diff src/clojure/asm/MethodWriter.java @ 10:ef7dbbd6452c

added clojure source goodness
author Robert McIntyre <rlm@mit.edu>
date Sat, 21 Aug 2010 06:25:44 -0400
parents
children
line wrap: on
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/clojure/asm/MethodWriter.java	Sat Aug 21 06:25:44 2010 -0400
     1.3 @@ -0,0 +1,3029 @@
     1.4 +/***
     1.5 + * ASM: a very small and fast Java bytecode manipulation framework
     1.6 + * Copyright (c) 2000-2005 INRIA, France Telecom
     1.7 + * All rights reserved.
     1.8 + *
     1.9 + * Redistribution and use in source and binary forms, with or without
    1.10 + * modification, are permitted provided that the following conditions
    1.11 + * are met:
    1.12 + * 1. Redistributions of source code must retain the above copyright
    1.13 + *    notice, this list of conditions and the following disclaimer.
    1.14 + * 2. Redistributions in binary form must reproduce the above copyright
    1.15 + *    notice, this list of conditions and the following disclaimer in the
    1.16 + *    documentation and/or other materials provided with the distribution.
    1.17 + * 3. Neither the name of the copyright holders nor the names of its
    1.18 + *    contributors may be used to endorse or promote products derived from
    1.19 + *    this software without specific prior written permission.
    1.20 + *
    1.21 + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    1.22 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    1.23 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    1.24 + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    1.25 + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    1.26 + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    1.27 + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    1.28 + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    1.29 + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    1.30 + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
    1.31 + * THE POSSIBILITY OF SUCH DAMAGE.
    1.32 + */
    1.33 +package clojure.asm;
    1.34 +
    1.35 +/**
    1.36 + * A {@link MethodVisitor} that generates methods in bytecode form. Each visit
    1.37 + * method of this class appends the bytecode corresponding to the visited
    1.38 + * instruction to a byte vector, in the order these methods are called.
    1.39 + *
    1.40 + * @author Eric Bruneton
    1.41 + * @author Eugene Kuleshov
    1.42 + */
    1.43 +class MethodWriter implements MethodVisitor{
    1.44 +
    1.45 +/**
    1.46 + * Pseudo access flag used to denote constructors.
    1.47 + */
    1.48 +final static int ACC_CONSTRUCTOR = 262144;
    1.49 +
    1.50 +/**
    1.51 + * Frame has exactly the same locals as the previous stack map frame and
    1.52 + * number of stack items is zero.
    1.53 + */
    1.54 +final static int SAME_FRAME = 0; // to 63 (0-3f)
    1.55 +
    1.56 +/**
    1.57 + * Frame has exactly the same locals as the previous stack map frame and
    1.58 + * number of stack items is 1
    1.59 + */
    1.60 +final static int SAME_LOCALS_1_STACK_ITEM_FRAME = 64; // to 127 (40-7f)
    1.61 +
    1.62 +/**
    1.63 + * Reserved for future use
    1.64 + */
    1.65 +final static int RESERVED = 128;
    1.66 +
    1.67 +/**
    1.68 + * Frame has exactly the same locals as the previous stack map frame and
    1.69 + * number of stack items is 1. Offset is bigger then 63;
    1.70 + */
    1.71 +final static int SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED = 247; // f7
    1.72 +
    1.73 +/**
    1.74 + * Frame where current locals are the same as the locals in the previous
    1.75 + * frame, except that the k last locals are absent. The value of k is given
    1.76 + * by the formula 251-frame_type.
    1.77 + */
    1.78 +final static int CHOP_FRAME = 248; // to 250 (f8-fA)
    1.79 +
    1.80 +/**
    1.81 + * Frame has exactly the same locals as the previous stack map frame and
    1.82 + * number of stack items is zero. Offset is bigger then 63;
    1.83 + */
    1.84 +final static int SAME_FRAME_EXTENDED = 251; // fb
    1.85 +
    1.86 +/**
    1.87 + * Frame where current locals are the same as the locals in the previous
    1.88 + * frame, except that k additional locals are defined. The value of k is
    1.89 + * given by the formula frame_type-251.
    1.90 + */
    1.91 +final static int APPEND_FRAME = 252; // to 254 // fc-fe
    1.92 +
    1.93 +/**
    1.94 + * Full frame
    1.95 + */
    1.96 +final static int FULL_FRAME = 255; // ff
    1.97 +
    1.98 +/**
    1.99 + * Indicates that the stack map frames must be recomputed from scratch. In
   1.100 + * this case the maximum stack size and number of local variables is also
   1.101 + * recomputed from scratch.
   1.102 + *
   1.103 + * @see #compute
   1.104 + */
   1.105 +private final static int FRAMES = 0;
   1.106 +
   1.107 +/**
   1.108 + * Indicates that the maximum stack size and number of local variables must
   1.109 + * be automatically computed.
   1.110 + *
   1.111 + * @see #compute
   1.112 + */
   1.113 +private final static int MAXS = 1;
   1.114 +
   1.115 +/**
   1.116 + * Indicates that nothing must be automatically computed.
   1.117 + *
   1.118 + * @see #compute
   1.119 + */
   1.120 +private final static int NOTHING = 2;
   1.121 +
   1.122 +/**
   1.123 + * Next method writer (see {@link ClassWriter#firstMethod firstMethod}).
   1.124 + */
   1.125 +MethodWriter next;
   1.126 +
   1.127 +/**
   1.128 + * The class writer to which this method must be added.
   1.129 + */
   1.130 +ClassWriter cw;
   1.131 +
   1.132 +/**
   1.133 + * Access flags of this method.
   1.134 + */
   1.135 +private int access;
   1.136 +
   1.137 +/**
   1.138 + * The index of the constant pool item that contains the name of this
   1.139 + * method.
   1.140 + */
   1.141 +private int name;
   1.142 +
   1.143 +/**
   1.144 + * The index of the constant pool item that contains the descriptor of this
   1.145 + * method.
   1.146 + */
   1.147 +private int desc;
   1.148 +
   1.149 +/**
   1.150 + * The descriptor of this method.
   1.151 + */
   1.152 +private String descriptor;
   1.153 +
   1.154 +/**
   1.155 + * The signature of this method.
   1.156 + */
   1.157 +String signature;
   1.158 +
   1.159 +/**
   1.160 + * If not zero, indicates that the code of this method must be copied from
   1.161 + * the ClassReader associated to this writer in <code>cw.cr</code>. More
   1.162 + * precisely, this field gives the index of the first byte to copied from
   1.163 + * <code>cw.cr.b</code>.
   1.164 + */
   1.165 +int classReaderOffset;
   1.166 +
   1.167 +/**
   1.168 + * If not zero, indicates that the code of this method must be copied from
   1.169 + * the ClassReader associated to this writer in <code>cw.cr</code>. More
   1.170 + * precisely, this field gives the number of bytes to copied from
   1.171 + * <code>cw.cr.b</code>.
   1.172 + */
   1.173 +int classReaderLength;
   1.174 +
   1.175 +/**
   1.176 + * Number of exceptions that can be thrown by this method.
   1.177 + */
   1.178 +int exceptionCount;
   1.179 +
   1.180 +/**
   1.181 + * The exceptions that can be thrown by this method. More precisely, this
   1.182 + * array contains the indexes of the constant pool items that contain the
   1.183 + * internal names of these exception classes.
   1.184 + */
   1.185 +int[] exceptions;
   1.186 +
   1.187 +/**
   1.188 + * The annotation default attribute of this method. May be <tt>null</tt>.
   1.189 + */
   1.190 +private ByteVector annd;
   1.191 +
   1.192 +/**
   1.193 + * The runtime visible annotations of this method. May be <tt>null</tt>.
   1.194 + */
   1.195 +private AnnotationWriter anns;
   1.196 +
   1.197 +/**
   1.198 + * The runtime invisible annotations of this method. May be <tt>null</tt>.
   1.199 + */
   1.200 +private AnnotationWriter ianns;
   1.201 +
   1.202 +/**
   1.203 + * The runtime visible parameter annotations of this method. May be
   1.204 + * <tt>null</tt>.
   1.205 + */
   1.206 +private AnnotationWriter[] panns;
   1.207 +
   1.208 +/**
   1.209 + * The runtime invisible parameter annotations of this method. May be
   1.210 + * <tt>null</tt>.
   1.211 + */
   1.212 +private AnnotationWriter[] ipanns;
   1.213 +
   1.214 +/**
   1.215 + * The non standard attributes of the method.
   1.216 + */
   1.217 +private Attribute attrs;
   1.218 +
   1.219 +/**
   1.220 + * The bytecode of this method.
   1.221 + */
   1.222 +private ByteVector code = new ByteVector();
   1.223 +
   1.224 +/**
   1.225 + * Maximum stack size of this method.
   1.226 + */
   1.227 +private int maxStack;
   1.228 +
   1.229 +/**
   1.230 + * Maximum number of local variables for this method.
   1.231 + */
   1.232 +private int maxLocals;
   1.233 +
   1.234 +/**
   1.235 + * Number of stack map frames in the StackMapTable attribute.
   1.236 + */
   1.237 +private int frameCount;
   1.238 +
   1.239 +/**
   1.240 + * The StackMapTable attribute.
   1.241 + */
   1.242 +private ByteVector stackMap;
   1.243 +
   1.244 +/**
   1.245 + * The offset of the last frame that was written in the StackMapTable
   1.246 + * attribute.
   1.247 + */
   1.248 +private int previousFrameOffset;
   1.249 +
   1.250 +/**
   1.251 + * The last frame that was written in the StackMapTable attribute.
   1.252 + *
   1.253 + * @see #frame
   1.254 + */
   1.255 +private int[] previousFrame;
   1.256 +
   1.257 +/**
   1.258 + * Index of the next element to be added in {@link #frame}.
   1.259 + */
   1.260 +private int frameIndex;
   1.261 +
   1.262 +/**
   1.263 + * The current stack map frame. The first element contains the offset of the
   1.264 + * instruction to which the frame corresponds, the second element is the
   1.265 + * number of locals and the third one is the number of stack elements. The
   1.266 + * local variables start at index 3 and are followed by the operand stack
   1.267 + * values. In summary frame[0] = offset, frame[1] = nLocal, frame[2] =
   1.268 + * nStack, frame[3] = nLocal. All types are encoded as integers, with the
   1.269 + * same format as the one used in {@link Label}, but limited to BASE types.
   1.270 + */
   1.271 +private int[] frame;
   1.272 +
   1.273 +/**
   1.274 + * Number of elements in the exception handler list.
   1.275 + */
   1.276 +private int handlerCount;
   1.277 +
   1.278 +/**
   1.279 + * The first element in the exception handler list.
   1.280 + */
   1.281 +private Handler firstHandler;
   1.282 +
   1.283 +/**
   1.284 + * The last element in the exception handler list.
   1.285 + */
   1.286 +private Handler lastHandler;
   1.287 +
   1.288 +/**
   1.289 + * Number of entries in the LocalVariableTable attribute.
   1.290 + */
   1.291 +private int localVarCount;
   1.292 +
   1.293 +/**
   1.294 + * The LocalVariableTable attribute.
   1.295 + */
   1.296 +private ByteVector localVar;
   1.297 +
   1.298 +/**
   1.299 + * Number of entries in the LocalVariableTypeTable attribute.
   1.300 + */
   1.301 +private int localVarTypeCount;
   1.302 +
   1.303 +/**
   1.304 + * The LocalVariableTypeTable attribute.
   1.305 + */
   1.306 +private ByteVector localVarType;
   1.307 +
   1.308 +/**
   1.309 + * Number of entries in the LineNumberTable attribute.
   1.310 + */
   1.311 +private int lineNumberCount;
   1.312 +
   1.313 +/**
   1.314 + * The LineNumberTable attribute.
   1.315 + */
   1.316 +private ByteVector lineNumber;
   1.317 +
   1.318 +/**
   1.319 + * The non standard attributes of the method's code.
   1.320 + */
   1.321 +private Attribute cattrs;
   1.322 +
   1.323 +/**
   1.324 + * Indicates if some jump instructions are too small and need to be resized.
   1.325 + */
   1.326 +private boolean resize;
   1.327 +
   1.328 +/**
   1.329 + * Indicates if the instructions contain at least one JSR instruction.
   1.330 + */
   1.331 +private boolean jsr;
   1.332 +
   1.333 +// ------------------------------------------------------------------------
   1.334 +
   1.335 +/*
   1.336 +	 * Fields for the control flow graph analysis algorithm (used to compute the
   1.337 +	 * maximum stack size). A control flow graph contains one node per "basic
   1.338 +	 * block", and one edge per "jump" from one basic block to another. Each
   1.339 +	 * node (i.e., each basic block) is represented by the Label object that
   1.340 +	 * corresponds to the first instruction of this basic block. Each node also
   1.341 +	 * stores the list of its successors in the graph, as a linked list of Edge
   1.342 +	 * objects.
   1.343 +	 */
   1.344 +
   1.345 +/**
   1.346 + * Indicates what must be automatically computed.
   1.347 + *
   1.348 + * @see FRAMES
   1.349 + * @see MAXS
   1.350 + * @see NOTHING
   1.351 + */
   1.352 +private int compute;
   1.353 +
   1.354 +/**
   1.355 + * A list of labels. This list is the list of basic blocks in the method,
   1.356 + * i.e. a list of Label objects linked to each other by their
   1.357 + * {@link Label#successor} field, in the order they are visited by
   1.358 + * {@link visitLabel}, and starting with the first basic block.
   1.359 + */
   1.360 +private Label labels;
   1.361 +
   1.362 +/**
   1.363 + * The previous basic block.
   1.364 + */
   1.365 +private Label previousBlock;
   1.366 +
   1.367 +/**
   1.368 + * The current basic block.
   1.369 + */
   1.370 +private Label currentBlock;
   1.371 +
   1.372 +/**
   1.373 + * The (relative) stack size after the last visited instruction. This size
   1.374 + * is relative to the beginning of the current basic block, i.e., the true
   1.375 + * stack size after the last visited instruction is equal to the
   1.376 + * {@link Label#inputStackTop beginStackSize} of the current basic block
   1.377 + * plus <tt>stackSize</tt>.
   1.378 + */
   1.379 +private int stackSize;
   1.380 +
   1.381 +/**
   1.382 + * The (relative) maximum stack size after the last visited instruction.
   1.383 + * This size is relative to the beginning of the current basic block, i.e.,
   1.384 + * the true maximum stack size after the last visited instruction is equal
   1.385 + * to the {@link Label#inputStackTop beginStackSize} of the current basic
   1.386 + * block plus <tt>stackSize</tt>.
   1.387 + */
   1.388 +private int maxStackSize;
   1.389 +
   1.390 +// ------------------------------------------------------------------------
   1.391 +// Constructor
   1.392 +// ------------------------------------------------------------------------
   1.393 +
   1.394 +/**
   1.395 + * Constructs a new {@link MethodWriter}.
   1.396 + *
   1.397 + * @param cw            the class writer in which the method must be added.
   1.398 + * @param access        the method's access flags (see {@link Opcodes}).
   1.399 + * @param name          the method's name.
   1.400 + * @param desc          the method's descriptor (see {@link Type}).
   1.401 + * @param signature     the method's signature. May be <tt>null</tt>.
   1.402 + * @param exceptions    the internal names of the method's exceptions. May be
   1.403 + *                      <tt>null</tt>.
   1.404 + * @param computeMaxs   <tt>true</tt> if the maximum stack size and number
   1.405 + *                      of local variables must be automatically computed.
   1.406 + * @param computeFrames <tt>true</tt> if the stack map tables must be
   1.407 + *                      recomputed from scratch.
   1.408 + */
   1.409 +MethodWriter(
   1.410 +		final ClassWriter cw,
   1.411 +		final int access,
   1.412 +		final String name,
   1.413 +		final String desc,
   1.414 +		final String signature,
   1.415 +		final String[] exceptions,
   1.416 +		final boolean computeMaxs,
   1.417 +		final boolean computeFrames){
   1.418 +	if(cw.firstMethod == null)
   1.419 +		{
   1.420 +		cw.firstMethod = this;
   1.421 +		}
   1.422 +	else
   1.423 +		{
   1.424 +		cw.lastMethod.next = this;
   1.425 +		}
   1.426 +	cw.lastMethod = this;
   1.427 +	this.cw = cw;
   1.428 +	this.access = access;
   1.429 +	this.name = cw.newUTF8(name);
   1.430 +	this.desc = cw.newUTF8(desc);
   1.431 +	this.descriptor = desc;
   1.432 +	this.signature = signature;
   1.433 +	if(exceptions != null && exceptions.length > 0)
   1.434 +		{
   1.435 +		exceptionCount = exceptions.length;
   1.436 +		this.exceptions = new int[exceptionCount];
   1.437 +		for(int i = 0; i < exceptionCount; ++i)
   1.438 +			{
   1.439 +			this.exceptions[i] = cw.newClass(exceptions[i]);
   1.440 +			}
   1.441 +		}
   1.442 +	this.compute = computeFrames ? FRAMES : (computeMaxs ? MAXS : NOTHING);
   1.443 +	if(computeMaxs || computeFrames)
   1.444 +		{
   1.445 +		if(computeFrames && name.equals("<init>"))
   1.446 +			{
   1.447 +			this.access |= ACC_CONSTRUCTOR;
   1.448 +			}
   1.449 +		// updates maxLocals
   1.450 +		int size = getArgumentsAndReturnSizes(descriptor) >> 2;
   1.451 +		if((access & Opcodes.ACC_STATIC) != 0)
   1.452 +			{
   1.453 +			--size;
   1.454 +			}
   1.455 +		maxLocals = size;
   1.456 +		// creates and visits the label for the first basic block
   1.457 +		labels = new Label();
   1.458 +		labels.status |= Label.PUSHED;
   1.459 +		visitLabel(labels);
   1.460 +		}
   1.461 +}
   1.462 +
   1.463 +// ------------------------------------------------------------------------
   1.464 +// Implementation of the MethodVisitor interface
   1.465 +// ------------------------------------------------------------------------
   1.466 +
   1.467 +public AnnotationVisitor visitAnnotationDefault(){
   1.468 +	annd = new ByteVector();
   1.469 +	return new AnnotationWriter(cw, false, annd, null, 0);
   1.470 +}
   1.471 +
   1.472 +public AnnotationVisitor visitAnnotation(
   1.473 +		final String desc,
   1.474 +		final boolean visible){
   1.475 +	ByteVector bv = new ByteVector();
   1.476 +	// write type, and reserve space for values count
   1.477 +	bv.putShort(cw.newUTF8(desc)).putShort(0);
   1.478 +	AnnotationWriter aw = new AnnotationWriter(cw, true, bv, bv, 2);
   1.479 +	if(visible)
   1.480 +		{
   1.481 +		aw.next = anns;
   1.482 +		anns = aw;
   1.483 +		}
   1.484 +	else
   1.485 +		{
   1.486 +		aw.next = ianns;
   1.487 +		ianns = aw;
   1.488 +		}
   1.489 +	return aw;
   1.490 +}
   1.491 +
   1.492 +public AnnotationVisitor visitParameterAnnotation(
   1.493 +		final int parameter,
   1.494 +		final String desc,
   1.495 +		final boolean visible){
   1.496 +	ByteVector bv = new ByteVector();
   1.497 +	// write type, and reserve space for values count
   1.498 +	bv.putShort(cw.newUTF8(desc)).putShort(0);
   1.499 +	AnnotationWriter aw = new AnnotationWriter(cw, true, bv, bv, 2);
   1.500 +	if(visible)
   1.501 +		{
   1.502 +		if(panns == null)
   1.503 +			{
   1.504 +			panns = new AnnotationWriter[Type.getArgumentTypes(descriptor).length];
   1.505 +			}
   1.506 +		aw.next = panns[parameter];
   1.507 +		panns[parameter] = aw;
   1.508 +		}
   1.509 +	else
   1.510 +		{
   1.511 +		if(ipanns == null)
   1.512 +			{
   1.513 +			ipanns = new AnnotationWriter[Type.getArgumentTypes(descriptor).length];
   1.514 +			}
   1.515 +		aw.next = ipanns[parameter];
   1.516 +		ipanns[parameter] = aw;
   1.517 +		}
   1.518 +	return aw;
   1.519 +}
   1.520 +
   1.521 +public void visitAttribute(final Attribute attr){
   1.522 +	if(attr.isCodeAttribute())
   1.523 +		{
   1.524 +		attr.next = cattrs;
   1.525 +		cattrs = attr;
   1.526 +		}
   1.527 +	else
   1.528 +		{
   1.529 +		attr.next = attrs;
   1.530 +		attrs = attr;
   1.531 +		}
   1.532 +}
   1.533 +
   1.534 +public void visitCode(){
   1.535 +}
   1.536 +
   1.537 +public void visitFrame(
   1.538 +		final int type,
   1.539 +		final int nLocal,
   1.540 +		final Object[] local,
   1.541 +		final int nStack,
   1.542 +		final Object[] stack){
   1.543 +	if(compute == FRAMES)
   1.544 +		{
   1.545 +		return;
   1.546 +		}
   1.547 +
   1.548 +	if(type == Opcodes.F_NEW)
   1.549 +		{
   1.550 +		startFrame(code.length, nLocal, nStack);
   1.551 +		for(int i = 0; i < nLocal; ++i)
   1.552 +			{
   1.553 +			if(local[i] instanceof String)
   1.554 +				{
   1.555 +				frame[frameIndex++] = Frame.OBJECT
   1.556 +				                      | cw.addType((String) local[i]);
   1.557 +				}
   1.558 +			else if(local[i] instanceof Integer)
   1.559 +				{
   1.560 +				frame[frameIndex++] = ((Integer) local[i]).intValue();
   1.561 +				}
   1.562 +			else
   1.563 +				{
   1.564 +				frame[frameIndex++] = Frame.UNINITIALIZED
   1.565 +				                      | cw.addUninitializedType("",
   1.566 +				                                                ((Label) local[i]).position);
   1.567 +				}
   1.568 +			}
   1.569 +		for(int i = 0; i < nStack; ++i)
   1.570 +			{
   1.571 +			if(stack[i] instanceof String)
   1.572 +				{
   1.573 +				frame[frameIndex++] = Frame.OBJECT
   1.574 +				                      | cw.addType((String) stack[i]);
   1.575 +				}
   1.576 +			else if(stack[i] instanceof Integer)
   1.577 +				{
   1.578 +				frame[frameIndex++] = ((Integer) stack[i]).intValue();
   1.579 +				}
   1.580 +			else
   1.581 +				{
   1.582 +				frame[frameIndex++] = Frame.UNINITIALIZED
   1.583 +				                      | cw.addUninitializedType("",
   1.584 +				                                                ((Label) stack[i]).position);
   1.585 +				}
   1.586 +			}
   1.587 +		endFrame();
   1.588 +		}
   1.589 +	else
   1.590 +		{
   1.591 +		int delta;
   1.592 +		if(stackMap == null)
   1.593 +			{
   1.594 +			stackMap = new ByteVector();
   1.595 +			delta = code.length;
   1.596 +			}
   1.597 +		else
   1.598 +			{
   1.599 +			delta = code.length - previousFrameOffset - 1;
   1.600 +			}
   1.601 +
   1.602 +		switch(type)
   1.603 +			{
   1.604 +			case Opcodes.F_FULL:
   1.605 +				stackMap.putByte(FULL_FRAME)
   1.606 +						.putShort(delta)
   1.607 +						.putShort(nLocal);
   1.608 +				for(int i = 0; i < nLocal; ++i)
   1.609 +					{
   1.610 +					writeFrameType(local[i]);
   1.611 +					}
   1.612 +				stackMap.putShort(nStack);
   1.613 +				for(int i = 0; i < nStack; ++i)
   1.614 +					{
   1.615 +					writeFrameType(stack[i]);
   1.616 +					}
   1.617 +				break;
   1.618 +			case Opcodes.F_APPEND:
   1.619 +				stackMap.putByte(SAME_FRAME_EXTENDED + nLocal)
   1.620 +						.putShort(delta);
   1.621 +				for(int i = 0; i < nLocal; ++i)
   1.622 +					{
   1.623 +					writeFrameType(local[i]);
   1.624 +					}
   1.625 +				break;
   1.626 +			case Opcodes.F_CHOP:
   1.627 +				stackMap.putByte(SAME_FRAME_EXTENDED - nLocal)
   1.628 +						.putShort(delta);
   1.629 +				break;
   1.630 +			case Opcodes.F_SAME:
   1.631 +				if(delta < 64)
   1.632 +					{
   1.633 +					stackMap.putByte(delta);
   1.634 +					}
   1.635 +				else
   1.636 +					{
   1.637 +					stackMap.putByte(SAME_FRAME_EXTENDED).putShort(delta);
   1.638 +					}
   1.639 +				break;
   1.640 +			case Opcodes.F_SAME1:
   1.641 +				if(delta < 64)
   1.642 +					{
   1.643 +					stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME + delta);
   1.644 +					}
   1.645 +				else
   1.646 +					{
   1.647 +					stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED)
   1.648 +							.putShort(delta);
   1.649 +					}
   1.650 +				writeFrameType(stack[0]);
   1.651 +				break;
   1.652 +			}
   1.653 +
   1.654 +		previousFrameOffset = code.length;
   1.655 +		++frameCount;
   1.656 +		}
   1.657 +}
   1.658 +
   1.659 +public void visitInsn(final int opcode){
   1.660 +	// adds the instruction to the bytecode of the method
   1.661 +	code.putByte(opcode);
   1.662 +	// update currentBlock
   1.663 +	// Label currentBlock = this.currentBlock;
   1.664 +	if(currentBlock != null)
   1.665 +		{
   1.666 +		if(compute == FRAMES)
   1.667 +			{
   1.668 +			currentBlock.frame.execute(opcode, 0, null, null);
   1.669 +			}
   1.670 +		else
   1.671 +			{
   1.672 +			// updates current and max stack sizes
   1.673 +			int size = stackSize + Frame.SIZE[opcode];
   1.674 +			if(size > maxStackSize)
   1.675 +				{
   1.676 +				maxStackSize = size;
   1.677 +				}
   1.678 +			stackSize = size;
   1.679 +			}
   1.680 +		// if opcode == ATHROW or xRETURN, ends current block (no successor)
   1.681 +		if((opcode >= Opcodes.IRETURN && opcode <= Opcodes.RETURN)
   1.682 +		   || opcode == Opcodes.ATHROW)
   1.683 +			{
   1.684 +			noSuccessor();
   1.685 +			}
   1.686 +		}
   1.687 +}
   1.688 +
   1.689 +public void visitIntInsn(final int opcode, final int operand){
   1.690 +	// Label currentBlock = this.currentBlock;
   1.691 +	if(currentBlock != null)
   1.692 +		{
   1.693 +		if(compute == FRAMES)
   1.694 +			{
   1.695 +			currentBlock.frame.execute(opcode, operand, null, null);
   1.696 +			}
   1.697 +		else if(opcode != Opcodes.NEWARRAY)
   1.698 +			{
   1.699 +			// updates current and max stack sizes only for NEWARRAY
   1.700 +			// (stack size variation = 0 for BIPUSH or SIPUSH)
   1.701 +			int size = stackSize + 1;
   1.702 +			if(size > maxStackSize)
   1.703 +				{
   1.704 +				maxStackSize = size;
   1.705 +				}
   1.706 +			stackSize = size;
   1.707 +			}
   1.708 +		}
   1.709 +	// adds the instruction to the bytecode of the method
   1.710 +	if(opcode == Opcodes.SIPUSH)
   1.711 +		{
   1.712 +		code.put12(opcode, operand);
   1.713 +		}
   1.714 +	else
   1.715 +		{ // BIPUSH or NEWARRAY
   1.716 +		code.put11(opcode, operand);
   1.717 +		}
   1.718 +}
   1.719 +
   1.720 +public void visitVarInsn(final int opcode, final int var){
   1.721 +	// Label currentBlock = this.currentBlock;
   1.722 +	if(currentBlock != null)
   1.723 +		{
   1.724 +		if(compute == FRAMES)
   1.725 +			{
   1.726 +			currentBlock.frame.execute(opcode, var, null, null);
   1.727 +			}
   1.728 +		else
   1.729 +			{
   1.730 +			// updates current and max stack sizes
   1.731 +			if(opcode == Opcodes.RET)
   1.732 +				{
   1.733 +				// no stack change, but end of current block (no successor)
   1.734 +				currentBlock.status |= Label.RET;
   1.735 +				// save 'stackSize' here for future use
   1.736 +				// (see {@link #findSubroutineSuccessors})
   1.737 +				currentBlock.inputStackTop = stackSize;
   1.738 +				noSuccessor();
   1.739 +				}
   1.740 +			else
   1.741 +				{ // xLOAD or xSTORE
   1.742 +				int size = stackSize + Frame.SIZE[opcode];
   1.743 +				if(size > maxStackSize)
   1.744 +					{
   1.745 +					maxStackSize = size;
   1.746 +					}
   1.747 +				stackSize = size;
   1.748 +				}
   1.749 +			}
   1.750 +		}
   1.751 +	if(compute != NOTHING)
   1.752 +		{
   1.753 +		// updates max locals
   1.754 +		int n;
   1.755 +		if(opcode == Opcodes.LLOAD || opcode == Opcodes.DLOAD
   1.756 +		   || opcode == Opcodes.LSTORE || opcode == Opcodes.DSTORE)
   1.757 +			{
   1.758 +			n = var + 2;
   1.759 +			}
   1.760 +		else
   1.761 +			{
   1.762 +			n = var + 1;
   1.763 +			}
   1.764 +		if(n > maxLocals)
   1.765 +			{
   1.766 +			maxLocals = n;
   1.767 +			}
   1.768 +		}
   1.769 +	// adds the instruction to the bytecode of the method
   1.770 +	if(var < 4 && opcode != Opcodes.RET)
   1.771 +		{
   1.772 +		int opt;
   1.773 +		if(opcode < Opcodes.ISTORE)
   1.774 +			{
   1.775 +			/* ILOAD_0 */
   1.776 +			opt = 26 + ((opcode - Opcodes.ILOAD) << 2) + var;
   1.777 +			}
   1.778 +		else
   1.779 +			{
   1.780 +			/* ISTORE_0 */
   1.781 +			opt = 59 + ((opcode - Opcodes.ISTORE) << 2) + var;
   1.782 +			}
   1.783 +		code.putByte(opt);
   1.784 +		}
   1.785 +	else if(var >= 256)
   1.786 +		{
   1.787 +		code.putByte(196 /* WIDE */).put12(opcode, var);
   1.788 +		}
   1.789 +	else
   1.790 +		{
   1.791 +		code.put11(opcode, var);
   1.792 +		}
   1.793 +	if(opcode >= Opcodes.ISTORE && compute == FRAMES && handlerCount > 0)
   1.794 +		{
   1.795 +		visitLabel(new Label());
   1.796 +		}
   1.797 +}
   1.798 +
   1.799 +public void visitTypeInsn(final int opcode, final String desc){
   1.800 +	Item i = cw.newClassItem(desc);
   1.801 +	// Label currentBlock = this.currentBlock;
   1.802 +	if(currentBlock != null)
   1.803 +		{
   1.804 +		if(compute == FRAMES)
   1.805 +			{
   1.806 +			currentBlock.frame.execute(opcode, code.length, cw, i);
   1.807 +			}
   1.808 +		else if(opcode == Opcodes.NEW)
   1.809 +			{
   1.810 +			// updates current and max stack sizes only if opcode == NEW
   1.811 +			// (no stack change for ANEWARRAY, CHECKCAST, INSTANCEOF)
   1.812 +			int size = stackSize + 1;
   1.813 +			if(size > maxStackSize)
   1.814 +				{
   1.815 +				maxStackSize = size;
   1.816 +				}
   1.817 +			stackSize = size;
   1.818 +			}
   1.819 +		}
   1.820 +	// adds the instruction to the bytecode of the method
   1.821 +	code.put12(opcode, i.index);
   1.822 +}
   1.823 +
   1.824 +public void visitFieldInsn(
   1.825 +		final int opcode,
   1.826 +		final String owner,
   1.827 +		final String name,
   1.828 +		final String desc){
   1.829 +	Item i = cw.newFieldItem(owner, name, desc);
   1.830 +	// Label currentBlock = this.currentBlock;
   1.831 +	if(currentBlock != null)
   1.832 +		{
   1.833 +		if(compute == FRAMES)
   1.834 +			{
   1.835 +			currentBlock.frame.execute(opcode, 0, cw, i);
   1.836 +			}
   1.837 +		else
   1.838 +			{
   1.839 +			int size;
   1.840 +			// computes the stack size variation
   1.841 +			char c = desc.charAt(0);
   1.842 +			switch(opcode)
   1.843 +				{
   1.844 +				case Opcodes.GETSTATIC:
   1.845 +					size = stackSize + (c == 'D' || c == 'J' ? 2 : 1);
   1.846 +					break;
   1.847 +				case Opcodes.PUTSTATIC:
   1.848 +					size = stackSize + (c == 'D' || c == 'J' ? -2 : -1);
   1.849 +					break;
   1.850 +				case Opcodes.GETFIELD:
   1.851 +					size = stackSize + (c == 'D' || c == 'J' ? 1 : 0);
   1.852 +					break;
   1.853 +					// case Constants.PUTFIELD:
   1.854 +				default:
   1.855 +					size = stackSize + (c == 'D' || c == 'J' ? -3 : -2);
   1.856 +					break;
   1.857 +				}
   1.858 +			// updates current and max stack sizes
   1.859 +			if(size > maxStackSize)
   1.860 +				{
   1.861 +				maxStackSize = size;
   1.862 +				}
   1.863 +			stackSize = size;
   1.864 +			}
   1.865 +		}
   1.866 +	// adds the instruction to the bytecode of the method
   1.867 +	code.put12(opcode, i.index);
   1.868 +}
   1.869 +
   1.870 +public void visitMethodInsn(
   1.871 +		final int opcode,
   1.872 +		final String owner,
   1.873 +		final String name,
   1.874 +		final String desc){
   1.875 +	boolean itf = opcode == Opcodes.INVOKEINTERFACE;
   1.876 +	Item i = cw.newMethodItem(owner, name, desc, itf);
   1.877 +	int argSize = i.intVal;
   1.878 +	// Label currentBlock = this.currentBlock;
   1.879 +	if(currentBlock != null)
   1.880 +		{
   1.881 +		if(compute == FRAMES)
   1.882 +			{
   1.883 +			currentBlock.frame.execute(opcode, 0, cw, i);
   1.884 +			}
   1.885 +		else
   1.886 +			{
   1.887 +			/*
   1.888 +							 * computes the stack size variation. In order not to recompute
   1.889 +							 * several times this variation for the same Item, we use the
   1.890 +							 * intVal field of this item to store this variation, once it
   1.891 +							 * has been computed. More precisely this intVal field stores
   1.892 +							 * the sizes of the arguments and of the return value
   1.893 +							 * corresponding to desc.
   1.894 +							 */
   1.895 +			if(argSize == 0)
   1.896 +				{
   1.897 +				// the above sizes have not been computed yet,
   1.898 +				// so we compute them...
   1.899 +				argSize = getArgumentsAndReturnSizes(desc);
   1.900 +				// ... and we save them in order
   1.901 +				// not to recompute them in the future
   1.902 +				i.intVal = argSize;
   1.903 +				}
   1.904 +			int size;
   1.905 +			if(opcode == Opcodes.INVOKESTATIC)
   1.906 +				{
   1.907 +				size = stackSize - (argSize >> 2) + (argSize & 0x03) + 1;
   1.908 +				}
   1.909 +			else
   1.910 +				{
   1.911 +				size = stackSize - (argSize >> 2) + (argSize & 0x03);
   1.912 +				}
   1.913 +			// updates current and max stack sizes
   1.914 +			if(size > maxStackSize)
   1.915 +				{
   1.916 +				maxStackSize = size;
   1.917 +				}
   1.918 +			stackSize = size;
   1.919 +			}
   1.920 +		}
   1.921 +	// adds the instruction to the bytecode of the method
   1.922 +	if(itf)
   1.923 +		{
   1.924 +		if(argSize == 0)
   1.925 +			{
   1.926 +			argSize = getArgumentsAndReturnSizes(desc);
   1.927 +			i.intVal = argSize;
   1.928 +			}
   1.929 +		code.put12(Opcodes.INVOKEINTERFACE, i.index).put11(argSize >> 2, 0);
   1.930 +		}
   1.931 +	else
   1.932 +		{
   1.933 +		code.put12(opcode, i.index);
   1.934 +		}
   1.935 +}
   1.936 +
   1.937 +public void visitJumpInsn(final int opcode, final Label label){
   1.938 +	Label nextInsn = null;
   1.939 +	// Label currentBlock = this.currentBlock;
   1.940 +	if(currentBlock != null)
   1.941 +		{
   1.942 +		if(compute == FRAMES)
   1.943 +			{
   1.944 +			currentBlock.frame.execute(opcode, 0, null, null);
   1.945 +			// 'label' is the target of a jump instruction
   1.946 +			label.getFirst().status |= Label.TARGET;
   1.947 +			// adds 'label' as a successor of this basic block
   1.948 +			addSuccessor(Edge.NORMAL, label);
   1.949 +			if(opcode != Opcodes.GOTO)
   1.950 +				{
   1.951 +				// creates a Label for the next basic block
   1.952 +				nextInsn = new Label();
   1.953 +				}
   1.954 +			}
   1.955 +		else
   1.956 +			{
   1.957 +			if(opcode == Opcodes.JSR)
   1.958 +				{
   1.959 +				jsr = true;
   1.960 +				currentBlock.status |= Label.JSR;
   1.961 +				addSuccessor(stackSize + 1, label);
   1.962 +				// creates a Label for the next basic block
   1.963 +				nextInsn = new Label();
   1.964 +				/*
   1.965 +									 * note that, by construction in this method, a JSR block
   1.966 +									 * has at least two successors in the control flow graph:
   1.967 +									 * the first one leads the next instruction after the JSR,
   1.968 +									 * while the second one leads to the JSR target.
   1.969 +									 */
   1.970 +				}
   1.971 +			else
   1.972 +				{
   1.973 +				// updates current stack size (max stack size unchanged
   1.974 +				// because stack size variation always negative in this
   1.975 +				// case)
   1.976 +				stackSize += Frame.SIZE[opcode];
   1.977 +				addSuccessor(stackSize, label);
   1.978 +				}
   1.979 +			}
   1.980 +		}
   1.981 +	// adds the instruction to the bytecode of the method
   1.982 +	if((label.status & Label.RESOLVED) != 0
   1.983 +	   && label.position - code.length < Short.MIN_VALUE)
   1.984 +		{
   1.985 +		/*
   1.986 +					 * case of a backward jump with an offset < -32768. In this case we
   1.987 +					 * automatically replace GOTO with GOTO_W, JSR with JSR_W and IFxxx
   1.988 +					 * <l> with IFNOTxxx <l'> GOTO_W <l>, where IFNOTxxx is the
   1.989 +					 * "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) and where <l'>
   1.990 +					 * designates the instruction just after the GOTO_W.
   1.991 +					 */
   1.992 +		if(opcode == Opcodes.GOTO)
   1.993 +			{
   1.994 +			code.putByte(200); // GOTO_W
   1.995 +			}
   1.996 +		else if(opcode == Opcodes.JSR)
   1.997 +			{
   1.998 +			code.putByte(201); // JSR_W
   1.999 +			}
  1.1000 +		else
  1.1001 +			{
  1.1002 +			// if the IF instruction is transformed into IFNOT GOTO_W the
  1.1003 +			// next instruction becomes the target of the IFNOT instruction
  1.1004 +			if(nextInsn != null)
  1.1005 +				{
  1.1006 +				nextInsn.status |= Label.TARGET;
  1.1007 +				}
  1.1008 +			code.putByte(opcode <= 166
  1.1009 +			             ? ((opcode + 1) ^ 1) - 1
  1.1010 +			             : opcode ^ 1);
  1.1011 +			code.putShort(8); // jump offset
  1.1012 +			code.putByte(200); // GOTO_W
  1.1013 +			}
  1.1014 +		label.put(this, code, code.length - 1, true);
  1.1015 +		}
  1.1016 +	else
  1.1017 +		{
  1.1018 +		/*
  1.1019 +					 * case of a backward jump with an offset >= -32768, or of a forward
  1.1020 +					 * jump with, of course, an unknown offset. In these cases we store
  1.1021 +					 * the offset in 2 bytes (which will be increased in
  1.1022 +					 * resizeInstructions, if needed).
  1.1023 +					 */
  1.1024 +		code.putByte(opcode);
  1.1025 +		label.put(this, code, code.length - 1, false);
  1.1026 +		}
  1.1027 +	if(currentBlock != null)
  1.1028 +		{
  1.1029 +		if(nextInsn != null)
  1.1030 +			{
  1.1031 +			// if the jump instruction is not a GOTO, the next instruction
  1.1032 +			// is also a successor of this instruction. Calling visitLabel
  1.1033 +			// adds the label of this next instruction as a successor of the
  1.1034 +			// current block, and starts a new basic block
  1.1035 +			visitLabel(nextInsn);
  1.1036 +			}
  1.1037 +		if(opcode == Opcodes.GOTO)
  1.1038 +			{
  1.1039 +			noSuccessor();
  1.1040 +			}
  1.1041 +		}
  1.1042 +}
  1.1043 +
  1.1044 +public void visitLabel(final Label label){
  1.1045 +	// resolves previous forward references to label, if any
  1.1046 +	resize |= label.resolve(this, code.length, code.data);
  1.1047 +	// updates currentBlock
  1.1048 +	if((label.status & Label.DEBUG) != 0)
  1.1049 +		{
  1.1050 +		return;
  1.1051 +		}
  1.1052 +	if(compute == FRAMES)
  1.1053 +		{
  1.1054 +		if(currentBlock != null)
  1.1055 +			{
  1.1056 +			if(label.position == currentBlock.position)
  1.1057 +				{
  1.1058 +				// successive labels, do not start a new basic block
  1.1059 +				currentBlock.status |= (label.status & Label.TARGET);
  1.1060 +				label.frame = currentBlock.frame;
  1.1061 +				return;
  1.1062 +				}
  1.1063 +			// ends current block (with one new successor)
  1.1064 +			addSuccessor(Edge.NORMAL, label);
  1.1065 +			}
  1.1066 +		// begins a new current block
  1.1067 +		currentBlock = label;
  1.1068 +		if(label.frame == null)
  1.1069 +			{
  1.1070 +			label.frame = new Frame();
  1.1071 +			label.frame.owner = label;
  1.1072 +			}
  1.1073 +		// updates the basic block list
  1.1074 +		if(previousBlock != null)
  1.1075 +			{
  1.1076 +			if(label.position == previousBlock.position)
  1.1077 +				{
  1.1078 +				previousBlock.status |= (label.status & Label.TARGET);
  1.1079 +				label.frame = previousBlock.frame;
  1.1080 +				currentBlock = previousBlock;
  1.1081 +				return;
  1.1082 +				}
  1.1083 +			previousBlock.successor = label;
  1.1084 +			}
  1.1085 +		previousBlock = label;
  1.1086 +		}
  1.1087 +	else if(compute == MAXS)
  1.1088 +		{
  1.1089 +		if(currentBlock != null)
  1.1090 +			{
  1.1091 +			// ends current block (with one new successor)
  1.1092 +			currentBlock.outputStackMax = maxStackSize;
  1.1093 +			addSuccessor(stackSize, label);
  1.1094 +			}
  1.1095 +		// begins a new current block
  1.1096 +		currentBlock = label;
  1.1097 +		// resets the relative current and max stack sizes
  1.1098 +		stackSize = 0;
  1.1099 +		maxStackSize = 0;
  1.1100 +		// updates the basic block list
  1.1101 +		if(previousBlock != null)
  1.1102 +			{
  1.1103 +			previousBlock.successor = label;
  1.1104 +			}
  1.1105 +		previousBlock = label;
  1.1106 +		}
  1.1107 +}
  1.1108 +
  1.1109 +public void visitLdcInsn(final Object cst){
  1.1110 +	Item i = cw.newConstItem(cst);
  1.1111 +	// Label currentBlock = this.currentBlock;
  1.1112 +	if(currentBlock != null)
  1.1113 +		{
  1.1114 +		if(compute == FRAMES)
  1.1115 +			{
  1.1116 +			currentBlock.frame.execute(Opcodes.LDC, 0, cw, i);
  1.1117 +			}
  1.1118 +		else
  1.1119 +			{
  1.1120 +			int size;
  1.1121 +			// computes the stack size variation
  1.1122 +			if(i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE)
  1.1123 +				{
  1.1124 +				size = stackSize + 2;
  1.1125 +				}
  1.1126 +			else
  1.1127 +				{
  1.1128 +				size = stackSize + 1;
  1.1129 +				}
  1.1130 +			// updates current and max stack sizes
  1.1131 +			if(size > maxStackSize)
  1.1132 +				{
  1.1133 +				maxStackSize = size;
  1.1134 +				}
  1.1135 +			stackSize = size;
  1.1136 +			}
  1.1137 +		}
  1.1138 +	// adds the instruction to the bytecode of the method
  1.1139 +	int index = i.index;
  1.1140 +	if(i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE)
  1.1141 +		{
  1.1142 +		code.put12(20 /* LDC2_W */, index);
  1.1143 +		}
  1.1144 +	else if(index >= 256)
  1.1145 +		{
  1.1146 +		code.put12(19 /* LDC_W */, index);
  1.1147 +		}
  1.1148 +	else
  1.1149 +		{
  1.1150 +		code.put11(Opcodes.LDC, index);
  1.1151 +		}
  1.1152 +}
  1.1153 +
  1.1154 +public void visitIincInsn(final int var, final int increment){
  1.1155 +	if(currentBlock != null)
  1.1156 +		{
  1.1157 +		if(compute == FRAMES)
  1.1158 +			{
  1.1159 +			currentBlock.frame.execute(Opcodes.IINC, var, null, null);
  1.1160 +			}
  1.1161 +		}
  1.1162 +	if(compute != NOTHING)
  1.1163 +		{
  1.1164 +		// updates max locals
  1.1165 +		int n = var + 1;
  1.1166 +		if(n > maxLocals)
  1.1167 +			{
  1.1168 +			maxLocals = n;
  1.1169 +			}
  1.1170 +		}
  1.1171 +	// adds the instruction to the bytecode of the method
  1.1172 +	if((var > 255) || (increment > 127) || (increment < -128))
  1.1173 +		{
  1.1174 +		code.putByte(196 /* WIDE */)
  1.1175 +				.put12(Opcodes.IINC, var)
  1.1176 +				.putShort(increment);
  1.1177 +		}
  1.1178 +	else
  1.1179 +		{
  1.1180 +		code.putByte(Opcodes.IINC).put11(var, increment);
  1.1181 +		}
  1.1182 +}
  1.1183 +
  1.1184 +public void visitTableSwitchInsn(
  1.1185 +		final int min,
  1.1186 +		final int max,
  1.1187 +		final Label dflt,
  1.1188 +		final Label labels[]){
  1.1189 +	// adds the instruction to the bytecode of the method
  1.1190 +	int source = code.length;
  1.1191 +	code.putByte(Opcodes.TABLESWITCH);
  1.1192 +	code.length += (4 - code.length % 4) % 4;
  1.1193 +	dflt.put(this, code, source, true);
  1.1194 +	code.putInt(min).putInt(max);
  1.1195 +	for(int i = 0; i < labels.length; ++i)
  1.1196 +		{
  1.1197 +		labels[i].put(this, code, source, true);
  1.1198 +		}
  1.1199 +	// updates currentBlock
  1.1200 +	visitSwitchInsn(dflt, labels);
  1.1201 +}
  1.1202 +
  1.1203 +public void visitLookupSwitchInsn(
  1.1204 +		final Label dflt,
  1.1205 +		final int keys[],
  1.1206 +		final Label labels[]){
  1.1207 +	// adds the instruction to the bytecode of the method
  1.1208 +	int source = code.length;
  1.1209 +	code.putByte(Opcodes.LOOKUPSWITCH);
  1.1210 +	code.length += (4 - code.length % 4) % 4;
  1.1211 +	dflt.put(this, code, source, true);
  1.1212 +	code.putInt(labels.length);
  1.1213 +	for(int i = 0; i < labels.length; ++i)
  1.1214 +		{
  1.1215 +		code.putInt(keys[i]);
  1.1216 +		labels[i].put(this, code, source, true);
  1.1217 +		}
  1.1218 +	// updates currentBlock
  1.1219 +	visitSwitchInsn(dflt, labels);
  1.1220 +}
  1.1221 +
  1.1222 +private void visitSwitchInsn(final Label dflt, final Label[] labels){
  1.1223 +	// Label currentBlock = this.currentBlock;
  1.1224 +	if(currentBlock != null)
  1.1225 +		{
  1.1226 +		if(compute == FRAMES)
  1.1227 +			{
  1.1228 +			currentBlock.frame.execute(Opcodes.LOOKUPSWITCH, 0, null, null);
  1.1229 +			// adds current block successors
  1.1230 +			addSuccessor(Edge.NORMAL, dflt);
  1.1231 +			dflt.getFirst().status |= Label.TARGET;
  1.1232 +			for(int i = 0; i < labels.length; ++i)
  1.1233 +				{
  1.1234 +				addSuccessor(Edge.NORMAL, labels[i]);
  1.1235 +				labels[i].getFirst().status |= Label.TARGET;
  1.1236 +				}
  1.1237 +			}
  1.1238 +		else
  1.1239 +			{
  1.1240 +			// updates current stack size (max stack size unchanged)
  1.1241 +			--stackSize;
  1.1242 +			// adds current block successors
  1.1243 +			addSuccessor(stackSize, dflt);
  1.1244 +			for(int i = 0; i < labels.length; ++i)
  1.1245 +				{
  1.1246 +				addSuccessor(stackSize, labels[i]);
  1.1247 +				}
  1.1248 +			}
  1.1249 +		// ends current block
  1.1250 +		noSuccessor();
  1.1251 +		}
  1.1252 +}
  1.1253 +
  1.1254 +public void visitMultiANewArrayInsn(final String desc, final int dims){
  1.1255 +	Item i = cw.newClassItem(desc);
  1.1256 +	// Label currentBlock = this.currentBlock;
  1.1257 +	if(currentBlock != null)
  1.1258 +		{
  1.1259 +		if(compute == FRAMES)
  1.1260 +			{
  1.1261 +			currentBlock.frame.execute(Opcodes.MULTIANEWARRAY, dims, cw, i);
  1.1262 +			}
  1.1263 +		else
  1.1264 +			{
  1.1265 +			// updates current stack size (max stack size unchanged because
  1.1266 +			// stack size variation always negative or null)
  1.1267 +			stackSize += 1 - dims;
  1.1268 +			}
  1.1269 +		}
  1.1270 +	// adds the instruction to the bytecode of the method
  1.1271 +	code.put12(Opcodes.MULTIANEWARRAY, i.index).putByte(dims);
  1.1272 +}
  1.1273 +
  1.1274 +public void visitTryCatchBlock(
  1.1275 +		final Label start,
  1.1276 +		final Label end,
  1.1277 +		final Label handler,
  1.1278 +		final String type){
  1.1279 +	++handlerCount;
  1.1280 +	Handler h = new Handler();
  1.1281 +	h.start = start;
  1.1282 +	h.end = end;
  1.1283 +	h.handler = handler;
  1.1284 +	h.desc = type;
  1.1285 +	h.type = type != null ? cw.newClass(type) : 0;
  1.1286 +	if(lastHandler == null)
  1.1287 +		{
  1.1288 +		firstHandler = h;
  1.1289 +		}
  1.1290 +	else
  1.1291 +		{
  1.1292 +		lastHandler.next = h;
  1.1293 +		}
  1.1294 +	lastHandler = h;
  1.1295 +}
  1.1296 +
  1.1297 +public void visitLocalVariable(
  1.1298 +		final String name,
  1.1299 +		final String desc,
  1.1300 +		final String signature,
  1.1301 +		final Label start,
  1.1302 +		final Label end,
  1.1303 +		final int index){
  1.1304 +	if(signature != null)
  1.1305 +		{
  1.1306 +		if(localVarType == null)
  1.1307 +			{
  1.1308 +			localVarType = new ByteVector();
  1.1309 +			}
  1.1310 +		++localVarTypeCount;
  1.1311 +		localVarType.putShort(start.position)
  1.1312 +				.putShort(end.position - start.position)
  1.1313 +				.putShort(cw.newUTF8(name))
  1.1314 +				.putShort(cw.newUTF8(signature))
  1.1315 +				.putShort(index);
  1.1316 +		}
  1.1317 +	if(localVar == null)
  1.1318 +		{
  1.1319 +		localVar = new ByteVector();
  1.1320 +		}
  1.1321 +	++localVarCount;
  1.1322 +	localVar.putShort(start.position)
  1.1323 +			.putShort(end.position - start.position)
  1.1324 +			.putShort(cw.newUTF8(name))
  1.1325 +			.putShort(cw.newUTF8(desc))
  1.1326 +			.putShort(index);
  1.1327 +	if(compute != NOTHING)
  1.1328 +		{
  1.1329 +		// updates max locals
  1.1330 +		char c = desc.charAt(0);
  1.1331 +		int n = index + (c == 'J' || c == 'D' ? 2 : 1);
  1.1332 +		if(n > maxLocals)
  1.1333 +			{
  1.1334 +			maxLocals = n;
  1.1335 +			}
  1.1336 +		}
  1.1337 +}
  1.1338 +
  1.1339 +public void visitLineNumber(final int line, final Label start){
  1.1340 +	if(lineNumber == null)
  1.1341 +		{
  1.1342 +		lineNumber = new ByteVector();
  1.1343 +		}
  1.1344 +	++lineNumberCount;
  1.1345 +	lineNumber.putShort(start.position);
  1.1346 +	lineNumber.putShort(line);
  1.1347 +}
  1.1348 +
  1.1349 +public void visitMaxs(final int maxStack, final int maxLocals){
  1.1350 +	if(compute == FRAMES)
  1.1351 +		{
  1.1352 +		// completes the control flow graph with exception handler blocks
  1.1353 +		Handler handler = firstHandler;
  1.1354 +		while(handler != null)
  1.1355 +			{
  1.1356 +			Label l = handler.start.getFirst();
  1.1357 +			Label h = handler.handler.getFirst();
  1.1358 +			Label e = handler.end.getFirst();
  1.1359 +			// computes the kind of the edges to 'h'
  1.1360 +			String t = handler.desc == null
  1.1361 +			           ? "java/lang/Throwable"
  1.1362 +			           : handler.desc;
  1.1363 +			int kind = Frame.OBJECT | cw.addType(t);
  1.1364 +			// h is an exception handler
  1.1365 +			h.status |= Label.TARGET;
  1.1366 +			// adds 'h' as a successor of labels between 'start' and 'end'
  1.1367 +			while(l != e)
  1.1368 +				{
  1.1369 +				// creates an edge to 'h'
  1.1370 +				Edge b = new Edge();
  1.1371 +				b.info = kind;
  1.1372 +				b.successor = h;
  1.1373 +				// adds it to the successors of 'l'
  1.1374 +				b.next = l.successors;
  1.1375 +				l.successors = b;
  1.1376 +				// goes to the next label
  1.1377 +				l = l.successor;
  1.1378 +				}
  1.1379 +			handler = handler.next;
  1.1380 +			}
  1.1381 +
  1.1382 +		// creates and visits the first (implicit) frame
  1.1383 +		Frame f = labels.frame;
  1.1384 +		Type[] args = Type.getArgumentTypes(descriptor);
  1.1385 +		f.initInputFrame(cw, access, args, this.maxLocals);
  1.1386 +		visitFrame(f);
  1.1387 +
  1.1388 +		/*
  1.1389 +					 * fix point algorithm: mark the first basic block as 'changed'
  1.1390 +					 * (i.e. put it in the 'changed' list) and, while there are changed
  1.1391 +					 * basic blocks, choose one, mark it as unchanged, and update its
  1.1392 +					 * successors (which can be changed in the process).
  1.1393 +					 */
  1.1394 +		int max = 0;
  1.1395 +		Label changed = labels;
  1.1396 +		while(changed != null)
  1.1397 +			{
  1.1398 +			// removes a basic block from the list of changed basic blocks
  1.1399 +			Label l = changed;
  1.1400 +			changed = changed.next;
  1.1401 +			l.next = null;
  1.1402 +			f = l.frame;
  1.1403 +			// a reacheable jump target must be stored in the stack map
  1.1404 +			if((l.status & Label.TARGET) != 0)
  1.1405 +				{
  1.1406 +				l.status |= Label.STORE;
  1.1407 +				}
  1.1408 +			// all visited labels are reacheable, by definition
  1.1409 +			l.status |= Label.REACHABLE;
  1.1410 +			// updates the (absolute) maximum stack size
  1.1411 +			int blockMax = f.inputStack.length + l.outputStackMax;
  1.1412 +			if(blockMax > max)
  1.1413 +				{
  1.1414 +				max = blockMax;
  1.1415 +				}
  1.1416 +			// updates the successors of the current basic block
  1.1417 +			Edge e = l.successors;
  1.1418 +			while(e != null)
  1.1419 +				{
  1.1420 +				Label n = e.successor.getFirst();
  1.1421 +				boolean change = f.merge(cw, n.frame, e.info);
  1.1422 +				if(change && n.next == null)
  1.1423 +					{
  1.1424 +					// if n has changed and is not already in the 'changed'
  1.1425 +					// list, adds it to this list
  1.1426 +					n.next = changed;
  1.1427 +					changed = n;
  1.1428 +					}
  1.1429 +				e = e.next;
  1.1430 +				}
  1.1431 +			}
  1.1432 +		this.maxStack = max;
  1.1433 +
  1.1434 +		// visits all the frames that must be stored in the stack map
  1.1435 +		Label l = labels;
  1.1436 +		while(l != null)
  1.1437 +			{
  1.1438 +			f = l.frame;
  1.1439 +			if((l.status & Label.STORE) != 0)
  1.1440 +				{
  1.1441 +				visitFrame(f);
  1.1442 +				}
  1.1443 +			if((l.status & Label.REACHABLE) == 0)
  1.1444 +				{
  1.1445 +				// finds start and end of dead basic block
  1.1446 +				Label k = l.successor;
  1.1447 +				int start = l.position;
  1.1448 +				int end = (k == null ? code.length : k.position) - 1;
  1.1449 +				// if non empty basic block
  1.1450 +				if(end >= start)
  1.1451 +					{
  1.1452 +					// replaces instructions with NOP ... NOP ATHROW
  1.1453 +					for(int i = start; i < end; ++i)
  1.1454 +						{
  1.1455 +						code.data[i] = Opcodes.NOP;
  1.1456 +						}
  1.1457 +					code.data[end] = (byte) Opcodes.ATHROW;
  1.1458 +					// emits a frame for this unreachable block
  1.1459 +					startFrame(start, 0, 1);
  1.1460 +					frame[frameIndex++] = Frame.OBJECT
  1.1461 +					                      | cw.addType("java/lang/Throwable");
  1.1462 +					endFrame();
  1.1463 +					}
  1.1464 +				}
  1.1465 +			l = l.successor;
  1.1466 +			}
  1.1467 +		}
  1.1468 +	else if(compute == MAXS)
  1.1469 +		{
  1.1470 +		// completes the control flow graph with exception handler blocks
  1.1471 +		Handler handler = firstHandler;
  1.1472 +		while(handler != null)
  1.1473 +			{
  1.1474 +			Label l = handler.start;
  1.1475 +			Label h = handler.handler;
  1.1476 +			Label e = handler.end;
  1.1477 +			// adds 'h' as a successor of labels between 'start' and 'end'
  1.1478 +			while(l != e)
  1.1479 +				{
  1.1480 +				// creates an edge to 'h'
  1.1481 +				Edge b = new Edge();
  1.1482 +				b.info = Edge.EXCEPTION;
  1.1483 +				b.successor = h;
  1.1484 +				// adds it to the successors of 'l'
  1.1485 +				if((l.status & Label.JSR) != 0)
  1.1486 +					{
  1.1487 +					// if l is a JSR block, adds b after the first two edges
  1.1488 +					// to preserve the hypothesis about JSR block successors
  1.1489 +					// order (see {@link #visitJumpInsn})
  1.1490 +					b.next = l.successors.next.next;
  1.1491 +					l.successors.next.next = b;
  1.1492 +					}
  1.1493 +				else
  1.1494 +					{
  1.1495 +					b.next = l.successors;
  1.1496 +					l.successors = b;
  1.1497 +					}
  1.1498 +				// goes to the next label
  1.1499 +				l = l.successor;
  1.1500 +				}
  1.1501 +			handler = handler.next;
  1.1502 +			}
  1.1503 +
  1.1504 +		if(jsr)
  1.1505 +			{
  1.1506 +			// completes the control flow graph with the RET successors
  1.1507 +			/*
  1.1508 +							 * first step: finds the subroutines. This step determines, for
  1.1509 +							 * each basic block, to which subroutine(s) it belongs, and
  1.1510 +							 * stores this set as a bit set in the {@link Label#status}
  1.1511 +							 * field. Subroutines are numbered with powers of two, from
  1.1512 +							 * 0x1000 to 0x80000000 (so there must be at most 20 subroutines
  1.1513 +							 * in a method).
  1.1514 +							 */
  1.1515 +			// finds the basic blocks that belong to the "main" subroutine
  1.1516 +			int id = 0x1000;
  1.1517 +			findSubroutine(labels, id);
  1.1518 +			// finds the basic blocks that belong to the real subroutines
  1.1519 +			Label l = labels;
  1.1520 +			while(l != null)
  1.1521 +				{
  1.1522 +				if((l.status & Label.JSR) != 0)
  1.1523 +					{
  1.1524 +					// the subroutine is defined by l's TARGET, not by l
  1.1525 +					Label subroutine = l.successors.next.successor;
  1.1526 +					// if this subroutine does not have an id yet...
  1.1527 +					if((subroutine.status & ~0xFFF) == 0)
  1.1528 +						{
  1.1529 +						// ...assigns it a new id and finds its basic blocks
  1.1530 +						id = id << 1;
  1.1531 +						findSubroutine(subroutine, id);
  1.1532 +						}
  1.1533 +					}
  1.1534 +				l = l.successor;
  1.1535 +				}
  1.1536 +			// second step: finds the successors of RET blocks
  1.1537 +			findSubroutineSuccessors(0x1000, new Label[10], 0);
  1.1538 +			}
  1.1539 +
  1.1540 +		/*
  1.1541 +					 * control flow analysis algorithm: while the block stack is not
  1.1542 +					 * empty, pop a block from this stack, update the max stack size,
  1.1543 +					 * compute the true (non relative) begin stack size of the
  1.1544 +					 * successors of this block, and push these successors onto the
  1.1545 +					 * stack (unless they have already been pushed onto the stack).
  1.1546 +					 * Note: by hypothesis, the {@link Label#inputStackTop} of the
  1.1547 +					 * blocks in the block stack are the true (non relative) beginning
  1.1548 +					 * stack sizes of these blocks.
  1.1549 +					 */
  1.1550 +		int max = 0;
  1.1551 +		Label stack = labels;
  1.1552 +		while(stack != null)
  1.1553 +			{
  1.1554 +			// pops a block from the stack
  1.1555 +			Label l = stack;
  1.1556 +			stack = stack.next;
  1.1557 +			// computes the true (non relative) max stack size of this block
  1.1558 +			int start = l.inputStackTop;
  1.1559 +			int blockMax = start + l.outputStackMax;
  1.1560 +			// updates the global max stack size
  1.1561 +			if(blockMax > max)
  1.1562 +				{
  1.1563 +				max = blockMax;
  1.1564 +				}
  1.1565 +			// analyses the successors of the block
  1.1566 +			Edge b = l.successors;
  1.1567 +			if((l.status & Label.JSR) != 0)
  1.1568 +				{
  1.1569 +				// ignores the first edge of JSR blocks (virtual successor)
  1.1570 +				b = b.next;
  1.1571 +				}
  1.1572 +			while(b != null)
  1.1573 +				{
  1.1574 +				l = b.successor;
  1.1575 +				// if this successor has not already been pushed...
  1.1576 +				if((l.status & Label.PUSHED) == 0)
  1.1577 +					{
  1.1578 +					// computes its true beginning stack size...
  1.1579 +					l.inputStackTop = b.info == Edge.EXCEPTION ? 1 : start
  1.1580 +					                                                 + b.info;
  1.1581 +					// ...and pushes it onto the stack
  1.1582 +					l.status |= Label.PUSHED;
  1.1583 +					l.next = stack;
  1.1584 +					stack = l;
  1.1585 +					}
  1.1586 +				b = b.next;
  1.1587 +				}
  1.1588 +			}
  1.1589 +		this.maxStack = max;
  1.1590 +		}
  1.1591 +	else
  1.1592 +		{
  1.1593 +		this.maxStack = maxStack;
  1.1594 +		this.maxLocals = maxLocals;
  1.1595 +		}
  1.1596 +}
  1.1597 +
  1.1598 +public void visitEnd(){
  1.1599 +}
  1.1600 +
  1.1601 +// ------------------------------------------------------------------------
  1.1602 +// Utility methods: control flow analysis algorithm
  1.1603 +// ------------------------------------------------------------------------
  1.1604 +
  1.1605 +/**
  1.1606 + * Computes the size of the arguments and of the return value of a method.
  1.1607 + *
  1.1608 + * @param desc the descriptor of a method.
  1.1609 + * @return the size of the arguments of the method (plus one for the
  1.1610 + *         implicit this argument), argSize, and the size of its return
  1.1611 + *         value, retSize, packed into a single int i =
  1.1612 + *         <tt>(argSize << 2) | retSize</tt> (argSize is therefore equal
  1.1613 + *         to <tt>i >> 2</tt>, and retSize to <tt>i & 0x03</tt>).
  1.1614 + */
  1.1615 +static int getArgumentsAndReturnSizes(final String desc){
  1.1616 +	int n = 1;
  1.1617 +	int c = 1;
  1.1618 +	while(true)
  1.1619 +		{
  1.1620 +		char car = desc.charAt(c++);
  1.1621 +		if(car == ')')
  1.1622 +			{
  1.1623 +			car = desc.charAt(c);
  1.1624 +			return n << 2
  1.1625 +			       | (car == 'V' ? 0 : (car == 'D' || car == 'J' ? 2 : 1));
  1.1626 +			}
  1.1627 +		else if(car == 'L')
  1.1628 +			{
  1.1629 +			while(desc.charAt(c++) != ';')
  1.1630 +				{
  1.1631 +				}
  1.1632 +			n += 1;
  1.1633 +			}
  1.1634 +		else if(car == '[')
  1.1635 +			{
  1.1636 +			while((car = desc.charAt(c)) == '[')
  1.1637 +				{
  1.1638 +				++c;
  1.1639 +				}
  1.1640 +			if(car == 'D' || car == 'J')
  1.1641 +				{
  1.1642 +				n -= 1;
  1.1643 +				}
  1.1644 +			}
  1.1645 +		else if(car == 'D' || car == 'J')
  1.1646 +			{
  1.1647 +			n += 2;
  1.1648 +			}
  1.1649 +		else
  1.1650 +			{
  1.1651 +			n += 1;
  1.1652 +			}
  1.1653 +		}
  1.1654 +}
  1.1655 +
  1.1656 +/**
  1.1657 + * Adds a successor to the {@link #currentBlock currentBlock} block.
  1.1658 + *
  1.1659 + * @param info      information about the control flow edge to be added.
  1.1660 + * @param successor the successor block to be added to the current block.
  1.1661 + */
  1.1662 +private void addSuccessor(final int info, final Label successor){
  1.1663 +	// creates and initializes an Edge object...
  1.1664 +	Edge b = new Edge();
  1.1665 +	b.info = info;
  1.1666 +	b.successor = successor;
  1.1667 +	// ...and adds it to the successor list of the currentBlock block
  1.1668 +	b.next = currentBlock.successors;
  1.1669 +	currentBlock.successors = b;
  1.1670 +}
  1.1671 +
  1.1672 +/**
  1.1673 + * Ends the current basic block. This method must be used in the case where
  1.1674 + * the current basic block does not have any successor.
  1.1675 + */
  1.1676 +private void noSuccessor(){
  1.1677 +	if(compute == FRAMES)
  1.1678 +		{
  1.1679 +		Label l = new Label();
  1.1680 +		l.frame = new Frame();
  1.1681 +		l.frame.owner = l;
  1.1682 +		l.resolve(this, code.length, code.data);
  1.1683 +		previousBlock.successor = l;
  1.1684 +		previousBlock = l;
  1.1685 +		}
  1.1686 +	else
  1.1687 +		{
  1.1688 +		currentBlock.outputStackMax = maxStackSize;
  1.1689 +		}
  1.1690 +	currentBlock = null;
  1.1691 +}
  1.1692 +
  1.1693 +/**
  1.1694 + * Finds the basic blocks that belong to a given subroutine, and marks these
  1.1695 + * blocks as belonging to this subroutine (by using {@link Label#status} as
  1.1696 + * a bit set (see {@link #visitMaxs}). This recursive method follows the
  1.1697 + * control flow graph to find all the blocks that are reachable from the
  1.1698 + * given block WITHOUT following any JSR target.
  1.1699 + *
  1.1700 + * @param block a block that belongs to the subroutine
  1.1701 + * @param id    the id of this subroutine
  1.1702 + */
  1.1703 +private void findSubroutine(final Label block, final int id){
  1.1704 +	// if 'block' is already marked as belonging to subroutine 'id', returns
  1.1705 +	if((block.status & id) != 0)
  1.1706 +		{
  1.1707 +		return;
  1.1708 +		}
  1.1709 +	// marks 'block' as belonging to subroutine 'id'
  1.1710 +	block.status |= id;
  1.1711 +	// calls this method recursively on each successor, except JSR targets
  1.1712 +	Edge e = block.successors;
  1.1713 +	while(e != null)
  1.1714 +		{
  1.1715 +		// if 'block' is a JSR block, then 'block.successors.next' leads
  1.1716 +		// to the JSR target (see {@link #visitJumpInsn}) and must therefore
  1.1717 +		// not be followed
  1.1718 +		if((block.status & Label.JSR) == 0 || e != block.successors.next)
  1.1719 +			{
  1.1720 +			findSubroutine(e.successor, id);
  1.1721 +			}
  1.1722 +		e = e.next;
  1.1723 +		}
  1.1724 +}
  1.1725 +
  1.1726 +/**
  1.1727 + * Finds the successors of the RET blocks of the specified subroutine, and
  1.1728 + * of any nested subroutine it calls.
  1.1729 + *
  1.1730 + * @param id    id of the subroutine whose RET block successors must be found.
  1.1731 + * @param JSRs  the JSR blocks that were followed to reach this subroutine.
  1.1732 + * @param nJSRs number of JSR blocks in the JSRs array.
  1.1733 + */
  1.1734 +private void findSubroutineSuccessors(
  1.1735 +		final int id,
  1.1736 +		final Label[] JSRs,
  1.1737 +		final int nJSRs){
  1.1738 +	// iterates over all the basic blocks...
  1.1739 +	Label l = labels;
  1.1740 +	while(l != null)
  1.1741 +		{
  1.1742 +		// for those that belong to subroutine 'id'...
  1.1743 +		if((l.status & id) != 0)
  1.1744 +			{
  1.1745 +			if((l.status & Label.JSR) != 0)
  1.1746 +				{
  1.1747 +				// finds the subroutine to which 'l' leads by following the
  1.1748 +				// second edge of l.successors (see {@link #visitJumpInsn})
  1.1749 +				int nId = l.successors.next.successor.status & ~0xFFF;
  1.1750 +				if(nId != id)
  1.1751 +					{
  1.1752 +					// calls this method recursively with l pushed onto the
  1.1753 +					// JSRs stack to find the successors of the RET blocks
  1.1754 +					// of this nested subroutine 'nId'
  1.1755 +					JSRs[nJSRs] = l;
  1.1756 +					findSubroutineSuccessors(nId, JSRs, nJSRs + 1);
  1.1757 +					}
  1.1758 +				}
  1.1759 +			else if((l.status & Label.RET) != 0)
  1.1760 +				{
  1.1761 +				/*
  1.1762 +									 * finds the JSR block in the JSRs stack that corresponds to
  1.1763 +									 * this RET block, and updates the successors of this RET
  1.1764 +									 * block accordingly. This corresponding JSR is the one that
  1.1765 +									 * leads to the subroutine to which the RET block belongs.
  1.1766 +									 * But the RET block can belong to several subroutines (if a
  1.1767 +									 * nested subroutine returns to its parent subroutine
  1.1768 +									 * implicitely, without a RET). So, in fact, the JSR that
  1.1769 +									 * corresponds to this RET is the first block in the JSRs
  1.1770 +									 * stack, starting from the bottom of the stack, that leads
  1.1771 +									 * to a subroutine to which the RET block belongs.
  1.1772 +									 */
  1.1773 +				for(int i = 0; i < nJSRs; ++i)
  1.1774 +					{
  1.1775 +					int JSRstatus = JSRs[i].successors.next.successor.status;
  1.1776 +					if(((JSRstatus & ~0xFFF) & (l.status & ~0xFFF)) != 0)
  1.1777 +						{
  1.1778 +						Edge e = new Edge();
  1.1779 +						e.info = l.inputStackTop;
  1.1780 +						e.successor = JSRs[i].successors.successor;
  1.1781 +						e.next = l.successors;
  1.1782 +						l.successors = e;
  1.1783 +						break;
  1.1784 +						}
  1.1785 +					}
  1.1786 +				}
  1.1787 +			}
  1.1788 +		l = l.successor;
  1.1789 +		}
  1.1790 +}
  1.1791 +
  1.1792 +// ------------------------------------------------------------------------
  1.1793 +// Utility methods: stack map frames
  1.1794 +// ------------------------------------------------------------------------
  1.1795 +
  1.1796 +/**
  1.1797 + * Visits a frame that has been computed from scratch.
  1.1798 + *
  1.1799 + * @param f the frame that must be visited.
  1.1800 + */
  1.1801 +private void visitFrame(final Frame f){
  1.1802 +	int i, t;
  1.1803 +	int nTop = 0;
  1.1804 +	int nLocal = 0;
  1.1805 +	int nStack = 0;
  1.1806 +	int[] locals = f.inputLocals;
  1.1807 +	int[] stacks = f.inputStack;
  1.1808 +	// computes the number of locals (ignores TOP types that are just after
  1.1809 +	// a LONG or a DOUBLE, and all trailing TOP types)
  1.1810 +	for(i = 0; i < locals.length; ++i)
  1.1811 +		{
  1.1812 +		t = locals[i];
  1.1813 +		if(t == Frame.TOP)
  1.1814 +			{
  1.1815 +			++nTop;
  1.1816 +			}
  1.1817 +		else
  1.1818 +			{
  1.1819 +			nLocal += nTop + 1;
  1.1820 +			nTop = 0;
  1.1821 +			}
  1.1822 +		if(t == Frame.LONG || t == Frame.DOUBLE)
  1.1823 +			{
  1.1824 +			++i;
  1.1825 +			}
  1.1826 +		}
  1.1827 +	// computes the stack size (ignores TOP types that are just after
  1.1828 +	// a LONG or a DOUBLE)
  1.1829 +	for(i = 0; i < stacks.length; ++i)
  1.1830 +		{
  1.1831 +		t = stacks[i];
  1.1832 +		++nStack;
  1.1833 +		if(t == Frame.LONG || t == Frame.DOUBLE)
  1.1834 +			{
  1.1835 +			++i;
  1.1836 +			}
  1.1837 +		}
  1.1838 +	// visits the frame and its content
  1.1839 +	startFrame(f.owner.position, nLocal, nStack);
  1.1840 +	for(i = 0; nLocal > 0; ++i, --nLocal)
  1.1841 +		{
  1.1842 +		t = locals[i];
  1.1843 +		frame[frameIndex++] = t;
  1.1844 +		if(t == Frame.LONG || t == Frame.DOUBLE)
  1.1845 +			{
  1.1846 +			++i;
  1.1847 +			}
  1.1848 +		}
  1.1849 +	for(i = 0; i < stacks.length; ++i)
  1.1850 +		{
  1.1851 +		t = stacks[i];
  1.1852 +		frame[frameIndex++] = t;
  1.1853 +		if(t == Frame.LONG || t == Frame.DOUBLE)
  1.1854 +			{
  1.1855 +			++i;
  1.1856 +			}
  1.1857 +		}
  1.1858 +	endFrame();
  1.1859 +}
  1.1860 +
  1.1861 +/**
  1.1862 + * Starts the visit of a stack map frame.
  1.1863 + *
  1.1864 + * @param offset the offset of the instruction to which the frame
  1.1865 + *               corresponds.
  1.1866 + * @param nLocal the number of local variables in the frame.
  1.1867 + * @param nStack the number of stack elements in the frame.
  1.1868 + */
  1.1869 +private void startFrame(final int offset, final int nLocal, final int nStack){
  1.1870 +	int n = 3 + nLocal + nStack;
  1.1871 +	if(frame == null || frame.length < n)
  1.1872 +		{
  1.1873 +		frame = new int[n];
  1.1874 +		}
  1.1875 +	frame[0] = offset;
  1.1876 +	frame[1] = nLocal;
  1.1877 +	frame[2] = nStack;
  1.1878 +	frameIndex = 3;
  1.1879 +}
  1.1880 +
  1.1881 +/**
  1.1882 + * Checks if the visit of the current frame {@link #frame} is finished, and
  1.1883 + * if yes, write it in the StackMapTable attribute.
  1.1884 + */
  1.1885 +private void endFrame(){
  1.1886 +	if(previousFrame != null)
  1.1887 +		{ // do not write the first frame
  1.1888 +		if(stackMap == null)
  1.1889 +			{
  1.1890 +			stackMap = new ByteVector();
  1.1891 +			}
  1.1892 +		writeFrame();
  1.1893 +		++frameCount;
  1.1894 +		}
  1.1895 +	previousFrame = frame;
  1.1896 +	frame = null;
  1.1897 +}
  1.1898 +
  1.1899 +/**
  1.1900 + * Compress and writes the current frame {@link #frame} in the StackMapTable
  1.1901 + * attribute.
  1.1902 + */
  1.1903 +private void writeFrame(){
  1.1904 +	int clocalsSize = frame[1];
  1.1905 +	int cstackSize = frame[2];
  1.1906 +	if((cw.version & 0xFFFF) < Opcodes.V1_6)
  1.1907 +		{
  1.1908 +		stackMap.putShort(frame[0]).putShort(clocalsSize);
  1.1909 +		writeFrameTypes(3, 3 + clocalsSize);
  1.1910 +		stackMap.putShort(cstackSize);
  1.1911 +		writeFrameTypes(3 + clocalsSize, 3 + clocalsSize + cstackSize);
  1.1912 +		return;
  1.1913 +		}
  1.1914 +	int localsSize = previousFrame[1];
  1.1915 +	int type = FULL_FRAME;
  1.1916 +	int k = 0;
  1.1917 +	int delta;
  1.1918 +	if(frameCount == 0)
  1.1919 +		{
  1.1920 +		delta = frame[0];
  1.1921 +		}
  1.1922 +	else
  1.1923 +		{
  1.1924 +		delta = frame[0] - previousFrame[0] - 1;
  1.1925 +		}
  1.1926 +	if(cstackSize == 0)
  1.1927 +		{
  1.1928 +		k = clocalsSize - localsSize;
  1.1929 +		switch(k)
  1.1930 +			{
  1.1931 +			case-3:
  1.1932 +			case-2:
  1.1933 +			case-1:
  1.1934 +				type = CHOP_FRAME;
  1.1935 +				localsSize = clocalsSize;
  1.1936 +				break;
  1.1937 +			case 0:
  1.1938 +				type = delta < 64 ? SAME_FRAME : SAME_FRAME_EXTENDED;
  1.1939 +				break;
  1.1940 +			case 1:
  1.1941 +			case 2:
  1.1942 +			case 3:
  1.1943 +				type = APPEND_FRAME;
  1.1944 +				break;
  1.1945 +			}
  1.1946 +		}
  1.1947 +	else if(clocalsSize == localsSize && cstackSize == 1)
  1.1948 +		{
  1.1949 +		type = delta < 63
  1.1950 +		       ? SAME_LOCALS_1_STACK_ITEM_FRAME
  1.1951 +		       : SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED;
  1.1952 +		}
  1.1953 +	if(type != FULL_FRAME)
  1.1954 +		{
  1.1955 +		// verify if locals are the same
  1.1956 +		int l = 3;
  1.1957 +		for(int j = 0; j < localsSize; j++)
  1.1958 +			{
  1.1959 +			if(frame[l] != previousFrame[l])
  1.1960 +				{
  1.1961 +				type = FULL_FRAME;
  1.1962 +				break;
  1.1963 +				}
  1.1964 +			l++;
  1.1965 +			}
  1.1966 +		}
  1.1967 +	switch(type)
  1.1968 +		{
  1.1969 +		case SAME_FRAME:
  1.1970 +			stackMap.putByte(delta);
  1.1971 +			break;
  1.1972 +		case SAME_LOCALS_1_STACK_ITEM_FRAME:
  1.1973 +			stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME + delta);
  1.1974 +			writeFrameTypes(3 + clocalsSize, 4 + clocalsSize);
  1.1975 +			break;
  1.1976 +		case SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED:
  1.1977 +			stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED)
  1.1978 +					.putShort(delta);
  1.1979 +			writeFrameTypes(3 + clocalsSize, 4 + clocalsSize);
  1.1980 +			break;
  1.1981 +		case SAME_FRAME_EXTENDED:
  1.1982 +			stackMap.putByte(SAME_FRAME_EXTENDED).putShort(delta);
  1.1983 +			break;
  1.1984 +		case CHOP_FRAME:
  1.1985 +			stackMap.putByte(SAME_FRAME_EXTENDED + k).putShort(delta);
  1.1986 +			break;
  1.1987 +		case APPEND_FRAME:
  1.1988 +			stackMap.putByte(SAME_FRAME_EXTENDED + k).putShort(delta);
  1.1989 +			writeFrameTypes(3 + localsSize, 3 + clocalsSize);
  1.1990 +			break;
  1.1991 +			// case FULL_FRAME:
  1.1992 +		default:
  1.1993 +			stackMap.putByte(FULL_FRAME)
  1.1994 +					.putShort(delta)
  1.1995 +					.putShort(clocalsSize);
  1.1996 +			writeFrameTypes(3, 3 + clocalsSize);
  1.1997 +			stackMap.putShort(cstackSize);
  1.1998 +			writeFrameTypes(3 + clocalsSize, 3 + clocalsSize + cstackSize);
  1.1999 +		}
  1.2000 +}
  1.2001 +
  1.2002 +/**
  1.2003 + * Writes some types of the current frame {@link #frame} into the
  1.2004 + * StackMapTableAttribute. This method converts types from the format used
  1.2005 + * in {@link Label} to the format used in StackMapTable attributes. In
  1.2006 + * particular, it converts type table indexes to constant pool indexes.
  1.2007 + *
  1.2008 + * @param start index of the first type in {@link #frame} to write.
  1.2009 + * @param end   index of last type in {@link #frame} to write (exclusive).
  1.2010 + */
  1.2011 +private void writeFrameTypes(final int start, final int end){
  1.2012 +	for(int i = start; i < end; ++i)
  1.2013 +		{
  1.2014 +		int t = frame[i];
  1.2015 +		int d = t & Frame.DIM;
  1.2016 +		if(d == 0)
  1.2017 +			{
  1.2018 +			int v = t & Frame.BASE_VALUE;
  1.2019 +			switch(t & Frame.BASE_KIND)
  1.2020 +				{
  1.2021 +				case Frame.OBJECT:
  1.2022 +					stackMap.putByte(7)
  1.2023 +							.putShort(cw.newClass(cw.typeTable[v].strVal1));
  1.2024 +					break;
  1.2025 +				case Frame.UNINITIALIZED:
  1.2026 +					stackMap.putByte(8).putShort(cw.typeTable[v].intVal);
  1.2027 +					break;
  1.2028 +				default:
  1.2029 +					stackMap.putByte(v);
  1.2030 +				}
  1.2031 +			}
  1.2032 +		else
  1.2033 +			{
  1.2034 +			StringBuffer buf = new StringBuffer();
  1.2035 +			d >>= 28;
  1.2036 +			while(d-- > 0)
  1.2037 +				{
  1.2038 +				buf.append('[');
  1.2039 +				}
  1.2040 +			if((t & Frame.BASE_KIND) == Frame.OBJECT)
  1.2041 +				{
  1.2042 +				buf.append('L');
  1.2043 +				buf.append(cw.typeTable[t & Frame.BASE_VALUE].strVal1);
  1.2044 +				buf.append(';');
  1.2045 +				}
  1.2046 +			else
  1.2047 +				{
  1.2048 +				switch(t & 0xF)
  1.2049 +					{
  1.2050 +					case 1:
  1.2051 +						buf.append('I');
  1.2052 +						break;
  1.2053 +					case 2:
  1.2054 +						buf.append('F');
  1.2055 +						break;
  1.2056 +					case 3:
  1.2057 +						buf.append('D');
  1.2058 +						break;
  1.2059 +					case 9:
  1.2060 +						buf.append('Z');
  1.2061 +						break;
  1.2062 +					case 10:
  1.2063 +						buf.append('B');
  1.2064 +						break;
  1.2065 +					case 11:
  1.2066 +						buf.append('C');
  1.2067 +						break;
  1.2068 +					case 12:
  1.2069 +						buf.append('S');
  1.2070 +						break;
  1.2071 +					default:
  1.2072 +						buf.append('J');
  1.2073 +					}
  1.2074 +				}
  1.2075 +			stackMap.putByte(7).putShort(cw.newClass(buf.toString()));
  1.2076 +			}
  1.2077 +		}
  1.2078 +}
  1.2079 +
  1.2080 +private void writeFrameType(final Object type){
  1.2081 +	if(type instanceof String)
  1.2082 +		{
  1.2083 +		stackMap.putByte(7).putShort(cw.newClass((String) type));
  1.2084 +		}
  1.2085 +	else if(type instanceof Integer)
  1.2086 +		{
  1.2087 +		stackMap.putByte(((Integer) type).intValue());
  1.2088 +		}
  1.2089 +	else
  1.2090 +		{
  1.2091 +		stackMap.putByte(8).putShort(((Label) type).position);
  1.2092 +		}
  1.2093 +}
  1.2094 +
  1.2095 +// ------------------------------------------------------------------------
  1.2096 +// Utility methods: dump bytecode array
  1.2097 +// ------------------------------------------------------------------------
  1.2098 +
  1.2099 +/**
  1.2100 + * Returns the size of the bytecode of this method.
  1.2101 + *
  1.2102 + * @return the size of the bytecode of this method.
  1.2103 + */
  1.2104 +final int getSize(){
  1.2105 +	if(classReaderOffset != 0)
  1.2106 +		{
  1.2107 +		return 6 + classReaderLength;
  1.2108 +		}
  1.2109 +	if(resize)
  1.2110 +		{
  1.2111 +		// replaces the temporary jump opcodes introduced by Label.resolve.
  1.2112 +		resizeInstructions();
  1.2113 +		}
  1.2114 +	int size = 8;
  1.2115 +	if(code.length > 0)
  1.2116 +		{
  1.2117 +		cw.newUTF8("Code");
  1.2118 +		size += 18 + code.length + 8 * handlerCount;
  1.2119 +		if(localVar != null)
  1.2120 +			{
  1.2121 +			cw.newUTF8("LocalVariableTable");
  1.2122 +			size += 8 + localVar.length;
  1.2123 +			}
  1.2124 +		if(localVarType != null)
  1.2125 +			{
  1.2126 +			cw.newUTF8("LocalVariableTypeTable");
  1.2127 +			size += 8 + localVarType.length;
  1.2128 +			}
  1.2129 +		if(lineNumber != null)
  1.2130 +			{
  1.2131 +			cw.newUTF8("LineNumberTable");
  1.2132 +			size += 8 + lineNumber.length;
  1.2133 +			}
  1.2134 +		if(stackMap != null)
  1.2135 +			{
  1.2136 +			boolean zip = (cw.version & 0xFFFF) >= Opcodes.V1_6;
  1.2137 +			cw.newUTF8(zip ? "StackMapTable" : "StackMap");
  1.2138 +			size += 8 + stackMap.length;
  1.2139 +			}
  1.2140 +		if(cattrs != null)
  1.2141 +			{
  1.2142 +			size += cattrs.getSize(cw,
  1.2143 +			                       code.data,
  1.2144 +			                       code.length,
  1.2145 +			                       maxStack,
  1.2146 +			                       maxLocals);
  1.2147 +			}
  1.2148 +		}
  1.2149 +	if(exceptionCount > 0)
  1.2150 +		{
  1.2151 +		cw.newUTF8("Exceptions");
  1.2152 +		size += 8 + 2 * exceptionCount;
  1.2153 +		}
  1.2154 +	if((access & Opcodes.ACC_SYNTHETIC) != 0
  1.2155 +	   && (cw.version & 0xffff) < Opcodes.V1_5)
  1.2156 +		{
  1.2157 +		cw.newUTF8("Synthetic");
  1.2158 +		size += 6;
  1.2159 +		}
  1.2160 +	if((access & Opcodes.ACC_DEPRECATED) != 0)
  1.2161 +		{
  1.2162 +		cw.newUTF8("Deprecated");
  1.2163 +		size += 6;
  1.2164 +		}
  1.2165 +	if(signature != null)
  1.2166 +		{
  1.2167 +		cw.newUTF8("Signature");
  1.2168 +		cw.newUTF8(signature);
  1.2169 +		size += 8;
  1.2170 +		}
  1.2171 +	if(annd != null)
  1.2172 +		{
  1.2173 +		cw.newUTF8("AnnotationDefault");
  1.2174 +		size += 6 + annd.length;
  1.2175 +		}
  1.2176 +	if(anns != null)
  1.2177 +		{
  1.2178 +		cw.newUTF8("RuntimeVisibleAnnotations");
  1.2179 +		size += 8 + anns.getSize();
  1.2180 +		}
  1.2181 +	if(ianns != null)
  1.2182 +		{
  1.2183 +		cw.newUTF8("RuntimeInvisibleAnnotations");
  1.2184 +		size += 8 + ianns.getSize();
  1.2185 +		}
  1.2186 +	if(panns != null)
  1.2187 +		{
  1.2188 +		cw.newUTF8("RuntimeVisibleParameterAnnotations");
  1.2189 +		size += 7 + 2 * panns.length;
  1.2190 +		for(int i = panns.length - 1; i >= 0; --i)
  1.2191 +			{
  1.2192 +			size += panns[i] == null ? 0 : panns[i].getSize();
  1.2193 +			}
  1.2194 +		}
  1.2195 +	if(ipanns != null)
  1.2196 +		{
  1.2197 +		cw.newUTF8("RuntimeInvisibleParameterAnnotations");
  1.2198 +		size += 7 + 2 * ipanns.length;
  1.2199 +		for(int i = ipanns.length - 1; i >= 0; --i)
  1.2200 +			{
  1.2201 +			size += ipanns[i] == null ? 0 : ipanns[i].getSize();
  1.2202 +			}
  1.2203 +		}
  1.2204 +	if(attrs != null)
  1.2205 +		{
  1.2206 +		size += attrs.getSize(cw, null, 0, -1, -1);
  1.2207 +		}
  1.2208 +	return size;
  1.2209 +}
  1.2210 +
  1.2211 +/**
  1.2212 + * Puts the bytecode of this method in the given byte vector.
  1.2213 + *
  1.2214 + * @param out the byte vector into which the bytecode of this method must be
  1.2215 + *            copied.
  1.2216 + */
  1.2217 +final void put(final ByteVector out){
  1.2218 +	out.putShort(access).putShort(name).putShort(desc);
  1.2219 +	if(classReaderOffset != 0)
  1.2220 +		{
  1.2221 +		out.putByteArray(cw.cr.b, classReaderOffset, classReaderLength);
  1.2222 +		return;
  1.2223 +		}
  1.2224 +	int attributeCount = 0;
  1.2225 +	if(code.length > 0)
  1.2226 +		{
  1.2227 +		++attributeCount;
  1.2228 +		}
  1.2229 +	if(exceptionCount > 0)
  1.2230 +		{
  1.2231 +		++attributeCount;
  1.2232 +		}
  1.2233 +	if((access & Opcodes.ACC_SYNTHETIC) != 0
  1.2234 +	   && (cw.version & 0xffff) < Opcodes.V1_5)
  1.2235 +		{
  1.2236 +		++attributeCount;
  1.2237 +		}
  1.2238 +	if((access & Opcodes.ACC_DEPRECATED) != 0)
  1.2239 +		{
  1.2240 +		++attributeCount;
  1.2241 +		}
  1.2242 +	if(signature != null)
  1.2243 +		{
  1.2244 +		++attributeCount;
  1.2245 +		}
  1.2246 +	if(annd != null)
  1.2247 +		{
  1.2248 +		++attributeCount;
  1.2249 +		}
  1.2250 +	if(anns != null)
  1.2251 +		{
  1.2252 +		++attributeCount;
  1.2253 +		}
  1.2254 +	if(ianns != null)
  1.2255 +		{
  1.2256 +		++attributeCount;
  1.2257 +		}
  1.2258 +	if(panns != null)
  1.2259 +		{
  1.2260 +		++attributeCount;
  1.2261 +		}
  1.2262 +	if(ipanns != null)
  1.2263 +		{
  1.2264 +		++attributeCount;
  1.2265 +		}
  1.2266 +	if(attrs != null)
  1.2267 +		{
  1.2268 +		attributeCount += attrs.getCount();
  1.2269 +		}
  1.2270 +	out.putShort(attributeCount);
  1.2271 +	if(code.length > 0)
  1.2272 +		{
  1.2273 +		int size = 12 + code.length + 8 * handlerCount;
  1.2274 +		if(localVar != null)
  1.2275 +			{
  1.2276 +			size += 8 + localVar.length;
  1.2277 +			}
  1.2278 +		if(localVarType != null)
  1.2279 +			{
  1.2280 +			size += 8 + localVarType.length;
  1.2281 +			}
  1.2282 +		if(lineNumber != null)
  1.2283 +			{
  1.2284 +			size += 8 + lineNumber.length;
  1.2285 +			}
  1.2286 +		if(stackMap != null)
  1.2287 +			{
  1.2288 +			size += 8 + stackMap.length;
  1.2289 +			}
  1.2290 +		if(cattrs != null)
  1.2291 +			{
  1.2292 +			size += cattrs.getSize(cw,
  1.2293 +			                       code.data,
  1.2294 +			                       code.length,
  1.2295 +			                       maxStack,
  1.2296 +			                       maxLocals);
  1.2297 +			}
  1.2298 +		out.putShort(cw.newUTF8("Code")).putInt(size);
  1.2299 +		out.putShort(maxStack).putShort(maxLocals);
  1.2300 +		out.putInt(code.length).putByteArray(code.data, 0, code.length);
  1.2301 +		out.putShort(handlerCount);
  1.2302 +		if(handlerCount > 0)
  1.2303 +			{
  1.2304 +			Handler h = firstHandler;
  1.2305 +			while(h != null)
  1.2306 +				{
  1.2307 +				out.putShort(h.start.position)
  1.2308 +						.putShort(h.end.position)
  1.2309 +						.putShort(h.handler.position)
  1.2310 +						.putShort(h.type);
  1.2311 +				h = h.next;
  1.2312 +				}
  1.2313 +			}
  1.2314 +		attributeCount = 0;
  1.2315 +		if(localVar != null)
  1.2316 +			{
  1.2317 +			++attributeCount;
  1.2318 +			}
  1.2319 +		if(localVarType != null)
  1.2320 +			{
  1.2321 +			++attributeCount;
  1.2322 +			}
  1.2323 +		if(lineNumber != null)
  1.2324 +			{
  1.2325 +			++attributeCount;
  1.2326 +			}
  1.2327 +		if(stackMap != null)
  1.2328 +			{
  1.2329 +			++attributeCount;
  1.2330 +			}
  1.2331 +		if(cattrs != null)
  1.2332 +			{
  1.2333 +			attributeCount += cattrs.getCount();
  1.2334 +			}
  1.2335 +		out.putShort(attributeCount);
  1.2336 +		if(localVar != null)
  1.2337 +			{
  1.2338 +			out.putShort(cw.newUTF8("LocalVariableTable"));
  1.2339 +			out.putInt(localVar.length + 2).putShort(localVarCount);
  1.2340 +			out.putByteArray(localVar.data, 0, localVar.length);
  1.2341 +			}
  1.2342 +		if(localVarType != null)
  1.2343 +			{
  1.2344 +			out.putShort(cw.newUTF8("LocalVariableTypeTable"));
  1.2345 +			out.putInt(localVarType.length + 2).putShort(localVarTypeCount);
  1.2346 +			out.putByteArray(localVarType.data, 0, localVarType.length);
  1.2347 +			}
  1.2348 +		if(lineNumber != null)
  1.2349 +			{
  1.2350 +			out.putShort(cw.newUTF8("LineNumberTable"));
  1.2351 +			out.putInt(lineNumber.length + 2).putShort(lineNumberCount);
  1.2352 +			out.putByteArray(lineNumber.data, 0, lineNumber.length);
  1.2353 +			}
  1.2354 +		if(stackMap != null)
  1.2355 +			{
  1.2356 +			boolean zip = (cw.version & 0xFFFF) >= Opcodes.V1_6;
  1.2357 +			out.putShort(cw.newUTF8(zip ? "StackMapTable" : "StackMap"));
  1.2358 +			out.putInt(stackMap.length + 2).putShort(frameCount);
  1.2359 +			out.putByteArray(stackMap.data, 0, stackMap.length);
  1.2360 +			}
  1.2361 +		if(cattrs != null)
  1.2362 +			{
  1.2363 +			cattrs.put(cw, code.data, code.length, maxLocals, maxStack, out);
  1.2364 +			}
  1.2365 +		}
  1.2366 +	if(exceptionCount > 0)
  1.2367 +		{
  1.2368 +		out.putShort(cw.newUTF8("Exceptions"))
  1.2369 +				.putInt(2 * exceptionCount + 2);
  1.2370 +		out.putShort(exceptionCount);
  1.2371 +		for(int i = 0; i < exceptionCount; ++i)
  1.2372 +			{
  1.2373 +			out.putShort(exceptions[i]);
  1.2374 +			}
  1.2375 +		}
  1.2376 +	if((access & Opcodes.ACC_SYNTHETIC) != 0
  1.2377 +	   && (cw.version & 0xffff) < Opcodes.V1_5)
  1.2378 +		{
  1.2379 +		out.putShort(cw.newUTF8("Synthetic")).putInt(0);
  1.2380 +		}
  1.2381 +	if((access & Opcodes.ACC_DEPRECATED) != 0)
  1.2382 +		{
  1.2383 +		out.putShort(cw.newUTF8("Deprecated")).putInt(0);
  1.2384 +		}
  1.2385 +	if(signature != null)
  1.2386 +		{
  1.2387 +		out.putShort(cw.newUTF8("Signature"))
  1.2388 +				.putInt(2)
  1.2389 +				.putShort(cw.newUTF8(signature));
  1.2390 +		}
  1.2391 +	if(annd != null)
  1.2392 +		{
  1.2393 +		out.putShort(cw.newUTF8("AnnotationDefault"));
  1.2394 +		out.putInt(annd.length);
  1.2395 +		out.putByteArray(annd.data, 0, annd.length);
  1.2396 +		}
  1.2397 +	if(anns != null)
  1.2398 +		{
  1.2399 +		out.putShort(cw.newUTF8("RuntimeVisibleAnnotations"));
  1.2400 +		anns.put(out);
  1.2401 +		}
  1.2402 +	if(ianns != null)
  1.2403 +		{
  1.2404 +		out.putShort(cw.newUTF8("RuntimeInvisibleAnnotations"));
  1.2405 +		ianns.put(out);
  1.2406 +		}
  1.2407 +	if(panns != null)
  1.2408 +		{
  1.2409 +		out.putShort(cw.newUTF8("RuntimeVisibleParameterAnnotations"));
  1.2410 +		AnnotationWriter.put(panns, out);
  1.2411 +		}
  1.2412 +	if(ipanns != null)
  1.2413 +		{
  1.2414 +		out.putShort(cw.newUTF8("RuntimeInvisibleParameterAnnotations"));
  1.2415 +		AnnotationWriter.put(ipanns, out);
  1.2416 +		}
  1.2417 +	if(attrs != null)
  1.2418 +		{
  1.2419 +		attrs.put(cw, null, 0, -1, -1, out);
  1.2420 +		}
  1.2421 +}
  1.2422 +
  1.2423 +// ------------------------------------------------------------------------
  1.2424 +// Utility methods: instruction resizing (used to handle GOTO_W and JSR_W)
  1.2425 +// ------------------------------------------------------------------------
  1.2426 +
  1.2427 +/**
  1.2428 + * Resizes and replaces the temporary instructions inserted by
  1.2429 + * {@link Label#resolve} for wide forward jumps, while keeping jump offsets
  1.2430 + * and instruction addresses consistent. This may require to resize other
  1.2431 + * existing instructions, or even to introduce new instructions: for
  1.2432 + * example, increasing the size of an instruction by 2 at the middle of a
  1.2433 + * method can increases the offset of an IFEQ instruction from 32766 to
  1.2434 + * 32768, in which case IFEQ 32766 must be replaced with IFNEQ 8 GOTO_W
  1.2435 + * 32765. This, in turn, may require to increase the size of another jump
  1.2436 + * instruction, and so on... All these operations are handled automatically
  1.2437 + * by this method. <p> <i>This method must be called after all the method
  1.2438 + * that is being built has been visited</i>. In particular, the
  1.2439 + * {@link Label Label} objects used to construct the method are no longer
  1.2440 + * valid after this method has been called.
  1.2441 + */
  1.2442 +private void resizeInstructions(){
  1.2443 +	byte[] b = code.data; // bytecode of the method
  1.2444 +	int u, v, label; // indexes in b
  1.2445 +	int i, j; // loop indexes
  1.2446 +	/*
  1.2447 +			 * 1st step: As explained above, resizing an instruction may require to
  1.2448 +			 * resize another one, which may require to resize yet another one, and
  1.2449 +			 * so on. The first step of the algorithm consists in finding all the
  1.2450 +			 * instructions that need to be resized, without modifying the code.
  1.2451 +			 * This is done by the following "fix point" algorithm:
  1.2452 +			 *
  1.2453 +			 * Parse the code to find the jump instructions whose offset will need
  1.2454 +			 * more than 2 bytes to be stored (the future offset is computed from
  1.2455 +			 * the current offset and from the number of bytes that will be inserted
  1.2456 +			 * or removed between the source and target instructions). For each such
  1.2457 +			 * instruction, adds an entry in (a copy of) the indexes and sizes
  1.2458 +			 * arrays (if this has not already been done in a previous iteration!).
  1.2459 +			 *
  1.2460 +			 * If at least one entry has been added during the previous step, go
  1.2461 +			 * back to the beginning, otherwise stop.
  1.2462 +			 *
  1.2463 +			 * In fact the real algorithm is complicated by the fact that the size
  1.2464 +			 * of TABLESWITCH and LOOKUPSWITCH instructions depends on their
  1.2465 +			 * position in the bytecode (because of padding). In order to ensure the
  1.2466 +			 * convergence of the algorithm, the number of bytes to be added or
  1.2467 +			 * removed from these instructions is over estimated during the previous
  1.2468 +			 * loop, and computed exactly only after the loop is finished (this
  1.2469 +			 * requires another pass to parse the bytecode of the method).
  1.2470 +			 */
  1.2471 +	int[] allIndexes = new int[0]; // copy of indexes
  1.2472 +	int[] allSizes = new int[0]; // copy of sizes
  1.2473 +	boolean[] resize; // instructions to be resized
  1.2474 +	int newOffset; // future offset of a jump instruction
  1.2475 +
  1.2476 +	resize = new boolean[code.length];
  1.2477 +
  1.2478 +	// 3 = loop again, 2 = loop ended, 1 = last pass, 0 = done
  1.2479 +	int state = 3;
  1.2480 +	do
  1.2481 +		{
  1.2482 +		if(state == 3)
  1.2483 +			{
  1.2484 +			state = 2;
  1.2485 +			}
  1.2486 +		u = 0;
  1.2487 +		while(u < b.length)
  1.2488 +			{
  1.2489 +			int opcode = b[u] & 0xFF; // opcode of current instruction
  1.2490 +			int insert = 0; // bytes to be added after this instruction
  1.2491 +
  1.2492 +			switch(ClassWriter.TYPE[opcode])
  1.2493 +				{
  1.2494 +				case ClassWriter.NOARG_INSN:
  1.2495 +				case ClassWriter.IMPLVAR_INSN:
  1.2496 +					u += 1;
  1.2497 +					break;
  1.2498 +				case ClassWriter.LABEL_INSN:
  1.2499 +					if(opcode > 201)
  1.2500 +						{
  1.2501 +						// converts temporary opcodes 202 to 217, 218 and
  1.2502 +						// 219 to IFEQ ... JSR (inclusive), IFNULL and
  1.2503 +						// IFNONNULL
  1.2504 +						opcode = opcode < 218 ? opcode - 49 : opcode - 20;
  1.2505 +						label = u + readUnsignedShort(b, u + 1);
  1.2506 +						}
  1.2507 +					else
  1.2508 +						{
  1.2509 +						label = u + readShort(b, u + 1);
  1.2510 +						}
  1.2511 +					newOffset = getNewOffset(allIndexes, allSizes, u, label);
  1.2512 +					if(newOffset < Short.MIN_VALUE
  1.2513 +					   || newOffset > Short.MAX_VALUE)
  1.2514 +						{
  1.2515 +						if(!resize[u])
  1.2516 +							{
  1.2517 +							if(opcode == Opcodes.GOTO
  1.2518 +							   || opcode == Opcodes.JSR)
  1.2519 +								{
  1.2520 +								// two additional bytes will be required to
  1.2521 +								// replace this GOTO or JSR instruction with
  1.2522 +								// a GOTO_W or a JSR_W
  1.2523 +								insert = 2;
  1.2524 +								}
  1.2525 +							else
  1.2526 +								{
  1.2527 +								// five additional bytes will be required to
  1.2528 +								// replace this IFxxx <l> instruction with
  1.2529 +								// IFNOTxxx <l'> GOTO_W <l>, where IFNOTxxx
  1.2530 +								// is the "opposite" opcode of IFxxx (i.e.,
  1.2531 +								// IFNE for IFEQ) and where <l'> designates
  1.2532 +								// the instruction just after the GOTO_W.
  1.2533 +								insert = 5;
  1.2534 +								}
  1.2535 +							resize[u] = true;
  1.2536 +							}
  1.2537 +						}
  1.2538 +					u += 3;
  1.2539 +					break;
  1.2540 +				case ClassWriter.LABELW_INSN:
  1.2541 +					u += 5;
  1.2542 +					break;
  1.2543 +				case ClassWriter.TABL_INSN:
  1.2544 +					if(state == 1)
  1.2545 +						{
  1.2546 +						// true number of bytes to be added (or removed)
  1.2547 +						// from this instruction = (future number of padding
  1.2548 +						// bytes - current number of padding byte) -
  1.2549 +						// previously over estimated variation =
  1.2550 +						// = ((3 - newOffset%4) - (3 - u%4)) - u%4
  1.2551 +						// = (-newOffset%4 + u%4) - u%4
  1.2552 +						// = -(newOffset & 3)
  1.2553 +						newOffset = getNewOffset(allIndexes, allSizes, 0, u);
  1.2554 +						insert = -(newOffset & 3);
  1.2555 +						}
  1.2556 +					else if(!resize[u])
  1.2557 +						{
  1.2558 +						// over estimation of the number of bytes to be
  1.2559 +						// added to this instruction = 3 - current number
  1.2560 +						// of padding bytes = 3 - (3 - u%4) = u%4 = u & 3
  1.2561 +						insert = u & 3;
  1.2562 +						resize[u] = true;
  1.2563 +						}
  1.2564 +					// skips instruction
  1.2565 +					u = u + 4 - (u & 3);
  1.2566 +					u += 4 * (readInt(b, u + 8) - readInt(b, u + 4) + 1) + 12;
  1.2567 +					break;
  1.2568 +				case ClassWriter.LOOK_INSN:
  1.2569 +					if(state == 1)
  1.2570 +						{
  1.2571 +						// like TABL_INSN
  1.2572 +						newOffset = getNewOffset(allIndexes, allSizes, 0, u);
  1.2573 +						insert = -(newOffset & 3);
  1.2574 +						}
  1.2575 +					else if(!resize[u])
  1.2576 +						{
  1.2577 +						// like TABL_INSN
  1.2578 +						insert = u & 3;
  1.2579 +						resize[u] = true;
  1.2580 +						}
  1.2581 +					// skips instruction
  1.2582 +					u = u + 4 - (u & 3);
  1.2583 +					u += 8 * readInt(b, u + 4) + 8;
  1.2584 +					break;
  1.2585 +				case ClassWriter.WIDE_INSN:
  1.2586 +					opcode = b[u + 1] & 0xFF;
  1.2587 +					if(opcode == Opcodes.IINC)
  1.2588 +						{
  1.2589 +						u += 6;
  1.2590 +						}
  1.2591 +					else
  1.2592 +						{
  1.2593 +						u += 4;
  1.2594 +						}
  1.2595 +					break;
  1.2596 +				case ClassWriter.VAR_INSN:
  1.2597 +				case ClassWriter.SBYTE_INSN:
  1.2598 +				case ClassWriter.LDC_INSN:
  1.2599 +					u += 2;
  1.2600 +					break;
  1.2601 +				case ClassWriter.SHORT_INSN:
  1.2602 +				case ClassWriter.LDCW_INSN:
  1.2603 +				case ClassWriter.FIELDORMETH_INSN:
  1.2604 +				case ClassWriter.TYPE_INSN:
  1.2605 +				case ClassWriter.IINC_INSN:
  1.2606 +					u += 3;
  1.2607 +					break;
  1.2608 +				case ClassWriter.ITFMETH_INSN:
  1.2609 +					u += 5;
  1.2610 +					break;
  1.2611 +					// case ClassWriter.MANA_INSN:
  1.2612 +				default:
  1.2613 +					u += 4;
  1.2614 +					break;
  1.2615 +				}
  1.2616 +			if(insert != 0)
  1.2617 +				{
  1.2618 +				// adds a new (u, insert) entry in the allIndexes and
  1.2619 +				// allSizes arrays
  1.2620 +				int[] newIndexes = new int[allIndexes.length + 1];
  1.2621 +				int[] newSizes = new int[allSizes.length + 1];
  1.2622 +				System.arraycopy(allIndexes,
  1.2623 +				                 0,
  1.2624 +				                 newIndexes,
  1.2625 +				                 0,
  1.2626 +				                 allIndexes.length);
  1.2627 +				System.arraycopy(allSizes, 0, newSizes, 0, allSizes.length);
  1.2628 +				newIndexes[allIndexes.length] = u;
  1.2629 +				newSizes[allSizes.length] = insert;
  1.2630 +				allIndexes = newIndexes;
  1.2631 +				allSizes = newSizes;
  1.2632 +				if(insert > 0)
  1.2633 +					{
  1.2634 +					state = 3;
  1.2635 +					}
  1.2636 +				}
  1.2637 +			}
  1.2638 +		if(state < 3)
  1.2639 +			{
  1.2640 +			--state;
  1.2641 +			}
  1.2642 +		} while(state != 0);
  1.2643 +
  1.2644 +	// 2nd step:
  1.2645 +	// copies the bytecode of the method into a new bytevector, updates the
  1.2646 +	// offsets, and inserts (or removes) bytes as requested.
  1.2647 +
  1.2648 +	ByteVector newCode = new ByteVector(code.length);
  1.2649 +
  1.2650 +	u = 0;
  1.2651 +	while(u < code.length)
  1.2652 +		{
  1.2653 +		int opcode = b[u] & 0xFF;
  1.2654 +		switch(ClassWriter.TYPE[opcode])
  1.2655 +			{
  1.2656 +			case ClassWriter.NOARG_INSN:
  1.2657 +			case ClassWriter.IMPLVAR_INSN:
  1.2658 +				newCode.putByte(opcode);
  1.2659 +				u += 1;
  1.2660 +				break;
  1.2661 +			case ClassWriter.LABEL_INSN:
  1.2662 +				if(opcode > 201)
  1.2663 +					{
  1.2664 +					// changes temporary opcodes 202 to 217 (inclusive), 218
  1.2665 +					// and 219 to IFEQ ... JSR (inclusive), IFNULL and
  1.2666 +					// IFNONNULL
  1.2667 +					opcode = opcode < 218 ? opcode - 49 : opcode - 20;
  1.2668 +					label = u + readUnsignedShort(b, u + 1);
  1.2669 +					}
  1.2670 +				else
  1.2671 +					{
  1.2672 +					label = u + readShort(b, u + 1);
  1.2673 +					}
  1.2674 +				newOffset = getNewOffset(allIndexes, allSizes, u, label);
  1.2675 +				if(resize[u])
  1.2676 +					{
  1.2677 +					// replaces GOTO with GOTO_W, JSR with JSR_W and IFxxx
  1.2678 +					// <l> with IFNOTxxx <l'> GOTO_W <l>, where IFNOTxxx is
  1.2679 +					// the "opposite" opcode of IFxxx (i.e., IFNE for IFEQ)
  1.2680 +					// and where <l'> designates the instruction just after
  1.2681 +					// the GOTO_W.
  1.2682 +					if(opcode == Opcodes.GOTO)
  1.2683 +						{
  1.2684 +						newCode.putByte(200); // GOTO_W
  1.2685 +						}
  1.2686 +					else if(opcode == Opcodes.JSR)
  1.2687 +						{
  1.2688 +						newCode.putByte(201); // JSR_W
  1.2689 +						}
  1.2690 +					else
  1.2691 +						{
  1.2692 +						newCode.putByte(opcode <= 166
  1.2693 +						                ? ((opcode + 1) ^ 1) - 1
  1.2694 +						                : opcode ^ 1);
  1.2695 +						newCode.putShort(8); // jump offset
  1.2696 +						newCode.putByte(200); // GOTO_W
  1.2697 +						// newOffset now computed from start of GOTO_W
  1.2698 +						newOffset -= 3;
  1.2699 +						}
  1.2700 +					newCode.putInt(newOffset);
  1.2701 +					}
  1.2702 +				else
  1.2703 +					{
  1.2704 +					newCode.putByte(opcode);
  1.2705 +					newCode.putShort(newOffset);
  1.2706 +					}
  1.2707 +				u += 3;
  1.2708 +				break;
  1.2709 +			case ClassWriter.LABELW_INSN:
  1.2710 +				label = u + readInt(b, u + 1);
  1.2711 +				newOffset = getNewOffset(allIndexes, allSizes, u, label);
  1.2712 +				newCode.putByte(opcode);
  1.2713 +				newCode.putInt(newOffset);
  1.2714 +				u += 5;
  1.2715 +				break;
  1.2716 +			case ClassWriter.TABL_INSN:
  1.2717 +				// skips 0 to 3 padding bytes
  1.2718 +				v = u;
  1.2719 +				u = u + 4 - (v & 3);
  1.2720 +				// reads and copies instruction
  1.2721 +				newCode.putByte(Opcodes.TABLESWITCH);
  1.2722 +				newCode.length += (4 - newCode.length % 4) % 4;
  1.2723 +				label = v + readInt(b, u);
  1.2724 +				u += 4;
  1.2725 +				newOffset = getNewOffset(allIndexes, allSizes, v, label);
  1.2726 +				newCode.putInt(newOffset);
  1.2727 +				j = readInt(b, u);
  1.2728 +				u += 4;
  1.2729 +				newCode.putInt(j);
  1.2730 +				j = readInt(b, u) - j + 1;
  1.2731 +				u += 4;
  1.2732 +				newCode.putInt(readInt(b, u - 4));
  1.2733 +				for(; j > 0; --j)
  1.2734 +					{
  1.2735 +					label = v + readInt(b, u);
  1.2736 +					u += 4;
  1.2737 +					newOffset = getNewOffset(allIndexes, allSizes, v, label);
  1.2738 +					newCode.putInt(newOffset);
  1.2739 +					}
  1.2740 +				break;
  1.2741 +			case ClassWriter.LOOK_INSN:
  1.2742 +				// skips 0 to 3 padding bytes
  1.2743 +				v = u;
  1.2744 +				u = u + 4 - (v & 3);
  1.2745 +				// reads and copies instruction
  1.2746 +				newCode.putByte(Opcodes.LOOKUPSWITCH);
  1.2747 +				newCode.length += (4 - newCode.length % 4) % 4;
  1.2748 +				label = v + readInt(b, u);
  1.2749 +				u += 4;
  1.2750 +				newOffset = getNewOffset(allIndexes, allSizes, v, label);
  1.2751 +				newCode.putInt(newOffset);
  1.2752 +				j = readInt(b, u);
  1.2753 +				u += 4;
  1.2754 +				newCode.putInt(j);
  1.2755 +				for(; j > 0; --j)
  1.2756 +					{
  1.2757 +					newCode.putInt(readInt(b, u));
  1.2758 +					u += 4;
  1.2759 +					label = v + readInt(b, u);
  1.2760 +					u += 4;
  1.2761 +					newOffset = getNewOffset(allIndexes, allSizes, v, label);
  1.2762 +					newCode.putInt(newOffset);
  1.2763 +					}
  1.2764 +				break;
  1.2765 +			case ClassWriter.WIDE_INSN:
  1.2766 +				opcode = b[u + 1] & 0xFF;
  1.2767 +				if(opcode == Opcodes.IINC)
  1.2768 +					{
  1.2769 +					newCode.putByteArray(b, u, 6);
  1.2770 +					u += 6;
  1.2771 +					}
  1.2772 +				else
  1.2773 +					{
  1.2774 +					newCode.putByteArray(b, u, 4);
  1.2775 +					u += 4;
  1.2776 +					}
  1.2777 +				break;
  1.2778 +			case ClassWriter.VAR_INSN:
  1.2779 +			case ClassWriter.SBYTE_INSN:
  1.2780 +			case ClassWriter.LDC_INSN:
  1.2781 +				newCode.putByteArray(b, u, 2);
  1.2782 +				u += 2;
  1.2783 +				break;
  1.2784 +			case ClassWriter.SHORT_INSN:
  1.2785 +			case ClassWriter.LDCW_INSN:
  1.2786 +			case ClassWriter.FIELDORMETH_INSN:
  1.2787 +			case ClassWriter.TYPE_INSN:
  1.2788 +			case ClassWriter.IINC_INSN:
  1.2789 +				newCode.putByteArray(b, u, 3);
  1.2790 +				u += 3;
  1.2791 +				break;
  1.2792 +			case ClassWriter.ITFMETH_INSN:
  1.2793 +				newCode.putByteArray(b, u, 5);
  1.2794 +				u += 5;
  1.2795 +				break;
  1.2796 +				// case MANA_INSN:
  1.2797 +			default:
  1.2798 +				newCode.putByteArray(b, u, 4);
  1.2799 +				u += 4;
  1.2800 +				break;
  1.2801 +			}
  1.2802 +		}
  1.2803 +
  1.2804 +	// recomputes the stack map frames
  1.2805 +	if(frameCount > 0)
  1.2806 +		{
  1.2807 +		if(compute == FRAMES)
  1.2808 +			{
  1.2809 +			frameCount = 0;
  1.2810 +			stackMap = null;
  1.2811 +			previousFrame = null;
  1.2812 +			frame = null;
  1.2813 +			Frame f = new Frame();
  1.2814 +			f.owner = labels;
  1.2815 +			Type[] args = Type.getArgumentTypes(descriptor);
  1.2816 +			f.initInputFrame(cw, access, args, maxLocals);
  1.2817 +			visitFrame(f);
  1.2818 +			Label l = labels;
  1.2819 +			while(l != null)
  1.2820 +				{
  1.2821 +				/*
  1.2822 +									 * here we need the original label position. getNewOffset
  1.2823 +									 * must therefore never have been called for this label.
  1.2824 +									 */
  1.2825 +				u = l.position - 3;
  1.2826 +				if((l.status & Label.STORE) != 0 || (u >= 0 && resize[u]))
  1.2827 +					{
  1.2828 +					getNewOffset(allIndexes, allSizes, l);
  1.2829 +					// TODO update offsets in UNINITIALIZED values
  1.2830 +					visitFrame(l.frame);
  1.2831 +					}
  1.2832 +				l = l.successor;
  1.2833 +				}
  1.2834 +			}
  1.2835 +		else
  1.2836 +			{
  1.2837 +			/*
  1.2838 +							 * Resizing an existing stack map frame table is really hard.
  1.2839 +							 * Not only the table must be parsed to update the offets, but
  1.2840 +							 * new frames may be needed for jump instructions that were
  1.2841 +							 * inserted by this method. And updating the offsets or
  1.2842 +							 * inserting frames can change the format of the following
  1.2843 +							 * frames, in case of packed frames. In practice the whole table
  1.2844 +							 * must be recomputed. For this the frames are marked as
  1.2845 +							 * potentially invalid. This will cause the whole class to be
  1.2846 +							 * reread and rewritten with the COMPUTE_FRAMES option (see the
  1.2847 +							 * ClassWriter.toByteArray method). This is not very efficient
  1.2848 +							 * but is much easier and requires much less code than any other
  1.2849 +							 * method I can think of.
  1.2850 +							 */
  1.2851 +			cw.invalidFrames = true;
  1.2852 +			}
  1.2853 +		}
  1.2854 +	// updates the exception handler block labels
  1.2855 +	Handler h = firstHandler;
  1.2856 +	while(h != null)
  1.2857 +		{
  1.2858 +		getNewOffset(allIndexes, allSizes, h.start);
  1.2859 +		getNewOffset(allIndexes, allSizes, h.end);
  1.2860 +		getNewOffset(allIndexes, allSizes, h.handler);
  1.2861 +		h = h.next;
  1.2862 +		}
  1.2863 +	// updates the instructions addresses in the
  1.2864 +	// local var and line number tables
  1.2865 +	for(i = 0; i < 2; ++i)
  1.2866 +		{
  1.2867 +		ByteVector bv = i == 0 ? localVar : localVarType;
  1.2868 +		if(bv != null)
  1.2869 +			{
  1.2870 +			b = bv.data;
  1.2871 +			u = 0;
  1.2872 +			while(u < bv.length)
  1.2873 +				{
  1.2874 +				label = readUnsignedShort(b, u);
  1.2875 +				newOffset = getNewOffset(allIndexes, allSizes, 0, label);
  1.2876 +				writeShort(b, u, newOffset);
  1.2877 +				label += readUnsignedShort(b, u + 2);
  1.2878 +				newOffset = getNewOffset(allIndexes, allSizes, 0, label)
  1.2879 +				            - newOffset;
  1.2880 +				writeShort(b, u + 2, newOffset);
  1.2881 +				u += 10;
  1.2882 +				}
  1.2883 +			}
  1.2884 +		}
  1.2885 +	if(lineNumber != null)
  1.2886 +		{
  1.2887 +		b = lineNumber.data;
  1.2888 +		u = 0;
  1.2889 +		while(u < lineNumber.length)
  1.2890 +			{
  1.2891 +			writeShort(b, u, getNewOffset(allIndexes,
  1.2892 +			                              allSizes,
  1.2893 +			                              0,
  1.2894 +			                              readUnsignedShort(b, u)));
  1.2895 +			u += 4;
  1.2896 +			}
  1.2897 +		}
  1.2898 +	// updates the labels of the other attributes
  1.2899 +	Attribute attr = cattrs;
  1.2900 +	while(attr != null)
  1.2901 +		{
  1.2902 +		Label[] labels = attr.getLabels();
  1.2903 +		if(labels != null)
  1.2904 +			{
  1.2905 +			for(i = labels.length - 1; i >= 0; --i)
  1.2906 +				{
  1.2907 +				getNewOffset(allIndexes, allSizes, labels[i]);
  1.2908 +				}
  1.2909 +			}
  1.2910 +		attr = attr.next;
  1.2911 +		}
  1.2912 +
  1.2913 +	// replaces old bytecodes with new ones
  1.2914 +	code = newCode;
  1.2915 +}
  1.2916 +
  1.2917 +/**
  1.2918 + * Reads an unsigned short value in the given byte array.
  1.2919 + *
  1.2920 + * @param b     a byte array.
  1.2921 + * @param index the start index of the value to be read.
  1.2922 + * @return the read value.
  1.2923 + */
  1.2924 +static int readUnsignedShort(final byte[] b, final int index){
  1.2925 +	return ((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF);
  1.2926 +}
  1.2927 +
  1.2928 +/**
  1.2929 + * Reads a signed short value in the given byte array.
  1.2930 + *
  1.2931 + * @param b     a byte array.
  1.2932 + * @param index the start index of the value to be read.
  1.2933 + * @return the read value.
  1.2934 + */
  1.2935 +static short readShort(final byte[] b, final int index){
  1.2936 +	return (short) (((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF));
  1.2937 +}
  1.2938 +
  1.2939 +/**
  1.2940 + * Reads a signed int value in the given byte array.
  1.2941 + *
  1.2942 + * @param b     a byte array.
  1.2943 + * @param index the start index of the value to be read.
  1.2944 + * @return the read value.
  1.2945 + */
  1.2946 +static int readInt(final byte[] b, final int index){
  1.2947 +	return ((b[index] & 0xFF) << 24) | ((b[index + 1] & 0xFF) << 16)
  1.2948 +	       | ((b[index + 2] & 0xFF) << 8) | (b[index + 3] & 0xFF);
  1.2949 +}
  1.2950 +
  1.2951 +/**
  1.2952 + * Writes a short value in the given byte array.
  1.2953 + *
  1.2954 + * @param b     a byte array.
  1.2955 + * @param index where the first byte of the short value must be written.
  1.2956 + * @param s     the value to be written in the given byte array.
  1.2957 + */
  1.2958 +static void writeShort(final byte[] b, final int index, final int s){
  1.2959 +	b[index] = (byte) (s >>> 8);
  1.2960 +	b[index + 1] = (byte) s;
  1.2961 +}
  1.2962 +
  1.2963 +/**
  1.2964 + * Computes the future value of a bytecode offset. <p> Note: it is possible
  1.2965 + * to have several entries for the same instruction in the <tt>indexes</tt>
  1.2966 + * and <tt>sizes</tt>: two entries (index=a,size=b) and (index=a,size=b')
  1.2967 + * are equivalent to a single entry (index=a,size=b+b').
  1.2968 + *
  1.2969 + * @param indexes current positions of the instructions to be resized. Each
  1.2970 + *                instruction must be designated by the index of its <i>last</i>
  1.2971 + *                byte, plus one (or, in other words, by the index of the <i>first</i>
  1.2972 + *                byte of the <i>next</i> instruction).
  1.2973 + * @param sizes   the number of bytes to be <i>added</i> to the above
  1.2974 + *                instructions. More precisely, for each i < <tt>len</tt>,
  1.2975 + *                <tt>sizes</tt>[i] bytes will be added at the end of the
  1.2976 + *                instruction designated by <tt>indexes</tt>[i] or, if
  1.2977 + *                <tt>sizes</tt>[i] is negative, the <i>last</i> |<tt>sizes[i]</tt>|
  1.2978 + *                bytes of the instruction will be removed (the instruction size
  1.2979 + *                <i>must not</i> become negative or null).
  1.2980 + * @param begin   index of the first byte of the source instruction.
  1.2981 + * @param end     index of the first byte of the target instruction.
  1.2982 + * @return the future value of the given bytecode offset.
  1.2983 + */
  1.2984 +static int getNewOffset(
  1.2985 +		final int[] indexes,
  1.2986 +		final int[] sizes,
  1.2987 +		final int begin,
  1.2988 +		final int end){
  1.2989 +	int offset = end - begin;
  1.2990 +	for(int i = 0; i < indexes.length; ++i)
  1.2991 +		{
  1.2992 +		if(begin < indexes[i] && indexes[i] <= end)
  1.2993 +			{
  1.2994 +			// forward jump
  1.2995 +			offset += sizes[i];
  1.2996 +			}
  1.2997 +		else if(end < indexes[i] && indexes[i] <= begin)
  1.2998 +			{
  1.2999 +			// backward jump
  1.3000 +			offset -= sizes[i];
  1.3001 +			}
  1.3002 +		}
  1.3003 +	return offset;
  1.3004 +}
  1.3005 +
  1.3006 +/**
  1.3007 + * Updates the offset of the given label.
  1.3008 + *
  1.3009 + * @param indexes current positions of the instructions to be resized. Each
  1.3010 + *                instruction must be designated by the index of its <i>last</i>
  1.3011 + *                byte, plus one (or, in other words, by the index of the <i>first</i>
  1.3012 + *                byte of the <i>next</i> instruction).
  1.3013 + * @param sizes   the number of bytes to be <i>added</i> to the above
  1.3014 + *                instructions. More precisely, for each i < <tt>len</tt>,
  1.3015 + *                <tt>sizes</tt>[i] bytes will be added at the end of the
  1.3016 + *                instruction designated by <tt>indexes</tt>[i] or, if
  1.3017 + *                <tt>sizes</tt>[i] is negative, the <i>last</i> |<tt>sizes[i]</tt>|
  1.3018 + *                bytes of the instruction will be removed (the instruction size
  1.3019 + *                <i>must not</i> become negative or null).
  1.3020 + * @param label   the label whose offset must be updated.
  1.3021 + */
  1.3022 +static void getNewOffset(
  1.3023 +		final int[] indexes,
  1.3024 +		final int[] sizes,
  1.3025 +		final Label label){
  1.3026 +	if((label.status & Label.RESIZED) == 0)
  1.3027 +		{
  1.3028 +		label.position = getNewOffset(indexes, sizes, 0, label.position);
  1.3029 +		label.status |= Label.RESIZED;
  1.3030 +		}
  1.3031 +}
  1.3032 +}