needed, since the width of the counter is dependant on the FIFO depth.

SyncFIFOLevelIfc
Method Argument

Name Type Description Name Description
sNotFull Bool Returns True if the FIFO

appears as not full from
the source side clock.

sNotEmpty Bool Returns True if the FIFO
appears as not empty from
the source side clock.

dNotFull Bool Returns True if the FIFO
appears as not full from
the destination side clock.

dNotEmpty Bool Returns True if the FIFO
appears as not empty from
the destination side clock.
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sIsLessThan Bool Returns True if the depth
of the FIFO, as appears on
the source side clock, is
less than the Integer con-
stant, c1.

c1 an Integer compile-
time constant

sIsGreaterThan Bool Returns True if the depth
of the FIFO, as appears on
the source side clock, is
greater than the Integer
constant, c1.

c1 an Integer compile-
time constant.

dIsLessThan Bool Returns True if the depth
of the FIFO, as appears on
the destination side clock,
is less than the Integer
constant, c1.

c1 an Integer compile-
time constant

dIsGreaterThan Bool Returns True if the depth
of the FIFO, as appears
on the destination side
clock, is greater than the
Integer constant, c1.

c1 an Integer compile-
time constant.

interface SyncFIFOLevelIfc#( type element_type, parameter type fifoDepth ) ;
method Action enq ( element_type sendData ) ;
method Action deq () ;
method element_type first () ;

method Bool sNotFull ;
method Bool sNotEmpty ;
method Bool dNotFull ;
method Bool dNotEmpty ;

// Note that for the following methods, the Integer argument,
// c1, must be a compile-time constant.
method Bool sIsLessThan ( Integer c1 ) ;
method Bool sIsGreaterThan( Integer c1 ) ;
method Bool dIsLessThan ( Integer c1 ) ;
method Bool dIsGreaterThan( Integer c1 ) ;

method UInt#(TLog#(fifoDepth)) maxDepth ;
endinterface

Modules

• mkFIFOLevel

The FIFOLevelIfc interface type is provided by the module constructor mkFIFOLevel. Note
that the implementation allows any number of isLessThan and isGreaterThan method calls.
Each call with a unique argument adds an additional comparator to the design.
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Module Name BSV Module Declaration
width_any may be 0

mkFIFOLevel
module mkFIFOLevel (

FIFOLevelIfc#(element_type, fifoDepth) )
provisos( Bits#(element_type, width_element )) ;

• mkSyncFIFOLevel

The module mkSyncFIFOLevel is dual clock FIFO, where enqueue and dequeue methods are
in separate clocks domains – sClkIn and dClkIn respectively. Because of the synchroniza-
tion latency, the flag indicators will not necessarily be identical between the source and the
destination clocks. Note however, that the sNotFull and dNotEmpty flags always give proper
(pessimistic) indications for the safe use of enq and deq methods; these are automatically
included as implicit condition in the enq and deq (and first) methods.

Module Name BSV Module Declaration
width_any may be 0

mkSyncFIFOLevel
module mkSyncFIFOLevel (

Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncFIFOLevelIfc#(element_type, fifoDepth) ifc )

provisos( Bits#(element_type, width_element) ) ;

Example

The following example shows the use of SyncLevelFIFO as a way to collect data into a FIFO, and
then send it out in a burst mode. The portion of the design shown, waits until the FIFO is almost
full, and then sets a register, burstOut which indicates that the FIFO should dequeue. When the
FIFO is almost empty, the flag is cleared, and FIFO fills again.

. . .
// Define a fifo of Int(#23) with 128 entries
SyncFIFOLevelIfc#(Int#(23),128) fifo <- mkSyncFIFOLevel(sclk, rst, dclk ) ;

// Define some constants
let sFifoAlmostFull = fifo.sIsGreaterThan( 120 ) ;
let dFifoAlmostFull = fifo.dIsGreaterThan( 120 ) ;
let dFifoAlmostEmpty = fifo.dIsLessThan( 12 ) ;

// a register to indicate a burst mode
Reg#(Bool) burstOut <- mkReg( False, clocked_by (dclk)) ;

. . .
// Set and clear the burst mode depending on fifo status
rule timeToDeque( dFifoAlmostFull && ! burstOut ) ;

burstOut <= True ;
endrule

rule timeToStop ( dFifoAlmostEmpty && burstOut );
burstOut <= False ;
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endrule

rule moveData ( burstOut ) ;
let dataToSend = fifo.first ;
fifo.deq ;
...
bursting.send( dataToSend ) ;

endrule

C.1.5 ConfigReg

Package Name

import ConfigReg :: * ;

Description

The ConfigReg package provides a way to create registers where each update clobbers the current
value, but the precise timing of updates is not important. These registers are identical to the mkReg
registers except that their scheduling annotations allows reads and writes to occur in either order
during rule execution.

Rules which fire during the clock cycle where the register is written read a stale value (that is the
value from the beginning of the clock cycle) regardless of firing order and writes which have occurred
during the clock cycle. Thus if rule r1 writes to a ConfigReg cr and rule r2 reads cr later in the
same cycle, the old or stale value of cr is read, not the value written in r1. If a standard register
is used instead, rule r2’s execution will be blocked by r1’s execution or the scheduler may create a
different rule execution order.

The hardware implementation is identical for the more common registers (mkReg, mkRegU and
mkRegA), and the module constructors parallel these as well.

Interfaces

The ConfigReg interface is an alias of the Reg interface (sections 12.5 and B.4.1).

typedef Reg#(a_type) ConfigReg #(type a_type);

Modules

The ConfigReg package provides three modules; mkConfigReg creates a register with a given re-
set value and synchronous reset logic, mkConfigRegU creates a register without any reset, and
mkConfigRegA creates a register with a given reset value and asynchronous reset logic.

mkConfigReg Make a register with a given reset value. Reset logic is synchronous

module mkConfigReg#(a_type resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkConfigRegU Make a register without any reset; initial simulation value is alternating
01 bits.

module mkConfigRegU(Reg#(a_type))
provisos (Bits#(a_type, sizea));
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mkConfigRegA Make a register with a given reset value. Reset logic is asynchronous.

module mkConfigRegA#(a_type, resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

C.1.6 List

Package Name

import List :: * ;

Description

The List package defines a data type and functions which create and operate on this data type. Lists
are similar to Vectors, but are used when the number of items on the list may vary at compile-time
or need not be strictly enforced by the type system. All elements of a list must be of the same type.
The list type is defined as a tagged union as follows.
typedef union tagged {

void Nil;
struct {

a head;
List #(a) tail;

} Cons;
} List #(type a);

A list is tagged Nil if it has no elements, otherwise it is tagged Cons. Cons is a structure of a single
element and the rest of the list.

Lists are most often used during static elaboration (compile-time) to manipulate collections of ob-
jects. Since List#(element_type) is not in the Bits typeclass, lists cannot be stored in registers
or other dynamic elements. However, one can have a list of registers or variables corresponding to
hardware functions.

Functions for Creating and Generating Lists

cons Adds an element to a list. The new element will be at the 0th position.

function List#(element_type)
cons (element_type x, List#(element_type) xs);

upto Create a list of Integers counting up over a range of numbers, from m to n. If m
> n, an empty list (Nil) will be returned.

List#(Integer) upto(Integer m, Integer n);

replicate Generate a list of n elements by replicating the given argument, elem.

function List#(element_type)
replicate(Integer n, element_type elem);
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append Append two lists, returning the combined list. The elements of both lists must be
the same datatype, element_type. The combined list will contain all the elements
of xs followed in order by all the elements of ys.

function List#(element_type)
append(List#(element_type) xs, List#(element_type) ys);

concat Append (concatenate) many lists, that is a list of lists, into one list.

function List# (element_type)
concat (List#(List#(element_type)) xss);

Examples - Creating and Generating Lists

Create a new list, my_list, of elements of datatytpe Int#(32) which are undefined

List #(Int#(32)) my_list;

Create a list, my_list, of five 1’s

List #(Int #(32)) my_list = replicate (5,32’d1);

//my_list = {1,1,1,1,1}

Create a new list using the upto function

List #(Integer) my_list2 = upto (1, 5);

//my_list2 = {1,2,3,4,5}

Functions for Extracting Elements and Sub-Lists

[i] The square-bracket notation is available to extract an element from a list. Extracts
the ith element, where the first element is [0]. Index i must be an indexable type;
Integer, Bit#(n), Int or UInt.

anyList[i]

select The select function is another form of the subscript notation ([i]). It may be
necessary when the compiler can’t determine the type of the subscript i.

function element_type
select(List#(element_type) alist, idx_type index);
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update Update an element in a list returning a new list.

function List#(element_type)
update(List#(element_type) alist,

idx_type index,
element_type newElem)

provisos(Eq#(idx_type), Literal#(idx_type));

oneHotSelect Select a list element with a Boolean list. The Boolean list should have exactly
one element that is True, otherwise the result is undefined. The returned
element is the one in the corresponding position to the True element in the
Boolean list.

function element_type
oneHotSelect (List#(Bool) bool_list,

List#(element_type) alist);

head Extract the first element of a list. The input list must have at least 1 element, or
an error will be returned.

function element_type head (List#(element_type) listIn);

last Extract the last element of a list. The input list must have at least 1 element, or
an error will be returned.

function element_type last (List#(element_type) alist);

tail Remove the head element of a list leaving the remaining elements in a smaller list.
The input list must have at least 1 element, or an error will be returned.

function List#(element_type) tail (List#(element_type) alist);

init Remove the last element of a list the remaining elements in a smaller list. The
input list must have at least one element, or an error will be returned.

function List#(element_type) init (List#(element_type) alist);
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take Take a number of elements from a list starting from index 0. The number to take
is specified by the argument n. If the argument is greater than the number of
elements on the list, the function stops taking at the end of the list and returns
the entire input list.

function List#(element_type)
take (Integer n, List#(element_type) alist);

drop Drop a number of elements from a list starting from index 0. The number to drop
is specified by the argument n. If the argument is greater than the number of
elements on the list, the entire input list is dropped, returning an empty list.

function List#(element_type)
drop (Integer n, List#(element_type) alist);

filter Create a new list from a given list where the new list has only the elements which
satisfy the predicate function.

function List#(element_type)
filter (function Bool pred(element_type),

List#(element_type) alist);

takeWhile Returns the first set of elements of a list which satisfy the predicate function.

function List#(element_type)
takeWhile (function Bool pred(element_type x),

List#(element_type) alist);

takeWhileRev Returns the last set of elements on a list which satisfy the predicate function.

function List#(element_type)
takeWhileRev (function Bool pred(element_type x),

List#(element_type) alist);

dropWhile Removes the first set of elements on a list which satisfy the predicate function,
returning a list with the remaining elements.

function List#(element_type)
dropWhile (function Bool pred(element_type x),

List#(element_type) alist);
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dropWhileRev Removes the last set of elements on a list which satisfy the predicate function,
returning a list with the remaining elements.

function List#(element_type)
dropWhileRev (function Bool pred(element_type x),

List#(element_type) alist);

Examples - Extracting Elements and Sub-Lists

Extract the element from a list, my_list, at the position of index.
//my_list = {1,2,3,4,5}, index = 3

newvalue = select (my_list, index);

//newvalue = 4

Extract the zeroth element of the list my_list.
//my_list = {1,2,3,4,5}

newvalue = head(my_list);

//newvalue = 1

Create a list, my_list2, of size 4 by removing the head (zeroth) element of the list my_list1.
//my_list1 is a list with 5 elements, {0,1,2,3,4}

List #(Int #(32)) my_list2 = tail (my_list1);
List #(Int #(32)) my_list3 = tail(tail(tail(tail(tail(my_list1);

//my_list2 = {1,2,3,4}
//my_list3 = Nil

Create a 2 element list, my_list2, by taking the first two elements of the list my_list1.
//my_list1 is list with 5 elements, {0,1,2,3,4}
List #(Int #(4)) my_list2 = take (2,my_list1);

//my_list2 = {0,1}

The number of elements specified to take in take can be greater than the number of elements on
the list, in which case the entire input list will be returned.

//my_list1 is list with 5 elements, {0,1,2,3,4}
List #(Int #(4)) my_list2 = take (7,my_list1);

//my_list2 = {0,1,2,3,4}

Select an element based on a boolean list.
//my_list1 is a list of unsigned integers, {1,2,3,4,5}
//my_list2 is a list of Booleans, only one value in my_list2 can be True.
//my_list2 = {False, False, True, False,False, False, False}.

result = oneHotSelect (my_list2, my_list1));

//result = 3
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Create a list by removing the initial segment of a list that meets a predicate.

//the predicate function is a < 2

function Bool lessthan2 (Int #(4) a);
return (a < 2);

endfunction

//my_list1 = {0,1,2,0,1,7,8}

List #(Int #(4)) my_result = (dropWhile(lessthan2, my_list1));

//my_result = {2,0,1,7,8}

Tests on Lists

==
!=

Lists can be compared for equality if the elements in the list can be compared.

instance Eq #( List#(element_type) )
provisos( Eq#( element_type ) ) ;

elem Check if a value is an element in a list.

function Bool elem (element_type x, List#(element_type) alist )
proviso (Eq#(element_type));

isNull Check if a list is empty. Returns True if the list is empty, that is if there are zero
elements.

function Bool isNull (element_type x, List#(element_type) alist );

length Determine the length of a list. Can be done at elaboration time only.

function Integer length (List#(element_type) alist );

any Test if a predicate holds for any element of a list.

function Bool any(function Bool pred(element_type x1),
List#(element_type) alist );
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all Test if a predicate holds for all elements of a list.

function Bool all(function Bool pred(element_type x1),
List#(element_type) alist );

or Combine all elements in a Boolean list with a logical or.

function Bool or (List# (Bool) bool_list);

and Combine all elements in a Boolean list with a logical and.

function Bool and (List# (Bool) bool_list);

Examples - Tests on Lists

Test that all elements of the list my_list1 are positive integers

function Bool isPositive (Int #(32) a);
return (a > 0)

endfunction

// function isPositive checks that "a" is a positive integer
// if my_list1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (all(isPositive, my_list1))
$display ("List contains all negative values");

Test if any elements in the list are positive integers.

// function isPositive checks that "a" is a positive integer
// if my_list1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (any(pos, my_list1))
$display ("List contains some negative values");

Check if the integer 5 is in my_list

// if my_list contains n elements, elem will generate n copies
// of the eq test
if (elem(5,my_list))

$display ("List contains the integer 5");

Combining Lists with Zip Functions

The family of zip functions takes two or more lists and combines them into one list of Tuples.
Several variations are provided for different resulting Tuples. All variants can handle input lists of
different sizes. The resulting lists will be the size of the smallest list. Tuples are described in Section
12.4.
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zip Combine two lists into a list of Tuples.

function List#(Tuple2 #(a_type, b_type))
zip( List#(a_type) lista,

List#(b_type) listb);

zip3 Combine 3 lists into a list of Tuple3.

function List#(Tuple3 #(a_type, b_type, c_type))
zip3( List#(a_type) lista,

List#(b_type) listb,
List#(c_type) listc);

zip4 Combine 4 lists into a list of Tuple4.

function List#(Tuple4 #(a_type, b_type, c_type, d_type))
zip4( List#(a_type) lista,

List#(b_type) listb,
List#(c_type) listc,
List#(d_type) listd);

unzip Separate a list of pairs (i.e. a Tuple2#(a,b)) into a pair of two lists.

function Tuple2#(List#(a_type), List#(b_type))
unzip(List#(Tuple2 #(a_type, b_type)) listab);

Examples - Combining Lists with Zip

Combine two lists into a list of Tuples
//my_list1 is a list of elements {0,1,2,3,4,5,6,7}
//my_list2 is a list of elements {True,False,True,True,False}

my_list3 = zip(my_list1, my_list2);

//my_list3 is a list of Tuples {(0,True),(1,False),(2,True),(3,True),(4,False)}

Separate a list of pairs into a Tuple of two lists
//my_list is a list of pairs {(0,5),(1,6),(2,7),(3,8),(4,9)}

Tuple2#(List#(Int#(5)),List#(Int#(5))) my_list2 = unzip(my_list);

//my_list2 is ({0,1,2,3,4},{5,6,7,8,9})

Mapping Functions over Lists

A function can be applied to all elements of a list, using high-order functions such as map. These
functions take as an argument a function, which is applied to the elements of the list.
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map Map a function over a list, returning a new list of results.

function List#(b_type) map (function b_type func(a_type),
List#(a_type) alist);

Example - Mapping Functions over Lists

Consider the following code example which applies the zeroExtend function to each element of
alist creating a new list, resultlist.

List#(Bit#(5)) alist;
List#(Bit#(10)) resultlist;
...
resultlist = map( zeroExtend, alist ) ;

This is equivalent to saying:

for (Integer i=0; i<13; i=i+1)
resultlist[i] = zeroExtend(alist[i]);

Map a negate function over a list

//my_list1 is a list of 5 elements {0,1,2,3,4}
//negate is a function which makes each element negative

List #(Int #(32)) my_list2 = map (negate, my_list1);

//my_list2 is a list of 5 elements {0,-1,-2,-3,-4}

ZipWith Functions

The zipWith functions combine two or more lists with a function and generate a new list. These
functions combine features of map and zip functions.

zipWith Combine two lists with a function. The lists do not have to have the same number
of elements.

function List#(c_type)
zipWith (function c_type func(a_type x, b_type y),

List#(a_type) listx,
List#(b_type) listy );

zipWith3 Combine three lists with a function. The lists do not have to have the same
number of elements.

function List#(d_type)
zipWith3(function d_type func(a_type x, b_type y, c_type z),

List#(a_type) listx,
List#(b_type) listy,
List#(c_type) listz );
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zipWith4 Combine four lists with a function. The lists do not have to have the same number
of elements.

function List#(e_type) zipWith4
(function e_type func(a_type x, b_type y, c_type z, d_type w),
List#(a_type) listx,
List#(b_type) listy,
List#(c_type) listz
List#(d_type) listw );

Examples - ZipWith

Create a list by applying a function over the elements of 3 lists.

//the function add3 adds 3 values
function Int#(8) add3 (Int #(8) a,Int #(8) b,Int #(8) c);

Int#(8) d = a + b +c ;
return(d);

endfunction

//Create the list my_list4 by adding the ith element of each of
//3 lists (my_list1, my_list2, my_list3) to generate the ith
//element of my_list4.

//my_list1 = {0,1,2,3,4}
//my_list2 = {5,6,7,8,9}
//my_list3 = {10,11,12,13,14}

List #(Int #(8)) my_list4 = zipWith3(add3, my_list1, my_list2, my_list3);

//my_list4 = {15,18,21,24,27}

// This is equivalent to saying:
for (Integer i=0; i<5; i=i+1)

my_list4[i] = my_list1[i] + my_list2[i] + my_list3[i];

Fold Functions

The fold family of functions reduces a list to a single result by applying a function over all its
elements. That is, given a list of element_type, L0, L1, L2, ..., Ln−1, a seed of type b_type, and a
function func, the reduction for foldr is given by

func(L0, func(L1, ..., func(Ln−2, func(Ln−1, seed))));

Note that foldr start processing from the highest index position to the lowest, while foldl starts
from the lowest index (zero), i.e.,

func(...(func(func(seed, L0), L1), ...)Ln−1)
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foldr Reduce a list by applying a function over all its elements. Start processing from
the highest index to the lowest.

function b_type foldr(b_type function func(a_type x, b_type y),
b_type seed,
List#(a_type) alist);

foldl Reduce a list by applying a function over all its elements. Start processing from
the lowest index (zero).

function b_type foldl (b_type function func(b_type y, a_type x),
b_type seed,
List#(a_type) alist);

The functions foldr1 and foldl1 use the first element as the seed. This means they only work on
lists of at least one element. Since the result type will be the same as the element type, there is no
b_type as there is in the foldr and foldl functions.

foldr1 foldr function for a non-zero sized list. Uses element Ln−1 as the seed. List must
have at least 1 element.

function element_type foldr1
(element_type function func(element_type x, element_type y),
List#(element_type) alist);

foldl1 foldl function for a non-zero sized list. Uses element L0 as the seed. List must
have at least 1 element.

function element_type foldl1
(element_type function func(element_type y, element_type x),
List#(element_type) alist);

The fold function also operates over a non-empty list, but processing is accomplished in a binary
tree-like structure. Hence the depth or delay through the resulting function will be O(log2(lsize)
rather than O(lsize).

fold Reduce a list by applying a function over all its elements, using a binary tree-like
structure. The function returns the same type as the arguments.

function element_type fold
(element_type function func(element_type y, element_type x),
List#(element_type) alist );

Example - Folds
// my_list1 is a list of five integers {1,2,3,4,5}
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// \+ is a function which returns the sum of the elements

my_sum = foldr (\+ , 0, my_list1));

// my_sum = 15

Use fold to find the element with the maximum value

// my_list1 is a list of five integers {2,45,5,8,32}

my_max = fold (max, my_list1);

// my_max = 45

Scan Functions

The scan family of functions applies a function over a list, creating a new List result. The scan
function is similar to fold, but the intermediate results are saved and returned in a list, instead
of returning just the last result. The result of a scan function is a list. That is, given a list
of element_type, L0, L1, ..., Ln−1, an initial value initb of type b_type, and a function func,
application of the scanr functions creates a new list W , where

Wn = init;
Wn−1 = func(Ln−1,Wn);
Wn−2 = func(Ln−2,Wn−1);

...

W1 = func(L1,W2);
W0 = func(L0,W1);

scanr Apply a function over a list, creating a new list result. Processes elements from
the highest index position to the lowest, and fills the resulting list in the same
way. The result list is one element longer than the input list.

function List#(b_type)
scanr(function b_type func(a_type x1, b_type x2),

b_type initb,
List#(a_type) alist);

sscanr Apply a function over a list, creating a new list result. The elements are processed
from the highest index position to the lowest. Drops the Wn element from the
result. Input and output lists are the same size.

function List#(b_type)
sscanr(function b_type func(a_type x1, b_type x2),

b_type initb,
List#(a_type) alist );
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The scanl function creates the resulting list in a similar way as scanr except that the processing
happens from the zeroth element up to the nth element.

W0 = init;
W1 = func(W0, L0);
W2 = func(W1, L1);
...

Wn−1 = func(Wn−2, Ln−2);
Wn = func(Wn−1, Ln−1);

The sscanl function drops the first result, init, shifting the result index by one.

scanl Apply a function over a list, creating a new list result. Processes elements from
the zeroth element up to the nth element. The result list is 1 element longer than
the input list.

function List#(a_type)
scanl(function a_type func(a_type x1, b_type x2),

a_type inita,
List#(b_type) alist);

sscanl Apply a function over a list, creating a new list result. Processes elements from
the zeroth element up to the nth element. Drop the first result, init, shifting the
result index by one. The length of the input and output lists are the same.

function List#(a_type)
sscanl(function a_type func(a_type x1, b_type x2),

a_type inita,
List#(b) alist );

Examples - Scan

Create a list of factorials
//the function my_mult multiplies element a by element b
function Bit #(16) my_mult (Bit #(16) b, Bit #(8) a);

return (zeroExtend (a) * b);
endfunction

// Create a list of factorials by multiplying each input list element
// by the previous product (the output list element), to generate
// the next product. The seed is a Bit#(16) with a value of 1.
// The elements are processed from the zeroth element up to the nth element.
//my_list1 = {1,2,3,4,5,6,7}

List #(Bit #(16)) my_list2 = scanl (my_mult, 16’d1, my_list1);

//my_list2 = {1,1,2,6,24,120,720,5040}

List to List Functions
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rotate Move the first element to the last and shift each element to the left.

function List#(element_type) rotate (List#(element_type) alist);

rotateR Move last element to the beginning and shift each element to the right.

function List#(element_type) rotateR (List#(element_type) alist);

reverse Reverse element order

function List#(element_type) reverse(List#(element_type) alist);

transpose Matrix transposition of a list of lists.

function List#(List#(element_type))
transpose ( List#(List#(element_type)) matrix );

Examples - List to List Functions

Create a list by moving the last element to the first, then shifting each element to the right.

//my_list1 is a List of elements with values {1,2,3,4,5}

my_list2 = rotateR (my_list1);

//my_list2 is a List of elements with values {5,1,2,3,4}

Create a list which is the reverse of the input List
//my_list1 is a List of elements {1,2,3,4,5}

my_list2 = reverse (my_list1);

//my_list2 is a List of elements {5,4,3,2,1}

Use transpose to create a new list
//my_list1 has the values:
//{{0,1,2,3,4},{5,6,7,8,9},{10,11,12,13,14}}

my_list2 = transpose(my_list1);

//my_list2 has the values:
//{{0,5,10},{1,6,11},{2,7,12},{3,8,13},{4,9,14}}

Monadic Operations

Within Bluespec, there are some functions which can only be invoked in certain contexts. Two
common examples are: ActionValue, and module instantiation. ActionValues can only be invoked

c© 2005 Bluespec, Inc. All rights reserved 163



Reference Guide Bluespec SystemVerilog v3.8

within an Action context, such as a rule block or an Action method, and can be considered as two
parts - the action and the value. Module instantiation can similarly be considered, modules can only
be instantiated in the module context, while the two parts are the module instantiation (the action
performed) and the interface (the result returned). These situations are considered monadic.

When a monadic function is to be applied over a list using map-like functions such as map, zipWith,
or replicate, the monadic versions of these functions must be used. Moreover, the context require-
ments of the applied function must hold.

mapM Takes a monadic function and a list, and applies the function to all list elements
returning the list of corresponding results.

function m#(List#(b_type))
mapM ( function m#(b_type) func(a_type x),

List#(a_type) alist )
provisos (Monad#(m));

mapM_ Takes a monadic function and a list, applies the function to all list elements, and
throws away the resulting list leaving the action in its context.

function m#(List#(b_type) mapM_(m#(b_type) c_type)
provisos (Monad#(m));

zipWithM Take a monadic function (which takes two arguments) and two lists; the function
applied to the corresponding element from each list would return an action and
result. Perform all those actions and return the list of corresponding results.

function m#(List#(c_type))
zipWithM( function m#(c_type) func(a_type x, b_type y),

List#(a_type) alist,
List#(b_type) blist )

provisos (Monad#(m));

zipWith3M Same as zipWithM but combines three lists with a function. The function is
applied to the corresponding element from each list and returns an action and the
list of corresponding results.

function m#(List#(d_type))
zipWith3M( function m#(d_type)

func(a_type x, b_type y, c_type z),
List#(a_type) alist ,
List#(b_type) blist,
List#(c_type) clist )

provisos (Monad#(m));
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replicateM Generate a list of elements by using the given monadic value repeatedly.

function m#(List#(element_type))
replicateM( Integer n, m#(element_type) c)

provisos (Monad#(m));

Miscellaneous Functions on Lists

joinActions Join a number of actions together.

function Action joinActions (List#(Action) list_actions);

joinRules Join a number of rules together.

function Rules joinRules (List#(Rules) list_rules);

mapAccumL Map a function, but pass an accumulator from head to tail.

function Tuple2 #(a_type, List#(c_type))
mapAccumL (function Tuple2 #(a_type, c_type)

func(a_type x, b_type y),a_type x0,
List#(b_type) alist );

mapAccumR Map a function, but pass an accumulator from tail to head.

function Tuple2 #(a_type, List#(c_type))
mapAccumR(function Tuple2 #(a_type, c_type)

func(a_type x, b_type y),a_type x0,
List#(b_type) alist );

mapPairs Map a function over a list consuming two elements at a time. Any straggling
element is processed by the second function.

function List#(b_type)
mapPairs (

function b_type func1(a_type x, a_type y),
function b_type func2(a_type x),
List#(a_type) alist );

Examples - Miscellaneous Functions on Lists

Create a new list using mapPairs. The function sum is applied to each pair of elements (the first
and second, the third and fourth, etc.). If there is an uneven number of elements, the function pass
is applied to the remaining element.
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//sum is defined as c = a+b
function Int#(4) sum (Int #(4) a,Int #(4) b);

Int#(4) c = a + b;
return(c);

endfunction

//pass is defined as a
function Int#(4) pass (Int #(4) a);

return(a);
endfunction

//my_list1 has the elements {0,1,2,3,4}

my_list2 = mapPairs(sum,pass,my_list1);

//my_list2 has the elements {1,5,4}
//my_list2[0] = 0 + 1
//my_list2[1] = 2 + 3
//my_list2[3] = 4

C.1.7 Vector

Package Name

import Vector :: * ;

Description

The Vector package defines an abstract data type which is a container of a specific length, holding
elements of one type. Functions which create and operate on this type are also defined within this
package. Because it is abstract, there are no constructors available for this type (like Cons and Nil
for the List type).

typedef struct Vector#(type numeric vsize, type element_type);

Here, the type variable element_type represents the type of the contents of the elements while the
numeric type variable vsize represents the length of the vector.

If the elements are in the Bits class, then the vector is as well. Thus a vector of these elements can
be stored into Registers or FIFOs; for example a Register holding a vector of type int. Note that a
vector can also store abstract types, such as a vector of Rules or a vector of Reg interfaces. These
are useful during static elaboration although they have no hardware implementation.

Typeclasses

Type Classes for Vector
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Vector

√ √ √

A vector can be turned into bits if the individual elements can be turned into bits. When packed
and unpacked, the zeroth element of the vector is stored in the least significant bits. The size of the
resulting bits is given by tsize = vsize ∗ sizeOf(element type) which is specified in the provisos.
instance Bits #( Vector#(vsize, element_type), tsize)

provisos (Bits#(element_type, sizea),
Mul#(vsize, sizea, tsize));
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Vectors are zero-indexed; the first element of a vector v, is v[0]. When vectors are packed, they are
packed in order from the LSB to the MSB.

Example. Vector#(5, Bit#(7)):

From the type, you can see that this will back into a 35-bit vector (5 elements, each with 7 bits).

MSB
34 bit positions 0
V1[4] V1[3] V1[2] V1[1] V1[0]

LSB

Example. A vector with a structure:
typedef struct { Bool a, UInt#(5) b} Newstruct deriving (Bits);
Vector#(3, NewStruct) v2;

The structure, Newstruct packs into 6 bits. Therefore v2 will pack into an 18-bit vector. And its
structure would look as follows:

MSB
17 16 - 12 11 10 - 6 5 0

v2[2].a v2[2].b v2[1].a v2[1].b v2[0].a v2[0].b
v2[2] v2[1] v2[0]

LSB

Vectors can be compared for equality if the elements can. That is, the operators == and != are
defined.

Vectors are bounded if the elements are.

Functions for Creating and Generating vectors

The following functions are used to create new vectors, with and without defined elements. There
are no Bluespec SystemVerilog constructors available for this abstract type (and hence no pattern-
matching is available for this type) but the following functions may be used to construct values of
the Vector type.

newVector Generate a vector with undefined elements, typically used when vectors are de-
clared.

function Vector#(vsize, element_type) newvector();

genVector Generate a vector containing integers 0 through N-1, vector[0] will have value 0.

function Vector#(vsize, Integer) genVector();

replicate Generate a vector of elements by replicating the given argument (c).

function Vector#(vsize, element_type) replicate(element_type c);

genWith Generate a vector of elements by applying the given function to 0 through N-1.
The argument to the function is another function which has one argument of type
Integer and returns an element_type.

function Vector#(vsize, element_type)
genWith(function element_type func(Integer x1));
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cons Adds an element to a vector creating a vector one element larger. The new element
will be at the 0th position.

function Vector#(vsize1, element_type)
cons (element_type elem, Vector#(vsize, element_type) vect)

provisos (Add#(1, vsize, vsize1));

nil Defines a zero-sized vector.

function Vector#(0, element_type) nil;

append Append two vectors containing elements of the same type, returning the combined
vector. The resulting vector will contain all the elements of vecta followed by all
the elements of vectb.

function Vector#( vsize, element_type )
append( Vector#(v0size,element_type) vecta

Vector#(v1size,element_type) vectb
provisos (Add#(v0size, v1size, vsize)); //vsize = vsize0 + v1size

concat Append (concatenate) many vectors, that is a vector of vectors into one vector.

function Vector#(mvsize,element_type)
concat(Vector#(m,Vector#(n,element_type)) xss)

provisos (Mul#(m,n,mvsize));

Examples - Creating and Generating Vectors

Create a new vector, my_vector, of 5 elements of datatytpe Int#(32), with elements which are
undefined.

Vector #(5, Int#(32)) my_vector;

Create a vector, my vector, of five 1’s
Vector #(5,Int #(32)) my_vector = replicate (1);

// my_vector is a 5 element vector {1,1,1,1,1}

Create a vector, my_vector, by applying the given function add2 to 0 through N-1.
function Integer add2 (Integer a);

Integer c = a + 2;
return(c);
endfunction

Vector #(5,Integer) my_vector = genWith(add2);

// a is the index of the vector, 0 to N-1
// my_vector = {2,3,4,5,6,}
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Functions for Extracting Elements and Sub-Vectors

These functions are used to select elements or vectors from existing vectors, while retaining the input
vector.

[i] The square-bracket notation is available to extract an element from a vector.
Extracts the ith element, where the first element is [0]. Index i must be one of the
following types; Integer, Bit#(n), Int or UInt.

anyVector[i]

select The select function is another form of the subscript notation ([i]). It is necessary
when the compiler can’t determine the type of the subscript i.

function element_type
select(Vector#(vsize,element_type) vect, idx_type index)

provisos (Eq#(idx_type), Literal#(idx_type));

update Update an element in a vector and return a new vector which is the given vector
with one element changed/updated. This function does not change the given vector.

function Vector#(vsize, element_type)
update(Vector#(vsize, element_type) vectIn,

idx_type index,
element_type newElem)

provisos(Eq#(idx_type), Literal#(idx_type));

head Extract the zeroth (head) element of a vector. The vector must have at least one
element.

function element_type
head (Vector#(vsize, element_type) vect)

provisos(Add#(1,xxx,vxize)); // vsize >= 1

last Extract the last (tail) element of a vector. The vector must have at least one
element.

function element_type
last (Vector#(vsize, element_type) vect)

provisos(Add#(1,xxx,vxize)); // vsize >= 1
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tail Remove the head element of a vector leaving its tail in a smaller vector.

function Vector#(vsize,element_type)
tail (Vector#(vsize1, element_type) xs)

provisos (Add#(1, vsize, vsize1));

init Remove the last element of a vector leaving its initial part in a smaller vector.

function Vector#(vsize,element_type)
init (Vector#(vsize1, element_type) xs)

provisos (Add#(1, vsize, vsize1));

take Take a number of elements from a vector starting from index 0. The number of
elements to take is indicated by the type of the context where this is called, and
is not specified as an argument to the function.

function Vector#(vxize2,element_type)
take (Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize.

takeTail Take a number of elements from the tail by dropping elements at the 0th position.
The elements in the result vector will be in the same order as the input vector.

function Vector#(vxize2,element_type)
takeTail (Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize.

takeAt Take a number of elements starting at startPos.
startPos must be a compile-time constant. If the startPos and vector size cause
the function to go past the end of the vector, an error will be returned.

function Vector#(vsize2,element_type)
takeAt (Integer startPos, Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize

Examples - Extracting Elements and Sub-Vectors

Extract the element from a vector, my_vector, at the position of index
// my_vector is a vector of elements {6,7,8,9,10,11}
// index = 3
// select will generate a MUX

newvalue = select (my_vector, index);

170 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

// newvalue = 9

Extract the zeroth element of the vector my_vector
// my_vector is a vector of elements {6,7,8,9,10,11}

newvalue = head(my_vector);

// newvalue = 6

Create a vector, my_vector2, of size 4 by removing the head (zeroth) element of the vector my_vector1

// my_vector1 is a vector with 5 elements {0,1,2,3,4}

Vector #(4, Int#(32)) my_vector2 = tail (my_vector1);

// my_vector2 is a vector of 4 elements {1,2,3,4}

Create a 2 element vector, my_vector2, by taking the first two elements of the vector my_vector1
// my_vector1 is vector with 5 elements {0,1,2,3,4}

Vector #(2, Int#(4)) my_vector2 = take (my_vector1);

// my_vector2 is a 2 element vector {0,1}

Create a 3 element vector, my_vector2, by taking the last 3 elements of vector, my_vector1 using
takeTail

// my_vector1 is Vector with 5 elements {0,1,2,3,4}

Vector #(3,Int #(4)) my_vector2 = takeTail (my_vector1);

// my_vector2 is a 3 element vector {2,3,4}

Create a 3 element vector, my_vector2, by taking the 1st - 3rd elements of vector, my_vector1 using
takeAt

// my_vector1 is Vector with 5 elements {0,1,2,3,4}

Vector #(3,Int #(4)) my_vector2 = takeAt (1, my_vector1);

// my_vector2 is a 3 element vector {1,2,3}

Functions for Combining Vectors with Zip

The family of zip functions takes two or more vectors and combines them into one vector of Tuples.
Several variations are provided for different resulting Tuples, as well as support for mis-matched
vector sizes. Tuples are described in Section 12.4.

zip Combine two vectors into a vector of Tuples.

function Vector#(vsize,Tuple2 #(a_type, b_type))
zip( Vector#(vsize, a_type) vecta,

Vector#(vsize, b_type) vectb);
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zip3 Combine three vectors into a vector of Tuple3.

function Vector#(vsize,Tuple3 #(a_type, b_type, c_type))
zip3( Vector#(vsize, a_type) vecta,

Vector#(vsize, b_type) vectb,
Vector#(vsize, c_type) vectc);

zip4 Combine four vectors into a vector of Tuple4.

function Vector#(vsize,Tuple4 #(a_type, b_type, c_type, d_type))
zip4( Vector#(vsize, a_type) vecta,

Vector#(vsize, b_type) vectb,
Vector#(vsize, c_type) vectc,
Vector#(vsize, d_type) vectd);

zipAny Combine two vectors into one vector of pairs (2-tuples); result is as long as the
smaller vector.

function Vector#(vsize,Tuple2 #(a_type, b_type))
zipAny(Vector#(m,a_type) vect1,

Vector#(n,b_type) vect2);
provisos (Max#(m,vsize,m), Max#(n, vsize, n));

unzip Separate a vector of pairs (i.e. a Tuple2#(a,b)) into a pair of two vectors.

function Tuple2#(Vector#(vsize,a_type), Vector#(vsize, b_type))
unzip(Vector#(vsize,Tuple2 #(a_type, b_type)) vectab);

Examples - Combining Vectors with Zip

Combine two vectors into a vector of Tuples

// my_vector1 is a vector of elements {0,1,2,3,4}
// my_vector2 is a vector of elements {5,6,7,8,9}

my_vector3 = zip(my_vector1, my_vector2);

// my_vector3 is a vector of Tuples {(0,5),(1,6),(2,7),(3,8),(4,9)}

Separate a vector of pairs into a Tuple of two vectors

// my_vector3 is a vector of pairs {(0,5),(1,6),(2,7),(3,8),(4,9)}
Tuple2#(Vector #(5,Int #(5)),Vector #(5,Int #(5))) my_vector4 =

unzip(my_vector3);

// my_vector4 is ({0,1,2,3,4},{5,6,7,8,9})
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Mapping Functions over Vectors

A function can be applied to all elements of a vector, using high-order functions such as map. These
functions take as an argument a function, which is applied to the elements of the vector.

map Map a function over a vector, returning a new vector of results.

function Vector#(vsize,b_type)
map (function b_type func(a_type x),

Vector#(vsize, a_type) vect);

Example - Mapping Functions over Vectors

Consider the following code example which applies the zeroExtend function to each element of
avector into a new vector, resultvector.

Vector#(13,Bit#(5)) avector;
Vector#(13,Bit#(10)) resultvector;
...
resultvector = map( zeroExtend, avector ) ;

This is equivalent to saying:
for (Integer i=0; i<13; i=i+1)

resultvector[i] = zeroExtend(avector[i]);

Map a negate function over a Vector
// my_vector1 is a vector of 5 elements {0,1,2,3,4}
// negate is a function which makes each element negative

Vector #(5,Int #(32)) my_vector2 = map (negate, my_vector1);

// my_vector2 is a vector of 5 elements {0,-1,-2,-3,-4}

ZipWith Functions

The zipWith functions combine two or more vectors with a function and generate a new vector.
These functions combine features of map and zip functions.

zipWith Combine two vectors with a function.

function Vector#(vsize,c_type)
zipWith (function c_type func(a_type x, b_type y),

Vector#(vsize,a_type) vecta,
Vector#(vsize,b_type) vectb );

zipWithAny Combine two vectors with a function; result is as long as the smaller vector.

function Vector#(vsize,c_type)
zipWithAny (function c_type func(a_type x, b_type y),

Vector#(m,a_type) vecta,
Vector#(n,b_type) vectb )

provisos (Max#(n, vsize, n), Max#(m, vsize, m));
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zipWith3 Combine three vectors with a function.

function Vector#(vsize,d_type)
zipWith3(function d_type func(a_type x, b_type y, c_type z),

Vector#(vsize,a_type) vecta,
Vector#(vsize,b_type) vectb,
Vector#(vsize,c_type) vectc );

zipWithAny3 Combine three vectors with a function; result is as long as the smallest vector.

function Vector#(vsize,c_type)
zipWithAny3(function d_type func(a_type x, b_type y, c_type z),

Vector#(m,a_type) vecta,
Vector#(n,b_type) vectb,
Vector#(o,c_type) vectc )

provisos (Max#(n, vsize, n), Max#(m, vsize, m), Max#(o, vsize, o));

Examples - ZipWith

Create a vector by applying a function over the elements of 3 vectors.

// the function add3 adds 3 values
function Int#(n) add3 (Int #(n) a,Int #(n) b,Int #(n) c);

Int#(n) d = a + b +c ;
return d;

endfunction

// Create the vector my_vector4 by adding the ith element of each of
// 3 vectors (my_vector1, my_vector2, my_vector3) to generate the ith
// element of my_vector4.

// my_vector1 = {0,1,2,3,4}
// my_vector2 = {5,6,7,8,9}
// my_vector3 = {10,11,12,13,14}

Vector #(5,Int #(8)) my_vector4 = zipWith3(add3, my_vector1, my_vector2, my_vector3);
// creates 5 instances of the add3 function in hardware.
// my_vector4 = {15,18,21,24,27}

// This is equivalent to saying:
for (Integer i=0; i<5; i=i+1)

my_vector4[i] = my_vector1[i] + my_vector2[i] + my_vector3[i];

Fold Functions

The fold family of functions reduces a vector to a single result by applying a function over all its
elements. That is, given a vector of element_type, V0, V1, V2, ..., Vn−1, a seed of type b_type, and
a function func, the reduction for foldr is given by

func(V0, func(V1, ..., func(Vn−2, func(Vn−1, seed))));
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Note that foldr start processing from the highest index position to the lowest, while foldl starts
from the lowest index (zero), i.e. foldl is:

func(...(func(func(seed, V0), V1), ...)Vn−1)

foldr Reduce a vector by applying a function over all its elements. Start processing
from the highest index to the lowest.

function b_type foldr(b_type function func(a_type x, b_type y),
b_type seed, Vector#(vsize,a_type) vect);

foldl Reduce a vector by applying a function over all its elements. Start processing
from the lowest index (zero).

function b_type foldl (b_type function func(b_type y, a_type x),
b_type seed, Vector#(vsize,a_type) vect);

The functions foldr1 and foldl1 use the first element as the seed. This means they only work on
vectors of at least one element. Since the result type will be the same as the element type, there is
no b_type as there is in the foldr and foldl functions.

foldr1 foldr function for a non-zero sized vector, using element Vn−1 as a seed. Vector
must have at least 1 element. If there is only one element, it is returned.

function element_type foldr1(
element_type function func(element_type x, element_type y),
Vector#(vsize,element_type) vect)

provisos (Add#(1, xxx, vsize));

foldl1 foldl function for a non-zero sized vector, using element V0as a seed. Vector must
have at least 1 element. If there is only one element, it is returned.

function element_type foldl1 (
element_type function func(element_type y, element_type x),
Vector#(vsize,element_type) vect)

provisos (Add#(1, xxx, vsize));

The fold function also operates over a non-empty vector, but processing is accomplished in a binary
tree-like structure. Hence the depth or delay through the resulting function will be O(log2(vsize)
rather than O(vsize).
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fold Reduce a vector by applying a function over all its elements, using a binary tree-
like structure. The function returns the same type as the arguments.

function element_type fold (
element_type function func(element_type y, element_type x),
Vector#(vsize,element_type) vect )

provisos (Add#(1, xxx, vsize));

Example - Folds

Use fold to find the sum of the elements in a vector

// my_vector1 is a vector of five integers {1,2,3,4,5}
// \+ is a function which returns the sum of the elements

// This will build an adder tree, instantiating 4 adders, with a maximum
// depth or delay of 3. If foldr1 or foldl1 were used, it would
// still instantiate 4 adders, but the delay would be 4.

my_sum = fold (\+ , 0, my_vector1));

// my_sum = 15

Use fold to find the element with the maximum value

// my_vector1 is a vector of five integers {2,45,5,8,32}

my_max = fold (max, my_vector1);

// my_max = 45

Scan Functions

The scan family of functions applies a function over a vector, creating a new Vector result. The
scan function is similar to fold, but the intermediate results are saved and returned in a vector,
instead of returning just the last result. The result of a scan function is a vector. That is, given a
vector of element_type, V0, V1, ..., Vn−1, an initial value initb of type b_type, and a function func,
application of the scanr functions creates a new vector W , where

Wn = init;
Wn−1 = func(Vn−1,Wn);
Wn−2 = func(Vn−2,Wn−1);

...

W1 = func(V1,W2);
W0 = func(V0,W1);
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scanr Apply a function over a vector, creating a new vector result. Processes elements
from the highest index position to the lowest, and fill the resulting vector in the
same way. The result vector is 1 element longer than the input vector.

function Vector#(vsize1,b_type)
scanr(function b_type func(a_type x1, b_type x2),

b_type initb,
Vector#(vsize,a_type) vect)

provisos (Add#(1, vsize, vsize1));

sscanr Apply a function over a vector, creating a new vector result. The elements are pro-
cessed from the highest index position to the lowest. The Wn element is dropped
from the result. Input and output vectors are the same size.

function Vector#(vsize,b_type)
sscanr(function b_type func(a_type x1, b_type x2),

b_type initb,
Vector#(vsize,a_type) vect );

The scanl function creates the resulting vector in a similar way as scanr except that the processing
happens from the zeroth element up to the nth element.

W0 = init;
W1 = func(W0, V0);
W2 = func(W1, V1);
...

Wn−1 = func(Wn−2, Vn−2);
Wn = func(Wn−1, Vn−1);

The sscanl function drops the first result, init, shifting the result index by one.

scanl Apply a function over a vector, creating a new vector result. Processes elements
from the zeroth element up to the nth element. The result vector is 1 element
longer than the input vector.

function Vector#(vsize1,a_type)
scanl(function a_type func(a_type x1, b_type x2),

a_type q,
Vector#(vsize,b_type) vect)

provisos (Add#(1, vsize, vsize1));
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sscanl Apply a function over a vector, creating a new vector result. Processes elements
from the left, the zeroth element up to the nth element. The first result, init, is
dropped, shifting the result index by one. Input and output vectors are the same
size.

function Vector#(vsize,a_type)
sscanl(function a_type func(a_type x1, b_type x2),

a_type q,
Vector#(vsize,b) vect );

Examples - Scan

Create a vector of factorials

// \* is a function which returns the result of a multiplied by b
function Bit #(16) \* (Bit #(16) b, Bit #(8) a);

return (zeroExtend (a) * b);
endfunction

// Create a vector of factorials by multiplying each input list element
// by the previous product (the output list element), to generate
// the next product. The seed is a Bit#(16) with a value of 1.
// The elements are processed from the zeroth element up to the nth element.

// my_vector1 = {1,2,3,4,5,6,7}
Vector#(8,Bit #(16)) my_vector2 = scanl (\*, 16’d1, my_vector1);
// 7 multipliers are generated

// my_vector2 = {1,1,2,6,24,120,720,5040}
// foldr with the same arguments would return just 5040.

Vector to Vector Functions

The following functions generate a new vector by changing the position of elements within the vector.

rotate Move the first element to the last and shift each element to the left.

function Vector#(vsize,element_type)
rotate (Vector#(vsize,element_type) vect);

rotateR Move last element to the beginning and shift each element to the right.

function Vector#(vsize,element_type)
rotateR (Vector#(vsize,element_type) vect);
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shiftInAt0 Shift a new element into the vector at index 0, bumping all other elements up by
one. The Nth element is dropped.

function Vector#(vsize,element_type)
shiftInAt0 (Vector#(vsize,element_type) vect,

element_type newElement);

shiftInAtN Shift a new element into the vector at index N, bumping all other elements down
by one. The 0th element is dropped.

function Vector#(vsize,element_type)
shiftInAtN (Vector#(vsize,element_type) vect,

element_type newElement);

reverse Reverse element order

function Vector#(vsize,element_type)
reverse(Vector#(vsize,element_type) vect);

transpose Matrix transposition of a vector of vectors.

function Vector#(m,Vector#(n,element_type))
transpose ( Vector#(n,Vector#(m,element_type)) matrix );

transposeLN Matrix transposition of a vector of Lists.

function Vector#(vsize, List#(element_type))
transposeLN( List#(Vector#(vsize, element_type)) lvs );

Examples - Vector to Vector Functions

Create a vector by moving the last element to the first, then shifting each element to the right.
// my_vector1 is a vector of elements with values {1,2,3,4,5}

my_vector2 = rotateR (my_vector1);

// my_vector2 is a vector of elements with values {5,1,2,3,4}

Create a vector which is the reverse of the input vector
// my_vector1 is a vector of elements {1,2,3,4,5}

my_vector2 = reverse (my_vector1);

// my_vector2 is a vector of elements {5,4,3,2,1}
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Use transpose to create a new vector

// my_vector1 is a Vector#(3, Vector#(5, Int#(8)))
// the result, my_vector2, is a Vector #(5,Vector#(3,Int #(8)))

// my_vector1 has the values:
// {{0,1,2,3,4},{5,6,7,8,9},{10,11,12,13,14}}

my_vector2 = transpose(my_vector1);

// my_vector2 has the values:
// {{0,5,10},{1,6,11},{2,7,12},{3,8,13},{4,9,14}}

Monadic Operations

Within Bluespec, there are some functions which can only be invoked in certain contexts. Two
common examples are: ActionValue, and module instantiation. ActionValues can only be invoked
within an Action context, such as a rule block or an Action method, and can be considered as two
parts - the action and the value. Module instantiation can similarly be considered, modules can only
be instantiated in the module context, while the two parts are the module instantiation (the action
performed) and the interface (the result returned). These situations are considered monadic.

When a monadic function is to be applied over a vector using map-like functions such as map,
zipWith, or replicate, the monadic versions of these functions must be used. Moreover, the context
requirements of the applied function must hold. The common application for these functions is in
the generation (or instantiation) of vectors of hardware components.

mapM Takes a monadic function and a vector, and applies the function to all vector
elements returning the vector of corresponding results.

function m#(Vector#(vsize, b_type))
mapM ( function m#(b_type) func(a_type x),

Vector#(vsize, a_type) vecta )
provisos (Monad#(m));

mapM_ Takes a monadic function and a vector, applies the function to all vector elements,
and throws away the resulting vector leaving the action in its context.

function m#(void) mapM_(function m#(b_type) func(a_type x),
Vector#(vsize, a_type) vect)

provisos (Monad#(m));
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zipWithM Take a monadic function (which takes two arguments) and two vectors; the func-
tion applied to the corresponding element from each vector would return an action
and result. Perform all those actions and return the vector of corresponding re-
sults.

function m#(Vector#(vsize, c_type))
zipWithM( function m#(c_type) func(a_type x, b_type y),

Vector#(vsize, a_type) vecta,
Vector#(vsize, b_type) vectb )

provisos (Monad#(m));

zipWithM_ Take a monadic function (which takes two arguments) and two vectors; the func-
tion is applied to the corresponding element from each vector. This is the same as
zipWithM but the resulting vector is thrown away leaving the action in its context.

function m#(void)
zipWithM_(function m#(c_type) func(a_type x, b_type y),

Vector#(vsize, a_type) vecta,
Vector#(vsize, b_type) vectb )

provisos (Monad#(m));

zipWith3M Same as zipWithM but combines three vectors with a function. The function is
applied to the corresponding element from each vector and returns an action and
the vector of corresponding results.

function m#(Vector#(vsize, c_type))
zipWith3M( function m#(d_type)

func(a_type x, b_type y, c_type z),
Vector#(vsize, a_type) vecta,
Vector#(vsize, b_type) vectb,
Vector#(vsize, c_type) vectc )

provisos (Monad#(m));

genWithM Generate a vector of elements by applying the given monadic function to 0 through
N-1.

function m#(Vector#(vsize, element_type))
genWithM(function m#(element_type) func(Integer x))

provisos (Monad#(m));
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replicateM Generate a vector of elements by using the given monadic value repeatedly.

function m#(Vector#(vsize, element_type))
replicateM( m#(element_type) c)

provisos (Monad#(m));

Examples - Creating a Vector of Registers

The following example shows some common uses of the Vector type. We first create a vector of
registers, and show how to populate this vector. We then continue with some examples of accessing
and updating the registers within the vector, as well as alternate ways to do the same.

// First define a variable to hold the register interfaces.
// Notice the variable is really a vector of Interfaces of type Reg,
// not a vector of modules.
Vector#(10,Reg#(DataT)) vectRegs ;

// Now we want to populate the vector, by filling it with Reg type
// interfaces, via the mkReg module.
// Notice that the replicateM function is used instead of the
// replicate function since mkReg function is creating a module.
vectRegs <- replicateM( mkReg( 0 ) ) ;

// ...

// A rule showing a read and write of one register within the
// vector.
// The readReg function is required since the selection of an
// element from vectRegs returns a Reg#(DType) interface, not the
// value of the register. The readReg functions converts from a
// Reg#(DataT) type to a DataT type.
rule zerothElement ( readReg( vectRegs[0] ) > 20 ) ;

// set 0 element to 0
// The parentheses are required in this context to give
// precedence to the selection over the write operation.
(vectRegs[0]) <= 0 ;

// Set the 1st element to 5
// An alternate syntax
vectRegs[1]._write( 5 ) ;

endrule

rule lastElement ( readReg( vectRegs[9] ) > 200 ) ;
// Set the 9th element to -10000
(vectRegs[9]) <= -10000 ;

endrule

// These rules defined above can execute simultaneously, since
// they touch independent registers

// Here is an example of dynamic selection, first we define a
// register to be used as the selector.
Reg#(UInt#(4)) selector <- mkReg(0) ;
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// Now define another Reg variable which is selected from the
// vectReg variable. Note that no register is created here, just
// an alias is defined.
Reg#(DataT) thisReg = select(vectRegs, selector ) ;

//The above statement is equivalent to:
//Reg#(DataT) thisReg = vectRegs[selector] ;

// If the selected register is greater than 20’h7_0000, then its
// value is reset to zero. Note that the vector update function is
// not required since we are changing the contents of a register
// not the vector vectReg.
rule reduceReg( thisReg > 20’h7_0000 ) ;

thisReg <= 0 ;
selector <= ( selector < 9 ) ? selector + 1 : 0 ;

endrule

// As an alternative, we can define N rules which each check the
// value of one register and update accordingly. This is done by
// generating each rule inside an elaboration-time for-loop.

Integer i; // a compile time variable
for ( i = 0 ; i < 10 ; i = i + 1 ) begin

rule checkValue( readReg( vectRegs[i] ) > 20’h7_0000 ) ;
(vectRegs[i]) <= 0 ;

endrule
end

Functions for Tests on Vectors

The following functions are used to test vectors - they are boolean functions, i.e. they return True
or False values.

elem Check if a value is an element of a vector.

function Bool elem (element_type x,
Vector#(vsize,element_type) vect )

provisos (Eq#(element_type));

any Test if a predicate holds for any element of a vector.

function Bool any(function Bool pred(element_type x1),
Vector#(vsize,element_type) vect );
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all Test if a predicate holds for all elements of a vector.

function Bool all(function Bool pred(element_type x1),
Vector#(vsize,element_type) vect );

Examples - Tests on Vectors

Test that all elements of the vector my_vector1 are positive integers

function Bool isPositive (Int #(32) a);
return (a > 0)

endfunction

// function isPositive checks that "a" is a positive integer
// if my_vector1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (all(isPositive, my_vector1))
$display ("Vector contains all negative values");

Test if any elements in the vector are positive integers.

// function isPositive checks that "a" is a positive integer
// if my_vector1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (any(pos, my_vector1))
$display ("Vector contains some negative values");

Check if the integer 5 is in my_vector

// if my_vector contains n elements, elem will generate n copies
// of the eq test
if (elem(5,my_vector))

$display ("Vector contains the integer 5");

Functions for Converting to and from Vectors

There are functions which convert to and from List and Vector.

toList Convert a Vector to a List.

function List#(element_type)
toList (Vector#(vsize, element_type) vect);

toVector Convert a List to a Vector.

function Vector#(vsize, element_type)
toVector ( List#(element_type) lst);

There are functions which convert to and from array and Vector.
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arraytoVector Convert an array to a Vector.

function Vector#(vsize, element_type)
arrayToVector ( element_type[ ] arr);

vectorToArray Convert a Vector to an array.

function element_type[ ]
vectorToArray (Vector#(vsize, element_type) vect);

Example - Converting to and from Vectors

Convert the vector my_vector to a list named my_list

Vector#(5,Int#(13)) my_vector;
List#(Int#(13)) my_list = toList(my_vector);

Miscellaneous Functions on Vectors

joinActions Join a number of actions together. joinActions is used for static elaboration
only, no hardware is generated.

function Action joinActions (Vector#(vsize,Action) vactions);

joinRules Join a number of rules together.joinRules is used for static elaboration only, no
hardware is generated.

function Rules joinRules (Vector#(vsize,Rules) vrules);

mapAccumL Map a function, but pass an accumulator from head to tail.

function Tuple2 #(a_type, Vector#(vsize,c_type))
mapAccumL (function Tuple2 #(a_type, c_type)

func(a_type x, b_type y), a_type x0,
Vector#(vsize,b_type) vect );

mapAccumR Map a function, but pass an accumulator from tail to head.

function Tuple2 #(a_type, Vector#(vsize,c_type))
mapAccumR(function Tuple2 #(a_type, c_type)

func(a_type x, b_type y), a_type x0,
Vector#(vsize,b_type) vect );
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mapPairs Map a function over a vector consuming two elements at a time. Any straggling
element is processed by the second function.

function Vector#(vsize2,b_type)
mapPairs (

function b_type func1(a_type x, a_type y),
function b_type func2(a_type x),
Vector#(vsize,a_type) vect )

provisos (Div#(vsize, 2, vsize2));

Examples - Miscellaneous Functions on Vectors

Create a new vector using mapPairs. The function sum is applied to each pair of elements (the first
and second, the third and fourth, etc.). If there is an uneven number of elements, the function pass
is applied to the remaining element.

// sum is defined as c = a+b
function Int#(4) sum (Int #(4) a,Int #(4) b);

Int#(4) c = a + b;
return(c);

endfunction

// pass is defined as a
function Int#(4) pass (Int #(4) a);

return(a);
endfunction

// my_vector1 has the elements {0,1,2,3,4}

my_vector2 = mapPairs(sum,pass,my_vector1);

// my_vector2 has the elements {1,5,4}
// my_vector2[0] = 0 + 1
// my_vector2[1] = 2 + 3
// my_vector2[3] = 4

C.1.8 ListN

Package name

import ListN :: * ;

Description

ListN is an alternative implementation of Vector which is preferred for list processing functions, such
as head, tail, map, fold, etc. All Vector functions are available, by substituting ListN for Vector.
See the Vecotr docuemntation (C.1.7) for details. If the implementation requries random access to
items in the list, the Vector construct is recommended. Using ListN where Vectors is recommended
(and visa-versa) can lead to very long static elaboration times.

The ListN package defines an abstract data type which is a listN of a specific length. Functions
which create and operate on this type are also defined within this package. Because it is abstract,
there are no constructors available for this type (like Cons and Nil for the List type).

struct ListN#(vsize,a_type)
· · · abstract · · ·
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Here, the type variable “a_type” represents the type of the contents of the listN while type variable
“vsize” represents the length of the ListN.

C.2 Advanced Data Types

C.2.1 Complex

Package Name

import Complex :: * ;

Description

The Complex package provides a representation for complex numbers plus functions to operate on
variables of this type. The basic representation is the Complex structure, which is polymorphic
on the type of data it holds. For example, one can have complex numbers of type Int or of type
FixedPoint. A Complex number is represented in two part, the real part (rel) and the imaginary
part (img). These fields are accessible though standard structure addressing, i.e., foo.rel and
foo.img where foo is of type Complex.

typedef struct {
any_t rel ;
any_t img ;
} Complex#(type any_t)

deriving ( Bits, Eq ) ;

Types and type classes

The Complex type belongs to the Arith and Literal type classes. Each type class definition includes
functions which are then also defined for the data type. The Prelude library definitions (Section B)
describes which functions are defined for each type class.

Type Classes used by Complex

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

Complex
√ √ √ √

Arith

The type Complex belongs to the Arith type class, hence the common infix operators (+, -, and *) are
defined and can be used to manipulate variables of type Complex. Note however, that the complex
multiplication (*) produces four multipliers in a combinational function; some other modules could
accomplish the same function with less hardware but with greater latency.

instance Arith#( Complex#(any_type) )
provisos( Arith#(any_type) ) ;

Literal

The Complex type is a member of the Literal class, which defines a conversion from the compile-
time Integer type to Complex type with the fromInteger function. This function converts the
Integer to the real part, and sets the imaginary part to 0.

instance Literal#( Complex#(any_type) )
provisos( Literal#(any_type) );

Functions
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cmplx A simple constructor function is provided to set the fields.

function Complex#(a_type) cmplx( a_type realA, a_type imagA ) ;

cmplxMap Applies a function to each part of the complex structure. This is useful for
operations such as signExtend, truncate, etc.

function Complex#(b_type) cmplxMap(
function b_type mapFunc( a_type x),
Complex#(a_type) cin ) ;

cmplxSwap Exchanges the real and imaginary parts.

function Complex#(a_type) cmplxSwap( Complex#(a_type) cin ) ;

cmplxWrite Displays a complex number given a prefix string, an infix string, a postscript
string, and an Action function which writes each part. cmplxWrite is of type
Action and can only be invoked in Action contexts such as Rules and Actions
methods.

function Action cmplxWrite(String pre,
String infix,
String post,
function Action writeaFunc( a_type x ),
Complex#(a_type) cin );

Examples - Complex Numbers

// The following utility function is provided for writing data
// in decimal format. An example of its use is show below.

function Action writeInt( Int#(n) ain ) ;
$write( "%0d", ain ) ;

endfunction

// Set the fields of the complex number using the constructor function cmplx
Complex#(Int#(6)) complex_value = cmplx(-2,7) ;

// Display complex_value as ( -2 + 7i ).
// Note that writeInt is passed as an argument to the cmplxWrite function.
cmplxWrite( "( ", " + ", "i)", writeInt, complex_value );
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// Swap the real and imaginary parts.
swap_value = cmplxSwap( complex_value ) ;

// Display the swapped values. This will display ( -7 + 2i).
cmplxWrite( "( ", " + ", "i)", writeInt, swap_value );

C.2.2 FixedPoint

Package Name

import FixedPoint :: * ;

Description

The FixedPoint library package defines a type for representing fixed-point numbers and correspond-
ing functions to operate and manipulate variables of this type.

A fixed-point number represents signed real numbers which have a fixed number of binary digits
(bits) before and after the binary point. The type constructor for a fixed-point number takes two
numeric types as argument; the first (isize) defines the number of bits to the left of the binary point
(the integer part), while the second (fsize) defines the number of bits to the right of the binary point,
(the fractional part).

The following data structure defines this type, while some utility functions provide the reading of
the integer and fractional parts.

typedef struct {
Int#(TAdd#(isize,fsize)) fxpt ;
}

FixedPoint#(numeric type isize, numeric type fsize )
deriving( Eq, Bits ) ;

Types and type classes

The FixedPoint type belongs to the following type classes; Eq, Bits, Bounded, Arith, Literal,
Ord, and Bitwise. Each type class definition includes functions which are then also defined for the
data type. The Prelude library definitions (Section B) describes which functions are defined for each
type class.

Type Classes used by FixedPoint

Bits Eq Literal Ord Bounded Bit Bit Bit Arith
wise Reduce Extend

FixedPoint X X X X X X X

Bounded

The range of values, v, representable with a signed fixed-point number of type FixedPoint#(isize,
fsize) is +(2isize−1−2−fsize) ≤ v ≤ −2isize−1. This range is provided by the members of Bounded
type class to which FixedPoint belongs. The function epsilon returns the smallest representable
quantum by a specific type, 2−fsize. For example, a variable v of type FixedPoint#(2,3) type can
represent numbers from 3.875 (3 7

8 ) to −4.0 in intervals of 1
8 = 0.125, i.e. epsilon is 0.125. The type

FixedPoint#(5,0) is equivalent to Int#(5).

instance Bounded#( FixedPoint#(i,f) )
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epsilon Returns the value of epsilon which is the smallest representable
quantum by a specific type, 2−fsize.

function FixedPoint#(i,f) epsilon () ;

Arith

The type FixedPoint belongs to the Arith type class, hence the common infix operators (+, -, and
*) are defined and can be used to manipulate variables of type FixedPoint.

instance Arith#( FixedPoint#(i,f) )
provisos( Add#(1, xxx, i) ) ; // i >= 1

Literal

The type FixedPoint belongs to the Literal type class, which allows conversion from (compile-
time) type Integer to type FixedPoint. Note that only the integer part is assigned.
instance Literal#( FixedPoint#(i,f) )

provisos ( Add#(1, xxx, i) ); // i >= 1

Ord

In addition to equality and inequality comparisons, FixedPoint variables can be compared by the
relational operators provided by the Ord type class. i.e., <, >, <=, and >=.

instance Ord#( FixedPoint#(i,f) )
provisos( Add#(1, xxx, i) ) ; // i >= 1

Bitwise

Left and right shifts are provided for FixedPoint variables as part of the Bitwise type class. Note
that the shift right (>>) function does an arithmetic shift, thus preserving the sign of the operand.
Note that a right shift of 1 is equivalent to a division by 2, except when the operand is equal to
−epsilon. The other methods of Bitwise type class are not provided since they have no operational
meaning on FixedPoint variables; the use of these generates an error message.

instance Bitwise#( FixedPoint#(i,f) )
provisos( Add#(1, xxx, i) ) ; // i >= 1

Functions

Utility functions are provided to extract the integer and fractional parts.

fxptGetInt Extracts the integer part of the FixedPoint number.

function Int#(isize) fxptGetInt ( FixedPoint#(isize, fsize) x )
provisos( Add#(1, xxx, isize) ) ; // isize >= 1

fxptGetFrac Extracts the factional part of the FixedPoint number.

function UInt#(fsize) fxptGetFrac ( FixedPoint#(isize, fsize) x );
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To convert run-time Int and UInt values to type FixedPoint, the following conversion functions
are provided. Both of these functions invoke the necessary extension of the source operand.

fromInt Converts run-time Int values to type FixedPoint.

function FixedPoint#(ir,fr) fromInt( Int#(ia) inta )
provisos ( Add#(1, xxA, ir ), // ir >= 1

Add#(ia,xxB, ir ) ); // ir >= ia

fromUInt Converts run-time UInt values to type FixedPoint.

function FixedPoint#(ir,fr) fromUInt( UInt#(ia) uinta )
provisos ( Add#(ia, 1, ia1), // ia1 = ia + 1

Add#(ia1,xxB, ir ) ); // ir >= ia1

Non-integer compile time constants may be specified by a rational number which is a ratio of two
integers. For example, one-third may be specified by fromRational(1,3);, while π can be specified
as fromRational( 31415926, 10000000); .

fromRational Specify a FixedPoint with a rational number which is the ratio of two
integers.

function FixedPoint#(i,f) fromRational(
Integer numerator, Integer denominator)

provisos ( Add#(1, xxA, i ) ) ; // i >= 1

At times, a full precision multiplication may be required, where the result is sum of the field sizes
of the operands. Note that the operand do not have to be the same type (sizes), as is required for
the infix multiplication (*) operator.

fxptMult Function for full precision multiplication, where the result is the sum of the
field sizes of the operands.

function FixedPoint#(ri,rf) fxptMult( FixedPoint#(ai,af) x,
FixedPoint#(bi,bf) y )

provisos( Add#(ai,bi,ri), // ri = ai + bi
Add#(af,bf,rf), // rf = af + bf
Add#(TAdd#(ai,af), TAdd#(bi,bf), TAdd#(ri,rf)) );

fxptTruncate is a general truncate function which converts variables to FixedPoint#(ai,af) to
type FixedPoint#(ri,rf), where ai ≥ ri and af ≥ rf . This function truncates bits as appropriate
from the most significant integer bits and the least significant fractional bits.
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fxptTruncate Truncates bits as appropriate from the most significant integer bits and the
least significant fractional bits.

function FixedPoint#(ri,rf) fxptTruncate(
FixedPoint#(ai,af) a )

provisos( Add#(xxA,ri,ai), // ai >= ri
Add#(xxB,rf,af), // af >= rf
Add#(xxC,TAdd#(ri,rf),TAdd#(ai,af)) );

// ai+af >= ri+rf

fxptSignExtend is a general sign extend function which converts variables of type FixedPoint#(ai,af)
to type FixedPoint#(ri,rf), where ai ≤ ri and af ≤ rf . The integer part is sign extended, while
additional 0 bits are added to least significant end of the fractional part.

fxptSignExtend General sign extend function where the integer part is sign extended while
additional 0 bits are added to the least significant end of the fractional part.

function FixedPoint#(ri,rf) fxptSignExtend(
FixedPoint#(ai,af) a )

provisos( Add#(xxA,ai,ri), // ri >= ai
Add#(fdiff,af,rf), // rf >= af
Add#(xxC,TAdd#(ai,af),TAdd#(ri,rf)) );

// ri+rf >= ai+af

fxptZeroExtend A general zero extend function.

function FixedPoint#(ri,rf) fxptZeroExtend(
FixedPoint#(ai,af) a )

provisos( Add#(xxA,ai,ri), // ri >= ai
Add#(xxB,af,rf), // rf >= af
Add#(xxC,TAdd#(ai,af),TAdd#(ri,rf)) ) ;

// ri+rf >= ai+af

Displaying FixedPoint values in a simple bit notation would result in a difficult to read pattern.
The following write utility function is provided to ease in their display. Note that the use of this
function adds many multipliers and adders into the design which are only used for generating the
output and not the actual circuit.
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fxptWrite Displays a FixedPoint value in a decimal format, where fwidth give the
number of digits to the right of the decimal point. fwidth must be in
the inclusive range of 0 to 10. The displayed result is truncated without
rounding.

function Action fxptWrite( Integer fwidth,
FixedPoint#(i,f) a )

Examples - Fixed Point Numbers
// The following code writes "x is 0.5156250"
FixedPoint#(1,6) x = half + epsilon ;
$write( "x is " ) ; fxptWrite( 7, x ) ; $display("" ) ;

C.2.3 OInt

Package Name

import OInt :: * ;

Description

The OInt#(n) type is an abstract type that can store a number in the range “0..n-1”. The repre-
sentation of a OInt#(n) takes up n bits, where exactly one bit is a set to one, and the others are
zero, i.e., it is a one-hot decoded version of the number. The reason to use a OInt number is that
the select operation is more efficient than for a binary-encoded number; the code generated for
select takes advantage of the fact that only one of the bits may be set at a time.

Types and type classes

Definition of OInt
typedef ... OInt #(numeric type n) ... ;

Type Classes used by OInt

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

OInt
√ √ √ √

Functions

A binary-encoded number can be converted to an OInt.

toOInt Converts from a bit-vector in unsigned binary format to an OInt.
An out-of-range number gives an unspecified result.

function OInt#(n) toOInt(Bit#(k) k)
provisos( Log#(n,k)) ;

An OInt can be converted to a binary-encoded number.

fromOInt Converts an OInt to a bit-vector in unsigned binary format.

function Bit#(k) fromOInt(OInt#(n) o)
provisos( Log#(n,k)) ;
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An OInt can be used to select an element from a Vector in an efficient way.

select The Vector select function, where the type of the index is an
OInt.

function a_type select(Vector#(vsize, a_type) vecta,
OInt#(vsize) index)

provisos (Bits#(a_type, sizea));

C.3 Control Structures

C.3.1 StmtFSM

Package Name

import StmtFSM :: * ;

Description

The StmtFSM package provides a procedural way of defining finite state machines (FSMs) which are
automatically synthesized.

First, one uses the Stmt sublanguage to compose the actions of an FSM using sequential, parallel,
conditional and looping structures. This sublanguage is within the expression syntactic category,
i.e., a term in the sublanguage is an expression whose value is of type Stmt. This value can be bound
to identifiers, passed as arguments and results of functions, held in static data structures, etc., like
any other value. Finally, the FSM can be instantiated into hardware, multiple times if desired, by
passing the Stmt value to the module constructor mkFSM. The resulting module interface has type
FSM, which has methods to start the FSM and to wait until it completes.

The Stmt sublanguage

The state machine is automatically constructed from the procedural description given in the Stmt
definition. Appropriate state counters are created and rules are generated internally, corresponding
to the transition logic of the state machine. The use of rules for the intermediate state machine
generation ensures that resource conflicts are identified and resolved, and that implicit conditions
are properly checked before the execution of any action.

The names of generated rules (which may appear in conflict warnings) have suffixes of the form
“l<nn>c<nn>”, where the <nn> are line or column numbers, referring to the statement which gave
rise to the rule.

A term in the Stmt sublanguage is an expression, introduced at the outermost level by the keywords
seq or par. Note that within the sublanguage, if, while and for statements are interpreted
as statements in the sublanguage and not as ordinary statements, except when enclosed within
Action/endAction keywords.

exprPrimary ::= seqFsmStmt | parFsmStmt

fsmStmt ::= exprFsmStmt
| seqFsmStmt
| parFsmStmt
| ifFsmStmt
| whileFsmStmt
| repeatFsmStmt
| forFsmStmt

exprFsmStmt ::= regWrite ;
| expression ;
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seqFsmStmt ::= seq fsmStmt { fsmStmt } endseq

parFsmStmt ::= par fsmStmt { fsmStmt } endpar

ifFsmStmt ::= if expression fsmStmt
[ else fsmStmt ]

whileFsmStmt ::= while ( expression )
loopBodyFsmStmt

forFsmStmt ::= for ( fsmStmt ; expression ; fsmStmt )
loopBodyFsmStmt

repeatFsmStmt ::= repeat ( expression )
loopBodyFsmStmt

loopBodyFsmStmt ::= fsmStmt
| break ;
| continue ;

The simplest kind of statement is an exprFsmStmt, which can be a register assignment (Section
8.4) or, more generally, any expression of type Action (including action method calls (Section 9.9)
and action-endaction blocks (Section 9.6)) or of type Stmt. Statements of type Action execute
within exactly one clock cycle, but of course the scheduling semantics described in Section 6.2
may affect exactly which clock cycle it executes in. For example, if the actions in a statement
interfere with actions in some other rule, the statement may be delayed by the schedule until there
is no interference. In all the descriptions of statements below, the descriptions of time taken by a
construct are minimum times; they could take longer because of scheduling semantics.

Statements can be composed into sequential, parallel, conditional and loop forms. In the sequential
form (seq-endseq), the contained statements are executed one after the other. The seq block
terminates when its last contained statement terminates, and the total time (number of clocks) is
equal to the sum of the individual statement times.

In the parallel form (par-endpar), the contained statements (“threads”) are all executed in parallel.
Statements in each thread may or may not be executed simultaneously with statements in other
threads, depending on scheduling conflicts; if they cannot be executed simultaneously they will be
interleaved, in accordance with normal scheduling. The entire par block terminates when the last
of its contained threads terminates, and the minimum total time (number of clocks) is equal to the
maximum of the individual thread times.

In the conditional form (if (b) s1 else s2), the boolean expression b is first evaluated. If true, s1

is executed, otherwise s2 (if present) is executed. The total time taken is t + 1 cycles, if the chosen
branch takes t cycles.

In the while (b) s loop form, the boolean expression b is first evaluated. If true, s is executed, and
the loop is repeated. Each time the condition is evaluated, it takes takes 1 cycle, so the total time
is 1 + n × (t + 1) cycles, where n is the number of times the loop is executed (possibly zero) and t
is the time for the loop body statement.

The for (s1;b;s2) sB loop form is equivalent to:

s1; while (b) seq sB; s2 endseq

i.e., the initializer s1 is executed first. Then, the condition b is executed and, if true, the loop body
sB is executed followed by the “increment” statement s2. The b, sB , s2 sequence is repeated as long
as b evaluates true.

Similarly, the repeat (n) sB loop form is equivalent to:

s1; while (repeat_count < n) seq sB; repeatcount <= repeat_count + 1 endseq
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where the value of repeat count is initialized to 0. During execution, the condition (repeat count <
n) is executed and, if true, the loop body sB is executed followed by the “increment” statement
repeat count <= repeat count + 1. The sequence is repeated as long as repeat count < n evaluates
true.

In all the loop forms, the loop body statements can contain the keywords continue or break, with
the usual semantics, i.e., continue immediately jumps to the start of the next iteration, whereas
break jumps out of the loop to the loop sequel.

It is important to note that this use of loops, within a Stmt context, expresses time-based (temporal)
behavior. Section 8.7 describes the use of loops to express static structure, i.e., loops that are unrolled
during static elaboration.

Interfaces and Methods

Two interfaces are defined with this package, FSM and Once. The FSM interface defines a basic state
machine interface while the Once interface encapsulates the notion of an action that should only be
performed once. A Stmt value can be instatiated into a module that presents an interface of type
FSM.

Interfaces
Name Description
FSM The state machine interface
Once Used when an action should only be performed once

• FSM Interface

The FSM interface provides three methods; start, waitTillDone, and done. Once instantiated,
the FSM can be started by calling the start method. One can wait for the FSM to stop running
by waiting explicitly on the boolean value returned by the done method. Alternatively, one
can use the waitTillDone method in any action context (including from within another FSM),
which (because of an implicit condition) cannot execute until this FSM is done.

interface FSM;
method Action start();
method Action waitTillDone();
method Bool done();

endinterface: FSM

FSM Interface
Methods

Name Type Description
start Action Begins state machine execution. This can only be called

when the state machine is not executing.
waitTillDone Action Does not do any action, but is only ready when the state

machine is done.
done Bool Asserted when the state machine is done and is ready to

rerun.

• Once Interface

The Once interface encapsulates the notion of an action that should only be performed once.
The start method performs the action that has been encapuslated in the Once module. After
start has been called start cannot be called again (an implicit condition will enforce this).
If the clear method is called, the start method can be called once again.
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interface Once;
method Action start();
method Action clear();
method Bool done() ;

endinterface: Once

Once Interface
Methods

Name Type Description
start Action Performs the action that has been encapsulated in the

Once module, but once start has been called it cannot
be called again (an implicit condition will enforce this).

clear Action If the clear method is called, the start method can be
called once again.

done Bool Asserted when the state machine is done and is ready to
rerun.

Modules

Instantiation is performed by passing a Stmt value ino the module constructor mkFSM. The state
machine is automatically constructed from the procedural decription given in the definition described
by state machine of type Stmt named seq_stmt. During construction, one or more registers of
appropriate widths are created to track state execution. Upon start action, the registers are loaded
and subsequent state changes then decrement the registers.

module mkFSM#( Stmt seq_stmt ) ( FSM );

The mkAutoFSM module is like mkFSM above, except the state machine runs automatically immediately
after reset and a $finish(0) is called upon completion. This is useful for test benches. Thus, it has
no interface, that is, it has an empty interface.

module mkAutoFSM#( seq_stmt ) ();

The mkOnce function is used to create a Once interface where the action argument has been encap-
sulated and will be performed when start is called.

module mkOnce#( Action a ) ( Once );

The implementation for Once is a 1 bit state machine (with a state register named onceReady)
allowing the action argument to occur only one time. The ready bit is initially True and then
cleared when the action is performed. It might not be performed right away, because of implicit
conditions or scheduling conflicts.

Name BSV Module Declaration Description
mkFSM

module mkFSM#(Stmt seq_stmt)(FSM);

Instantiate a Stmt value into a mod-
ule that presents an interface of type
FSM.

mkAutoFSM

module mkAutoFSM#(Stmt seq_stmt)();

Like mkFSM, except that state ma-
chine simulation is automatically
started and a $finish(0)) is called
upon completion.

mkOnce

module mkOnce#( Action a )( Once );

Used to create a Once interface where
the action argument has been encap-
sulated and will be performed when
start is called.
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Functions

There is one function, await, provided by the StmtFSM package. await is used to create an action
which can only execute when the condition is True. The action does not do anything. await is
useful to block the execution of an action until a condition becomes True.

Name Function Declaration Description
await

function Action await( Bool cond ) ;

Creates an Action which does noth-
ing, but can only execute when the
condition is True.

Example - Initializing a single-ported SRAM.

Since the SRAM has only a single port, we can write to only one location in each clock. Hence, we
need to express a temporal sequence of writes for all the locations to be initialized.

Reg#(int) i, j; // instantiate two register interfaces
mkRegU ri (i); // create register with interface i
mkRegU rj (j); // create register with interface j

// Define fsm behavior
Stmt s = seq

for (i <= 0; i < M; i <= i + 1)
for (j <= 0; j < N; j <= j + 1)

sram.write (i, j, i+j);
endseq

FSM fsm(); // instantiate FSM interface
mkFSM#(s) (fsm); // create fsm with interface fsm and behavior s

...

rule initSRAM (start_reset);
fsm.start; // Start the fsm

endrule

When the start_reset signal is true, the rule kicks off the SRAM initialization. Other rules can
wait on fsm.done, if necessary, for the SRAM initialization to be completed.

In this example, the seq-endseq brackets are used to enter the Stmt sublanguage, and then for
represents Stmt sequencing (instead of its usual role of static generation). Since seq-endseq contains
only one statement (the loop nest), par-endpar brackets would have worked just as well.

Example - Defining and instantiating a state machine.

import StmtFSM :: *;
import FIFO :: *;

module testSizedFIFO();

// Instantiation of DUT
FIFO#(Bit#(16)) dut <- mkSizedFIFO(5);

// Instantiation of reg’s i and j
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Reg#(Bit#(4)) i <- mkRegA(0);
Reg#(Bit#(4)) j <- mkRegA(0);

// Action description with stmt notation
Stmt driversMonitors =
(seq
// Clear the fifo
dut.clear;

// Two secuential blocks running in parallel
par
// Enque 2 times the Fifo Depth
for(i <= 1; i <= 10; i <= i + 1)
seq
dut.enq({0,i});
$display(" Enque %d", i);

endseq

// Wait until the fifo is full and then deque
seq
while (i < 5)
seq
noAction;

endseq
while (i <= 10)
action
dut.deq;
$display("Value read %d", dut.first);

endaction
endseq

endpar

$finish(0);
endseq);

// stmt instantiation
FSM test <- mkFSM(driversMonitors);

// A register to control the start rule
Reg#(Bool) going <- mkReg(False);

// This rule kicks off the test FSM, which then runs to completion.
rule start (!going);

going <= True;
test.start;

endrule
endmodule

Example - Defining and instantiating a state machine to control speed changes

import StmtFSM::*;
import Common::*;

interface SC_FSM_ifc;
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method Speed xcvrspeed;
method Bool devices_ready;
method Bool out_of_reset;

endinterface

module mkSpeedChangeFSM(Speed new_speed, SC_FSM_ifc ifc);
Speed initial_speed = FS;

Reg#(Bool) outofReset_reg <- mkReg(False);
Reg#(Bool) devices_ready_reg <- mkReg(False);
Reg#(Speed) device_xcvr_speed_reg <- mkReg(initial_speed);

// the following lines define the FSM using the Stmt sublanguage
// the state machine is of type Stmt, with the name speed_change_stmt
Stmt speed_change_stmt =
(seq

action outofReset_reg <= False; devices_ready_reg <= False; endaction
noAction; noAction;

device_xcvr_speed_reg <= new_speed;
noAction; noAction;

outofReset_reg <= True;
if (device_xcvr_speed_reg==HS)

seq noAction; noAction; endseq
else

seq noAction; noAction; noAction; noAction; noAction; noAction; endseq

devices_ready_reg <= True;
endseq);
// end of the state machine definition

// the statemachine is instantiated using mkFSM
FSM speed_change_fsm <- mkFSM(speed_change_stmt);

// the rule change_speed starts the state machine
// the rule checks that previous actions of the state machine have completed
rule change_speed ((device_xcvr_speed_reg != new_speed || !outofReset_reg) &&

speed_change_fsm.done);
speed_change_fsm.start;

endrule

method xcvrspeed = device_xcvr_speed_reg;
method devices_ready = devices_ready_reg;
method out_of_reset = outofReset_reg;

endmodule

Example - Defining a state machine and using the await function

// This statement defines this brick’s desired behavior as a state machine:
// the subcomponents are to be executed one after the other:
Stmt brickAprog =
seq

// Since the following loop will be executed over many clock
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// cycles, its control variable must be kept in a register:
for (i <= 0; i < 0-1; i <= i+1)

// This sequence requests a RAM read, changing the state;
// then it receives the response and resets the state.
seq

action
// This action can only occur if the state is Idle
// the await function will not let the statements
// execute until the condition is met
await(ramState==Idle);
ramState <= DesignReading;
ram.request.put(tagged Read i);

endaction
action

let rs <- ram.response.get();
ramState <= Idle;
obufin.put(truncate(rs));

endaction
endseq

// Wait a little while:
for (i <= 0; i < 200; i <= i+1)

action
endaction

// Set an interrupt:
action

inrpt.set;
endaction

endseq
);

// end of the state machine definition

FSM brickAfsm <- mkFSM#(brickAprog); //instantiate the state machine

// A register to remember whether the FSM has been started:
Reg#(Bool) notStarted();
mkReg#(True) the_notStarted(notStarted);

// The rule which starts the FSM, provided it hasn’t been started
// previously and the brick is enabled:
rule start_Afsm (notStarted && enabled);

brickAfsm.start; //start the state machine
notStarted <= False;

endrule

C.4 Connecting Modules

The packages in this section, GetPut, Connectable, ClientServer, CGetPut, and BGetPut provide
components, primarily interfaces, which are useful and easy, to connect hardware elements in a
design.

The basic interfaces, Get and Put are defined in the package GetPut. The typeclass Connectable
indicates that two related types can be connected together. The package ClientServer provides
interfaces using Get and Put for modules that have a request-response type of interface. The packages
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CGetPut and BGetPut define types of Get and Put interfaces that can be connected directly with
wires and without additional hardware between the interfaces.

C.4.1 GetPut

Package Name

import GetPut :: *;

Description

Get and Put are simple interfaces, consisting of one method each, get and put, respectively. This
package provides the interfaces Get, Put, and GetPut. This package also provides modules which
provide the GetPut interface as a FIFO implementation, but these interfaces can be used in many
additional hardware implementations.

Interfaces and methods

The Get interface defines a get method, similar to a dequeue, which retrieves an item from an
interface and removes it at the same time. The Put interface defines a put method, similar to an
enqueue, which gives an item to an interface. A module providing these interfaces can be designed
to have implicit conditions on the get/put to ensure that the get/put is not performed when the
module is not ready. This would ensure that a rule containing get method would not fire if the
element associated with it is empty and that a rule containing put method would not fire if the
element is full.

Interfaces
Interface Name Parameter

name
Parameter Description Restrictions

Get element type type of the element must be in Bits class
being retrieved by the Get

Put element type type of the element must be in Bits class
being added by the Put

GetPut element type type of the element must be in Bits class
being retrieved and added

Get

The Get interface is where you retrieve (get) data from an object. The Get interface is provides
a single method, get, which retrieves an item of data from an interface and removes it from the
object. A get is similar to a dequeue, but it can be associated with any interface. A Get interface
is more abstract than a FIFO interface; it does not describe the underlying hardware.

Get
Method Argument

Name Type Description Name Description
get ActionValue returns an item from an

interface and removes it
from the object

interface Get#(type element_type);
method ActionValue#(element_type) get();

endinterface: Get

Example - adding your own Get interface:
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module mkMyFifoUpstream (Get#(int));
...

method ActionValue#(int) get();
f.deq;
return f.first;

endmethod

Put

The Put interface is where you can give (put) data to an object. The Put interface provices a single
method, put, which gives an item to an interface. A put is similar to a enqueue, but it can be
associated with any interface. A Put interface is more abstract than a FIFO interface; it does not
describe the underlying hardware.

Put
Method Argument

Name Type Description Name Description
put Action gives an item to an interface x1 data to be added to the object

must be of type element_type

interface Put #(type a);
method Action put(a x1);

endinterface: Put

Example - adding your own Put interface:

module mkMyFifoDownstream (Put#(int));
...

method Action put(int x);
F.enq(x);

endmethod

GetPut

The library also defines an interface GetPut which associates Get and Put interfaces into a Tuple2.

typedef Tuple2 #(Get#(element_type), Put#(element_type)) GetPut #(type element_type);

Type classes

The class Connectable (Section C.4.2) is meant to indicate that two related types can be connected
in some way. It does not specify the nature of the connection.

A Get and Put is an example of connectable items. One object will put an element into the interface
and the other object will get the element from the interface.

instance Connectable #(Get#(a), Put#(a));

Modules

There are three modules provided by the GetPut package which provide the GetPut interface with
a type of FIFO. These FIFOs use Get and Put interfaces instead of the usual enq interfaces. To use
any of these modules the FIFO package must be imported. You can also write your own modules
providing a GetPut interface for other hardware structures.
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mkGPFIFO Creates a FIFO of depth 2 with a GetPut interface.

module mkGPFIFO (GetPut#(element_type))
provisos (Bits#(element_type, width_elem));

mkGPFIFO1 Creates a FIFO of depth 1 with a GetPut interface.

module mkGPFIFO1 (GetPut#(element_type))
provisos (Bits#(element_type, width_elem));

mkGPSizedFIFO Creates a FIFO of depth n with a GetPut interface.

module mkGPSizedFIFO# (Integer n) (GetPut#(element_type))
provisos (Bits#(element_type, width_elem));

Functions

There are two functions defined in the GetPut package that change a FIFO interface to a Get or Put
interface. Given a FIFO we can use the function fifoToGet to obtain a Get interface, which is a
combination of deq and first. Given a FIFO we can use the function fifoToPut to obtain a Put
interface using enq.

The package defines an additional function, peekGet, which returns the first item without removing
it from the object. There are scheduling concerns when using peekGet; because of the implicit
condition, it will only fire if there is data available.

fifoToGet Returns a Get interface.

function Get#(element_type) fifoToGet(FIFO#(element_type) f);

fifoToPut Returns a Put interface.

function Put#(element_type) fifoToPut(FIFO#(element_type) f);

peekGet Returns first item without removing it from the object. Will not fire if data
is not available.

function element_type peekGet(Get#(element_type) g;)

Example of creating a FIFO with a GetPut interface
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import GetPut::*;
import FIFO::*;

...
module mkMyModule (MyInterface);

GetPut #(StatusInfo) aFifoOfStatusInfoStructures <- mkGPFIFO;
...
endmodule: mkMyModule

Example of a protocol monitor

This is an example of how you might write a protocol monitor that watches bus traffic between a
bus and a bus target device

import GetPut::*;
import FIFO::*;

// Watch bus traffic beteween a bus and a bus target
interface ProtocolMonitorIfc;

// These subinterfaces are defined inside the module
interface Put#(Bus_to_Target_Request) bus_to_targ_req_ifc;
interface Put#(Target_to_Bus_Response) targ_to_bus_resp_ifc;

endinterface
...
module mkProtocolMonitor (ProtocolMonitorIfc);

// Input FIFOs that have Put interfaces added a few lines down
FIFO #(Bus_to_Target_Request) bus_to_targ_reqs <- mkFIFO;
FIFO #(Target_To_Bus_Response) targ_to_bus_resps <- mkFIFO;

...
// Define the subinterfaces: attach Put interfaces to the FIFOs, and
// then make those the module interfaces
interface bus_to_targ_req_ifc = fifoToPut (bus_to_targ_reqs);
interface targ_to_bus_resp_ifc = fifoToPut (targ_to_bus_resps);

end module: mkProtocolMonitor

// Top-level module: connect mkProtocolMonitor to the system:
module mkSys (Empty);

ProtocolMonitorIfc pmon <- mkProtocolInterface;
...

rule pass_bus_req_to_interface;
let x <- bus.bus_ifc.get; // definition not shown
pmon.but_to_targ_ifc.put (x);

endrule
...
endmodule: mkSys

C.4.2 Connectable

Package Name

import Connectable :: * ;

Description

The Connectable package contains the definitions for the class Connectable and two instances of
Connectables; for Tuple2s and Vectors.
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Types and Type-Classes

The class Connectable is meant to indicate that two related types can be connected in some way.
It does not specify the nature of the connection. The Connectables type class defines the module
mkConnection, which is used to connect the pairs.

typeclass Connectable #(type a, type b)
module mkConnection#(a x1, b x2)(Empty);

endtypeclass

An example of connectable items is a Get and Put. One object will put an element into an interface
and the other object will get the element from the interface.

instance Connectable #(Get#(a), Put#(a));

If we have Tuple2 of connectable items then the pair is also connectable, simply by connecting the
individual items.
instance Connectable #(Tuple2 #(a, c), Tuple2 #(b, d))
provisos (Connectable#(a, b), Connectable#(c, d));

The proviso shows that the first component of one tuple connects to the first component of the other
tuple, likewise, the second components connect as well. In the above statement, a connects to b and
c connects to d. This is used by ClientServer (Section C.4.3) to connect the Get of the Client to
the Put of the Server and visa-versa.

Two Vectors are connectable if their elements are connectable.
instance Connectable #(Vector#(n, a), Vector#(n, b))
provisos (Connectable#(a, b));

C.4.3 ClientServer

Package Name

import ClientServer :: * ;

Description

The ClientServer package provides two interfaces, Client and Server which can be used to define
modules which have a request-response type of interface. The GetPut package must be imported
when using this package because the Get and Put interface types are used.

Interfaces and methods

The interfaces Client and Server can be used for modules that have a request-response type of
interface (e.g. a RAM). The server accepts requests and generates responses, the client accepts
responces and generates requests. There are no assumptions about how many (if any) responses a
request generates

Interfaces
Interface Name Parameter name Parameter Description Restrictions
Client req type type of the client request must be in the Bits class

resp type type of the client response must be in the Bits class
Server req type type of the server request must be in the Bits class

resp type type of the server response must be in the Bits class

Client

The Client interface provides two sub-interfaces, request and response. From a Client, one gets
a request and puts a response.
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Client SubInterface
Name Type Description
request Get#(req_type) the interface through which the outside world

retrieves (gets) a request
response Put#(resp_type) the interface through which the outside world

returns (puts) a response

interface Client #(type req_type, type resp_type);
interface Get#(req_type) request;
interface Put#(resp_type) response;

endinterface: Client

Server

The Server interface provides two sub-interfaces, request and response. From a Server, one puts
a request and gets a response.

Server SubInterface
Name Type Description
request Put#(req_type) the interface through which the outside world

returns (puts) a request
response Get#(resp_type) the interface through which the outside world

retrieves (gets) a response

interface Server #(type req_type, type resp_type);
interface Put#(req_type) request;
interface Get#(resp_type) response;

endinterface: Server

ClientServer

A Client can be connected to a Server and vice versa. The request (which is a Get interface)
of the client will connect to response (which is a Put interface) of the Server. By making the
ClientServer tuple an instance of the Connectable typeclass, you can connect the Get of the client
to the Put of the server, and the Put of the client to the Get of the server.

instance Connectable #(Client#(req_type, resp_type), Server#(req_type, resp_type));
instance Connectable #(Server#(req_type, resp_type), Client#(req_type, resp_type));

This Tuple2 can be redefined to be called ClientServer

typedef Tuple2 #(Client#(req_type, resp_type), Server#(req_type,resp_type))
ClientServer #(type req_type, type resp_type);

Example Connecting a bus to a target

interface Buf_Ifc;
interface Server#(RQ, RS) to_targ ;
interface Client#(RQ, RS) to_initiator;

endinterface

typedef Server#(RQ, RS) Target_Ifc;
typedef Client#(RQ, RS) Initiator_Ifc;
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module mkSys (Empty);
// Instantiate subsystems
Bus_Ifc bus <- mkBus;
Target_Ifc targ <- mkTarget;
Initiator_Ifc initor <- mkInitiator;

// Connect bus and targ ("to_targ" is a Get i/f, targ is a Put i/f)
Empty x <- mkConnection (bus.to_targ, targ);

// Connect bus and initiator ("to_initor" is a Out i/f, initor is a Get i/f)
mkConnection (bus.to_initor, initor);
// Since mkConnection returns an interface of type Empty, it does
// not need to be specified (but may be as above)

...
endmodule: mkSys

C.4.4 CGetPut

The interfaces CGet and CPut are similar to Get and Put, but the interconnection of them (via
Connectable) is implemented with a credit based FIFO. This means that the CGet and CPut inter-
faces have completely registered input and outputs, and furthermore that additional register buffers
can be introduced in the connection path without any ill effect (except an increase in latency, of
course). The interface types are abstract (to avoid any non-proper use of the credit signaling proto-
col). In the absence of additional register buffers, the round-trip time for communication between
the two interfaces is 4 clock cycles. Call this number r. The first argument to the type, n, specifies
that transfers will occur for a fraction n/r of clock cycles (note that the used cycles will not neces-
sarily be evenly spaced). n also specifies the depth of the buffer used in the receiving interface (the
transmitter side always has only a single buffer). So (in the absence of additional buffers) use n = 4
to allow full-bandwidth transmission, at the cost of sufficient registers for quadruple buffering at one
end; use n = 1 for minimal use of registers, at the cost of reducing the bandwidth to one quarter;
use intermediate values to select the optimal trade-off if appropriate.

Note
For compiler reasons the actual interfaces are called CGetS and CPutS with CGet and CPut being type
abbreviations. Hopefully this will be fixed soon.

typedef CGetS#(n, a, SizeOf#(a)) CGet #(type n, type a);

typedef CPutS#(n, a, SizeOf#(a)) CPut #(type n, type a);

Create one end of the credit based FIFO. Access to it is via a Put interface.
module mkCGetPut(Tuple2 #(CGetS#(n, a, sa), Put#(a)))
provisos (Bits#(a, sa), Add#(1, k, n), Add#(n, 1, n1), Log#(n1, ln));

Create the other end of the credit based FIFO. Access to it is via a Get interface.
module mkGetCPut(Tuple2 #(Get#(a), CPutS#(n, a, sa)))
provisos (Bits#(a, sa), Add#(1, k, n), Log#(n, ln));

Create a buffer that can be inserted along a connection path.
module mkCGetCPut(Tuple2 #(CGetS#(n, a, sa), CPutS#(n, a, sa)))
provisos (Bits#(a, sa));

The CGet and CPut interface are connectable.
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instance Connectable #(CGetS#(n, a, sa), CPutS#(n, a, sa));

instance Connectable #(CPutS#(n, a, sa), CGetS#(n, a, sa));

The same idea may be extended to clients and servers.
typedef CClientS#(n, a, SizeOf#(a), b, SizeOf#(b))

CClient #(type n, type a, type b);
typedef CServerS#(n, a, SizeOf#(a), b, SizeOf#(b))

CServer #(type n, type a, type b);

module mkClientCServer(Tuple2 #(Client#(a, b), CServerS#(n, a, sa, b, sb)))
provisos (Bits#(a, sa), Bits#(b, sb), Add#(1, k, n));

module mkCClientServer(Tuple2 #(CClientS#(n, a, sa, b, sb), Server#(a, b)))
provisos (Bits#(a, sa), Bits#(b, sb), Add#(1, k, n));

C.4.5 BGetPut

The interfaces BGet and BPut are similar to Get and Put, but the interconnection of them (via
Connectable or in Verilog) is implemented with a simple protocol that allows all inputs and outputs
to be directly connected. Furthermore, all wires go to registers and have no Bluespec SystemVerilog
handshaking. The protocol makes no assumptions about setup time and hold time for the registers
at each end; so these interfaces may be used when the two ends have different clocks. In all other
circumstances, however, the CGetPut package will probably be preferable. In particular, the BGetPut
protocol is very slow. The protocol consist of the sender putting the value to be sent on the pvalue
output, and then toggling the ppresent wire. The receiver acknowledges the receipt by toggling the
gcredit wire. Both ppresent and gcredit start out low.
interface BGetS #(type sa);

method Bit#(sa) gvalue();
method Bool gpresent();
method Action gcredit(Bool x1);

endinterface: BGetS

interface BGetS #(type sa);
method Bit#(sa) gvalue();
method Bool gpresent();
method Action gcredit(Bool x1);

endinterface: BGetS

typedef BGetS#(SizeOf#(a)) BGet #(type a);
typedef BPutS#(SizeOf#(a)) BPut #(type a);
typedef Tuple2 #(BGet#(a), Put#(a)) BGetPut #(type a);
typedef Tuple2 #(Get#(a), BPut#(a)) GetBPut #(type a);

Create one end of the buffer. Access to it is via a Put interface.
module mkBGetPut(Tuple2 #(BGetS#(sa), Put#(a)))
provisos (Bits#(a, sa));

Create the other end of the buffer. Access to it is via a Get interface.
module mkGetBPut(Tuple2 #(Get#(a), BPutS#(sa)))
provisos (Bits#(a, sa));

The BGet and BPut interface are connectable.
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instance Connectable #(BGetS#(sa), BPutS#(sa));

instance Connectable #(BPutS#(sa), BGetS#(sa));

The same idea may be extended to clients and servers.

typedef BClientS#(SizeOf#(a), SizeOf#(b)) BClient #(type a, type b);
typedef BServerS#(SizeOf#(a), SizeOf#(b)) BServer #(type a, type b);
typedef Tuple2 #(BClient#(a, b), Server#(a, b)) BClientServer #(type a, type b);
typedef Tuple2 #(Client#(a, b), BServer#(a, b)) ClientBServer #(type a, type b);

A BClient can be connected to a BServer and vice versa.

instance Connectable #(BClientS#(a, b), BServerS#(a, b));
instance Connectable #(BServerS#(a, b), BClientS#(a, b));

module mkClientBServer(Tuple2 #(Client#(a, b), BServerS#(sa, sb)))
provisos (Bits#(a, sa), Bits#(b, sb));

module mkBClientServer(Tuple2 #(BClientS#(sa, sb), Server#(a, b)))
provisos (Bits#(a, sa), Bits#(b, sb));

C.5 Useful Circuits

C.5.1 LFSR

The LFSR package implements Linear Feedback Shift Registers (LFSRs). LFSRs can be used to
obtain pseudorandom sequences, though their linearity permits easy cryptanalysis.8 The interface
allows the value in the shifter register to be set (with seed), read (with value), and shifted (with
next). When the value is shifted the least significant bit will be fed back according to the polynomial
used when the LFSR was created. When a LFSR is created the start value is 1.

interface LFSR #(type a);
method Action seed(a x1);
method a value();
method Action next();

endinterface: LFSR

The mkPolyLFSR function creates a LFSR given a polynomial specified by the exponents that have
a non-zero coefficient. For example the polynominal x7 + x3 + x2 + x is used by the expression
“mkPolyLFSR (Cons(7, Cons(3, Cons(2, Cons(1, Nil)))))”.

module mkPolyLFSR#(List#(Integer) taps) (LFSR#(Bit#(n)));

The mkFeedLFSR function creates a LFSR where the polynomial is specified by the mask used for
feedback. If “r” is the state of the LFSR the next state is “if r[0] == 1”“then (r >> 1) ^ feed”
“else r >> 1”, where “feed” is the argument to mkFeedLFSR.

module mkFeedLFSR#( Bit#(n) feed )( LFSR#(Bit#(n)) );

Some maximal length LFSRs. Many more can be found at http://www-2.cs.cmu.edu/ ~koopman/lfsr/

8see http://en.wikipedia.org/wiki/Linear_feedback_shift_register for details
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module mkLFSR_4 (LFSR#(Bit#(4)));
mkLFSR_4 = mkFeedLFSR( 4’h9 );

module mkLFSR_8 (LFSR#(Bit#(8)));
mkLFSR_8 = mkFeedLFSR( 8’h8E );

module mkLFSR_16 (LFSR#(Bit#(16)));
mkLFSR_16 = mkFeedLFSR( 16’h8016 );

module mkLFSR_32 (LFSR#(Bit#(32)));
mkLFSR_32 = mkFeedLFSR( 32’h80000057 );

The mkRCounter function creates a counter with a LFSR interface. This is useful during debugging
when a non-random sequence is desired. This function can be used in place of the other mkLFSR
module constructors, without changing any method calls or behavior.
module mkRCounter#( Bit#(n) seed ) ( LFSR#(Bit#(n)) );

C.5.2 CompletionBuffer

A CompletionBuffer is like a FIFO except that entering elements can be done out-of-order. To
enter something into the completion buffer a token is necessary. A token can be obtained with the
reserve method. This token is then used in the complete method to enter the actual item. Finally,
the drain method takes items out of the buffer; the items are delivered in the order of the tokens
that were checked out.

The n represents the size of the completion buffer, and a is the item type.
interface CompletionBuffer #(type n, type a);

method Get#(CBToken#(n)) reserve();
method Put#(Tuple2 #(CBToken#(n), a)) complete();
method Get#(a) drain();

endinterface: CompletionBuffer

The CBToken type is abstract to avoid confusion.
typedef union tagged { ... } CBToken #(type n) ...;

The mkCompletionBuffer function creates a completion buffer. The mkCompletionBuffer function
creates a completion buffer.
module mkCompletionBuffer(CompletionBuffer#(n, a))
provisos (Bits#(a, sa), Log#(n, ln), Log#(n, TLog#(n)), Add#(1, ln, ln1));

C.5.3 UniqueWrappers

Package

import UniqueWrappers :: * ;

Description

The UniqueWrappers package takes a piece of combinational logic which is to be shared and puts it
into its own protective shell or wrapper to prevent its duplication. This is used in instances where a
separately synthesized module is not possible. It allows the designer to use a piece of logic at several
places in a design without duplicating it at each site.

There are times where it is desired to use a piece of logic at several places in a design, but it is too
bulky or otherwise expensive to duplicate at each site. Often the right thing to do is to make the
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piece of logic into a separately synthesized module – then, if this module is instantiated only once,
it will not be duplicated, and the tool will automatically generate the scheduling and multiplexing
logic to share it among the sites which use its methods. Sometimes, however, this is not convenient.
One reason might be that the logic is to be incorporated into a sub-module of the design which is
itself polymorphic – this will probably cause difficulties in observing the constraints necessary for a
module which is to be separately synthesized. And if a module is not separately synthesized, the
tool will inline its logic freely wherever it is used, and thus duplication will not be prevented as
desired.

This package covers the case where the logic to be shared is combinational and cannot be put
into a separately synthesized module. It may be thought of as surrounding this combinational
function with a protective shell, a unique wrapper, which will prevent its duplication. The module
mkUniqueWrapper takes a one-argument function as a parameter; both the argument type a and the
result type b must be representable as bits, that is, they must both be in the Bits typeclass.

Interfaces

The UniqueWrappers package provides an interface, Wrapper, with one actionvalue method, func,
which takes an argument of type a and produces a method of type ActionValue#(b). If the module
is instantiated only once, the logic implementing its parameter will be instantiated just once; the
module’s method may, however, be used freely at several places.

Although the function supplied as the parameter is purely combinational and does not change state,
the method is of type ActionValue. This is because actionvalue methods have enable signals and
these signals are needed to organize the scheduling and multiplexing between the calling sites.

Variants of the interface Wrapper are also provided for handling functions of two or three arguments;
the interfaces have one and two extra parameters respectively. In each case the result type is the
final parameter, following however many argument type parameters are required.

Wrapper Interfaces

Wrapper This interface has one actionvalue method, func, which takes an argument of type
a_type and produces an actionvalue of type ActionValue#(b_type).

interface Wrapper#(type a_type, type b_type);
method ActionValue#(b_type) func (a_type x);

Wrapper2 Similar to the Wrapper interface, but it takes two arguments.

interface Wrapper2#(type a1_type, type a2_type, type b_type);
method ActionValue#(b_type) func (a1_type x, a2_type y);

Wrapper3 Similar to the Wrapper interface, but it takes three arguments.

interface Wrapper3#(type a1_type, type a2_type, type a3_type,
type b_type);

method ActionValue#(b_type) func (a1_type x, a2_type y, a3_type z);

Modules

The interfaces Wrapper, Wrapper2, and Wrapper3 are provided by the modules mkUniqueWrapper,
mkUniqueWrapper2, and mkUniqueWrapper3. These modules vary only in the number of aguments
in the parameter function.

212 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

If a function has more than three arguments, it can always be rewritten or wrapped as one which
takes the arguments as a single tuple; thus the one-argument version mkUniqueWrapper can be used
with this function.

mkUniqueWrapper

Takes a function, func, with a single parameter x and provides the interface Wrapper.

module mkUniqueWrapper#(function b_type func(a_type x))
(Wrapper#(a_type, b_type))

provisos (Bits#(a_type, sizea), Bits#(b_type, sizeb));

mkUniqueWrapper2

Takes a function, func, with a two parameters, x and y, and provides the interface
Wrapper2.

module mkUniqueWrapper2#(function b_type func(a1_type x, a2_type y))
(Wrapper2#(a1_type, a2_type, b_type))

provisos (Bits#(a1_type, sizea1), Bits#(a2_type, sizea2),
Bits#(b_type, sizeb));

mkUniqueWrapper3

Takes a function, func, with a three parameters, x, y, and z, and provides the interface
Wrapper3.

module mkUniqueWrapper3#(function b_type
func(a1_type x, a2_type y, a3_type z))

(Wrapper3#(a1_type, a2_type, a3_type, b_type))
provisos (Bits#(a1_type, sizea1), Bits#(a2_type, sizea2),

Bits#(a3_type, sizea3), Bits#(b_type, sizeb));

Example: Complex Multiplication

// This module defines a single hardware multiplier, which is then
// used by multiple method calls to implement complex number
// multiplication (a + bi)(c + di)

typedef Int#(18) CFP;

module mkComplexMult1Fifo( ArithOpGP2#(CFP) ) ;
FIFO#(ComplexP#(CFP)) infifo1 <- mkFIFO;
FIFO#(ComplexP#(CFP)) infifo2 <- mkFIFO;
let arg1 = infifo1.first ;
let arg2 = infifo2.first ;

FIFO#(ComplexP#(CFP)) outfifo <- mkFIFO;

Reg#(CFP) rr <- mkReg(0) ;
Reg#(CFP) ii <- mkReg(0) ;
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Reg#(CFP) ri <- mkReg(0) ;
Reg#(CFP) ir <- mkReg(0) ;

// Declare and instantiate an interface that takes 2 arguments, multiplies them
// and returns the result. It is a Wrapper2 because there are 2 arguments.
Wrapper2#(CFP,CFP, CFP) smult <- mkUniqueWrapper2( \* ) ;

// Define a sequence of actions
// Since smult is a UnqiueWrapper the method called is smult.func
Stmt multSeq =
seq

action
let mr <- smult.func( arg1.rel, arg2.rel ) ;
rr <= mr ;

endaction
action

let mr <- smult.func( arg1.img, arg2.img ) ;
ii <= mr ;

endaction
action

// Do the first add in this step
let mr <- smult.func( arg1.img, arg2.rel ) ;
ir <= mr ;
rr <= rr - ii ;

endaction
action

let mr <- smult.func( arg1.rel, arg2.img );
ri <= mr ;
// We are done with the inputs so deq the in fifos
infifo1.deq ;
infifo2.deq ;

endaction
action

let ii2 = ri + ir ;
let res = Complex{ rel: rr , img: ii2 } ;
outfifo.enq( res ) ;

endaction
endseq;

// Now convert the sequence into a FSM ;
// Bluespec can assign the state variables, and pick up implict
// conditions of the actions
FSM multfsm <- mkAutoFSM;
rule startFSM;

multfsm.start;
endrule

endmodule

C.6 Local Bus Access

C.6.1 LBus

The LBus package provides a way to create registers that are accessible through some type of local
bus (e.g., PCI).

214 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

The LBSReg type is normally never seen by a user of the LbSModule; it is only needed when creating
new kinds of local bus registers. This LBSReg interface is what the local bus uses to access a register.

interface LBSReg #(type sa, type sd);
method LbAddr#(sa) lbsAddr();
method Action lbsSet( Bit#(sd) x1);
method ActionValue#(Bit#(sd)) lbsGet();

endinterface: LBSReg

Note that the lbsGet method allows an action to be performed when the local bus reads the value.
This allows implementing, e.g., clear-on-read registers.

The type LbAddr is the address used to get and set register from the local bus. (This type is exported
abstractly.)

typedef union tagged {
Bit#(sa) LbAddr;

} LbAddr #(type sa) deriving (Literal, Eq, Bits);

The local bus registers are collected automagically by ModuleCollect monad. An LbSModule#(sa,sd,i)
corresponds to a Module#(i) except that it also keeps a set of registers. The address is sa bits wide
and data items are sd bits wide.

typedef ModuleCollect#(LBSItem#(sa, sd), i) LbSModule#(type sa, type sd, type i);

• Creating Registers The mkLbRegRW module creates a register that looks like a normal register
in the module that creates it, but it is also accessible from the local bus at the given address.
module [LbSModule#(sa, sd)]

mkLbRegRW#( LbAddr#(sa) aw, Integer an, r_type x)
( Reg#(r_type))

provisos (Bits#(r_type, sr), Add#(k, sr, sd));

The mkLbRegRO module creates a register that looks like a normal register in the module that
creates it, but it is also accessible from the local bus at the given address. From the local bus
the register is read-only; attempts to write it have no effect. The created register has to have
a bit width smaller than or equal to the local bus width. If it is smaller it will padded with
zeroes on the left.
module [LbSModule#(sa, sd)] mkLbRegRO#(LbAddr#(sa) aw, Integer an, r x)(Reg#(r))

provisos (Bits#(r, sr), Add#(k, sr, sd));

interface Accum #(type n);
method Action add(Bit#(n) x1);
method Bit#(n) value();

endinterface: Accum

module [LbSModule#(sa, sd)] mkLbAccum#(LbAddr#(sa) aw, Integer an, Bit#(k) x)(Accum#(k))
provisos (Add#(k, i, sd));

The mkLbOffset function can be used to add an offset to all local bus register addresses in an
LbSModule.
module [LbSModule#(sa,sd)] mkLbOffset#(LbAddr#(sa) a, LbSModule#(sa, sd, i) m)(i);

• Collecting registers together The external interface of a local bus is as follows. It is through
this interface that register accesses normally happen.
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interface ILBus #(type sa, type sd);
method Action req(Bool valid, LbRWop op, Bit#(sa) addr, Bit#(sd) dat);
method Bit#(sd) rdDat();
method Bit#(1) ack();
method Bit#(1) inrpt();

endinterface: ILBus

interface ILbLeaf#(type sa, type sd);

interface ILbNode#(type sa, type sd);

instance Connectable#(ILbLeaf#(sa, sd), ILbNode#(sa, sd));

Given a LbSModule with a set of register we can extract the local bus interface and the normal
interface.
module [Module] mkLbLeaf#(LbSModule#(sa, sd, i) lm)(IWithLBus#(ILbLeaf#(sa, sd), i));

The LbSModule is used to collect individual registers. Once the registers have been collected
into an ILbLeaf interface these interfaces can be collected together.
typedef ModuleCollect#(ILbLeaf#(sa, sd), i) LbAModule#(type sa, type sd, type i);

The mkLbBranch module make a LbAModule out of the result from mkLbLeaf.
module [LbAModule#(sa,sd)] mkLbBranch#(Module#(IWithLBus#(ILbLeaf#(sa, sd), i)) m)(i);

The mkLbTop module combines local bus register clusters. It introduces a one cycle latency on
both request and response.
module [Module] mkLbTop#(Module#(Fan#(ILBus#(sa, sd), Vector#(n, ILbNode#(sa, sd)))) mkFanout,
LbAModule#(sa, sd, i) lm) (IWithLBus#(ILBus#(sa, sd), i));

C.7 Multiple Clock Domains and Clock Generators

The BSV Clocks library provide features to access and change the default clock. Moreover, there
are hardware primitives to generate clocks of various shapes, plus several primitives which allow the
safe crossing of signals and data from one clock domain to another.

C.7.1 Clock Generators and Manipulation

mkAbsoluteClock provides a parameterizable clock generation module, with its first rising edge
(start) and period defined by parameters. This module is not synthesizable.
module mkAbsoluteClock #( Integer start,

Integer period
) ( Clock );

mkAbsoluteClockFull provides a fully parameterizable clock generation module. initValue is
held until time start, and then the clock oscillates with from, with not(initValue) held for time
compValTime followed by initValue held for time initValTime. Hence the clock period after
startup is compValTime + initValTime. This module is not synthesizable, it is provided by the
Verilog module ClockGen.v

module mkAbsoluteClockFull #( Integer start,
Bit#(1) initValue,
Integer compValTime,
Integer initValTime
) ( Clock );
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The mkClock module creates a Clock type from a one-bit oscillator input, and a Boolean gate
condition. There are no relations between the current clock and the clock generated by this module.

module mkClock ( one_bit_type oscillator, Bool gate, Clock clkout)
provisos( Bits#(one_bit_type, 1)) ;

The mkGatedClock module adds (logic and) a Boolean gate condition to an existing clock, thus
creating a another clock in the same family. The gate condition is controlled by the tick Action
method of the interface, while the source clock is the current clock of the module which instantiates
this module (or the ”clocked by” argument of mkGatedClock itself).

module mkGatedClock ( Bool b, Clock clkout );

An alternate interface for the module

module mkGatedClock2 ( Clock clk_in, Bool gate, Clock clkout );

C.7.2 Clock Multiplexing

Bluespec provides two clock multiplexing primitives: a simple combinational multiplexor and a
stateful module which generates an appropriate reset signal when the clock changes. The mkClockMux
module is a simple combinational multiplexor, which selects between the aClk and bClk. The
provided Verilog module does not provide any glitch detection or removal logic; it is the responsibility
of the user to provide additional logic to provide glitch-free behavior. The mkClockMux module uses
three arguments and provides a Clock interface. The aClk is selected if ab is True, while bClk is
selected otherwise. The underlying Verilog module is ClockMux.v.

module mkClockMux ( Bool ab, Clock aClk, Clock bClk, Clock clkout ) ;

The mkClockSelect module is a clock multiplexor containing additional logic which generates a
reset whenever a new clock is selected. As such the interface for the module includes an Action
method to select the clock (if ab is True clock out is taken from aClk), provides a Clock interface,
and also a Reset interface. The interface definition is described here.

interface SelectClkIfc ;
method Action select ( Bool ab ) ;
interface Clock clock_out ;
interface Reset reset_out ;

endinterface

The constructor for the module uses two clock arguments, and provides the SelectClkIfc interface.
The underlying Verilog module is ClockSelect.v; it is expected that users can substitute their own
modules to meet any additional requirements they may have. The parameter stages is the number
of clock cycles in which the reset is asserted after the clock changes.

module mkClockSelect #( Integer stages
) ( Clock aClk,

Clock bClk,
SelectClkIfc ifcout ) ;

C.7.3 Clock Division

A clock divider provide a derived clock and also a ClkNextRdy signal, which indicates that divided
clock will rise in the next cycle. This signal is associated with the input clock, and can only be used
within that clock domain.
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See mkSyncRegToSlow, mkSyncRegToFast, mkSyncFIFOToSlow, and mkSyncFIFOToFast for some spe-
cialized synchronizers which can be used with divided clocks, and other systems when the clock edges
are known to be aligned.

Define a new type and then the interface
typedef Bool ClkNextRdy ;

interface ClockDividerIfc ;
interface Clock fastClock ; // The original clock
interface Clock slowClock ; // The derived clock
method ClkNextRdy clockReady() ; //

endinterface

The divider parameter may be any integer greater than 1. For even dividers the generated clock’s
duty cycle is 50%, while for odd dividers, the duty cycle is (divider/2)/divider. The current clock (or
the clocked by argument) is used as the source clock. The mkClockDividerOffset module provides
a clock divider, where the rising edge can be defined relative to other clock dividers which have the
same divisor. An offset of value 2, will produce a rising edge one fast clock after a divider with offset
1. The mkClockDivider modules are provided by the Verilog module ClockDiv.v

module mkClockDivider #( Integer divisor
)( ClockDividerIfc ifc ) ;

module mkClockDividerOffset #( Integer divisor,
Integer offset
)( ClockDividerIfc ifc ) ;

The mkClockInverter module generates a inverted clock having the same period but opposite phase
as the source clock.
module mkClockInverter ( ClockDividerIfc ifc ) ;

C.7.4 Bit Synchronizers

The Sync Bit interface provides a send method which transmits one bit of information from one
clock domain to the read method in a second domain.
interface SyncBitIfc #(type one_bit_type) ;

method Action send ( one_bit_type bitData ) ;
method one_bit_type read () ;

endinterface

The mkSyncBit, mkSyncBitFromCC and mkSyncBitToCC modules provide a SyncBitIfc across clock
domains. The send method is in the one clock domain, and the read method is in a second clock
domain. The FromCC version and ToCC versions differ in that the former moves data from the
current clock (module’s clock), while the later move data into the current clock domain The hardware
implementation is a two register synchronizer, which can be found in SyncBit.v in the Bluespec
Verilog library directory. The mkSyncBit15 module (one and a half) and its variants provide the
same interface as the mkSyncBit modules, but the underlying hardware is slightly modified. For
these synchronizers, the first register clocked by the destination clock triggers on the falling edge of
the clock. The Verilog can in found in SyncBit15.v in the Bluespec Verilog library directory. The
mkSyncBit1 module also provides the same interface, but only uses one register in the destination
domain. Synchronizers like this, which use with only one register, are not generally used since meta-
stable output is very probable. However, one can use this synchronizer provided special meta-stable
resistant flops are selected during physical synthesis or (for example) if the output is immediately
registered. The mkSyncBit05 module is similar, but the destination register triggers on the falling
edge of the clock.
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module mkSyncBit ( Clock sClkIn, Reset sRst,
Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBitFromCC ( Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBitToCC ( Clock sClkIn, Reset sRstIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit15 ( Clock sClkIn, Reset sRst,
Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit15FromCC ( Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit15ToCC ( Clock sClkIn, Reset sRstIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit1 ( Clock sClkIn, Reset sRst,
Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit1FromCC ( Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits #(one_bit_type, 1)) ;

module mkSyncBit1ToCC ( Clock sClkIn, Reset sRstIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit05 ( Clock sClkIn, Reset sRst,
Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit05FromCC ( Clock dClkIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;

module mkSyncBit05ToCC ( Clock sClkIn, Reset sRstIn,
SyncBitIfc #(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1)) ;
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C.7.5 Pulse Synchronizers

The Sync Pulse interface provides an Action send method which when invoked causes a pulse on a
read method in a second clock domain.
interface SyncPulseIfc ;

method Action send () ;
method Bool pulse () ;

endinterface

The mkSyncPulse, mkSyncPulseFromCC and mkSyncPulseToCC modules provide clock domain cross-
ing modules for pulses. When the send method is called from the one clock domain, a pulse will be
seen on the read method in the second. Note that there is no handshaking between the domains,
so when sending data from a fast clock domain to a slower one, not all pulses sent may be seen in
the slower receiving clock domain. The pulse delay is two destination clocks cycles. The hardware
implementation can be found in SyncPulse.v in the Bluespec Verilog library directory.

module mkSyncPulse ( Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncPulseIfc ifc ) ;

module mkSyncPulseFromCC ( Clock dClkIn,
SyncPulseIfc ifc ) ;

module mkSyncPulseToCC ( Clock sClkIn, Reset sRstIn,
SyncPulseIfc ifc ) ;

The mkSyncHandshake, mkSyncHandshakeFromCC and mkSyncHandshakeToCC modules provide clock
domain crossing modules for pulses in a similar way as mkSyncPulse modules, except that a hand-
shake is provided in the mkSyncHandshake versions. The handshake enforces that another send does
not occur before the first pulse crosses to the other domain. The pulse delay from the send method
to the read method is two destination clocks. The send method is re-enabled in two destination
clock cycles plus two source clock cycles after the send method is called.

module mkSyncHandshake ( Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncPulseIfc ifc ) ;

module mkSyncHandshakeFromCC ( Clock dClkIn,
SyncPulseIfc ifc ) ;

module mkSyncHandshakeToCC ( Clock sClkIn, Reset sRstIn,
SyncPulseIfc ifc ) ;

C.7.6 Word Synchronizers

Word synchronizers use the common Reg interface (redescribed below), but there are a few subtle
differences which the designer should be aware. First, the read and write methods are in difference
clock domains, and second the write method has an implicit “ready” condition which means that
some synchronization modules cannot be written every clock cycle. Both of these conditions are
handled automatically by the Bluespec compiler relieving the designer of these checks.

interface Reg #(a_type);
method Action _write(a_type x1);
method a_type _read();

endinterface: Reg
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The mkSyncReg, mkSyncRegToCC and mkSyncRegFromCC modules provide word synchronization across
clock domains. The crossing are handshaked, such that a second write cannot occur until the first
is acknowledge by the destination side. The destination read is registered. The hardware implemen-
tation can be found in SyncRegister.v in the Bluespec Verilog library directory.

module mkSyncReg #( a_type initValue
)( Clock sClkIn, Reset sRstIn,

Clock dClkIn,
Reg #(a_type) ifc )

provisos (Bits#(a_type,sa) ) ;

module mkSyncRegFromCC #( a_type initValue
)( Clock dClkIn,

Reg #(a_type) ifc)
provisos (Bits#(a_type,sa)) ;

module mkSyncRegToCC #( a_type initValue
)( Clock sClkIn, Reset sRstIn,

Reg #(a_type) ifc)
provisos (Bits#(a_type,sa)) ;

C.7.7 FIFO Synchronizers

The sync FIFO interface defines an interface similar to the FIFO interface, except it does not have
a clear method.

interface SyncFIFOIfc #(type a_type) ;
method Action enq ( a_type sendData ) ;
method Action deq () ;
method a_type first () ;

endinterface

The mkSyncFIFO, mkSyncFIFOFromCC and mkSyncFIFOToCC modules provide FIFOs for sending data
across clock domains. The enq method is in one domain, while the deq and first methods are in
a second domain. Depth of the instantiated FIFO may be increased to the next power of 2, FIFOs
of depth 1 are allowed. The hardware implementation can be found in SyncFIFO.v in the Bluespec
Verilog library directory.

module mkSyncFIFO #( Integer depthIn
)( Clock sClkIn, Reset sRstIn,

Clock dClkIn,
SyncFIFOIfc #(a_type) ifc )

provisos (Bits#(a_type,sa));

A variation of the Sync FIFO which allow the empty and full signals to be registered. Registering
the signals can give better synthesis results, since a comparator is removed from the empty or full
path. However, there is an additional cycle of latency before the empty or full signal is visible.

module mkSyncFIFOFull #( Integer depthIn,
Bool regEmpty,
Bool regFull
)( Clock sClkIn, Reset sRstIn,

Clock dClkIn,
SyncFIFOIfc #(a_type) ifc )

provisos (Bits#(a_type,sa));
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module mkSyncFIFOFromCC #( Integer depthIn
)( Clock dClkIn,

SyncFIFOIfc #(a_type) ifc)
provisos (Bits#(a_type,sa));

module mkSyncFIFOToCC #( Integer depthIn
)( Clock sClkIn, Reset sRstIn,

SyncFIFOIfc #(a_type) ifc)
provisos (Bits#(a_type,sa));

module mkSyncFIFOFromCCFull #( Integer depthIn,
Bool regEmpty,
Bool regFull
)( Clock dClkIn,

SyncFIFOIfc #(a_type) ifc)
provisos (Bits#(a_type,sa));

module mkSyncFIFOToCCFull #( Integer depthIn,
Bool regEmpty,
Bool regFull
)( Clock sClkIn, Reset sRstIn,

SyncFIFOIfc #(a_type) ifc)
provisos (Bits#(a_type,sa));

C.7.8 Asynchronous RAMs
interface DualPortRamIfc #(type addr_t, type data_t);

method Action write( addr_t wr_addr, data_t din );
method data_t read ( addr_t rd_addr);

endinterface: DualPortRamIfc

module mkDualRam( DualPortRamIfc #(addr_t, data_t) )
provisos ( Bits#(addr_t,sa),

Bits#(data_t,da) ) ;

C.7.9 A Crossing Primitive using Only Wires
interface ReadOnly #( type a_type ) ;

method a_type _read() ;
endinterface

module mkNullCrossing( Clock dClk, a_type dataIn,
ReadOnly#(a_type) ifc )

provisos (Bits#(a_type, sizeOfa)) ;

C.7.10 Specialized Crossing Primitives

The mkSyncRegToSlow and mkSyncSyncRegToFast are specialized crossing primitives which can be
used to transport data when clock edges are aligned, between the domains. The divided clocks and
the appropriate interface needed for the module would typically be generated using the mkClockDivider
module. The crossing primitive is implemented via a single register, clocked by slower (divided) clock.
For a fast to slow crossing, the register is only writable when clockReady bit of the divider interface
is asserted. This is an implicit condition of the module which prevent erroneous writes. For a slow
to fast crossing both the read and write methods are always available.
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module mkSyncRegToSlow #( a_type initValue
)( ClockDividerIfc divider,

Reset slowRstIn,
Reg #(a_type) ifc )

provisos (Bits#(a_type,sizea)) ;

The mkSyncFIFOAlignedEdges module is a specialized crossing primitive which can be used to
transport data when clock edges are aligned, between a fast sClkIn and a slower dClkIn. The
derived clock and the ClkNextRdy signal would typically be generated using the mkClockDivider
module. The crossing primitive is implemented via a FIFO with the specified depth clocked by
dClkIn. The FIFO is only writable when syncBit is asserted and the FIFO is not Full.

module mkSyncFIFOToSlow #( Integer depth
)( ClockDividerIfc divider,

Reset slowRstIn,
SyncFIFOIfc #(a_type) ifc )

provisos (Bits#(a_type,sizea)) ;

module mkSyncFIFOToFast #( Integer depth
)( ClockDividerIfc divider,

Reset slowRstIn,
SyncFIFOIfc #(a_type) ifc )

provisos (Bits#(a_type,sizea)) ;

C.7.11 Reset Generation and Synchronization

Reset generation allows the conversion of a Boolean type to a Reset type, where the reset is associated
with the default (or clocked_by) clock domain. Two modules provide this function, mkReset and
mkResetSync, where each module has one parameter, stages. The stages argument is the number
of full clock cycles the output reset is held after the input reset is deasserted. Specifying a 0 for the
stages argument results in the creation of a simple wire between the bRstIn and rstOut. That
is, the reset is asserted immediately and not held after the bRstIn is deasserted. It becomes the
designer’s responsibility to ensure that bRstIn is asserted for sufficient time to allow the design to
reset properly. Note that the Boolean input bRstIn is asserted low, and can be taken from any clock
domain.

The difference between mkReset and mkResetSync is that for the former, the assertion of reset is
immediate, while the later asserts reset at the next rising edge of the clock. Note that the use
mkResetSync is less common, since the reset requires clock edges to take effect; failure to assert
reset for a clock edge will not result in a reset being seen at rstOut.
module mkReset #( Integer stages

)( Bool bRstIn,
Reset rstOut ) ;

module mkResetSync #( Integer stages
)( Bool bRstIn,
Reset rstOut ) ;

To synchronize resets from one clock domain to another, several modules are provided. The
mkAsyncReset family is similar to the mkReset module; the stages argument has the same behavior.
Note that sClkIn is unused, but specified to be in the style of other synchronization modules.
module mkAsyncReset #( Integer stages

)( Clock sClkIn, Reset sRst,
Clock dClkIn,
Reset dRstOut ) ;
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module mkAsyncResetFromCC #( Integer stages
)( Clock dClkIn,

Reset dRstOut ) ;

The less common mkSyncReset modules are provided for convenience, but these modules require
that sRst be held during a positive edge of dClkIn for the reset assertion to be noticed.

module mkSyncReset #( Integer stages
)( Clock sClkIn, Reset sRst,

Clock dClkIn,
Reset dRstOut ) ;

module mkSyncResetFromCC #( Integer stages
)( Clock dClkIn,

Reset dRstOut ) ;

For testbenches, in which an absolute clock is being created, it is helpful to generate a reset for that
clock. The module mkInitialReset generates a reset on the first clock that it receives. The reset is
asserted for a number of cycles specified by the parameter, which must be greater than zero. This
module is not consider synthesizable.

module mkInitialReset #( Integer cycles
)( Reset rstOut ) ;

C.8 RAMs

C.8.1 RAM and TRAM

The RAM type is used for various types of memories. The memory is a Server which accepts read or
write requests. A read request will generate a response containing the read data. The latency for a
RAM is arbitrary, it does not even have to be a fixed latency.

Note, the types of the address and data are arbitrary.

typedef Server#(RAMreq#(adr, dta), dta) RAM #(type adr, type dta);

typedef Client#(RAMreq#(adr, dta), dta) RAMclient #(type adr, type dta);

typedef union tagged {
adr Read;
Tuple2#(adr, dta) Write;

} RAMreq #(type adr, type dta) deriving (Eq, Bits);

The TRAM type represents a tagged RAM. It is similar to the RAM interface, but each read request
has an additional tag that will be part of the response for a read.

typedef Server#(TRAMreq#(tag, adr, dta), TRAMresp#(tag, dta))
TRAM #(type tag, type adr, type dta);

typedef
Client#(TRAMreq#(tag, adr, dta), TRAMresp#(tag, dta))

TRAMclient #(type tag, type adr, type dta);
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typedef tagged union {
TRAMreqRead#(tag, adr, dta) Read;
TRAMreqWrite#(tag, adr, dta) Write;

} TRAMreq #(type tag, type adr, type dta) deriving (Eq, Bits);

typedef struct {
tg tag;
adr address;

} TRAMreqRead #(type tg, type adr, type dta) deriving (Eq, Bits);

typedef struct {
dta value;
adr address;

} TRAMreqWrite #(type tg, type adr, type dta) deriving (Eq, Bits);

typedef struct {
tg tag;
dta value;

} TRAMresp #(type tg, type dta) deriving (Eq, Bits);

The tagRAM function converts a RAM to a TRAM by putting a tag FIFO next to it. The FIFO size
is specified by the first argument.
module tagRAM#(Integer sz, Module#(RAM#(adr, dta)) mkRAM)(TRAM#(tg, adr, dta))
provisos (Bits#(tg, stg));

C.8.2 SyncSRAM

The SyncSRAM package contains definitions of the low level type for connecting to synchronous
SRAMs. It is not intended for programming with directly; it is only used to interface to internal
and external SRAMs. The SyncSRAMS type is the type of an SRAM. An SRAM is a “server” in the
sense that it accepts a request every clock cycle and delivers a response every clock cycle. The type
has three parameters, lat, the latency in clock cycles, adrs, the size of the address, and dtas, the
size of the data.
typedef
Server#(SyncSRAMrequest#(lat, adrs, dtas), Bit#(dtas))

SyncSRAMS #(type lat, type adrs, type dtas);

Correspondingly, SyncSRAMC is the type of a user (client) of an SRAM.
typedef
Client#(SyncSRAMrequest#(lat, adrs, dtas), Bit#(dtas))

SyncSRAMC #(type lat, type adrs, type dtas);

An SRAM request is simply the wires to the SRAM.

Note
SyncSRAMrequest should really be a struct, but we get nice wire names by using an interface.

interface (SyncSRAMrequest :: # -> # -> # -> *) #(type lat, type adrs, type dtas);
method Bit#(adrs) addr();
method Bit#(dtas) wdata();
method Bit#(1) we();
method Bit#(1) ena();

endinterface: (SyncSRAMrequest :: # -> # -> # -> *)

Note, it is important that the latency argument is accurate. Various SRAM adapters rely on the
latency information in the type to do the right thing.

c© 2005 Bluespec, Inc. All rights reserved 225



Reference Guide Bluespec SystemVerilog v3.8

C.8.3 SRAM and TSRAM

The SRAM package contains functions for wrapping a raw SRAM so that it has the more convenient
RAM interface. The mkWrapSRAM function takes a SyncSRAM module and turns it into a RAM module.

module mkWrapSRAM#(Module#(SyncSRAMS#(lat, adrs, dtas)) mkRam)(RAM#(adr, dta))
provisos (Bits#(adr, adrs),
Bits#(dta, dtas),
Add#(1, lat, lat1),
Add#(4, lat, lat4),
Log#(lat4, llat));

The wrapSRAM module generates a SyncSRAMC client and a RAM server. The client interface can be
exported and hooked up to an external SRAM, or hooked up to an internally generated SRAM.

module wrapSRAM(Tuple2 #(SyncSRAMC#(lat, adrs, dtas), RAM#(adr, dta)))
provisos (Bits#(adr, adrs),
Bits#(dta, dtas),
Add#(1, lat, lat1),
Add#(4, lat, lat4),
Log#(lat4, llat));

Both the mkWrapSRAM and wrapSRAM modules add two cycles of latency to the SRAM latency. The
reason for this is that the raw interface to the SRAM has fully“registered” inputs and outputs (which
is necessary for many SRAMs).

Note
The current implementation of these functions is broken, it adds three extra cycles of latency.

The TSRAM package corresponds to the SRAM package, but for tagged SRAMs.

module mkWrapSTRAM#(Module#(SyncSRAMS#(lat, adrs, dtas)) mkRam)
(TRAM#(tg, adr, dta))

provisos (Bits#(adr, adrs),
Bits#(dta, dtas),
Bits#(tg, tgs),
Add#(1, lat, lat1),
Log#(lat1, llat));

module wrapSTRAM(Tuple2 #(SyncSRAMC#(lat, adrs, dtas), TRAM#(tg, adr, dta)))
provisos (Bits#(adr, adrs),
Bits#(dta, dtas),
Bits#(tg, tgs),
Add#(1, lat, lat1),
Log#(lat1, llat));

C.8.4 SPSRAM

The SPSRAM package is used to generate internal single ported SRAMs (for the LSI libraries). The
argument specifies the size of the SRAM. The SRAM has a one cycle latency.

module mkSPSRAM#(Integer nwords)(SyncSRAMS#(1, adrs, dtas));

226 c© 2005 Bluespec, Inc. All rights reserved



Bluespec SystemVerilog v3.8 Reference Guide

C.8.5 DPSRAM

The DPSRAM package contains is used to generate internal dual ported SRAMs (for the LSI libraries).
The argument specifies the size of the SRAM.

module mkDPSRAM#(Integer nwords)(Tuple2 #(SyncSRAMS#(1, adrs, dtas),
SyncSRAMS#(1, adrs, dtas)));

C.8.6 SRAMFile

The SRAMFile package is used to generate single ported SRAMs, where the initial contents is taken
from a file. The arguments specify the file name and the size of the SRAM. The SRAM has a one
cycle latency.

mkSRAMFile :: (IsModule m c) => String -> Integer -> m (SyncSRAMS 1 adrs dtas)

C.9 Miscellaneous

C.9.1 Assert

The Assert package contains definitions to test assertions in the code.

Compile time assertion. Can be used anywhere a compile-time statement is valid.

function Module#(Void) staticAssert(Bool b, String s);

Run time assertion. Can be used anywhere an Action is valid, and is tested whenever it is executed.

function Action dynamicAssert(Bool b, String s);

Continuous run-time assertion (expected to be True on each clock). Can be used anywhere a module
instantiation is valid.

function Action continuousAssert(Bool b);

C.9.2 Probe

Package

import Probe :: * ;

Description

A Probe is a primitive used to ensure that a signal of interest is not optimized away by the compiler
and that it is given a known name. In terms of BSV syntax, the Probe primitive it used just like
a register except that only a write method exists. Since reads are not possible, the use of a Probe
has no effect on scheduling. In the generated Verilog, the associated signal will be named just like
the port of any Verilog module, in this case <instance_name>$PROBE. No actual Probe instance will
be created however. The only side effects of a BSV Probe instantiation relate to the naming and
retention of the associated signal in the generated Verilog.

Interfaces

interface Probe #(type a_type);
method Action _write(a_type x1);

endinterface: Probe
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Modules

The module mkProbe is used to instantiate a Probe.

mkProbe Instantiates a Probe

module mkProbe(Probe#(a_type))
provisos (Bits#(a_type, sizea));

Example - Creating and writing to registers and probes
import FIFO::*;
import ClientServer::*;
import GetPut::*;
import Probe::*;

typedef Bit#(32) LuRequest;
typedef Bit#(32) LuResponse;

module mkMesaHwLpm(ILpm);
// Create registers for requestB32 and responseB32
Reg#(LuRequest) requestB32 <- mkRegU();
Reg#(LuResponse) responseB32 <- mkRegU();

// Create a probe responseB32_probe
Probe#(LuResponse) responseB32_probe <- mkProbe();
....
// Define the interfaces:
....

interface Get response;
method get() ;

actionvalue
let resp <- completionBuffer.drain.get();
// record response for debugging purposes:
let {r,t} = resp;
responseB32 <= r; // a write to a register
responseB32_probe <= r; // a write to a probe

// count responses in status register
return(resp);

endactionvalue
endmethod: get

endinterface: response
.....

endmodule

C.9.3 Reserved

Package

import Reserved :: * ;

Description

Reserved defines an abstract data type which only has the purpose of taking up space. It is useful
when defining a struct where you need to enforce a certain layout and want to use the type checker
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to enfoce that the value is not accidently used. One can enforce a layout unsafely with Bit#(n),
but Reserved#(n) gives safety. A value of type Reserved#(n) takes up exactly n bits.

typedef · · · abstract · · · Reserved#(type n);

Type classes

Type Classes used by Reserved

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

Reserved
√ √ √ √

• Bits

Converting Reserved to or from bits yields an unspecified value (“_”).

The only purpose is to allow the value to exist in hardware (at port boundaries and in states).
The user should have no reason to use pack/unpack directly.

• Eq and Ord

Any two Reserved values are considered to be equal.

• Bounded

The upper and lower bound return unspecified values (“_”).

Example: Structure with a 8 bits reserved.

typedef struct {
Bit#(8) header; // Frame.header
Vector#(2, Bit#(8)) payload; // Frame.payload
Reserved#(8) dummy; // Can’t access 8 bits reserved
Bit#(8) trailer; // Frame.trailer

} Frame;

header payload0 payload1 dummy trailer
8 8 8 8 8

C.9.4 ZBus

BSV provides the ZBus library to allow users to implement and use tri-state buses. Since BSV does
not support high-impedance or undefined values internally, the library encapsulates the tri-state bus
implementation in a module that can only be accessed through predefined interfaces which do not
allow direct access to internal signals (which could potentially have high-impedance or undefined
values).

The Verilog implementation of the tri-state module includes a number of primitive sub-modules
that are implemented using Verilog tri-state wires. The BSV representation of the bus, however,
only models the values of the bus at the associated interfaces and thus the need to represent high-
impedance or undefined values in BSV is avoided. The interfaces are defined as follows:

interface ZBusClientIFC #(type t) ;
method Action drive(t value);
method t get();
method Bool fromBusValid();

endinterface
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interface ZBusBusIFC #(type t) ;
method Action fromBusSample(ZBit#(t) value, Bool isValid);
method ZBit#(t) toBusValue();
method Bool toBusCtl();

endinterface

interface ZBusDualIFC #(type t) ;
method ZBusBusIFC#(t) busIFC;
method ZBusClientIFC#(t) clientIFC;

endinterface

The ZBusClientIFC allows a BSV module to connect to the tri-state bus. For this interface There
are no tri-state values as either method arguments or return values. The ZBusBuslIFC interface
connects to the bus structure itself (using tri-state values). The ZBusDualIFC interface includes
one ZBusBusIFC and one ZBusClientIFC. For a given bus, one ZBusDualIFC interface is associated
with each bus client. The library also provides a module constructor function, mkZBusBuffer, which
allows the user to create a module which provides the ZBusDualIFC interface.

module mkZBusBuffer (ZBusDualIFC #(t))
provisos (Eq#(t), Bits#(t,st));

This module provides essentially the functionality of a tri-state buffer. The following code fragment
creates a tri-state buffer (with an interface named buffer 0) for a 32 bit signal.

ZBusDualIFC#(Bit#(32)) buffer_0();
mkZBusBuffer inst_buffer_0(buffer_0);

This code fragment drives a value of 12 onto the associated bus.

buffer_0.clientIFC.drive(12);

The get() and fromBusValid() methods (associated with the ZBusClientIFC interface) allow each
bus client to access the current value on the bus. If the bus is in an invalid state (i.e. has a
high-impedance value or an undefined value because it is being driven by more than one client
simultaneously), then the get() method will return 0 and the fromBusValid() method will return
False. In all other cases, the fromBusValid() method will return True and the get() method will
return the current value of the bus. Finally, the ZBus library provides the mkZBus module constructor
function.

module mkZBus#(List#(ZBusBusIFC#(t)) ifc_list)(Empty)
provisos (Eq#(t), Bits#(t, st));

This function takes a list of ZBusBusIFC interfaces as arguments and creates a module which ties
them all together in a bus. The following code fragment demonstrates its use.

ZBusDualIFC#(Bit#(32)) buffer_0();
mkZBusBuffer inst_buffer_0(buffer_0);

ZBusDualIFC#(Bit#(32)) buffer_1();
mkZBusBuffer inst_buffer_1(buffer_1);

ZBusDualIFC#(Bit#(32)) buffer_2();
mkZBusBuffer inst_buffer_2(buffer_2);

List#(ZBusIFC#(Bit#(32))) ifc_list;
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bus_ifc_list = cons(buffer_0.busIFC,
cons(buffer_1.busIFC,

cons(buffer_2.busIFC,
nil)));

Empty bus_ifc();
mkZBus#(bus_ifc_list) inst_bus(bus_ifc);

C.9.5 OVLAssertions

Package

import OVLAssertions :: * ;

Description

The OVLAssertions package provides the BSV interfaces and wrapper modules necessary to allow
BSV designs to include assertion checkers from the Open Verification Library (OVL). The OVL
includes a set of assertion checkers that verify specific properties of a design. For more details on
the complete OVL, refer to the Accellera Standard OVL Library Reference Manual.

Interfaces and Methods

The following interfaces are defined for use with the assertion modules. Each interface has one or
more Action methods. Each method takes a single argument which is either a Bool or polymorphic.

AssertTest IFC

Used for assertions that check a test expression on every clock cycle.

AssertTest_IFC
Method Argument

Name Type Name Type Description
test Action test_value a_type Expression to be checked.

interface AssertTest_IFC #(type a_type);
method Action test(a_type test_value);

endinterface

AssertSampleTest IFC

Used for assertions that check a test expression on every clock cycle only if the sample, indicated by
the boolean value sample_test is asserted.

AssertSampleTest_IFC
Method Argument

Name Type Name Type Description
sample Action sample_test Bool Assertion only checked if sample_test is

asserted.
test Action test_value a_type Expression to be checked.

interface AssertSampleTest_IFC #(type a_type);
method Action sample(Bool sample_test);
method Action test(a_type test_value);

endinterface
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AssertStartTest IFC

Used for assertions that check a test expression only subsequent to a start event, specified by the
Boolean value start_test.

AssertStartTest_IFC
Method Argument

Name Type Name Type Description
start Action start_test Bool Assertion only checked after start is as-

serted.
test Action test_value a_type Expression to be checked.

interface AssertStartTest_IFC #(type a_type);
method Action start(Bool start_test);
method Action test(a_type test_value);

endinterface

AssertStartStopTest IFC

Used to check a test expression between a start event and a stop event.

AssertStartStopTest_IFC
Method Argument

Name Type Name Type Description
start Action start_test Bool Assertion only checked after start is as-

serted.
stop Action stop_test Bool Assertion only checked until the stop is

asserted.
test Action test_value a_type Expression to be checked.

interface AssertStartStopTest_IFC #(type a_type);
method Action start(Bool start_test);
method Action stop(Bool stop_test);
method Action test(a_type test_value);

endinterface

AssertTransitionTest IFC

Used to check a test expression that has a specified start state and next state, i.e. a transition.

AssertTransitionTest_IFC
Method Argument

Name Type Name Type Description
test Action test_value a_type Expression that should transition to the

next_value.
start Action start_test a_type Expression that indicates the start state

for the assertion check. If the value
of start_test equals the value of
test_value, the check is performed.

next Action next_value a_type Expression that indicates the only valid
next state for the assertion check.

interface AssertTransitionTest_IFC #(type a_type);
method Action test(a_type test_value);
method Action start(a_type start_value);
method Action next(a_type next_value);

endinterface
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AssertQuiescentTest IFC

Used to check that a test expression is equivalent to the specified expression when the sample state
is asserted.

AssertQuiescentTest_IFC
Method Argument

Name Type Name Type Description
sample Action sampe_test Bool Expression which initiates the quiescent

assertion check when it transistions to
true.

state Action state_value a_type Expression that should have the same
value as check_value

check Action check_value a_type Expression state_value is compared to.

interface AssertQuiescentTest_IFC #(type a_type);
method Action sample(Bool sample_test);
method Action state(a_type state_value);
method Action check(a_type check_value);

endinterface

AssertFifoTest IFC

Used with assertions checking a FIFO structure.

AssertFifoTest_IFC
Method Argument

Name Type Name Type Description
push Action push_value a_type Expression which indicates the number of

push operations that will occur during the
current cycle.

pop Action pop_value a_type Expression which indicates the number of
pop operations that will occur during the
current cycle.

interface AssertFifoTest_IFC #(type a_type, type b_type);
method Action push(a_type push_value);
method Action pop(b_type pop_value);

endinterface

Datatypes

Each assertion checker has a defined set of parameters. The parameters severity_level, property_type,
msg, and coverage_level are common to all assertion checkers.

c© 2005 Bluespec, Inc. All rights reserved 233



Reference Guide Bluespec SystemVerilog v3.8

Common Parameters for all Assertion Checkers
Parameter Valid Values

* indicates default value
severity_level OVL_FATAL

*OVL_ERROR
OVL_WARNING
OVL_Info

property_type *OVL_ASSERT
OVL_ASSUME
OVL_IGNORE

msg *VIOLATION
coverage_level OVL_COVER_NONE

*OVL_COVER_ALL
OVL_COVER_SANITY
OVL_COVER_BASIC
OVL_COVER_CORNER
OVL_COVER_STATISTIC

Each assertion checker may also use some subset of the following parameters.

Other Parameters for Assertion Checkers
Parameter Valid Values
action_on_new_start OVL_IGNORE_NEW_START

OVL_RESET_ON_NEW_START
OVL_ERROR_ON_NEW_START

edge_type OVL_NOEDGE
OVL_POSEDGE
OVL_NEGEDGE
OVL_ANYEDGE

necessary_condition OVL_TRIGGER_ON_MOST_PIPE
OVL_TRIGGER_ON_FIRST_PIPE
OVL_TRIGGER_ON_FIRST_NOPIPE

inactive OVL_ALL_ZEROS
OVL_ALL_ONES
OVL_ONE_COLD

Other Parameters for Assertion Checkers
Parameter Valid Values
num_cks Int#(32)
min_cks Int#(32)
max_cks Int#(32)
min_ack_cycle Int#(32)
max_ack_cycle Int#(32)
max_ack_length Int#(32)
req_drop Int#(32)
deassert_count Int#(32)
depth Int#(32)
value a_type
min a_type
max a_type
check_overlapping Bool
check_missing_start Bool
simultaneous_push_pop Bool
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Modules

Each module in this package corresponds to an assertion checker from the Open Verification Library
(OVL). The BSV name for each module is the same as the OVL name with bsv_ appended to the
beginning of the name.

Module bsv_assert_always
Description Concurrent assertion that the value of the expression is always True.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_always#(OVLDefaults#(Bool) defaults)
(AssertTest_IFC#(Bool));

Module bsv_assert_always_on_edge
Description Checks that the test expression evaluates True whenever the sample

method is asserted.
Interface Used AssertSampleTest_IFC
Parameters common assertion parameters

edge_type (default value = OVL_NOEDGE)
Module Declaration

module bsv_assert_always_on_edge#(OVLDefaults#(Bool)
defaults)(AssertSampleTest_IFC#(Bool));

Module bsv_assert_change
Description Checks that once the start method is asserted, the expression will change

value within num_cks cycles.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
num_cks (default value = 1)

Module Declaration
module bsv_assert_change#(OVLDefaults#(a_type) defaults)

(AssertStartTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_cycle_sequence
Description Ensures that if a specified necessary condition occurs,it is followed by a

specified sequence of events.
Interface Used AssertTest_IFC
Parameters common assertion parameters

necessary_condition (default value = OVL_TRIGGER_ON_MOST_PIPE)
Module Declaration

module bsv_assert_cycle_sequence#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_decrement
Description Ensures that the expression decrements only by the value specifiedR.
Interface Used AssertTest_IFC
Parameters common assertion parameters

value (default value = 1)
Module Declaration

module bsv_assert_decrement#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea), Literal#(a_type),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_delta
Description Ensures that the expression always changes by a value within the range

specified by min and max.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = 1)
max (default value = 1)

Module Declaration
module bsv_assert_delta#(OVLDefaults#(a_type) defaults)

(AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea), Literal#(a_type),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_even_parity
Description Ensures that value of a specified expression has even parity, that is an

even number of bits in the expression are active high.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_even_parity#(OVLDefaults#(a_type)
defaults) (AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_fifo_index
Description Ensures that a FIFO-type structure never overflows or underflows. This

checker can be configured to support multiple pushes (FIFO writes) and
pops (FIFO reads) during the same clock cycle.

Interface Used AssertFifoTest_IFC
Parameters common assertion parameters

depth (default value = 1)
simultaneous_push_pop (default value = True)

Module Declaration
module bsv_assert_fifo_index#(OVLDefaults#(Bit#(0))

defaults)(AssertFifoTest_IFC#(a_type, b_type))
provisos (Bits#(a_type, sizea), Bits#(b_type, sizeb));
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Module bsv_assert_frame
Description Checks that once the start method is asserted, the test expression eval-

uates true not before min_cks clock cycles and not after max_cks clock
cycles.

Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
min_cks (default value = 1)
max_cks (default value = 1)

Module Declaration
module bsv_assert_frame#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));

Module bsv_assert_handshake
Description Ensures that the specified request and acknowledge signals follow a spec-

ified handshake protocol.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
min_ack_cycle (default value = 1)
max_ack_cycle (default value = 1)

Module Declaration
module bsv_assert_handshake#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));

Module bsv_assert_implication
Description Ensures that a specified consequent expression is True if the specified

antecedent expression is True.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_implication#(OVLDefaults#(Bool) defaults)
(AssertStartTest_IFC#(Bool));

Module bsv_assert_increment
Description ensure that the test expression always increases by the value of specified

by value.
Interface Used AssertTest_IFC
Parameters common assertion parameters

value (default value = 1)
Module Declaration

module bsv_assert_increment#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea), Literal#(a_type),
Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_never
Description Ensures that the value of a specified expression is never True.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_never#(OVLDefaults#(Bool) defaults)
(AssertTest_IFC#(Bool));

Module bsv_assert_never_unknown
Description Ensures that the value of a specified expression contains only 0 and 1

bits when a qualifying expression is True.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_never_unknown#(OVLDefaults#(a_type)
defaults)(AssertStartTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_never_unknown_async
Description Ensures that the value of a specified expression always contains only 0

and 1 bits
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_never_unknown_async#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea), Literal#(a_type),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_next
Description Ensures that the value of the specified expression is true a specified

number of cycles after a start event.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

num_cks (default value = 1)
check_overlapping (default value = True)
check_missing_start (default value = False)

Module Declaration
module bsv_assert_next#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));
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Module bsv_assert_no_overflow
Description Ensures that the value of the specified expression does not overflow.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = minBound)
max (default value = maxBound)

Module Declaration
module bsv_assert_no_overflow#(OVLDefaults#(a_type)

defaults) (AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_no_transition
Description Ensures that the value of a specified expression does not transition from

a start state to the specified next state.
Interface Used AssertTransitionTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_no_transition#(OVLDefaults#(a_type)
defaults) (AssertTransitionTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_no_underflow
Description Ensures that the value of the specified expression does not underflow.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = minBound)
max (default value = maxBound)

Module Declaration
module bsv_assert_no_underflow#(OVLDefaults#(a_type)

defaults)(AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_odd_parity
Description Ensures that the specified expression had odd parity; that an odd num-

ber of bits in the expression are active high.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_odd_parity#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_one_cold
Description Ensures that exactly one bit of a variable is active low.
Interface Used AssertTest_IFC
Parameters common assertion parameters

inactive (default value = OLV_ONE_COLD)
Module Declaration

module bsv_assert_one_cold#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type))

Module bsv_assert_one_hot
Description Ensures that exactly one bit of a variable is active high.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_one_hot#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_proposition
Description Ensures that the test expression is always combinationally True. Like

assert_always except that the test expression is not sampled by the
clock.

Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_proposition#(OVLDefaults#(Bool) defaults)
(AssertTest_IFC#(Bool));

Module bsv_assert_quiescent_state
Description Ensures that the value of a specified state expression equals a corre-

sponding check value if a specified sample event has transitioned to
TRUE.

Interface Used AssertQuiescentTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_quiescent_state#(OVLDefaults#(a_type)
defaults)(AssertQuiescentTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_range
Description Ensure that an expression is always within a specified range.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = minBound)
max (default value = maxBound)

Module Declaration
module bsv_assert_range#(OVLDefaults#(a_type) defaults)

(AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_time
Description Ensures that the expression remains True for a specified number of clock

cycles after a start event.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
num_cks (default value = 1)

Module Declaration
module bsv_assert_time#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));

Module bsv_assert_transition
Description Ensures that the value of a specified expression transitions properly

froma start state to the specified next state.
Interface Used AssertTransitionTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_transition#(OVLDefaults#(a_type)
defaults)(AssertTransitionTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_unchange
Description Ensures that the value of the specified expression does not change during

a specified number of clock cycles after a start event initiates checking.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
num_cks (default value = 1)

Module Declaration
module bsv_assert_unchange#(OVLDefaults#(a_type) defaults)

(AssertStartTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_width
Description Ensures that when the test expression goes high it stays high for at least

min and at most max clock cycles.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min_cks (default value = 1)
max_cks (default value = 1)

Module Declaration
module bsv_assert_width#(OVLDefaults#(Bool) defaults)

(AssertTest_IFC#(Bool));

Module bsv_assert_win_change
Description Ensures that the value of a specified expression changes in a specified

window between a start event and a stop event.
Interface Used AssertStartStopTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_win_change#(OVLDefaults#(a_type)
defaults)(AssertStartStopTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_win_unchange
Description Ensures that the value of a specified expression does not change in a

specified window between a start event and a stop event.
Interface Used AssertStartStopTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_win_unchange#(OVLDefaults#(a_type)
defaults)(AssertStartStopTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_window
Description Ensures that the value of a specified event is True between a specified

window between a start event and a stop event.
Interface Used AssertStartStopTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_window#(OVLDefaults#(Bool) defaults)
(AssertStartStopTest_IFC#(Bool));
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Module bsv_assert_zero_one_hot
Description ensure that exactly one bit of a variable is active high or zero.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_zero_one_hot#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Example using bsv assert increment

This example checks that a test expression is always incremented by a value of 3. The assertion
passes for the first 10 increments and then starts failing when the increment amount is changed from
3 to 1.

import OVLAssertions::*; // import the OVL Assertions package

module assertIncrement (Empty);

Reg#(Bit#(8)) count <- mkReg(0);
Reg#(Bit#(8)) test_expr <- mkReg(0);

let defaults = mkOVLDefaults;
// override the default increment value and set = 3
defaults.value = 3;

// instantiate an instance of the module bsv_assert_increment using
// the name assert_mod and the interface AssertTest_IFC
AssertTest_IFC#(Bit#(8)) assert_mod <- bsv_assert_increment(defaults);

rule every (True); // Every clock cycle
assert_mod.test(test_expr); // the assertion is checked

endrule

rule increment (True);
count <= count + 1;
if (count < 10) // for 10 cycles

test_expr <= test_expr + 3; // increment the expected amount
else if (count < 15)

test_expr <= test_expr + 1; // then start incrementing by 1
else

$finish;
endrule

endmodule
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! (Bool function), 127
!= (Eq class method), 119
& (BitReduction class method), 123
& (Bitwise class method), 121
&& (Bool operator), 127
(..) (exporting member names), 16
* (Arith class method), 120
*/ (close nested comment), 11
+ (Arith class method), 120
- (Arith class method), 120
., see structs, member selection
/* (open block comment), 11
// (one-line comment), 11
< (Ord class method), 120
<< (Bitwise class method), 121
<= (Reg assignment), 50
<= (Ord class method), 120
== (Eq class method), 119
> (Ord class method), 120
>= (Ord class method), 120
>> (Bitwise class method), 121
? (don’t-care expression), 13, 56
[] (bit/part select from bit array), 58
$display, 79
$displayb, 79
$displayh, 79
$displayo, 79
$dumpoff, 80
$dumpon, 80
$dumpvars, 80
$finish, 80
$stime, 80
$stop, 80
$test$plusargs, 80
$time, 80
$write, 79
$writeb, 79
$writeh, 79
$writeo, 79
_read (PulseWire interface method), 134
_read (Reg interface method), 77, 131
_write (Reg interface method), 77, 131
{} (concatenation of bit arrays), 58
^ (BitReduction class method), 123
^ (Bitwise class method), 121
^& (BitReduction class method), 123
^~ (BitReduction class method), 123
^~ (Bitwise class method), 121
$ (character in identifiers), 11
_ (character in identifiers), 11
‘, see compiler directives

| (BitReduction class method), 123
| (Bitwise class method), 121
~ (Bitwise class method), 121
~^ (BitReduction class method), 123
~^ (Bitwise class method), 121
~| (BitReduction class method), 123

abs (function), 136
Action (type), 129
actions

Action (type), 59
action (keyword), 60
combining, 60

ActionValue (type), 61, 129
Add (type provisos), 19, 130
addRules (Rules function), 129
all (List function), 155
all (Vector function), 183
always_enabled (attribute), 82, 85
always_ready (attribute), 82, 85
and (List function), 156
any (List function), 155
any (Vector function), 183
split (Bit function), 75
append (List function), 150
append (Vector function), 168
application

of functions to arguments, 62
of methods to arguments, 63

Arith (type class), 19, 120
UInt, Int type instances, 76

arrays
update, 48

arrayToVector (Vector function), 184
asReg (Reg function), 131
asReg (dummy Reg function), 77
Assert (package), 227
AssertFifoTest_IFC (interface), 233
AssertQuiescentTest_IFC (interface), 233
AssertSampleTest_IFC (interface), 231
AssertStartStopTest_IFC (interface), 232
AssertStartTest_IFC (interface), 232
AssertTest_IFC (interface), 231
AssertTransitionTest_IFC (interface), 232
assignment statements

pattern matching in, 74
attributes, 81

begin (keyword), 51, 59
begin-end expression blocks, 59
begin-end statement blocks, 51
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BGetPut (package), 209
Bit (type), 75, 125
bit (type), 75, 125
bitconcat (Bit concatenation operator), 125
BitExtend (type class), 19, 124

UInt, Int type instances, 76
BitReduction (type class), 19, 123

UInt, Int type instances, 76
Bits (type class), 19, 98, 118

deriving, 99
representation of data types, 99
UInt, Int type instances, 76

Bitwise (type class), 19, 121
UInt, Int type instances, 76

Bool (type), 127
Bounded (type class), 19, 121

deriving, 100
UInt, Int type instances, 76

bsv_assert_always (module), 235
bsv_assert_always_on_edge (module), 235
bsv_assert_change (module), 235
bsv_assert_cycle_sequence (module), 235
bsv_assert_decrement (module), 236
bsv_assert_delta (module), 236
bsv_assert_even_parity (module), 236
bsv_assert_fifo_index (module), 236
bsv_assert_frame (module), 236
bsv_assert_handshake (module), 237
bsv_assert_implication (module), 237
bsv_assert_increment (module), 237
bsv_assert_never (module), 237
bsv_assert_never_unknown (module), 238
bsv_assert_never_unknown_async (module),

238
bsv_assert_next (module), 238
bsv_assert_no_overflow (module), 238
bsv_assert_no_transition (module), 239
bsv_assert_no_underflow (module), 239
bsv_assert_odd_parity (module), 239
bsv_assert_one_cold (module), 239
bsv_assert_one_hot (module), 240
bsv_assert_proposition (module), 240
bsv_assert_quiescent_state (module), 240
bsv_assert_range (module), 240
bsv_assert_time (module), 241
bsv_assert_transition (module), 241
bsv_assert_unchange (module), 241
bsv_assert_width (module), 241
bsv_assert_win_change (module), 242
bsv_assert_win_unchange (module), 242
bsv_assert_window (module), 242
bsv_assert_zero_one_hot (module), 242
BypassWire (interface), 134

case (keyword), 52, 71, 72
case expression, 72
case statements

ordinary, 52
pattern matching, 71

CGetPut (package), 208
clear (FIFOF interface method), 78
clear (FIFO interface method), 78
Client (interface), 206
ClientServer (package), 206
CLK= (attribute), 82
ClockDividerIfc (interface), 217
Clocks (package), 216
LevelFIFO (package), 145
cmplx (complex function), 187
cmplxMap (complex function), 188
cmplxSwap (complex function), 188
cmplxWrite (complex function), 188
comment

block, 11
one-line, 11

compiler directives, 13, 13
compilerVersion, 137
CompletionBuffer (interface), 211
CompletionBuffer (package), 211
Complex (package), 187
compose (function), 136
concat (List function), 151
concat (Vector function), 168
conditional expressions, 57

pattern matching in, 73
conditional statements, 52, 52
ConfigReg (package,interface), 149
Connectable (class), 206
Connectable (package), 205
Cons (List constructor), 150
cons (List function), 150
cons (Vector function), 167
constFn (function), 136
context, see provisos
context too weak (overloading resolution), 95
continuousAssert, 227

date, 137
default (keyword), 52, 71
‘define (compiler directive), 14
deq (FIFOF interface method), 78
deq (FIFO interface method), 78
deriving

Bits, 99
Bounded, 100
Eq, 100
brief description, 20
for isomorphic types, 101
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descending_urgency (attribute), 88
Div (type provisos), 19, 130
div (Integer function), 126
doc= (attribute), 91
documentation attributes, 91
don’t-care expression, see ?
DPSRAM (package), 227
drop (List function), 153
dropWhile (List function), 153
dropWhileRev (List function), 153
DualPortRamIfc (interface), 222
dynamicAssert, 227

elem (List function), 155
elem (Vector function), 183
else (keyword), 52
‘else (compiler directive), 15
‘elsif (compiler directive), 15
emptyRules (Rules variable), 129
enable= (attribute), 84
end (keyword), 51, 59
‘endif (compiler directive), 15
endpackage (keyword), 16
enq (FIFOF interface method), 78
enq (FIFO interface method), 78
enum, 43
enumerations, 43
epsilon (fixed-point function), 189
Eq (type class), 19, 119

deriving, 100
UInt, Int type instances, 76

error (compilation message), 135
exp (Integer function), 126
export (keyword), 16
export, identifiers from a package, 16

False (Bool constant), 127
FIFO (interface type), 78
FIFO (package), 141
FIFOF (interface type), 78
FIFOF (package), 141
FIFOLevelIfc (interface), 145
select (filter function), 153
finite state machines, 74
fire_when_enabled (attribute), 86
first (FIFOF interface method), 78
first (FIFO interface method), 78
FixedPoint (package), 189
flip (function), 136
fold (List function), 160
fold (Vector function), 175
foldl (List function), 160
foldl (Vector function), 175
foldl1 (List function), 160

foldl1 (Vector function), 175
foldr (List function), 159
foldr (Vector function), 175
foldr1 (List function), 160
foldr1 (Vector function), 175
fromInt (fixed-point function), 191
fromInteger (Literal class method), 119
fromInteger (converting unsized integer lit-

erals to specific types), 12
fromMaybe (Maybe function), 128
fromUInt (fixed-point function), 191
FSMs, 74
function calls, 62
function definitions, 54
fxptGetFrac (fixed-point function), 190
fxptGetInt (fixed-point function), 190
fxptMult (fixed-point function), 191
fxptSignExtend (fixed-point function), 192
fxptTruncate (fixed-point function), 191
fxptWrite (fixed-point function), 192
fxptZeroExtend (fixed-point function), 192

genC, 137
genvector (Vector function), 167
genVerilog, 137
genWith (Vector function), 167
genWithM (Vector function), 181
Get (interface), 202
GetPut (package), 202
grammar, 10

head (List function), 152
head (Vector function), 169
higher order functions, 101

id (function), 136
Identifier (grammar terminal), 11
identifier (grammar terminal), 11
identifiers, 11

case sensitivity, 11
export from a package, 16
import into a package, 16
qualified, 17
static scoping, 17
with $ as first letter, 11

if (keyword), 52
in method implicit conditions, 29

if statements, 52
pattern matching in, 73

if-else statements, 52
‘ifdef (compiler directive), 15
‘ifndef (compiler directive), 15
implicit conditions, 29

on interface methods, 29
import (keyword), 16
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import, identifiers into a package, 16
import BVI (keyword)

in interfacing to Verilog, 103
‘include (compiler directive), 13
infix operators

associativity, 57
precedence, 57
predefined, 57

init (List function), 152
init (Vector function), 170
instance (of overloading group), 94
instance (of type class), 94
Int (type), 76, 126
int (type), 76, 126
Integer (type), 76, 126
Integer literals, 11
interface

expression, 66
instantiation, 27

interface (keyword)
in interface declarations, 23
in interface expressions, 66

interfaces, 22
definition of, 21

Invalid
tagged union member ofMaybe type, 46

Invalid (type constructor), 128
invert (Bitwise class method), 121
isNull (List function), 155
isValid (Maybe function), 128

joinActions (List function), 165
joinActions (Vector function), 185
joinRules (List function), 165
joinRules (Vector function), 185

last (List function), 152
last (Vector function), 169
lbaCollect (function), 216
LbAddr (type), 215
LBSReg (interface), 215
LBus (package), 214
length (List function), 155
let, 49
LFSR (package), 210
‘line (compiler directive), 13
List (type), 150
ListN (type), 186
Literal (type class), 19, 119

UInt, Int type instances, 76
Literals

Integer, 11
real, 12
String, 12

Log (type provisos), 19, 130
log2 (Integer function), 126
loop statements

statically unrolled, 53
temporal, in FSMs, 195

macro invocation (compiler directive), 14
map (List function), 157
map (Vector function), 173
mapAccumL (List function), 165
mapAccumL (Vector function), 185
mapAccumR (List function), 165
mapAccumR (Vector function), 185
mapM (Monad function on List), 164
mapM (Monad function on Vector), 180
mapM_ (List function), 164
mapM_ (Vector function), 180
mapPairs (List function), 165
mapPairs (Vector function), 185
Max (type provisos), 19, 130
max (function), 136
maxBound (Bounded class method), 121
Maybe (type), 46, 128
message (compilation message), 136
meta notation, see grammar
method calls, 63
methods

of an interface, 22
pattern matching in, 73

min (function), 136
minBound (Bounded class method), 121
mkAbsoluteClock (module), 216
mkAbsoluteClockFull (module), 216
mkAsyncReset (module), 223
mkAsyncResetFromCC (module), 223
mkBClientServer (function), 210
mkBGetPut (function), 209
mkBypassWire (module), 134
mkCClientServer (function), 209
mkCGetCPut (function), 208
mkCGetPut (function), 208
mkClientBServer (function), 210
mkClientCServer (function), 209
mkClock (module), 217
mkClockDivider (module), 217
mkClockDividerOffset (module), 217
mkClockInverter (module), 217
mkClockMux (module), 217
mkClockSelect (module), 217
mkConfigReg (module), 149
mkConfigRegA (module), 149
mkConfigRegU (module), 149
mkDPSRAM (module), 227
mkDualRam (module), 222
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mkFIFO (FIFO function), 78
mkFIFO (module), 142
mkFIFOF (FIFOF function), 78
mkFIFOLevel (module), 147
mkGateClock (module), 217
mkGetBPut (function), 209
mkGetCPut (function), 208
mkInitialReset (module), 223
mkLbAccum (function), 215
mkLbBranch (function), 216
mkLbLeaf (function), 216
mkLbOffset (function), 215
mkLbRegRO (module), 215
mkLbRegRW (function), 215
mkOnce, 194
mkPulseWire (module), 134
mkReg (Reg function), 77, 131
mkRegA (Reg function), 131
mkRegFile (RegFile module), 138
mkRegFileFull (RegFile module), 138
mkRegFileFullFile (RegFileLoad function),

139
mkRegFileLoad (RegFileLoad function), 139
mkRegU (Reg function), 77, 131
mkReset (module), 223
mkResetSync (module), 223
mkRWire (RWire module), 133
mkSizedFIFO (FIFO function), 78
mkSizedFIFOF (FIFOF function), 78
mkSPSRAM (module), 226
mkSRAMFile (module), 227
mkSyncBit (module), 218
mkSyncBit1 (module), 218
mkSyncBit15 (module), 218
mkSyncFIFO (module), 221
mkSyncFIFOLevel (module), 148
mkSyncRegToFast (module), 222
mkSyncRegToSlow (module), 222
mkSyncHandshake (module), 220
mkSyncPulse (module), 220
mkSyncReg (module), 221
mkSyncRegToFast (module), 222
mkSyncRegToSlow (module), 222
mkSyncReset (module), 223
mkSyncResetFromCC (module), 223
mkUniqueWrappers (UniqueWrappers module),

211
mkWire (module), 133
mkWrapSRAM (function), 226
mkWrapSTRAM (function), 226
mkZBus (function), 230
mkZBusBuffer (function), 230
mod (Integer function), 126
module

definition of, 25
instantiation, 27

modules
definition of, 21
module (keyword), 25

Mul (type provisos), 19, 130

Nat (type), 125
negate (Arith class method), 120
newVector (Vector function), 167
Nil (List constructor), 150
nil (Vector function), 168
no_implicit_conditions (attribute), 87
noAction (empty action), 60
noAction (empty action), 129
noinline (attribute), 82
not (Bool function), 127

OInt (package), 193
OInt (type), 193
oneHotSelect (List function), 152
operators

infix, 57
prefix, 57

or (List function), 156
Ord (type class), 19, 94, 95, 120

UInt, Int type instances, 76
overloading groups, see type classes
overloading, of types, 94
OVLAssertions (package), 231

pack (Bits type class overloaded function),
98, 118

package, 15
package (keyword), 16
pattern matching, 69

error, 72
in assignment statements, 74
in case expressions, 72
in case statements, 71
in conditional expressions, 73
in if statements, 73
in methods, 73
in rules, 73

patterns, 69
polymorphism, 18
port= (attribute), 84
preempts (attribute), 90
prefix= (attribute), 84
Prelude, see Standard Prelude
Probe (package), 227
provisos, 95, 130

brief description, 18
PulseWire (interface), 134
Put (interface), 202
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RAM (package), 224
RAM (type), 224
RAMclient (type), 224
RAMreq (type), 224
readReg (Reg function), 131
ready= (attribute), 84
Real literals, 12
records, see struct
reduceAnd (BitReduction class method), 123
reduceNand (BitReduction class method), 123
reduceNor (BitReduction class method), 123
reduceOr (BitReduction class method), 123
reduceXnor (BitReduction class method), 123
reduceXor (BitReduction class method), 123
Reg (type), 77, 131
RegFile (interface type), 138
RegFileLoad (package), 139
register assignment, 50

array element, 50
partial, 50

register writes, 50
replicate (List function), 150
replicate (Vector function), 167
replicateM (List function), 164
replicateM (Vector function), 181
Reserved (type), 228
clear, 194
‘resetall (compiler directive), 15
result= (attribute), 84
reverse (List function), 163
reverse (Vector function), 179
rJoin (Rules operator), 129
rJoinDescendingUrgency (Rules operator),

129
rJoinPreempts (Rules operator), 129
rotate (List function), 162
rotate (Vector function), 178
rotateR (List function), 163
rotateR (Vector function), 178
RST_N= (attribute), 82
rules, 32

expression, 68
pattern matching in, 73

Rules (type), 68, 129
RWire, 133

scanl (List function), 162
scanl (Vector function), 177
scanr (List function), 161
scanr (Vector function), 176
select (List function), 151
select (Vector function), 169
SelectClkIfc (interface), 217
send (PulseWire interface method), 134

Server (interface), 207
shiftInAt0 (Vector function), 178
shiftInAtN (Vector function), 179
signExtend (BitExtend class method), 124
size types, 18

type classes for constraints, 19
SizeOf (pseudo-function on types), 99
split (Bit splitting function), 125
SPSRAM (package), 226
SRAM (package), 226
SRAMFile (package), 227
sscanl (List function), 162
sscanl (Vector function), 177
sscanr (List function), 161
sscanr (Vector function), 177
Standard Prelude, 17, 60, 75, 76, 96, 118
start, 194
staticAssert, 227
StmtFSM (package), 194
STRAM (package), 226
strConcat (String concatenation operator),

128
String (type), 76, 128
String literals, 12
struct

type definition, 44
struct, 44
structs

member selection, 64
update, 48

sub (RegFile interface method), 138
subinterfaces

declaration of, 24
definition of, 31

SyncBitIfc (interface), 218
SyncFIFOIfc (interface), 221
SyncFIFOLevelIfc (interface), 146
SyncPulseIfc (interface), 220
SyncSRAM (package), 225
SyncSRAMC (type), 225
SyncSRAMS (type), 225
synthesize

modules, 35
synthesize (attribute), 82
system functions, 79

$stime, 80
$test$plusargs, 80
$time, 80

system tasks, 79
$display, 79
$displayb, 79
$displayh, 79
$displayo, 79
$dumpoff, 80
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$dumpon, 80
$dumpvars, 80
$finish, 80
$stop, 80
$write, 79
$writeb, 79
$writeh, 79
$writeo, 79

TAdd (type functions), 131
tagged, see union
tagged union

member selection, see pattern matching
member selection using dot notation, 65
type definition, 44
update, 49

tagRAM (function), 225
tail (List function), 152
tail (Vector function), 169
take (List function), 152
take (Vector function), 170
takeAt (Vector function), 170
takeTail (Vector function), 170
takeWhile (List function), 153
takeWhileRev (List function), 153
TDiv (type functions), 131
TExp (type functions), 131
TLog (type functions), 131
TMul (type functions), 131
toList (Vector function), 184
toVector (Vector function), 184
TRAM (package), 224
TRAM (type), 224
TRAMclient (type), 224
TRAMreq (type), 224
TRAMresp (type), 225
transpose (List function), 163
transpose (Vector function), 179
transposeLN (Vector function), 179
True (Bool constant), 127
truncate (BitExtend class method), 124
TSub (type functions), 131
tuples

expressions, 76
patterns, 77
selecting components, 76
type definition, 76

type assertions
static, 63

type classes, 94, 118
type declaration, 17
type variables, 18
types, 17

parameterized, 18

polymorphic, 18

UInt (type), 76, 126
‘undef (compiler directive), 15
underscore, see
union, 44
union tagged

type definition, 44
unpack (Bits type class overloaded function),

98, 118
unpack (converting sized integer literals to spe-

cific types), 12
unzip (List function), 157
unzip (Vector function), 172
upd (RegFile interface method), 138
update (List function), 151
update (Vector function), 169
upto (List function), 150

Valid
tagged union member ofMaybe type, 46

Valid (type constructor), 128
validValue (Maybe function), 128
valueof (pseudo-function of size types), 20
variable assignment, 48
variable declaration, 47
variable initialization, 47
variables, 47
Vector (type), 166
vectorToArray (Vector function), 185
void (type, in tagged unions), 45

warning (compilation message), 135
wget (RWire interface method), 133
while (function), 137
Wire (interface), 133
Wrapper (interface type), 211
wrapSRAM (module), 226
wrapSTRAM (module), 226
writeReg (Reg function), 131
wset (RWire interface method), 133

ZBus (package), 229
ZBusBusIFC (interface), 229
ZBusClientIFC (interface), 229
ZBusDualIFC (interface), 230
zeroExtend (BitExtend class method), 124
zip (List function), 156
zip (Vector function), 171
zip3 (List function), 157
zip3 (Vector function), 171
zip4 (List function), 157
zip4 (Vector function), 172
zipAny (Vector function), 172
zipWith (List function), 158
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zipWith (Vector function), 173
zipWith3 (List function), 158
zipWith3 (Vector function), 173
zipWith3M (List function), 164
zipWith3M (Vector function), 181
zipWith4 (List function), 158
zipWithAny (Vector function), 173
zipWithAny3 (Vector function), 174
zipWithM (List function), 164
zipWithM (Vector function), 180
zipWithM_ (Vector function), 181
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