rlm@10
|
1 /**
|
rlm@10
|
2 * @(#)AVIOutputStream.java 1.5.1 2011-01-17
|
rlm@10
|
3 *
|
rlm@10
|
4 * Copyright (c) 2008-2011 Werner Randelshofer, Immensee, Switzerland.
|
rlm@10
|
5 * All rights reserved.
|
rlm@10
|
6 *
|
rlm@10
|
7 * You may not use, copy or modify this file, except in compliance with the
|
rlm@10
|
8 * license agreement you entered into with Werner Randelshofer.
|
rlm@10
|
9 * For details see accompanying license terms.
|
rlm@10
|
10 */
|
rlm@10
|
11 package ca.randelshofer;
|
rlm@10
|
12
|
rlm@10
|
13 import java.awt.Dimension;
|
rlm@10
|
14 import java.awt.image.BufferedImage;
|
rlm@10
|
15 import java.awt.image.DataBufferByte;
|
rlm@10
|
16 import java.awt.image.IndexColorModel;
|
rlm@10
|
17 import java.awt.image.WritableRaster;
|
rlm@10
|
18 import java.io.File;
|
rlm@10
|
19 import java.io.FileInputStream;
|
rlm@10
|
20 import java.io.IOException;
|
rlm@10
|
21 import java.io.InputStream;
|
rlm@10
|
22 import java.io.OutputStream;
|
rlm@10
|
23 import java.util.Arrays;
|
rlm@10
|
24 import java.util.Date;
|
rlm@10
|
25 import java.util.LinkedList;
|
rlm@10
|
26
|
rlm@10
|
27 import javax.imageio.IIOImage;
|
rlm@10
|
28 import javax.imageio.ImageIO;
|
rlm@10
|
29 import javax.imageio.ImageWriteParam;
|
rlm@10
|
30 import javax.imageio.ImageWriter;
|
rlm@10
|
31 import javax.imageio.stream.FileImageOutputStream;
|
rlm@10
|
32 import javax.imageio.stream.ImageOutputStream;
|
rlm@10
|
33 import javax.imageio.stream.MemoryCacheImageOutputStream;
|
rlm@10
|
34
|
rlm@10
|
35 /**
|
rlm@10
|
36 * This class supports writing of images into an AVI 1.0 video file.
|
rlm@10
|
37 * <p>
|
rlm@10
|
38 * The images are written as video frames.
|
rlm@10
|
39 * <p>
|
rlm@10
|
40 * Video frames can be encoded with one of the following formats:
|
rlm@10
|
41 * <ul>
|
rlm@10
|
42 * <li>JPEG</li>
|
rlm@10
|
43 * <li>PNG</li>
|
rlm@10
|
44 * <li>RAW</li>
|
rlm@10
|
45 * <li>RLE</li>
|
rlm@10
|
46 * </ul>
|
rlm@10
|
47 * All frames must have the same format.
|
rlm@10
|
48 * When JPG is used each frame can have an individual encoding quality.
|
rlm@10
|
49 * <p>
|
rlm@10
|
50 * All frames in an AVI file must have the same duration. The duration can
|
rlm@10
|
51 * be set by setting an appropriate pair of values using methods
|
rlm@10
|
52 * {@link #setFrameRate} and {@link #setTimeScale}.
|
rlm@10
|
53 * <p>
|
rlm@10
|
54 * The length of an AVI 1.0 file is limited to 1 GB.
|
rlm@10
|
55 * This class supports lengths of up to 4 GB, but such files may not work on
|
rlm@10
|
56 * all players.
|
rlm@10
|
57 * <p>
|
rlm@10
|
58 * For detailed information about the AVI RIFF file format see:<br>
|
rlm@10
|
59 * <a href="http://msdn.microsoft.com/en-us/library/ms779636.aspx">msdn.microsoft.com AVI RIFF</a><br>
|
rlm@10
|
60 * <a href="http://www.microsoft.com/whdc/archive/fourcc.mspx">www.microsoft.com FOURCC for Video Compression</a><br>
|
rlm@10
|
61 * <a href="http://www.saettler.com/RIFFMCI/riffmci.html">www.saettler.com RIFF</a><br>
|
rlm@10
|
62 *
|
rlm@10
|
63 * @author Werner Randelshofer
|
rlm@10
|
64 * @version 1.5.1 2011-01-17 Fixes unintended closing of output stream..
|
rlm@10
|
65 * <br>1.5 2011-01-06 Adds support for RLE 8-bit video format.
|
rlm@10
|
66 * <br>1.4 2011-01-04 Adds support for RAW 4-bit and 8-bit video format. Fixes offsets
|
rlm@10
|
67 * in "idx1" chunk.
|
rlm@10
|
68 * <br>1.3.2 2010-12-27 File size limit is 1 GB.
|
rlm@10
|
69 * <br>1.3.1 2010-07-19 Fixes seeking and calculation of offsets.
|
rlm@10
|
70 * <br>1.3 2010-07-08 Adds constructor with ImageOutputStream.
|
rlm@10
|
71 * Added method getVideoDimension().
|
rlm@10
|
72 * <br>1.2 2009-08-29 Adds support for RAW video format.
|
rlm@10
|
73 * <br>1.1 2008-08-27 Fixes computation of dwMicroSecPerFrame in avih
|
rlm@10
|
74 * chunk. Changed the API to reflect that AVI works with frame rates instead of
|
rlm@10
|
75 * with frame durations.
|
rlm@10
|
76 * <br>1.0.1 2008-08-13 Uses FourCC "MJPG" instead of "jpg " for JPG
|
rlm@10
|
77 * encoded video.
|
rlm@10
|
78 * <br>1.0 2008-08-11 Created.
|
rlm@10
|
79 */
|
rlm@10
|
80 public class AVIOutputStream {
|
rlm@10
|
81
|
rlm@10
|
82 /**
|
rlm@10
|
83 * Underlying output stream.
|
rlm@10
|
84 */
|
rlm@10
|
85 private ImageOutputStream out;
|
rlm@10
|
86 /** The offset of the QuickTime stream in the underlying ImageOutputStream.
|
rlm@10
|
87 * Normally this is 0 unless the underlying stream already contained data
|
rlm@10
|
88 * when it was passed to the constructor.
|
rlm@10
|
89 */
|
rlm@10
|
90 private long streamOffset;
|
rlm@10
|
91 /** Previous frame for delta compression. */
|
rlm@10
|
92
|
rlm@10
|
93 /**
|
rlm@10
|
94 * Supported video encodings.
|
rlm@10
|
95 */
|
rlm@10
|
96 public static enum VideoFormat {
|
rlm@10
|
97
|
rlm@10
|
98 RAW, RLE, JPG, PNG;
|
rlm@10
|
99 }
|
rlm@10
|
100 /**
|
rlm@10
|
101 * Current video formats.
|
rlm@10
|
102 */
|
rlm@10
|
103 private VideoFormat videoFormat;
|
rlm@10
|
104 /**
|
rlm@10
|
105 * Quality of JPEG encoded video frames.
|
rlm@10
|
106 */
|
rlm@10
|
107 private float quality = 0.9f;
|
rlm@10
|
108 /**
|
rlm@10
|
109 * Width of the video frames. All frames must have the same width.
|
rlm@10
|
110 * The value -1 is used to mark unspecified width.
|
rlm@10
|
111 */
|
rlm@10
|
112 private int imgWidth = -1;
|
rlm@10
|
113 /**
|
rlm@10
|
114 * Height of the video frames. All frames must have the same height.
|
rlm@10
|
115 * The value -1 is used to mark unspecified height.
|
rlm@10
|
116 */
|
rlm@10
|
117 private int imgHeight = -1;
|
rlm@10
|
118 /** Number of bits per pixel. */
|
rlm@10
|
119 private int imgDepth = 24;
|
rlm@10
|
120 /** Index color model for RAW_RGB4 and RAW_RGB8 formats. */
|
rlm@10
|
121 private IndexColorModel palette;
|
rlm@10
|
122 private IndexColorModel previousPalette;
|
rlm@10
|
123 /** Video encoder. */
|
rlm@10
|
124
|
rlm@10
|
125 /**
|
rlm@10
|
126 * The timeScale of the movie.
|
rlm@10
|
127 * <p>
|
rlm@10
|
128 * Used with frameRate to specify the time scale that this stream will use.
|
rlm@10
|
129 * Dividing frameRate by timeScale gives the number of samples per second.
|
rlm@10
|
130 * For video streams, this is the frame rate. For audio streams, this rate
|
rlm@10
|
131 * corresponds to the time needed to play nBlockAlign bytes of audio, which
|
rlm@10
|
132 * for PCM audio is the just the sample rate.
|
rlm@10
|
133 */
|
rlm@10
|
134 private int timeScale = 1;
|
rlm@10
|
135 /**
|
rlm@10
|
136 * The frameRate of the movie in timeScale units.
|
rlm@10
|
137 * <p>
|
rlm@10
|
138 * @see timeScale
|
rlm@10
|
139 */
|
rlm@10
|
140 private int frameRate = 30;
|
rlm@10
|
141 /**
|
rlm@10
|
142 * The states of the movie output stream.
|
rlm@10
|
143 */
|
rlm@10
|
144 private static enum States {
|
rlm@10
|
145
|
rlm@10
|
146 STARTED, FINISHED, CLOSED;
|
rlm@10
|
147 }
|
rlm@10
|
148 /**
|
rlm@10
|
149 * The current state of the movie output stream.
|
rlm@10
|
150 */
|
rlm@10
|
151 private States state = States.FINISHED;
|
rlm@10
|
152
|
rlm@10
|
153 /**
|
rlm@10
|
154 * AVI stores media data in samples.
|
rlm@10
|
155 * A sample is a single element in a sequence of time-ordered data.
|
rlm@10
|
156 */
|
rlm@10
|
157 private static class Sample {
|
rlm@10
|
158
|
rlm@10
|
159 String chunkType;
|
rlm@10
|
160 /** Offset of the sample relative to the start of the AVI file.
|
rlm@10
|
161 */
|
rlm@10
|
162 long offset;
|
rlm@10
|
163 /** Data length of the sample. */
|
rlm@10
|
164 long length;
|
rlm@10
|
165 /** Whether the sample is a sync-sample. */
|
rlm@10
|
166 boolean isSync;
|
rlm@10
|
167
|
rlm@10
|
168 /**
|
rlm@10
|
169 * Creates a new sample.
|
rlm@10
|
170 * @param duration
|
rlm@10
|
171 * @param offset
|
rlm@10
|
172 * @param length
|
rlm@10
|
173 */
|
rlm@10
|
174 public Sample(String chunkId, int duration, long offset, long length, boolean isSync) {
|
rlm@10
|
175 this.chunkType = chunkId;
|
rlm@10
|
176 this.offset = offset;
|
rlm@10
|
177 this.length = length;
|
rlm@10
|
178 this.isSync = isSync;
|
rlm@10
|
179 }
|
rlm@10
|
180 }
|
rlm@10
|
181 /**
|
rlm@10
|
182 * List of video frames.
|
rlm@10
|
183 */
|
rlm@10
|
184 private LinkedList<Sample> videoFrames;
|
rlm@10
|
185 /**
|
rlm@10
|
186 * This chunk holds the whole AVI content.
|
rlm@10
|
187 */
|
rlm@10
|
188 private CompositeChunk aviChunk;
|
rlm@10
|
189 /**
|
rlm@10
|
190 * This chunk holds the movie frames.
|
rlm@10
|
191 */
|
rlm@10
|
192 private CompositeChunk moviChunk;
|
rlm@10
|
193 /**
|
rlm@10
|
194 * This chunk holds the AVI Main Header.
|
rlm@10
|
195 */
|
rlm@10
|
196 FixedSizeDataChunk avihChunk;
|
rlm@10
|
197 /**
|
rlm@10
|
198 * This chunk holds the AVI Stream Header.
|
rlm@10
|
199 */
|
rlm@10
|
200 FixedSizeDataChunk strhChunk;
|
rlm@10
|
201 /**
|
rlm@10
|
202 * This chunk holds the AVI Stream Format Header.
|
rlm@10
|
203 */
|
rlm@10
|
204 FixedSizeDataChunk strfChunk;
|
rlm@10
|
205
|
rlm@10
|
206 /**
|
rlm@10
|
207 * Chunk base class.
|
rlm@10
|
208 */
|
rlm@10
|
209 private abstract class Chunk {
|
rlm@10
|
210
|
rlm@10
|
211 /**
|
rlm@10
|
212 * The chunkType of the chunk. A String with the length of 4 characters.
|
rlm@10
|
213 */
|
rlm@10
|
214 protected String chunkType;
|
rlm@10
|
215 /**
|
rlm@10
|
216 * The offset of the chunk relative to the start of the
|
rlm@10
|
217 * ImageOutputStream.
|
rlm@10
|
218 */
|
rlm@10
|
219 protected long offset;
|
rlm@10
|
220
|
rlm@10
|
221 /**
|
rlm@10
|
222 * Creates a new Chunk at the current position of the ImageOutputStream.
|
rlm@10
|
223 * @param chunkType The chunkType of the chunk. A string with a length of 4 characters.
|
rlm@10
|
224 */
|
rlm@10
|
225 public Chunk(String chunkType) throws IOException {
|
rlm@10
|
226 this.chunkType = chunkType;
|
rlm@10
|
227 offset = getRelativeStreamPosition();
|
rlm@10
|
228 }
|
rlm@10
|
229
|
rlm@10
|
230 /**
|
rlm@10
|
231 * Writes the chunk to the ImageOutputStream and disposes it.
|
rlm@10
|
232 */
|
rlm@10
|
233 public abstract void finish() throws IOException;
|
rlm@10
|
234
|
rlm@10
|
235 /**
|
rlm@10
|
236 * Returns the size of the chunk including the size of the chunk header.
|
rlm@10
|
237 * @return The size of the chunk.
|
rlm@10
|
238 */
|
rlm@10
|
239 public abstract long size();
|
rlm@10
|
240 }
|
rlm@10
|
241
|
rlm@10
|
242 /**
|
rlm@10
|
243 * A CompositeChunk contains an ordered list of Chunks.
|
rlm@10
|
244 */
|
rlm@10
|
245 private class CompositeChunk extends Chunk {
|
rlm@10
|
246
|
rlm@10
|
247 /**
|
rlm@10
|
248 * The type of the composite. A String with the length of 4 characters.
|
rlm@10
|
249 */
|
rlm@10
|
250 protected String compositeType;
|
rlm@10
|
251 private LinkedList<Chunk> children;
|
rlm@10
|
252 private boolean finished;
|
rlm@10
|
253
|
rlm@10
|
254 /**
|
rlm@10
|
255 * Creates a new CompositeChunk at the current position of the
|
rlm@10
|
256 * ImageOutputStream.
|
rlm@10
|
257 * @param compositeType The type of the composite.
|
rlm@10
|
258 * @param chunkType The type of the chunk.
|
rlm@10
|
259 */
|
rlm@10
|
260 public CompositeChunk(String compositeType, String chunkType) throws IOException {
|
rlm@10
|
261 super(chunkType);
|
rlm@10
|
262 this.compositeType = compositeType;
|
rlm@10
|
263 //out.write
|
rlm@10
|
264 out.writeLong(0); // make room for the chunk header
|
rlm@10
|
265 out.writeInt(0); // make room for the chunk header
|
rlm@10
|
266 children = new LinkedList<Chunk>();
|
rlm@10
|
267 }
|
rlm@10
|
268
|
rlm@10
|
269 public void add(Chunk child) throws IOException {
|
rlm@10
|
270 if (children.size() > 0) {
|
rlm@10
|
271 children.getLast().finish();
|
rlm@10
|
272 }
|
rlm@10
|
273 children.add(child);
|
rlm@10
|
274 }
|
rlm@10
|
275
|
rlm@10
|
276 /**
|
rlm@10
|
277 * Writes the chunk and all its children to the ImageOutputStream
|
rlm@10
|
278 * and disposes of all resources held by the chunk.
|
rlm@10
|
279 * @throws java.io.IOException
|
rlm@10
|
280 */
|
rlm@10
|
281 @Override
|
rlm@10
|
282 public void finish() throws IOException {
|
rlm@10
|
283 if (!finished) {
|
rlm@10
|
284 if (size() > 0xffffffffL) {
|
rlm@10
|
285 throw new IOException("CompositeChunk \"" + chunkType + "\" is too large: " + size());
|
rlm@10
|
286 }
|
rlm@10
|
287
|
rlm@10
|
288 long pointer = getRelativeStreamPosition();
|
rlm@10
|
289 seekRelative(offset);
|
rlm@10
|
290
|
rlm@10
|
291 DataChunkOutputStream headerData = new DataChunkOutputStream(new ImageOutputStreamAdapter(out),false);
|
rlm@10
|
292 headerData.writeType(compositeType);
|
rlm@10
|
293 headerData.writeUInt(size() - 8);
|
rlm@10
|
294 headerData.writeType(chunkType);
|
rlm@10
|
295 for (Chunk child : children) {
|
rlm@10
|
296 child.finish();
|
rlm@10
|
297 }
|
rlm@10
|
298 seekRelative(pointer);
|
rlm@10
|
299 if (size() % 2 == 1) {
|
rlm@10
|
300 out.writeByte(0); // write pad byte
|
rlm@10
|
301 }
|
rlm@10
|
302 finished = true;
|
rlm@10
|
303 }
|
rlm@10
|
304 }
|
rlm@10
|
305
|
rlm@10
|
306 @Override
|
rlm@10
|
307 public long size() {
|
rlm@10
|
308 long length = 12;
|
rlm@10
|
309 for (Chunk child : children) {
|
rlm@10
|
310 length += child.size() + child.size() % 2;
|
rlm@10
|
311 }
|
rlm@10
|
312 return length;
|
rlm@10
|
313 }
|
rlm@10
|
314 }
|
rlm@10
|
315
|
rlm@10
|
316 /**
|
rlm@10
|
317 * Data Chunk.
|
rlm@10
|
318 */
|
rlm@10
|
319 private class DataChunk extends Chunk {
|
rlm@10
|
320
|
rlm@10
|
321 private DataChunkOutputStream data;
|
rlm@10
|
322 private boolean finished;
|
rlm@10
|
323
|
rlm@10
|
324 /**
|
rlm@10
|
325 * Creates a new DataChunk at the current position of the
|
rlm@10
|
326 * ImageOutputStream.
|
rlm@10
|
327 * @param chunkType The chunkType of the chunk.
|
rlm@10
|
328 */
|
rlm@10
|
329 public DataChunk(String name) throws IOException {
|
rlm@10
|
330 super(name);
|
rlm@10
|
331 out.writeLong(0); // make room for the chunk header
|
rlm@10
|
332 data = new DataChunkOutputStream(new ImageOutputStreamAdapter(out), false);
|
rlm@10
|
333 }
|
rlm@10
|
334
|
rlm@10
|
335 public DataChunkOutputStream getOutputStream() {
|
rlm@10
|
336 if (finished) {
|
rlm@10
|
337 throw new IllegalStateException("DataChunk is finished");
|
rlm@10
|
338 }
|
rlm@10
|
339 return data;
|
rlm@10
|
340 }
|
rlm@10
|
341
|
rlm@10
|
342 @Override
|
rlm@10
|
343 public void finish() throws IOException {
|
rlm@10
|
344 if (!finished) {
|
rlm@10
|
345 long sizeBefore = size();
|
rlm@10
|
346
|
rlm@10
|
347 if (size() > 0xffffffffL) {
|
rlm@10
|
348 throw new IOException("DataChunk \"" + chunkType + "\" is too large: " + size());
|
rlm@10
|
349 }
|
rlm@10
|
350
|
rlm@10
|
351 long pointer = getRelativeStreamPosition();
|
rlm@10
|
352 seekRelative(offset);
|
rlm@10
|
353
|
rlm@10
|
354 DataChunkOutputStream headerData = new DataChunkOutputStream(new ImageOutputStreamAdapter(out),false);
|
rlm@10
|
355 headerData.writeType(chunkType);
|
rlm@10
|
356 headerData.writeUInt(size() - 8);
|
rlm@10
|
357 seekRelative(pointer);
|
rlm@10
|
358 if (size() % 2 == 1) {
|
rlm@10
|
359 out.writeByte(0); // write pad byte
|
rlm@10
|
360 }
|
rlm@10
|
361 finished = true;
|
rlm@10
|
362 long sizeAfter = size();
|
rlm@10
|
363 if (sizeBefore != sizeAfter) {
|
rlm@10
|
364 System.err.println("size mismatch " + sizeBefore + ".." + sizeAfter);
|
rlm@10
|
365 }
|
rlm@10
|
366 }
|
rlm@10
|
367 }
|
rlm@10
|
368
|
rlm@10
|
369 @Override
|
rlm@10
|
370 public long size() {
|
rlm@10
|
371 return 8 + data.size();
|
rlm@10
|
372 }
|
rlm@10
|
373 }
|
rlm@10
|
374
|
rlm@10
|
375 /**
|
rlm@10
|
376 * A DataChunk with a fixed size.
|
rlm@10
|
377 */
|
rlm@10
|
378 private class FixedSizeDataChunk extends Chunk {
|
rlm@10
|
379
|
rlm@10
|
380 private DataChunkOutputStream data;
|
rlm@10
|
381 private boolean finished;
|
rlm@10
|
382 private long fixedSize;
|
rlm@10
|
383
|
rlm@10
|
384 /**
|
rlm@10
|
385 * Creates a new DataChunk at the current position of the
|
rlm@10
|
386 * ImageOutputStream.
|
rlm@10
|
387 * @param chunkType The chunkType of the chunk.
|
rlm@10
|
388 */
|
rlm@10
|
389 public FixedSizeDataChunk(String chunkType, long fixedSize) throws IOException {
|
rlm@10
|
390 super(chunkType);
|
rlm@10
|
391 this.fixedSize = fixedSize;
|
rlm@10
|
392 data = new DataChunkOutputStream(new ImageOutputStreamAdapter(out),false);
|
rlm@10
|
393 data.writeType(chunkType);
|
rlm@10
|
394 data.writeUInt(fixedSize);
|
rlm@10
|
395 data.clearCount();
|
rlm@10
|
396
|
rlm@10
|
397 // Fill fixed size with nulls
|
rlm@10
|
398 byte[] buf = new byte[(int) Math.min(512, fixedSize)];
|
rlm@10
|
399 long written = 0;
|
rlm@10
|
400 while (written < fixedSize) {
|
rlm@10
|
401 data.write(buf, 0, (int) Math.min(buf.length, fixedSize - written));
|
rlm@10
|
402 written += Math.min(buf.length, fixedSize - written);
|
rlm@10
|
403 }
|
rlm@10
|
404 if (fixedSize % 2 == 1) {
|
rlm@10
|
405 out.writeByte(0); // write pad byte
|
rlm@10
|
406 }
|
rlm@10
|
407 seekToStartOfData();
|
rlm@10
|
408 }
|
rlm@10
|
409
|
rlm@10
|
410 public DataChunkOutputStream getOutputStream() {
|
rlm@10
|
411 /*if (finished) {
|
rlm@10
|
412 throw new IllegalStateException("DataChunk is finished");
|
rlm@10
|
413 }*/
|
rlm@10
|
414 return data;
|
rlm@10
|
415 }
|
rlm@10
|
416
|
rlm@10
|
417 public void seekToStartOfData() throws IOException {
|
rlm@10
|
418 seekRelative(offset + 8);
|
rlm@10
|
419 data.clearCount();
|
rlm@10
|
420 }
|
rlm@10
|
421
|
rlm@10
|
422 public void seekToEndOfChunk() throws IOException {
|
rlm@10
|
423 seekRelative(offset + 8 + fixedSize + fixedSize % 2);
|
rlm@10
|
424 }
|
rlm@10
|
425
|
rlm@10
|
426 @Override
|
rlm@10
|
427 public void finish() throws IOException {
|
rlm@10
|
428 if (!finished) {
|
rlm@10
|
429 finished = true;
|
rlm@10
|
430 }
|
rlm@10
|
431 }
|
rlm@10
|
432
|
rlm@10
|
433 @Override
|
rlm@10
|
434 public long size() {
|
rlm@10
|
435 return 8 + fixedSize;
|
rlm@10
|
436 }
|
rlm@10
|
437 }
|
rlm@10
|
438
|
rlm@10
|
439 /**
|
rlm@10
|
440 * Creates a new AVI file with the specified video format and
|
rlm@10
|
441 * frame rate. The video has 24 bits per pixel.
|
rlm@10
|
442 *
|
rlm@10
|
443 * @param file the output file
|
rlm@10
|
444 * @param format Selects an encoder for the video format.
|
rlm@10
|
445 * @param bitsPerPixel the number of bits per pixel.
|
rlm@10
|
446 * @exception IllegalArgumentException if videoFormat is null or if
|
rlm@10
|
447 * frame rate is <= 0
|
rlm@10
|
448 */
|
rlm@10
|
449 public AVIOutputStream(File file, VideoFormat format) throws IOException {
|
rlm@10
|
450 this(file,format,24);
|
rlm@10
|
451 }
|
rlm@10
|
452 /**
|
rlm@10
|
453 * Creates a new AVI file with the specified video format and
|
rlm@10
|
454 * frame rate.
|
rlm@10
|
455 *
|
rlm@10
|
456 * @param file the output file
|
rlm@10
|
457 * @param format Selects an encoder for the video format.
|
rlm@10
|
458 * @param bitsPerPixel the number of bits per pixel.
|
rlm@10
|
459 * @exception IllegalArgumentException if videoFormat is null or if
|
rlm@10
|
460 * frame rate is <= 0
|
rlm@10
|
461 */
|
rlm@10
|
462 public AVIOutputStream(File file, VideoFormat format, int bitsPerPixel) throws IOException {
|
rlm@10
|
463 if (format == null) {
|
rlm@10
|
464 throw new IllegalArgumentException("format must not be null");
|
rlm@10
|
465 }
|
rlm@10
|
466
|
rlm@10
|
467 if (file.exists()) {
|
rlm@10
|
468 file.delete();
|
rlm@10
|
469 }
|
rlm@10
|
470 this.out = new FileImageOutputStream(file);
|
rlm@10
|
471 this.streamOffset = 0;
|
rlm@10
|
472 this.videoFormat = format;
|
rlm@10
|
473 this.videoFrames = new LinkedList<Sample>();
|
rlm@10
|
474 this.imgDepth = bitsPerPixel;
|
rlm@10
|
475 if (imgDepth == 4) {
|
rlm@10
|
476 byte[] gray = new byte[16];
|
rlm@10
|
477 for (int i = 0; i < gray.length; i++) {
|
rlm@10
|
478 gray[i] = (byte) ((i << 4) | i);
|
rlm@10
|
479 }
|
rlm@10
|
480 palette = new IndexColorModel(4, 16, gray, gray, gray);
|
rlm@10
|
481 } else if (imgDepth == 8) {
|
rlm@10
|
482 byte[] gray = new byte[256];
|
rlm@10
|
483 for (int i = 0; i < gray.length; i++) {
|
rlm@10
|
484 gray[i] = (byte) i;
|
rlm@10
|
485 }
|
rlm@10
|
486 palette = new IndexColorModel(8, 256, gray, gray, gray);
|
rlm@10
|
487 }
|
rlm@10
|
488
|
rlm@10
|
489 }
|
rlm@10
|
490
|
rlm@10
|
491 /**
|
rlm@10
|
492 * Creates a new AVI output stream with the specified video format and
|
rlm@10
|
493 * framerate.
|
rlm@10
|
494 *
|
rlm@10
|
495 * @param out the underlying output stream
|
rlm@10
|
496 * @param format Selects an encoder for the video format.
|
rlm@10
|
497 * @exception IllegalArgumentException if videoFormat is null or if
|
rlm@10
|
498 * framerate is <= 0
|
rlm@10
|
499 */
|
rlm@10
|
500 public AVIOutputStream(ImageOutputStream out, VideoFormat format) throws IOException {
|
rlm@10
|
501 if (format == null) {
|
rlm@10
|
502 throw new IllegalArgumentException("format must not be null");
|
rlm@10
|
503 }
|
rlm@10
|
504 this.out = out;
|
rlm@10
|
505 this.streamOffset = out.getStreamPosition();
|
rlm@10
|
506 this.videoFormat = format;
|
rlm@10
|
507 this.videoFrames = new LinkedList<Sample>();
|
rlm@10
|
508 }
|
rlm@10
|
509
|
rlm@10
|
510 /**
|
rlm@10
|
511 * Used with frameRate to specify the time scale that this stream will use.
|
rlm@10
|
512 * Dividing frameRate by timeScale gives the number of samples per second.
|
rlm@10
|
513 * For video streams, this is the frame rate. For audio streams, this rate
|
rlm@10
|
514 * corresponds to the time needed to play nBlockAlign bytes of audio, which
|
rlm@10
|
515 * for PCM audio is the just the sample rate.
|
rlm@10
|
516 * <p>
|
rlm@10
|
517 * The default value is 1.
|
rlm@10
|
518 *
|
rlm@10
|
519 * @param newValue
|
rlm@10
|
520 */
|
rlm@10
|
521 public void setTimeScale(int newValue) {
|
rlm@10
|
522 if (newValue <= 0) {
|
rlm@10
|
523 throw new IllegalArgumentException("timeScale must be greater 0");
|
rlm@10
|
524 }
|
rlm@10
|
525 this.timeScale = newValue;
|
rlm@10
|
526 }
|
rlm@10
|
527
|
rlm@10
|
528 /**
|
rlm@10
|
529 * Returns the time scale of this media.
|
rlm@10
|
530 *
|
rlm@10
|
531 * @return time scale
|
rlm@10
|
532 */
|
rlm@10
|
533 public int getTimeScale() {
|
rlm@10
|
534 return timeScale;
|
rlm@10
|
535 }
|
rlm@10
|
536
|
rlm@10
|
537 /**
|
rlm@10
|
538 * Sets the rate of video frames in time scale units.
|
rlm@10
|
539 * <p>
|
rlm@10
|
540 * The default value is 30. Together with the default value 1 of timeScale
|
rlm@10
|
541 * this results in 30 frames pers second.
|
rlm@10
|
542 *
|
rlm@10
|
543 * @param newValue
|
rlm@10
|
544 */
|
rlm@10
|
545 public void setFrameRate(int newValue) {
|
rlm@10
|
546 if (newValue <= 0) {
|
rlm@10
|
547 throw new IllegalArgumentException("frameDuration must be greater 0");
|
rlm@10
|
548 }
|
rlm@10
|
549 if (state == States.STARTED) {
|
rlm@10
|
550 throw new IllegalStateException("frameDuration must be set before the first frame is written");
|
rlm@10
|
551 }
|
rlm@10
|
552 this.frameRate = newValue;
|
rlm@10
|
553 }
|
rlm@10
|
554
|
rlm@10
|
555 /**
|
rlm@10
|
556 * Returns the frame rate of this media.
|
rlm@10
|
557 *
|
rlm@10
|
558 * @return frame rate
|
rlm@10
|
559 */
|
rlm@10
|
560 public int getFrameRate() {
|
rlm@10
|
561 return frameRate;
|
rlm@10
|
562 }
|
rlm@10
|
563
|
rlm@10
|
564 /** Sets the global color palette. */
|
rlm@10
|
565 public void setPalette(IndexColorModel palette) {
|
rlm@10
|
566 this.palette = palette;
|
rlm@10
|
567 }
|
rlm@10
|
568
|
rlm@10
|
569 /**
|
rlm@10
|
570 * Sets the compression quality of the video track.
|
rlm@10
|
571 * A value of 0 stands for "high compression is important" a value of
|
rlm@10
|
572 * 1 for "high image quality is important".
|
rlm@10
|
573 * <p>
|
rlm@10
|
574 * Changing this value affects frames which are subsequently written
|
rlm@10
|
575 * to the AVIOutputStream. Frames which have already been written
|
rlm@10
|
576 * are not changed.
|
rlm@10
|
577 * <p>
|
rlm@10
|
578 * This value has only effect on videos encoded with JPG format.
|
rlm@10
|
579 * <p>
|
rlm@10
|
580 * The default value is 0.9.
|
rlm@10
|
581 *
|
rlm@10
|
582 * @param newValue
|
rlm@10
|
583 */
|
rlm@10
|
584 public void setVideoCompressionQuality(float newValue) {
|
rlm@10
|
585 this.quality = newValue;
|
rlm@10
|
586 }
|
rlm@10
|
587
|
rlm@10
|
588 /**
|
rlm@10
|
589 * Returns the video compression quality.
|
rlm@10
|
590 *
|
rlm@10
|
591 * @return video compression quality
|
rlm@10
|
592 */
|
rlm@10
|
593 public float getVideoCompressionQuality() {
|
rlm@10
|
594 return quality;
|
rlm@10
|
595 }
|
rlm@10
|
596
|
rlm@10
|
597 /**
|
rlm@10
|
598 * Sets the dimension of the video track.
|
rlm@10
|
599 * <p>
|
rlm@10
|
600 * You need to explicitly set the dimension, if you add all frames from
|
rlm@10
|
601 * files or input streams.
|
rlm@10
|
602 * <p>
|
rlm@10
|
603 * If you add frames from buffered images, then AVIOutputStream
|
rlm@10
|
604 * can determine the video dimension from the image width and height.
|
rlm@10
|
605 *
|
rlm@10
|
606 * @param width Must be greater than 0.
|
rlm@10
|
607 * @param height Must be greater than 0.
|
rlm@10
|
608 */
|
rlm@10
|
609 public void setVideoDimension(int width, int height) {
|
rlm@10
|
610 if (width < 1 || height < 1) {
|
rlm@10
|
611 throw new IllegalArgumentException("width and height must be greater zero.");
|
rlm@10
|
612 }
|
rlm@10
|
613 this.imgWidth = width;
|
rlm@10
|
614 this.imgHeight = height;
|
rlm@10
|
615 }
|
rlm@10
|
616
|
rlm@10
|
617 /**
|
rlm@10
|
618 * Gets the dimension of the video track.
|
rlm@10
|
619 * <p>
|
rlm@10
|
620 * Returns null if the dimension is not known.
|
rlm@10
|
621 */
|
rlm@10
|
622 public Dimension getVideoDimension() {
|
rlm@10
|
623 if (imgWidth < 1 || imgHeight < 1) {
|
rlm@10
|
624 return null;
|
rlm@10
|
625 }
|
rlm@10
|
626 return new Dimension(imgWidth, imgHeight);
|
rlm@10
|
627 }
|
rlm@10
|
628
|
rlm@10
|
629 /**
|
rlm@39
|
630 * Sets the state of the AVIOutputStream to 'started'.
|
rlm@10
|
631 * <p>
|
rlm@10
|
632 * If the state is changed by this method, the prolog is
|
rlm@10
|
633 * written.
|
rlm@10
|
634 */
|
rlm@10
|
635 private void ensureStarted() throws IOException {
|
rlm@10
|
636 if (state != States.STARTED) {
|
rlm@10
|
637 new Date();
|
rlm@10
|
638 writeProlog();
|
rlm@10
|
639 state = States.STARTED;
|
rlm@10
|
640 }
|
rlm@10
|
641 }
|
rlm@10
|
642
|
rlm@10
|
643 /**
|
rlm@10
|
644 * Writes a frame to the video track.
|
rlm@10
|
645 * <p>
|
rlm@10
|
646 * If the dimension of the video track has not been specified yet, it
|
rlm@10
|
647 * is derived from the first buffered image added to the AVIOutputStream.
|
rlm@10
|
648 *
|
rlm@10
|
649 * @param image The frame image.
|
rlm@10
|
650 *
|
rlm@10
|
651 * @throws IllegalArgumentException if the duration is less than 1, or
|
rlm@10
|
652 * if the dimension of the frame does not match the dimension of the video
|
rlm@10
|
653 * track.
|
rlm@10
|
654 * @throws IOException if writing the image failed.
|
rlm@10
|
655 */
|
rlm@10
|
656 public void writeFrame(BufferedImage image) throws IOException {
|
rlm@10
|
657 ensureOpen();
|
rlm@10
|
658 ensureStarted();
|
rlm@10
|
659
|
rlm@10
|
660 // Get the dimensions of the first image
|
rlm@10
|
661 if (imgWidth == -1) {
|
rlm@10
|
662 imgWidth = image.getWidth();
|
rlm@10
|
663 imgHeight = image.getHeight();
|
rlm@10
|
664 } else {
|
rlm@10
|
665 // The dimension of the image must match the dimension of the video track
|
rlm@10
|
666 if (imgWidth != image.getWidth() || imgHeight != image.getHeight()) {
|
rlm@10
|
667 throw new IllegalArgumentException("Dimensions of image[" + videoFrames.size()
|
rlm@10
|
668 + "] (width=" + image.getWidth() + ", height=" + image.getHeight()
|
rlm@10
|
669 + ") differs from image[0] (width="
|
rlm@10
|
670 + imgWidth + ", height=" + imgHeight);
|
rlm@10
|
671 }
|
rlm@10
|
672 }
|
rlm@10
|
673
|
rlm@10
|
674 DataChunk videoFrameChunk;
|
rlm@10
|
675 long offset = getRelativeStreamPosition();
|
rlm@10
|
676 boolean isSync = true;
|
rlm@10
|
677 switch (videoFormat) {
|
rlm@10
|
678 case RAW: {
|
rlm@10
|
679 switch (imgDepth) {
|
rlm@10
|
680 case 4: {
|
rlm@10
|
681 IndexColorModel imgPalette = (IndexColorModel) image.getColorModel();
|
rlm@10
|
682 int[] imgRGBs = new int[16];
|
rlm@10
|
683 imgPalette.getRGBs(imgRGBs);
|
rlm@10
|
684 int[] previousRGBs = new int[16];
|
rlm@10
|
685 if (previousPalette == null) {
|
rlm@10
|
686 previousPalette = palette;
|
rlm@10
|
687 }
|
rlm@10
|
688 previousPalette.getRGBs(previousRGBs);
|
rlm@10
|
689 if (!Arrays.equals(imgRGBs, previousRGBs)) {
|
rlm@10
|
690 previousPalette = imgPalette;
|
rlm@10
|
691 DataChunk paletteChangeChunk = new DataChunk("00pc");
|
rlm@10
|
692 /*
|
rlm@10
|
693 int first = imgPalette.getMapSize();
|
rlm@10
|
694 int last = -1;
|
rlm@10
|
695 for (int i = 0; i < 16; i++) {
|
rlm@10
|
696 if (previousRGBs[i] != imgRGBs[i] && i < first) {
|
rlm@10
|
697 first = i;
|
rlm@10
|
698 }
|
rlm@10
|
699 if (previousRGBs[i] != imgRGBs[i] && i > last) {
|
rlm@10
|
700 last = i;
|
rlm@10
|
701 }
|
rlm@10
|
702 }*/
|
rlm@10
|
703 int first = 0;
|
rlm@10
|
704 int last = imgPalette.getMapSize() - 1;
|
rlm@10
|
705 /*
|
rlm@10
|
706 * typedef struct {
|
rlm@10
|
707 BYTE bFirstEntry;
|
rlm@10
|
708 BYTE bNumEntries;
|
rlm@10
|
709 WORD wFlags;
|
rlm@10
|
710 PALETTEENTRY peNew[];
|
rlm@10
|
711 } AVIPALCHANGE;
|
rlm@10
|
712 *
|
rlm@10
|
713 * typedef struct tagPALETTEENTRY {
|
rlm@10
|
714 BYTE peRed;
|
rlm@10
|
715 BYTE peGreen;
|
rlm@10
|
716 BYTE peBlue;
|
rlm@10
|
717 BYTE peFlags;
|
rlm@10
|
718 } PALETTEENTRY;
|
rlm@10
|
719 */
|
rlm@10
|
720 DataChunkOutputStream pOut = paletteChangeChunk.getOutputStream();
|
rlm@10
|
721 pOut.writeByte(first);//bFirstEntry
|
rlm@10
|
722 pOut.writeByte(last - first + 1);//bNumEntries
|
rlm@10
|
723 pOut.writeShort(0);//wFlags
|
rlm@10
|
724
|
rlm@10
|
725 for (int i = first; i <= last; i++) {
|
rlm@10
|
726 pOut.writeByte((imgRGBs[i] >>> 16) & 0xff); // red
|
rlm@10
|
727 pOut.writeByte((imgRGBs[i] >>> 8) & 0xff); // green
|
rlm@10
|
728 pOut.writeByte(imgRGBs[i] & 0xff); // blue
|
rlm@10
|
729 pOut.writeByte(0); // reserved*/
|
rlm@10
|
730 }
|
rlm@10
|
731
|
rlm@10
|
732 moviChunk.add(paletteChangeChunk);
|
rlm@10
|
733 paletteChangeChunk.finish();
|
rlm@10
|
734 long length = getRelativeStreamPosition() - offset;
|
rlm@10
|
735 videoFrames.add(new Sample(paletteChangeChunk.chunkType, 0, offset, length - 8, false));
|
rlm@10
|
736 offset = getRelativeStreamPosition();
|
rlm@10
|
737 }
|
rlm@10
|
738
|
rlm@10
|
739 videoFrameChunk = new DataChunk("00db");
|
rlm@10
|
740 byte[] rgb8 = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
|
rlm@10
|
741 byte[] rgb4 = new byte[imgWidth / 2];
|
rlm@10
|
742 for (int y = (imgHeight - 1) * imgWidth; y >= 0; y -= imgWidth) { // Upside down
|
rlm@10
|
743 for (int x = 0, xx = 0, n = imgWidth; x < n; x += 2, ++xx) {
|
rlm@10
|
744 rgb4[xx] = (byte) (((rgb8[y + x] & 0xf) << 4) | (rgb8[y + x + 1] & 0xf));
|
rlm@10
|
745 }
|
rlm@10
|
746 videoFrameChunk.getOutputStream().write(rgb4);
|
rlm@10
|
747 }
|
rlm@10
|
748 break;
|
rlm@10
|
749 }
|
rlm@10
|
750 case 8: {
|
rlm@10
|
751 IndexColorModel imgPalette = (IndexColorModel) image.getColorModel();
|
rlm@10
|
752 int[] imgRGBs = new int[256];
|
rlm@10
|
753 imgPalette.getRGBs(imgRGBs);
|
rlm@10
|
754 int[] previousRGBs = new int[256];
|
rlm@10
|
755 if (previousPalette == null) {
|
rlm@10
|
756 previousPalette = palette;
|
rlm@10
|
757 }
|
rlm@10
|
758 previousPalette.getRGBs(previousRGBs);
|
rlm@10
|
759 if (!Arrays.equals(imgRGBs, previousRGBs)) {
|
rlm@10
|
760 previousPalette = imgPalette;
|
rlm@10
|
761 DataChunk paletteChangeChunk = new DataChunk("00pc");
|
rlm@10
|
762 /*
|
rlm@10
|
763 int first = imgPalette.getMapSize();
|
rlm@10
|
764 int last = -1;
|
rlm@10
|
765 for (int i = 0; i < 16; i++) {
|
rlm@10
|
766 if (previousRGBs[i] != imgRGBs[i] && i < first) {
|
rlm@10
|
767 first = i;
|
rlm@10
|
768 }
|
rlm@10
|
769 if (previousRGBs[i] != imgRGBs[i] && i > last) {
|
rlm@10
|
770 last = i;
|
rlm@10
|
771 }
|
rlm@10
|
772 }*/
|
rlm@10
|
773 int first = 0;
|
rlm@10
|
774 int last = imgPalette.getMapSize() - 1;
|
rlm@10
|
775 /*
|
rlm@10
|
776 * typedef struct {
|
rlm@10
|
777 BYTE bFirstEntry;
|
rlm@10
|
778 BYTE bNumEntries;
|
rlm@10
|
779 WORD wFlags;
|
rlm@10
|
780 PALETTEENTRY peNew[];
|
rlm@10
|
781 } AVIPALCHANGE;
|
rlm@10
|
782 *
|
rlm@10
|
783 * typedef struct tagPALETTEENTRY {
|
rlm@10
|
784 BYTE peRed;
|
rlm@10
|
785 BYTE peGreen;
|
rlm@10
|
786 BYTE peBlue;
|
rlm@10
|
787 BYTE peFlags;
|
rlm@10
|
788 } PALETTEENTRY;
|
rlm@10
|
789 */
|
rlm@10
|
790 DataChunkOutputStream pOut = paletteChangeChunk.getOutputStream();
|
rlm@10
|
791 pOut.writeByte(first);//bFirstEntry
|
rlm@10
|
792 pOut.writeByte(last - first + 1);//bNumEntries
|
rlm@10
|
793 pOut.writeShort(0);//wFlags
|
rlm@10
|
794
|
rlm@10
|
795 for (int i = first; i <= last; i++) {
|
rlm@10
|
796 pOut.writeByte((imgRGBs[i] >>> 16) & 0xff); // red
|
rlm@10
|
797 pOut.writeByte((imgRGBs[i] >>> 8) & 0xff); // green
|
rlm@10
|
798 pOut.writeByte(imgRGBs[i] & 0xff); // blue
|
rlm@10
|
799 pOut.writeByte(0); // reserved*/
|
rlm@10
|
800 }
|
rlm@10
|
801
|
rlm@10
|
802 moviChunk.add(paletteChangeChunk);
|
rlm@10
|
803 paletteChangeChunk.finish();
|
rlm@10
|
804 long length = getRelativeStreamPosition() - offset;
|
rlm@10
|
805 videoFrames.add(new Sample(paletteChangeChunk.chunkType, 0, offset, length - 8, false));
|
rlm@10
|
806 offset = getRelativeStreamPosition();
|
rlm@10
|
807 }
|
rlm@10
|
808
|
rlm@10
|
809 videoFrameChunk = new DataChunk("00db");
|
rlm@10
|
810 byte[] rgb8 = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
|
rlm@10
|
811 for (int y = (imgHeight - 1) * imgWidth; y >= 0; y -= imgWidth) { // Upside down
|
rlm@10
|
812 videoFrameChunk.getOutputStream().write(rgb8, y, imgWidth);
|
rlm@10
|
813 }
|
rlm@10
|
814 break;
|
rlm@10
|
815 }
|
rlm@10
|
816 default: {
|
rlm@10
|
817 videoFrameChunk = new DataChunk("00db");
|
rlm@10
|
818 WritableRaster raster = image.getRaster();
|
rlm@10
|
819 int[] raw = new int[imgWidth * 3]; // holds a scanline of raw image data with 3 channels of 32 bit data
|
rlm@10
|
820 byte[] bytes = new byte[imgWidth * 3]; // holds a scanline of raw image data with 3 channels of 8 bit data
|
rlm@10
|
821 for (int y = imgHeight - 1; y >= 0; --y) { // Upside down
|
rlm@10
|
822 raster.getPixels(0, y, imgWidth, 1, raw);
|
rlm@10
|
823 for (int x = 0, n = imgWidth * 3; x < n; x += 3) {
|
rlm@10
|
824 bytes[x + 2] = (byte) raw[x]; // Blue
|
rlm@10
|
825 bytes[x + 1] = (byte) raw[x + 1]; // Green
|
rlm@10
|
826 bytes[x] = (byte) raw[x + 2]; // Red
|
rlm@10
|
827 }
|
rlm@10
|
828 videoFrameChunk.getOutputStream().write(bytes);
|
rlm@10
|
829 }
|
rlm@10
|
830 break;
|
rlm@10
|
831 }
|
rlm@10
|
832 }
|
rlm@10
|
833 break;
|
rlm@10
|
834 }
|
rlm@10
|
835
|
rlm@10
|
836 case JPG: {
|
rlm@10
|
837 videoFrameChunk = new DataChunk("00dc");
|
rlm@10
|
838 ImageWriter iw = (ImageWriter) ImageIO.getImageWritersByMIMEType("image/jpeg").next();
|
rlm@10
|
839 ImageWriteParam iwParam = iw.getDefaultWriteParam();
|
rlm@10
|
840 iwParam.setCompressionMode(ImageWriteParam.MODE_EXPLICIT);
|
rlm@10
|
841 iwParam.setCompressionQuality(quality);
|
rlm@10
|
842 MemoryCacheImageOutputStream imgOut = new MemoryCacheImageOutputStream(videoFrameChunk.getOutputStream());
|
rlm@10
|
843 iw.setOutput(imgOut);
|
rlm@10
|
844 IIOImage img = new IIOImage(image, null, null);
|
rlm@10
|
845 iw.write(null, img, iwParam);
|
rlm@10
|
846 iw.dispose();
|
rlm@10
|
847 break;
|
rlm@10
|
848 }
|
rlm@10
|
849 case PNG:
|
rlm@10
|
850 default: {
|
rlm@10
|
851 videoFrameChunk = new DataChunk("00dc");
|
rlm@10
|
852 ImageWriter iw = (ImageWriter) ImageIO.getImageWritersByMIMEType("image/png").next();
|
rlm@10
|
853 ImageWriteParam iwParam = iw.getDefaultWriteParam();
|
rlm@10
|
854 MemoryCacheImageOutputStream imgOut = new MemoryCacheImageOutputStream(videoFrameChunk.getOutputStream());
|
rlm@10
|
855 iw.setOutput(imgOut);
|
rlm@10
|
856 IIOImage img = new IIOImage(image, null, null);
|
rlm@10
|
857 iw.write(null, img, iwParam);
|
rlm@10
|
858 iw.dispose();
|
rlm@10
|
859 break;
|
rlm@10
|
860 }
|
rlm@10
|
861 }
|
rlm@10
|
862 long length = getRelativeStreamPosition() - offset;
|
rlm@10
|
863 moviChunk.add(videoFrameChunk);
|
rlm@10
|
864 videoFrameChunk.finish();
|
rlm@10
|
865
|
rlm@10
|
866 videoFrames.add(new Sample(videoFrameChunk.chunkType, frameRate, offset, length - 8, isSync));
|
rlm@10
|
867 if (getRelativeStreamPosition() > 1L << 32) {
|
rlm@10
|
868 throw new IOException("AVI file is larger than 4 GB");
|
rlm@10
|
869 }
|
rlm@10
|
870 }
|
rlm@10
|
871
|
rlm@10
|
872 /**
|
rlm@10
|
873 * Writes a frame from a file to the video track.
|
rlm@10
|
874 * <p>
|
rlm@10
|
875 * This method does not inspect the contents of the file.
|
rlm@10
|
876 * For example, Its your responsibility to only add JPG files if you have
|
rlm@10
|
877 * chosen the JPEG video format.
|
rlm@10
|
878 * <p>
|
rlm@10
|
879 * If you add all frames from files or from input streams, then you
|
rlm@10
|
880 * have to explicitly set the dimension of the video track before you
|
rlm@10
|
881 * call finish() or close().
|
rlm@10
|
882 *
|
rlm@10
|
883 * @param file The file which holds the image data.
|
rlm@10
|
884 *
|
rlm@10
|
885 * @throws IllegalStateException if the duration is less than 1.
|
rlm@10
|
886 * @throws IOException if writing the image failed.
|
rlm@10
|
887 */
|
rlm@10
|
888 public void writeFrame(File file) throws IOException {
|
rlm@10
|
889 FileInputStream in = null;
|
rlm@10
|
890 try {
|
rlm@10
|
891 in = new FileInputStream(file);
|
rlm@10
|
892 writeFrame(in);
|
rlm@10
|
893 } finally {
|
rlm@10
|
894 if (in != null) {
|
rlm@10
|
895 in.close();
|
rlm@10
|
896 }
|
rlm@10
|
897 }
|
rlm@10
|
898 }
|
rlm@10
|
899
|
rlm@10
|
900 /**
|
rlm@10
|
901 * Writes a frame to the video track.
|
rlm@10
|
902 * <p>
|
rlm@10
|
903 * This method does not inspect the contents of the file.
|
rlm@10
|
904 * For example, its your responsibility to only add JPG files if you have
|
rlm@10
|
905 * chosen the JPEG video format.
|
rlm@10
|
906 * <p>
|
rlm@10
|
907 * If you add all frames from files or from input streams, then you
|
rlm@10
|
908 * have to explicitly set the dimension of the video track before you
|
rlm@10
|
909 * call finish() or close().
|
rlm@10
|
910 *
|
rlm@10
|
911 * @param in The input stream which holds the image data.
|
rlm@10
|
912 *
|
rlm@10
|
913 * @throws IllegalArgumentException if the duration is less than 1.
|
rlm@10
|
914 * @throws IOException if writing the image failed.
|
rlm@10
|
915 */
|
rlm@10
|
916 public void writeFrame(InputStream in) throws IOException {
|
rlm@10
|
917 ensureOpen();
|
rlm@10
|
918 ensureStarted();
|
rlm@10
|
919
|
rlm@10
|
920 DataChunk videoFrameChunk = new DataChunk(
|
rlm@10
|
921 videoFormat == VideoFormat.RAW ? "00db" : "00dc");
|
rlm@10
|
922 moviChunk.add(videoFrameChunk);
|
rlm@10
|
923 OutputStream mdatOut = videoFrameChunk.getOutputStream();
|
rlm@10
|
924 long offset = getRelativeStreamPosition();
|
rlm@10
|
925 byte[] buf = new byte[512];
|
rlm@10
|
926 int len;
|
rlm@10
|
927 while ((len = in.read(buf)) != -1) {
|
rlm@10
|
928 mdatOut.write(buf, 0, len);
|
rlm@10
|
929 }
|
rlm@10
|
930 long length = getRelativeStreamPosition() - offset;
|
rlm@10
|
931 videoFrameChunk.finish();
|
rlm@10
|
932 videoFrames.add(new Sample(videoFrameChunk.chunkType, frameRate, offset, length - 8, true));
|
rlm@10
|
933 if (getRelativeStreamPosition() > 1L << 32) {
|
rlm@10
|
934 throw new IOException("AVI file is larger than 4 GB");
|
rlm@10
|
935 }
|
rlm@10
|
936 }
|
rlm@10
|
937
|
rlm@10
|
938 /**
|
rlm@10
|
939 * Closes the movie file as well as the stream being filtered.
|
rlm@10
|
940 *
|
rlm@10
|
941 * @exception IOException if an I/O error has occurred
|
rlm@10
|
942 */
|
rlm@10
|
943 public void close() throws IOException {
|
rlm@10
|
944 if (state == States.STARTED) {
|
rlm@10
|
945 finish();
|
rlm@10
|
946 }
|
rlm@10
|
947 if (state != States.CLOSED) {
|
rlm@10
|
948 out.close();
|
rlm@10
|
949 state = States.CLOSED;
|
rlm@10
|
950 }
|
rlm@10
|
951 }
|
rlm@10
|
952
|
rlm@10
|
953 /**
|
rlm@10
|
954 * Finishes writing the contents of the AVI output stream without closing
|
rlm@10
|
955 * the underlying stream. Use this method when applying multiple filters
|
rlm@10
|
956 * in succession to the same output stream.
|
rlm@10
|
957 *
|
rlm@10
|
958 * @exception IllegalStateException if the dimension of the video track
|
rlm@10
|
959 * has not been specified or determined yet.
|
rlm@10
|
960 * @exception IOException if an I/O exception has occurred
|
rlm@10
|
961 */
|
rlm@10
|
962 public void finish() throws IOException {
|
rlm@10
|
963 ensureOpen();
|
rlm@10
|
964 if (state != States.FINISHED) {
|
rlm@10
|
965 if (imgWidth == -1 || imgHeight == -1) {
|
rlm@10
|
966 throw new IllegalStateException("image width and height must be specified");
|
rlm@10
|
967 }
|
rlm@10
|
968
|
rlm@10
|
969 moviChunk.finish();
|
rlm@10
|
970 writeEpilog();
|
rlm@10
|
971 state = States.FINISHED;
|
rlm@10
|
972 imgWidth = imgHeight = -1;
|
rlm@10
|
973 }
|
rlm@10
|
974 }
|
rlm@10
|
975
|
rlm@10
|
976 /**
|
rlm@10
|
977 * Check to make sure that this stream has not been closed
|
rlm@10
|
978 */
|
rlm@10
|
979 private void ensureOpen() throws IOException {
|
rlm@10
|
980 if (state == States.CLOSED) {
|
rlm@10
|
981 throw new IOException("Stream closed");
|
rlm@10
|
982 }
|
rlm@10
|
983 }
|
rlm@10
|
984
|
rlm@10
|
985 /** Gets the position relative to the beginning of the QuickTime stream.
|
rlm@10
|
986 * <p>
|
rlm@10
|
987 * Usually this value is equal to the stream position of the underlying
|
rlm@10
|
988 * ImageOutputStream, but can be larger if the underlying stream already
|
rlm@10
|
989 * contained data.
|
rlm@10
|
990 *
|
rlm@10
|
991 * @return The relative stream position.
|
rlm@10
|
992 * @throws IOException
|
rlm@10
|
993 */
|
rlm@10
|
994 private long getRelativeStreamPosition() throws IOException {
|
rlm@10
|
995 return out.getStreamPosition() - streamOffset;
|
rlm@10
|
996 }
|
rlm@10
|
997
|
rlm@10
|
998 /** Seeks relative to the beginning of the QuickTime stream.
|
rlm@10
|
999 * <p>
|
rlm@10
|
1000 * Usually this equal to seeking in the underlying ImageOutputStream, but
|
rlm@10
|
1001 * can be different if the underlying stream already contained data.
|
rlm@10
|
1002 *
|
rlm@10
|
1003 */
|
rlm@10
|
1004 private void seekRelative(long newPosition) throws IOException {
|
rlm@10
|
1005 out.seek(newPosition + streamOffset);
|
rlm@10
|
1006 }
|
rlm@10
|
1007
|
rlm@10
|
1008 private void writeProlog() throws IOException {
|
rlm@10
|
1009 // The file has the following structure:
|
rlm@10
|
1010 //
|
rlm@10
|
1011 // .RIFF AVI
|
rlm@10
|
1012 // ..avih (AVI Header Chunk)
|
rlm@10
|
1013 // ..LIST strl
|
rlm@10
|
1014 // ...strh (Stream Header Chunk)
|
rlm@10
|
1015 // ...strf (Stream Format Chunk)
|
rlm@10
|
1016 // ..LIST movi
|
rlm@10
|
1017 // ...00dc (Compressed video data chunk in Track 00, repeated for each frame)
|
rlm@10
|
1018 // ..idx1 (List of video data chunks and their location in the file)
|
rlm@10
|
1019
|
rlm@10
|
1020 // The RIFF AVI Chunk holds the complete movie
|
rlm@10
|
1021 aviChunk = new CompositeChunk("RIFF", "AVI ");
|
rlm@10
|
1022 CompositeChunk hdrlChunk = new CompositeChunk("LIST", "hdrl");
|
rlm@10
|
1023
|
rlm@10
|
1024 // Write empty AVI Main Header Chunk - we fill the data in later
|
rlm@10
|
1025 aviChunk.add(hdrlChunk);
|
rlm@10
|
1026 avihChunk = new FixedSizeDataChunk("avih", 56);
|
rlm@10
|
1027 avihChunk.seekToEndOfChunk();
|
rlm@10
|
1028 hdrlChunk.add(avihChunk);
|
rlm@10
|
1029
|
rlm@10
|
1030 CompositeChunk strlChunk = new CompositeChunk("LIST", "strl");
|
rlm@10
|
1031 hdrlChunk.add(strlChunk);
|
rlm@10
|
1032
|
rlm@10
|
1033 // Write empty AVI Stream Header Chunk - we fill the data in later
|
rlm@10
|
1034 strhChunk = new FixedSizeDataChunk("strh", 56);
|
rlm@10
|
1035 strhChunk.seekToEndOfChunk();
|
rlm@10
|
1036 strlChunk.add(strhChunk);
|
rlm@10
|
1037 strfChunk = new FixedSizeDataChunk("strf", palette == null ? 40 : 40 + palette.getMapSize() * 4);
|
rlm@10
|
1038 strfChunk.seekToEndOfChunk();
|
rlm@10
|
1039 strlChunk.add(strfChunk);
|
rlm@10
|
1040
|
rlm@10
|
1041 moviChunk = new CompositeChunk("LIST", "movi");
|
rlm@10
|
1042 aviChunk.add(moviChunk);
|
rlm@10
|
1043
|
rlm@10
|
1044
|
rlm@10
|
1045 }
|
rlm@10
|
1046
|
rlm@10
|
1047 private void writeEpilog() throws IOException {
|
rlm@10
|
1048
|
rlm@10
|
1049 long bufferSize = 0;
|
rlm@10
|
1050 for (Sample s : videoFrames) {
|
rlm@10
|
1051 if (s.length > bufferSize) {
|
rlm@10
|
1052 bufferSize = s.length;
|
rlm@10
|
1053 }
|
rlm@10
|
1054 }
|
rlm@10
|
1055
|
rlm@10
|
1056
|
rlm@10
|
1057 DataChunkOutputStream d;
|
rlm@10
|
1058
|
rlm@10
|
1059 /* Create Idx1 Chunk and write data
|
rlm@10
|
1060 * -------------
|
rlm@10
|
1061 typedef struct _avioldindex {
|
rlm@10
|
1062 FOURCC fcc;
|
rlm@10
|
1063 DWORD cb;
|
rlm@10
|
1064 struct _avioldindex_entry {
|
rlm@10
|
1065 DWORD dwChunkId;
|
rlm@10
|
1066 DWORD dwFlags;
|
rlm@10
|
1067 DWORD dwOffset;
|
rlm@10
|
1068 DWORD dwSize;
|
rlm@10
|
1069 } aIndex[];
|
rlm@10
|
1070 } AVIOLDINDEX;
|
rlm@10
|
1071 */
|
rlm@10
|
1072 DataChunk idx1Chunk = new DataChunk("idx1");
|
rlm@10
|
1073 aviChunk.add(idx1Chunk);
|
rlm@10
|
1074 d = idx1Chunk.getOutputStream();
|
rlm@10
|
1075 long moviListOffset = moviChunk.offset + 8;
|
rlm@10
|
1076 //moviListOffset = 0;
|
rlm@10
|
1077 for (Sample f : videoFrames) {
|
rlm@10
|
1078
|
rlm@10
|
1079 d.writeType(f.chunkType); // dwChunkId
|
rlm@10
|
1080 // Specifies a FOURCC that identifies a stream in the AVI file. The
|
rlm@10
|
1081 // FOURCC must have the form 'xxyy' where xx is the stream number and yy
|
rlm@10
|
1082 // is a two-character code that identifies the contents of the stream:
|
rlm@10
|
1083 //
|
rlm@10
|
1084 // Two-character code Description
|
rlm@10
|
1085 // db Uncompressed video frame
|
rlm@10
|
1086 // dc Compressed video frame
|
rlm@10
|
1087 // pc Palette change
|
rlm@10
|
1088 // wb Audio data
|
rlm@10
|
1089
|
rlm@10
|
1090 d.writeUInt((f.chunkType.endsWith("pc") ? 0x100 : 0x0)//
|
rlm@10
|
1091 | (f.isSync ? 0x10 : 0x0)); // dwFlags
|
rlm@10
|
1092 // Specifies a bitwise combination of zero or more of the following
|
rlm@10
|
1093 // flags:
|
rlm@10
|
1094 //
|
rlm@10
|
1095 // Value Name Description
|
rlm@10
|
1096 // 0x10 AVIIF_KEYFRAME The data chunk is a key frame.
|
rlm@10
|
1097 // 0x1 AVIIF_LIST The data chunk is a 'rec ' list.
|
rlm@10
|
1098 // 0x100 AVIIF_NO_TIME The data chunk does not affect the timing of the
|
rlm@10
|
1099 // stream. For example, this flag should be set for
|
rlm@10
|
1100 // palette changes.
|
rlm@10
|
1101
|
rlm@10
|
1102 d.writeUInt(f.offset - moviListOffset); // dwOffset
|
rlm@10
|
1103 // Specifies the location of the data chunk in the file. The value
|
rlm@10
|
1104 // should be specified as an offset, in bytes, from the start of the
|
rlm@10
|
1105 // 'movi' list; however, in some AVI files it is given as an offset from
|
rlm@10
|
1106 // the start of the file.
|
rlm@10
|
1107
|
rlm@10
|
1108 d.writeUInt(f.length); // dwSize
|
rlm@10
|
1109 // Specifies the size of the data chunk, in bytes.
|
rlm@10
|
1110 }
|
rlm@10
|
1111 idx1Chunk.finish();
|
rlm@10
|
1112
|
rlm@10
|
1113 /* Write Data into AVI Main Header Chunk
|
rlm@10
|
1114 * -------------
|
rlm@10
|
1115 * The AVIMAINHEADER structure defines global information in an AVI file.
|
rlm@10
|
1116 * see http://msdn.microsoft.com/en-us/library/ms779632(VS.85).aspx
|
rlm@10
|
1117 typedef struct _avimainheader {
|
rlm@10
|
1118 FOURCC fcc;
|
rlm@10
|
1119 DWORD cb;
|
rlm@10
|
1120 DWORD dwMicroSecPerFrame;
|
rlm@10
|
1121 DWORD dwMaxBytesPerSec;
|
rlm@10
|
1122 DWORD dwPaddingGranularity;
|
rlm@10
|
1123 DWORD dwFlags;
|
rlm@10
|
1124 DWORD dwTotalFrames;
|
rlm@10
|
1125 DWORD dwInitialFrames;
|
rlm@10
|
1126 DWORD dwStreams;
|
rlm@10
|
1127 DWORD dwSuggestedBufferSize;
|
rlm@10
|
1128 DWORD dwWidth;
|
rlm@10
|
1129 DWORD dwHeight;
|
rlm@10
|
1130 DWORD dwReserved[4];
|
rlm@10
|
1131 } AVIMAINHEADER; */
|
rlm@10
|
1132 avihChunk.seekToStartOfData();
|
rlm@10
|
1133 d = avihChunk.getOutputStream();
|
rlm@10
|
1134
|
rlm@10
|
1135 d.writeUInt((1000000L * (long) timeScale) / (long) frameRate); // dwMicroSecPerFrame
|
rlm@10
|
1136 // Specifies the number of microseconds between frames.
|
rlm@10
|
1137 // This value indicates the overall timing for the file.
|
rlm@10
|
1138
|
rlm@10
|
1139 d.writeUInt(0); // dwMaxBytesPerSec
|
rlm@10
|
1140 // Specifies the approximate maximum data rate of the file.
|
rlm@10
|
1141 // This value indicates the number of bytes per second the system
|
rlm@10
|
1142 // must handle to present an AVI sequence as specified by the other
|
rlm@10
|
1143 // parameters contained in the main header and stream header chunks.
|
rlm@10
|
1144
|
rlm@10
|
1145 d.writeUInt(0); // dwPaddingGranularity
|
rlm@10
|
1146 // Specifies the alignment for data, in bytes. Pad the data to multiples
|
rlm@10
|
1147 // of this value.
|
rlm@10
|
1148
|
rlm@10
|
1149 d.writeUInt(0x10); // dwFlags (0x10 == hasIndex)
|
rlm@10
|
1150 // Contains a bitwise combination of zero or more of the following
|
rlm@10
|
1151 // flags:
|
rlm@10
|
1152 //
|
rlm@10
|
1153 // Value Name Description
|
rlm@10
|
1154 // 0x10 AVIF_HASINDEX Indicates the AVI file has an index.
|
rlm@10
|
1155 // 0x20 AVIF_MUSTUSEINDEX Indicates that application should use the
|
rlm@10
|
1156 // index, rather than the physical ordering of the
|
rlm@10
|
1157 // chunks in the file, to determine the order of
|
rlm@10
|
1158 // presentation of the data. For example, this flag
|
rlm@10
|
1159 // could be used to create a list of frames for
|
rlm@10
|
1160 // editing.
|
rlm@10
|
1161 // 0x100 AVIF_ISINTERLEAVED Indicates the AVI file is interleaved.
|
rlm@10
|
1162 // 0x1000 AVIF_WASCAPTUREFILE Indicates the AVI file is a specially
|
rlm@10
|
1163 // allocated file used for capturing real-time
|
rlm@10
|
1164 // video. Applications should warn the user before
|
rlm@10
|
1165 // writing over a file with this flag set because
|
rlm@10
|
1166 // the user probably defragmented this file.
|
rlm@10
|
1167 // 0x20000 AVIF_COPYRIGHTED Indicates the AVI file contains copyrighted
|
rlm@10
|
1168 // data and software. When this flag is used,
|
rlm@10
|
1169 // software should not permit the data to be
|
rlm@10
|
1170 // duplicated.
|
rlm@10
|
1171
|
rlm@10
|
1172 d.writeUInt(videoFrames.size()); // dwTotalFrames
|
rlm@10
|
1173 // Specifies the total number of frames of data in the file.
|
rlm@10
|
1174
|
rlm@10
|
1175 d.writeUInt(0); // dwInitialFrames
|
rlm@10
|
1176 // Specifies the initial frame for interleaved files. Noninterleaved
|
rlm@10
|
1177 // files should specify zero. If you are creating interleaved files,
|
rlm@10
|
1178 // specify the number of frames in the file prior to the initial frame
|
rlm@10
|
1179 // of the AVI sequence in this member.
|
rlm@10
|
1180 // To give the audio driver enough audio to work with, the audio data in
|
rlm@10
|
1181 // an interleaved file must be skewed from the video data. Typically,
|
rlm@10
|
1182 // the audio data should be moved forward enough frames to allow
|
rlm@10
|
1183 // approximately 0.75 seconds of audio data to be preloaded. The
|
rlm@10
|
1184 // dwInitialRecords member should be set to the number of frames the
|
rlm@10
|
1185 // audio is skewed. Also set the same value for the dwInitialFrames
|
rlm@10
|
1186 // member of the AVISTREAMHEADER structure in the audio stream header
|
rlm@10
|
1187
|
rlm@10
|
1188 d.writeUInt(1); // dwStreams
|
rlm@10
|
1189 // Specifies the number of streams in the file. For example, a file with
|
rlm@10
|
1190 // audio and video has two streams.
|
rlm@10
|
1191
|
rlm@10
|
1192 d.writeUInt(bufferSize); // dwSuggestedBufferSize
|
rlm@10
|
1193 // Specifies the suggested buffer size for reading the file. Generally,
|
rlm@10
|
1194 // this size should be large enough to contain the largest chunk in the
|
rlm@10
|
1195 // file. If set to zero, or if it is too small, the playback software
|
rlm@10
|
1196 // will have to reallocate memory during playback, which will reduce
|
rlm@10
|
1197 // performance. For an interleaved file, the buffer size should be large
|
rlm@10
|
1198 // enough to read an entire record, and not just a chunk.
|
rlm@10
|
1199
|
rlm@10
|
1200
|
rlm@10
|
1201 d.writeUInt(imgWidth); // dwWidth
|
rlm@10
|
1202 // Specifies the width of the AVI file in pixels.
|
rlm@10
|
1203
|
rlm@10
|
1204 d.writeUInt(imgHeight); // dwHeight
|
rlm@10
|
1205 // Specifies the height of the AVI file in pixels.
|
rlm@10
|
1206
|
rlm@10
|
1207 d.writeUInt(0); // dwReserved[0]
|
rlm@10
|
1208 d.writeUInt(0); // dwReserved[1]
|
rlm@10
|
1209 d.writeUInt(0); // dwReserved[2]
|
rlm@10
|
1210 d.writeUInt(0); // dwReserved[3]
|
rlm@10
|
1211 // Reserved. Set this array to zero.
|
rlm@10
|
1212
|
rlm@10
|
1213 /* Write Data into AVI Stream Header Chunk
|
rlm@10
|
1214 * -------------
|
rlm@10
|
1215 * The AVISTREAMHEADER structure contains information about one stream
|
rlm@10
|
1216 * in an AVI file.
|
rlm@10
|
1217 * see http://msdn.microsoft.com/en-us/library/ms779638(VS.85).aspx
|
rlm@10
|
1218 typedef struct _avistreamheader {
|
rlm@10
|
1219 FOURCC fcc;
|
rlm@10
|
1220 DWORD cb;
|
rlm@10
|
1221 FOURCC fccType;
|
rlm@10
|
1222 FOURCC fccHandler;
|
rlm@10
|
1223 DWORD dwFlags;
|
rlm@10
|
1224 WORD wPriority;
|
rlm@10
|
1225 WORD wLanguage;
|
rlm@10
|
1226 DWORD dwInitialFrames;
|
rlm@10
|
1227 DWORD dwScale;
|
rlm@10
|
1228 DWORD dwRate;
|
rlm@10
|
1229 DWORD dwStart;
|
rlm@10
|
1230 DWORD dwLength;
|
rlm@10
|
1231 DWORD dwSuggestedBufferSize;
|
rlm@10
|
1232 DWORD dwQuality;
|
rlm@10
|
1233 DWORD dwSampleSize;
|
rlm@10
|
1234 struct {
|
rlm@10
|
1235 short int left;
|
rlm@10
|
1236 short int top;
|
rlm@10
|
1237 short int right;
|
rlm@10
|
1238 short int bottom;
|
rlm@10
|
1239 } rcFrame;
|
rlm@10
|
1240 } AVISTREAMHEADER;
|
rlm@10
|
1241 */
|
rlm@10
|
1242 strhChunk.seekToStartOfData();
|
rlm@10
|
1243 d = strhChunk.getOutputStream();
|
rlm@10
|
1244 d.writeType("vids"); // fccType - vids for video stream
|
rlm@10
|
1245 // Contains a FOURCC that specifies the type of the data contained in
|
rlm@10
|
1246 // the stream. The following standard AVI values for video and audio are
|
rlm@10
|
1247 // defined:
|
rlm@10
|
1248 //
|
rlm@10
|
1249 // FOURCC Description
|
rlm@10
|
1250 // 'auds' Audio stream
|
rlm@10
|
1251 // 'mids' MIDI stream
|
rlm@10
|
1252 // 'txts' Text stream
|
rlm@10
|
1253 // 'vids' Video stream
|
rlm@10
|
1254
|
rlm@10
|
1255 switch (videoFormat) {
|
rlm@10
|
1256 case RAW:
|
rlm@10
|
1257 d.writeType("DIB "); // fccHandler - DIB for Raw RGB
|
rlm@10
|
1258 break;
|
rlm@10
|
1259 case RLE:
|
rlm@10
|
1260 d.writeType("RLE "); // fccHandler - Microsoft RLE
|
rlm@10
|
1261 break;
|
rlm@10
|
1262 case JPG:
|
rlm@10
|
1263 d.writeType("MJPG"); // fccHandler - MJPG for Motion JPEG
|
rlm@10
|
1264 break;
|
rlm@10
|
1265 case PNG:
|
rlm@10
|
1266 default:
|
rlm@10
|
1267 d.writeType("png "); // fccHandler - png for PNG
|
rlm@10
|
1268 break;
|
rlm@10
|
1269 }
|
rlm@10
|
1270 // Optionally, contains a FOURCC that identifies a specific data
|
rlm@10
|
1271 // handler. The data handler is the preferred handler for the stream.
|
rlm@10
|
1272 // For audio and video streams, this specifies the codec for decoding
|
rlm@10
|
1273 // the stream.
|
rlm@10
|
1274
|
rlm@10
|
1275 if (imgDepth <= 8) {
|
rlm@10
|
1276 d.writeUInt(0x00010000); // dwFlags - AVISF_VIDEO_PALCHANGES
|
rlm@10
|
1277 } else {
|
rlm@10
|
1278 d.writeUInt(0); // dwFlags
|
rlm@10
|
1279 }
|
rlm@10
|
1280
|
rlm@10
|
1281 // Contains any flags for the data stream. The bits in the high-order
|
rlm@10
|
1282 // word of these flags are specific to the type of data contained in the
|
rlm@10
|
1283 // stream. The following standard flags are defined:
|
rlm@10
|
1284 //
|
rlm@10
|
1285 // Value Name Description
|
rlm@10
|
1286 // AVISF_DISABLED 0x00000001 Indicates this stream should not
|
rlm@10
|
1287 // be enabled by default.
|
rlm@10
|
1288 // AVISF_VIDEO_PALCHANGES 0x00010000
|
rlm@10
|
1289 // Indicates this video stream contains
|
rlm@10
|
1290 // palette changes. This flag warns the playback
|
rlm@10
|
1291 // software that it will need to animate the
|
rlm@10
|
1292 // palette.
|
rlm@10
|
1293
|
rlm@10
|
1294 d.writeUShort(0); // wPriority
|
rlm@10
|
1295 // Specifies priority of a stream type. For example, in a file with
|
rlm@10
|
1296 // multiple audio streams, the one with the highest priority might be
|
rlm@10
|
1297 // the default stream.
|
rlm@10
|
1298
|
rlm@10
|
1299 d.writeUShort(0); // wLanguage
|
rlm@10
|
1300 // Language tag.
|
rlm@10
|
1301
|
rlm@10
|
1302 d.writeUInt(0); // dwInitialFrames
|
rlm@10
|
1303 // Specifies how far audio data is skewed ahead of the video frames in
|
rlm@10
|
1304 // interleaved files. Typically, this is about 0.75 seconds. If you are
|
rlm@10
|
1305 // creating interleaved files, specify the number of frames in the file
|
rlm@10
|
1306 // prior to the initial frame of the AVI sequence in this member. For
|
rlm@10
|
1307 // more information, see the remarks for the dwInitialFrames member of
|
rlm@10
|
1308 // the AVIMAINHEADER structure.
|
rlm@10
|
1309
|
rlm@10
|
1310 d.writeUInt(timeScale); // dwScale
|
rlm@10
|
1311 // Used with dwRate to specify the time scale that this stream will use.
|
rlm@10
|
1312 // Dividing dwRate by dwScale gives the number of samples per second.
|
rlm@10
|
1313 // For video streams, this is the frame rate. For audio streams, this
|
rlm@10
|
1314 // rate corresponds to the time needed to play nBlockAlign bytes of
|
rlm@10
|
1315 // audio, which for PCM audio is the just the sample rate.
|
rlm@10
|
1316
|
rlm@10
|
1317 d.writeUInt(frameRate); // dwRate
|
rlm@10
|
1318 // See dwScale.
|
rlm@10
|
1319
|
rlm@10
|
1320 d.writeUInt(0); // dwStart
|
rlm@10
|
1321 // Specifies the starting time for this stream. The units are defined by
|
rlm@10
|
1322 // the dwRate and dwScale members in the main file header. Usually, this
|
rlm@10
|
1323 // is zero, but it can specify a delay time for a stream that does not
|
rlm@10
|
1324 // start concurrently with the file.
|
rlm@10
|
1325
|
rlm@10
|
1326 d.writeUInt(videoFrames.size()); // dwLength
|
rlm@10
|
1327 // Specifies the length of this stream. The units are defined by the
|
rlm@10
|
1328 // dwRate and dwScale members of the stream's header.
|
rlm@10
|
1329
|
rlm@10
|
1330 d.writeUInt(bufferSize); // dwSuggestedBufferSize
|
rlm@10
|
1331 // Specifies how large a buffer should be used to read this stream.
|
rlm@10
|
1332 // Typically, this contains a value corresponding to the largest chunk
|
rlm@10
|
1333 // present in the stream. Using the correct buffer size makes playback
|
rlm@10
|
1334 // more efficient. Use zero if you do not know the correct buffer size.
|
rlm@10
|
1335
|
rlm@10
|
1336 d.writeInt(-1); // dwQuality
|
rlm@10
|
1337 // Specifies an indicator of the quality of the data in the stream.
|
rlm@10
|
1338 // Quality is represented as a number between 0 and 10,000.
|
rlm@10
|
1339 // For compressed data, this typically represents the value of the
|
rlm@10
|
1340 // quality parameter passed to the compression software. If set to –1,
|
rlm@10
|
1341 // drivers use the default quality value.
|
rlm@10
|
1342
|
rlm@10
|
1343 d.writeUInt(0); // dwSampleSize
|
rlm@10
|
1344 // Specifies the size of a single sample of data. This is set to zero
|
rlm@10
|
1345 // if the samples can vary in size. If this number is nonzero, then
|
rlm@10
|
1346 // multiple samples of data can be grouped into a single chunk within
|
rlm@10
|
1347 // the file. If it is zero, each sample of data (such as a video frame)
|
rlm@10
|
1348 // must be in a separate chunk. For video streams, this number is
|
rlm@10
|
1349 // typically zero, although it can be nonzero if all video frames are
|
rlm@10
|
1350 // the same size. For audio streams, this number should be the same as
|
rlm@10
|
1351 // the nBlockAlign member of the WAVEFORMATEX structure describing the
|
rlm@10
|
1352 // audio.
|
rlm@10
|
1353
|
rlm@10
|
1354 d.writeUShort(0); // rcFrame.left
|
rlm@10
|
1355 d.writeUShort(0); // rcFrame.top
|
rlm@10
|
1356 d.writeUShort(imgWidth); // rcFrame.right
|
rlm@10
|
1357 d.writeUShort(imgHeight); // rcFrame.bottom
|
rlm@10
|
1358 // Specifies the destination rectangle for a text or video stream within
|
rlm@10
|
1359 // the movie rectangle specified by the dwWidth and dwHeight members of
|
rlm@10
|
1360 // the AVI main header structure. The rcFrame member is typically used
|
rlm@10
|
1361 // in support of multiple video streams. Set this rectangle to the
|
rlm@10
|
1362 // coordinates corresponding to the movie rectangle to update the whole
|
rlm@10
|
1363 // movie rectangle. Units for this member are pixels. The upper-left
|
rlm@10
|
1364 // corner of the destination rectangle is relative to the upper-left
|
rlm@10
|
1365 // corner of the movie rectangle.
|
rlm@10
|
1366
|
rlm@10
|
1367 /* Write BITMAPINFOHEADR Data into AVI Stream Format Chunk
|
rlm@10
|
1368 /* -------------
|
rlm@10
|
1369 * see http://msdn.microsoft.com/en-us/library/ms779712(VS.85).aspx
|
rlm@10
|
1370 typedef struct tagBITMAPINFOHEADER {
|
rlm@10
|
1371 DWORD biSize;
|
rlm@10
|
1372 LONG biWidth;
|
rlm@10
|
1373 LONG biHeight;
|
rlm@10
|
1374 WORD biPlanes;
|
rlm@10
|
1375 WORD biBitCount;
|
rlm@10
|
1376 DWORD biCompression;
|
rlm@10
|
1377 DWORD biSizeImage;
|
rlm@10
|
1378 LONG biXPelsPerMeter;
|
rlm@10
|
1379 LONG biYPelsPerMeter;
|
rlm@10
|
1380 DWORD biClrUsed;
|
rlm@10
|
1381 DWORD biClrImportant;
|
rlm@10
|
1382 } BITMAPINFOHEADER;
|
rlm@10
|
1383 */
|
rlm@10
|
1384 strfChunk.seekToStartOfData();
|
rlm@10
|
1385 d = strfChunk.getOutputStream();
|
rlm@10
|
1386 d.writeUInt(40); // biSize
|
rlm@10
|
1387 // Specifies the number of bytes required by the structure. This value
|
rlm@10
|
1388 // does not include the size of the color table or the size of the color
|
rlm@10
|
1389 // masks, if they are appended to the end of structure.
|
rlm@10
|
1390
|
rlm@10
|
1391 d.writeInt(imgWidth); // biWidth
|
rlm@10
|
1392 // Specifies the width of the bitmap, in pixels.
|
rlm@10
|
1393
|
rlm@10
|
1394 d.writeInt(imgHeight); // biHeight
|
rlm@10
|
1395 // Specifies the height of the bitmap, in pixels.
|
rlm@10
|
1396 //
|
rlm@10
|
1397 // For uncompressed RGB bitmaps, if biHeight is positive, the bitmap is
|
rlm@10
|
1398 // a bottom-up DIB with the origin at the lower left corner. If biHeight
|
rlm@10
|
1399 // is negative, the bitmap is a top-down DIB with the origin at the
|
rlm@10
|
1400 // upper left corner.
|
rlm@10
|
1401 // For YUV bitmaps, the bitmap is always top-down, regardless of the
|
rlm@10
|
1402 // sign of biHeight. Decoders should offer YUV formats with postive
|
rlm@10
|
1403 // biHeight, but for backward compatibility they should accept YUV
|
rlm@10
|
1404 // formats with either positive or negative biHeight.
|
rlm@10
|
1405 // For compressed formats, biHeight must be positive, regardless of
|
rlm@10
|
1406 // image orientation.
|
rlm@10
|
1407
|
rlm@10
|
1408 d.writeShort(1); // biPlanes
|
rlm@10
|
1409 // Specifies the number of planes for the target device. This value must
|
rlm@10
|
1410 // be set to 1.
|
rlm@10
|
1411
|
rlm@10
|
1412 d.writeShort(imgDepth); // biBitCount
|
rlm@10
|
1413 // Specifies the number of bits per pixel (bpp). For uncompressed
|
rlm@10
|
1414 // formats, this value is the average number of bits per pixel. For
|
rlm@10
|
1415 // compressed formats, this value is the implied bit depth of the
|
rlm@10
|
1416 // uncompressed image, after the image has been decoded.
|
rlm@10
|
1417
|
rlm@10
|
1418 switch (videoFormat) {
|
rlm@10
|
1419 case RAW:
|
rlm@10
|
1420 default:
|
rlm@10
|
1421 d.writeInt(0); // biCompression - BI_RGB for uncompressed RGB
|
rlm@10
|
1422 break;
|
rlm@10
|
1423 case RLE:
|
rlm@10
|
1424 if (imgDepth == 8) {
|
rlm@10
|
1425 d.writeInt(1); // biCompression - BI_RLE8
|
rlm@10
|
1426 } else if (imgDepth == 4) {
|
rlm@10
|
1427 d.writeInt(2); // biCompression - BI_RLE4
|
rlm@10
|
1428 } else {
|
rlm@10
|
1429 throw new UnsupportedOperationException("RLE only supports 4-bit and 8-bit images");
|
rlm@10
|
1430 }
|
rlm@10
|
1431 break;
|
rlm@10
|
1432 case JPG:
|
rlm@10
|
1433 d.writeType("MJPG"); // biCompression - MJPG for Motion JPEG
|
rlm@10
|
1434 break;
|
rlm@10
|
1435 case PNG:
|
rlm@10
|
1436 d.writeType("png "); // biCompression - png for PNG
|
rlm@10
|
1437 break;
|
rlm@10
|
1438 }
|
rlm@10
|
1439 // For compressed video and YUV formats, this member is a FOURCC code,
|
rlm@10
|
1440 // specified as a DWORD in little-endian order. For example, YUYV video
|
rlm@10
|
1441 // has the FOURCC 'VYUY' or 0x56595559. For more information, see FOURCC
|
rlm@10
|
1442 // Codes.
|
rlm@10
|
1443 //
|
rlm@10
|
1444 // For uncompressed RGB formats, the following values are possible:
|
rlm@10
|
1445 //
|
rlm@10
|
1446 // Value Description
|
rlm@10
|
1447 // BI_RGB 0x00000000 Uncompressed RGB.
|
rlm@10
|
1448 // BI_BITFIELDS 0x00000003 Uncompressed RGB with color masks.
|
rlm@10
|
1449 // Valid for 16-bpp and 32-bpp bitmaps.
|
rlm@10
|
1450 //
|
rlm@10
|
1451 // Note that BI_JPG and BI_PNG are not valid video formats.
|
rlm@10
|
1452 //
|
rlm@10
|
1453 // For 16-bpp bitmaps, if biCompression equals BI_RGB, the format is
|
rlm@10
|
1454 // always RGB 555. If biCompression equals BI_BITFIELDS, the format is
|
rlm@10
|
1455 // either RGB 555 or RGB 565. Use the subtype GUID in the AM_MEDIA_TYPE
|
rlm@10
|
1456 // structure to determine the specific RGB type.
|
rlm@10
|
1457
|
rlm@10
|
1458 switch (videoFormat) {
|
rlm@10
|
1459 case RAW:
|
rlm@10
|
1460 d.writeInt(0); // biSizeImage
|
rlm@10
|
1461 break;
|
rlm@10
|
1462 case RLE:
|
rlm@10
|
1463 case JPG:
|
rlm@10
|
1464 case PNG:
|
rlm@10
|
1465 default:
|
rlm@10
|
1466 if (imgDepth == 4) {
|
rlm@10
|
1467 d.writeInt(imgWidth * imgHeight / 2); // biSizeImage
|
rlm@10
|
1468 } else {
|
rlm@10
|
1469 int bytesPerPixel = Math.max(1, imgDepth / 8);
|
rlm@10
|
1470 d.writeInt(imgWidth * imgHeight * bytesPerPixel); // biSizeImage
|
rlm@10
|
1471 }
|
rlm@10
|
1472 break;
|
rlm@10
|
1473 }
|
rlm@10
|
1474 // Specifies the size, in bytes, of the image. This can be set to 0 for
|
rlm@10
|
1475 // uncompressed RGB bitmaps.
|
rlm@10
|
1476
|
rlm@10
|
1477 d.writeInt(0); // biXPelsPerMeter
|
rlm@10
|
1478 // Specifies the horizontal resolution, in pixels per meter, of the
|
rlm@10
|
1479 // target device for the bitmap.
|
rlm@10
|
1480
|
rlm@10
|
1481 d.writeInt(0); // biYPelsPerMeter
|
rlm@10
|
1482 // Specifies the vertical resolution, in pixels per meter, of the target
|
rlm@10
|
1483 // device for the bitmap.
|
rlm@10
|
1484
|
rlm@10
|
1485 d.writeInt(palette == null ? 0 : palette.getMapSize()); // biClrUsed
|
rlm@10
|
1486 // Specifies the number of color indices in the color table that are
|
rlm@10
|
1487 // actually used by the bitmap.
|
rlm@10
|
1488
|
rlm@10
|
1489 d.writeInt(0); // biClrImportant
|
rlm@10
|
1490 // Specifies the number of color indices that are considered important
|
rlm@10
|
1491 // for displaying the bitmap. If this value is zero, all colors are
|
rlm@10
|
1492 // important.
|
rlm@10
|
1493
|
rlm@10
|
1494 if (palette != null) {
|
rlm@10
|
1495 for (int i = 0, n = palette.getMapSize(); i < n; ++i) {
|
rlm@10
|
1496 /*
|
rlm@10
|
1497 * typedef struct tagRGBQUAD {
|
rlm@10
|
1498 BYTE rgbBlue;
|
rlm@10
|
1499 BYTE rgbGreen;
|
rlm@10
|
1500 BYTE rgbRed;
|
rlm@10
|
1501 BYTE rgbReserved; // This member is reserved and must be zero.
|
rlm@10
|
1502 } RGBQUAD;
|
rlm@10
|
1503 */
|
rlm@10
|
1504 d.write(palette.getBlue(i));
|
rlm@10
|
1505 d.write(palette.getGreen(i));
|
rlm@10
|
1506 d.write(palette.getRed(i));
|
rlm@10
|
1507 d.write(0);
|
rlm@10
|
1508 }
|
rlm@10
|
1509 }
|
rlm@10
|
1510
|
rlm@10
|
1511
|
rlm@10
|
1512 // -----------------
|
rlm@10
|
1513 aviChunk.finish();
|
rlm@10
|
1514 }
|
rlm@10
|
1515 }
|