CHAPTER 1

DEVELOPMENT OF THERMODYNAMICS

Our first intuitive, or "subjective"” notions of temperature
arise from the sensations of warmth and cold asscociated with our
sense of touch. Yet sclence has been able to convert this guali-
tative sensation into an accurately defined guantitative notion,
which can be applied far beyond the range of our direct experi-
ence. Today an experimentalist will report confidently that his
spln system was at a temperature of 2.51 degrees Kelvin; and a
theoretician will report with almost as much confidence that the
temperature at the center of the sun is about 2 x 107 degrees
XKelwvin,

The fact that this has proved possible, and the main tech-
nical ideas involved, are assumed already known tc the reader;
and we are not concerned here with repeating standard material
already available in a dozen other textbooks. However thermo-
dynamics, in spite of its great successes, firmly established
for over a century, has also produced a great deal of confusion
and a long list of "paradoxes," centering mostly arcund the
gsecond law and the nature of irreversibility. For this reason
and others noted below, we want to dwell here at some length on
the logic underlyving the development of thermcdynamics. Our aim
is to emphasize certain points which, in the writer's opinion,
are essential for clearing up the confusion and resclving the
paradoxes; but which are not sufficiently emphasized--and indeed
in many cases are totally ignored--in other textbooks.

This attention to logic would not be particularly needed if
we regarded classical thermodynamics {or, as it is becoming

called increasingly, thermostatics) as a closed subject, in which

the fundamentals are already completely established, and there is



nothing more to be learned about them. & person who believes
this will probabkly prefer a pure axiomatlic approach, in which
the basic laws are simply stated as arbitrary axioms, without
any attempt toc present the evidence for them; and one proceeds
directly to working out their conseguences.

However, we take the atititude here that thermostatics, for
all its venerable age, is very far from being a closed subject,
we still have a great deal to learn about such mattersg as the
most general definitions of equilibrium and reversgsibility, the
exact range of validity of various statements of the second and
third laws, the necessary and sufficient conditions for applica-
bility of therxmodynamics to special cases such as spin systems,
and how thermodynamics can be applied to such systems as putty
or polyethylene, which deform under fcocrce, but retain a "memozry"
of their past deformations. Is it possible to apply thermodyna-
mics to a system such as a vibrating quartz crystal? We can by
no means rule out the possibility that still more laws of thermo-
dynamics exist, as vet undiscovered, which would be useful in
such applications.

It is only by careful examination of the logic by which
present thermcdynamics was created, asking exactly how much of
it is mathematical theorems, how nuch is deducible from the laws
of mechanics and electrodynamics, and how much rests only on
empirical evidence, how compelling is present evidence for the
accuracy and range of wvalidity of its laws; in other words,
exactly where are the boundaries of present knowledge, that we
can hope to uncover new things. Clearly, much research is still
needed in this field, and we shall be able to accomplish only a
small part of this program in the present review.

It will develop that there is an astonishingly close analogy
with the logic underlying statistical theory in general, where
agalin a gqualitative feeling that we all have (for the degrees of
plausibility of various unproved and undisproved assertions) must
be converted into a precisely defined guantitative concept (prob-
ability). Our later development of probability theory in Chapter

©,7 will be, to a considerable degree, a paraphrase of our present



review of the logic underlying c«¢lassical thermodynamics.

1.1 The Primitive Thermometer. The earliest stages of our

stocry are necessarily speculative, since they took place long
before the beginnings of recorded history. But we can hardly
doubt that primitive man learned guickly that objects exposed
to the sun's rays or placed near a fire felt different from
those in the shade away from fires; and the game difference was
noted between animal bodies and inanimate objects.

As soon as 1t was noted that changes in this feeling of
warmth were correlated with other observable changes in the
behavior of obijects, such as the bolling and freezing of water,
cooking of meat, melting of fat and-wax, etc., the notion of
warmth took 1ts first step away from the purely subijective to-
ward an cbjective, physical notion capable of being studied
scientifically.

One of the most striking manifestations of warmth (but far
from the earliest discovered) is the almost universal expansion
of gases, iiguids, and solids when heated, This property has
proved to be a convenient one with which to reduce the notion
of warmth to something entirely objective. The invention of the

thermometer, in which expansion of a mercury column, or a gas,

cr the bending of a bimetallic strip, etc. iz read off on a
suitable scale, thereby giving us a number with which to work,
was a necessary prelude to even the crudest study of the physical
nature cf heat. To the best of cur knowledge, although the
necessary technology to do this had been available for at least
3,000 vears, the first person to carry it cout in practice was
Galilec, in 1592,

Later on we will give more precise definitions of the term
"thermcmeter." But at the present stage we are not in a position
to do so (as Galileo was not), because the very concepts needed
have not vet been developed; more precise definitions can be
given only after our study has revealed the need for them. In-
deed, our final definition can be given only after the full

mathematical formallism of statistical mechanics is at hand.



Once a thermometer has been constructed, and the sgcale
marked off in a guite arbitrary way (although we will suppcse
that the sgcale is at least monotenic; i.e., greater warmth always
corresponds to a greater number), we are ready to bhegin scien-
tific experiments in thermodynamics. The number read off from

any such instrument is called the empirical temperature, and we

dencte it by t. Since the exact calibration of the thermometer
is not specified, any monotonic increasing function t' = f(t)

provides an equally good temperature scale for the present.

1.2 Thermodynamic Systems. The "thermodynamic systems which

are the objects of cour study may be, physically, almost any
collections of aobijects. The traditicnal simplest system with
which to begin a study of thermodynamics is a volume of gas.

We shall, however, be concerned from the start alse with such
things as a stretched wire or membrane, an electric cell, a
polarized dielectric, a paramagnetic body in a magnetic field, etc

The thermodynamic state of such a system is determined hy

specifying (i.e., measuring) certain macroscopic physical proper-
tieg. MNow, any real physical system hag many millions of such
properties; in order to have a uzable theory we cannct reguire
that all of them be specified. We see, therefore, that there
must be a clear distinction hetween the notions of "thermodynamic
system" and "physical system." A given physical system may

correspond to many different thermodynamic systems, depending

on which wvariakbles we choose to measure or control; and which
we decide teo leave unmeasured and/er uncontrolled.

For example, our physical system might consist of a crystal
of sodium chloride. For one set of experiments we work with
temperature, wvolume, and pressure; and ifignore its electrical
properties. For ancther set of experiments we weork with tempera-
ture, electric field, and electric polarization; and ignore the
varying stress and strain. The Eﬂxsical system, therefore, cor-

responds to two entirely different thermodynamic systemsg.,

Exactly how much freedom, then, do we have in choosing the
variables which shall define the thermocdynamic state of our

system? How many must we choose? What criterion determine when




we have made an adequate choice? These cuestions cannot be
answered until we say a little more about what we are trving to
accomplish by a thermodynamic theorv. A mere collection of
recorded data about our system, as in the Handbook of Physics

and Chemistry, is a very useful thing, but it hardly constitutes

a theory. In order to construct anyvthing deserving of such a
name, the primary requirement is that we can recognize some kind
of reproducible connection betwesn the different properties con-
sidered, so that information about some of them will enable us
to predict others. And of c¢ourse, in order that our thecry can
be called thermocdynamics (and not some other area of physics),
it 1is necessary that the temperature be one of the guantities
involved in a nontrivial wav.

The gist of these remarks i1s that the notion of "thermodvna-
mic system" is in part an anthropomorphilic one; it 1s for us to
say which set of wvariablies shall be used. If two different
choices both lead to useful reproducible connections, it is quite

meaningless to say that one cheice is anvy more "correct" than the
cther. Recognition of this fact will prove crucial later in
avolding certain ancient paradoxes.

2t this stage we can determine only empirically which other
physical properties need to be introduced before reproducible
connections appear. Once any such connection is established, we
can analyze it with the hope of being able to (1) reduce it to a
logical connection rather than an empirical one; and (2) extend
it to an hypothesis applying beyond the original data, which
enables us to predict further connections capable of belng
tested by experiment. Examples of this will be given presently.

There will remain, however, a few reproducible relations
which to the best of present knowledge, are not reducible to
logical relationg within the context of c¢lassical thermodynamics
(and whose demonstration in the wider context of mechanics,
electrodynamics, and guantum theory remains cne of probability
rather than logical proof); from the standpoint of thermodynamics
these remain simply statements of empirical fact which must be
accepted as such without any deeper basis, but without which the

development of thermodynamics cannot proceed. Because of this



special status, these relations have become known as the "laws"
of thermodynamics. The most fundamental one 1s a gualitative

rather than guantitative relation, the "zergo'th law."

1.3 Eguilibrium; the "Zero'th Law." It is a common eXperience

that when objects are placed in contact with each other but
isclated from their surroundings, they may undergo observable
changes for a time as a result; one body may become warmer,
another cooler, the pressure of a gas or volume of a liguid mavy
change; stress or magnetization in a scllid may change, etc. But
after a sufficient time, the observable macroscopic properties
settle down to a steady conditicn, after which no further changes
are seen unless there 1is a new 1ntervention from the ocutside.
When this steady condition.is resached, the experimentalist says

that the cbjects have reached a state of equilibrium with each

other . Once again, meore precise definitions of this term will

be needed eventually, but they reguire concepts not vet developed.
In any event, the criterion just stated 1s almost the only one
used in actual laboratory practice to decide when eqguilibrium

has been reached.

A particular case of equilibrium is encountered when we

place a thermometer in contact with another body. The reading

t of the thermometer may vary at first, but eventually it reaches
a steady value. Wow the number t read by a thermcmeter is always.

by definition, the empirical temperature of the thermometer (more

precisely, of the sensitive element of the thermometer). When
this number is constant in time, we say that the thermometer is

in thermal equilibrium with its surroundings; and we then extend

the notion of temperature, calling the steady value t alsoc the

temperature of the surroundings.

We have repeated these elementary facts, well known to every
child, in order to emphasize this point: Thermodvynamics can be
a theory only of states of equilibrium, because the very proce-
dure by which the temperature of a system is defined by opera-
tional means, already presupposes the attainment of egquilibrium,.
Strictly speaking, therefore, classical thermodynamics does not

even contain the concept of a "time-varying femperature,



Of course, to recognize this limitation on conventional
thermodynamics (best emphasized by calling it instead, thermo-
staties) in no way rules out the possibility of generalizing the
notion of temperature tc nonequilibrium states. Indeed, it is
clear that one cculd define any number of time-dependent guanti-
ties all of which reduce, in the special case of eguilibrium, to
the temperature as defined akbove. Historically, attempts to do
this even antedated the discovery of the laws of thermodynamics,
as i1s demonstrated by "Newton's law of cooling." Therefore, the
question is not whether generalization is possible, but only
whether it is in any way useful; i.e., dces the temperature so
generalized have any connection with other physical properties
of our system, so that it could help us to predict other things?

However, to ralse such cguestions takes us far beyond the
domain of thermocstatics; and the general laws of noneguilibrium
bpehavior are so much more complicated that it would be virtually
hopeless to try to unravel them by empirical means alcone. For
example, even if two different kinds of thermometer are calibrated
so that they agree with each other in equilibrium gituations,
they will not agree in general about the momentary value of a
"time-varying temperature.” To make any real progress 1in this
area, we have to supplement empirical ocbservation by the guidance
of a rather highly-developed theory. The notion of a time-
dependent temperature 1s far from simple conceptually, and we
will find that nothing very helpful can be said about this until
the full mathematical apparatus of noneguilibrium statistical
mechanics has been developed.

Suppose now that two bodies have the game temperature; i.e.,
a given thermometer reads the same steady value when in contact
with either. In order that the statement, "twc bodies have the
same temperature" gshall describe a physical property of the bodies,
and not merely an accidental circumstance due to cur having used
a particular kind of thermometer, it is necessary that all ther-
mometers agree in assigning egual temperatures to them if any
thermometer does. Only experiment is competent to determine

whether this universality property ig true. Unfortunately, the

writer must confess that he 1is unable to cite any definite



experiment in which this point was subjected to a careful test.
That eguality of temperatures has this absolute meaning, has
evidently been taken for granted so much that (like absoclute
simultaneity in pre—relativ&iy physics) meost of us are not even
consclously aware that we make such an assumption in thermodyna-
mics. However, foxr the present we can only take it as a familiear
empirical fact that this condition does hold, not because we can
clite positive evidence for 1t, but because of the absence of
negative evidence against it; 1.e., we think that, if an excep-
tion had ever been found, this would have created a sensation in
physics, ahd we should have heard of it.

We now ask: when two bodies are at the same temperature,
are they then in thermal eguilibrium with each other? Again,
only experiment i1is competent to ansgwer this; the general con-
clusion, again supported more by absence of negative evidence
than by specific positive evidence, is that the relation of

eguilibrium has this property: two bodies in thermal equilibrium

with a third body, are in thermal equilibrium with each other.

This empirical fact is usually called the "zero'th law of ther-
modynamics."” Since nothing prevents us from regarding a thermo-
neter as the "third body" in the above statement, it appears that

we may also state the zero'th law as: two bodies are in thermal

equilibrium with each other when they are at the same temperatur.

Although from the preceding discussion it might appear that
these two statements of the zero'th law are entirely eguivalent
{and we certainly have no empilrical evidence against either), it
is interesting to note that there are theoretical reasons arising
from General Relativity, indicating that while the first state-
ment may be universally valid, the second 1s not. When we con-
sider egquilibrium in a gravitational field, the verification
that two bodies have equal temperatures may reguire transport
of the thermometer through a gravitational Potential difference;
and this introduces a new element into the discussion. We will
congider this in more detail in a later Chapter, and show that
according to General Relativity, eguilibrium in a large systemn

reguires, not that the temperature be uniform at all points, but



rather that a particular function of temperature and gravita-
ticnal potential be constant [the function is T exp(¢/c2), where
T is the Kelvin temperature to be defined later, and ¢ is the
gravitational potentiall].

Of course, this effect is so small that ordinarv terrestrial
experiments would need to have a precisien many orders of magni-
tude beyond that presently possible, hefore ocne could hope even
te detect 1it; and needless to say, it has plaved no role in the
development of thermodynamics. For present purposes, therefore,
we need not distinguish between the twoc above statements of the
zero'th law, and we take it as a basic empirical fact that a
uniform temperature at all pcocints of a system is an essential
condition for eguilibrium, It is an important part of cur in-
vestigation to determine whether there are other essential con-
ditions as well. In fact, as we will find, there are many dif-
ferent kinds of equilibrium; and failure to distinguish betwesen

them can be a preolific source of paradoxes.

1.4 Eguation of State: AZnother important reprcducible connec-

tion is found when we consider a thermodynamic system defined by
three parameters; in addition to the temperature we choose a
"displacement" and a conjugate "force." Subject to some gualifi-
cations given below, we find experimentally that these parameters
are not independent, but are subject toc a constraint,

For example, we cannot vary the equilibrium pressure, volumne,
and temperature of a given mass of gas independently; it is found
that a given pressure and volume can be realized only at one
particular temperature, that the vas will assume a given tempesra-
ture and velume only at cne particular pressure, etc. Similarly,
a stretched wire can be made to have arbitrarily assigned tension
and elongation only if its temperature is suitably chosen, a
dielectric will assume & state of given temperature and polariza-
tion at only one value of the electric field, etc.

These simplest nontrivial thermodynamic systems (three para-
meters with one constraint) are said tc possess two degrees of

freedom; for the range of possible eguilibrium states is defined



by specifying any two of the wvariables arbitrarily, whereupcn the
third, and all others we may introduce, are determined. Mathema-
tically, this is expressed by. the existence of a functional

relationship of the form

(X, x,t) = 0 (1-1)
where X is a generalized force (pressure, tension, electric or
magnetic field, etc.), x is the corresponding generalized dis-
placement {(volume, elongation, electric or magnetic polarization,
etc.), and t is the empirical temperature. Egquation (1-1) is

called the equation of state.

At the risk of belaboring it, we emphasize once agailn that
all of this applies only for a system in eguilibrium; for other-
wige not only. the temperature, but alsc some or all of the other
variables may not be definable. For example, nc unigue pressure
can be assigned to a gas which has Jjust suffered a sudden change
in volume, until the generated sound waves have died out.

Independently of its functional form, the mere fact of the
existence of an equation of state has certain experimental con-
seguences. TFor example, suppose that in experiments on oxygen
gas, in which we control the temperature and pressure indepen-
dently, we have found that the isothermal compresgibllity X
varies with temperature, and the thermal expansion coefficient

o varies with pressure P, so that within the accuracy of the data,

Q3
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Is this a particular property of oxygen; or is there reason to
believe that it holds alsc for other substances? Does 1t depend
on our particular choice of a temperature scale?

In this case, the answer 1s found at once; for the defini-

tions of X, o are

1 3V 1 5V
= —= = - 1-3
K v 3p ' « vV 3t ( )
and, substituting these into (1-2}), it reduces to
2 2
3 v o 8 Vv (1-4)
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which is simply a mathematical expression of the fact that the
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volume V is a definite function of P and t; i.e., it depends only
an their present values, and not on how those values were at-

tained. 1In particular, V does not depend on the direction in the
{P-t) plane through which the present values were approached; or

as we usually say it, dV is an exact differential.

Therefore, although at first glance the relation (l-2) ap-
pears nontrivial and far from obvious, a trivial mathematical
analysis convingss us that it must hold regardless of our par-
ticular temperature scale, and that it is true not only of oxyvgen;
it must hold feor any substance, or mixture of substances, which
possesses a definite, reproducible equation of state £{(p,V,t) = 0O,

But this understanding also enables us to predict situations
in which {(1-2) will not hold. Eguation {1-2), as we have just
learned, expresses the fact that an eguation of state exists in-
volving only the three variables (P,V,t). Now suppose we try to
apply it to a liguid such as nitrobenzene. The nitrobenzene
molecule has a large electric dipole moment; and so application
of an electric field {(as in the electro-cptical Kerr cell) causes
an alignment of molecules which, as accurate measurements will
verify, changes the pressure at a given temperature and velume.
Therefore, there can no longer exist any unigue equation of state
involving {(P,V,t) only; with sufficiently accurate measurements,
nitrobenzene must be regarded as a thermodynamic system with at
least three degrees of freedom, and the general egquation of gtate
must have at least as complicated a form as £{(P,V,t,E) = 0.

But if we introduce a varying electric field E into the dis-
cussion, the resulting varying electric polarization M also be-
comes a new thermodynamic variable capable of being measured.
Experimentally, it is easiest toc control temperature, pressure,
and electric field independently, and of coursgse we find that both
the volume and poclarization are then determined; i.e., there must
exist functional relations of the form V = V{(P,t,E}, M = M(P,t,E),

or in more symmetrical form
£(v,p,t,B) = 0, g(M,P,t,E) = 0 . (1-5)

In other words, if we regard nitrobenzene asgs a thermodyvnamic

system of three degrees of freedom {i.e., having specified three

11



parameters arbitrarily, all others are then determined), it must
possess two independent eguations of state.

Similarly, a thermedynamic system with four degrees of fres-
dom, defined by the temperature and three pairs of conjugate
forces and displacements, will have three independent equations
of state, etc.

Now, returning to our original guestion, if nitreobenzene
possesses this extra electrical degree of freedom, under what
circumstances do we expect to find a reproducible eguation of
state involving (p,V,t) only? Evidently, 1f E i1s held constant,
then the first of eguations {1-5) becomes such an eguation of
state, involving E as a fixed parameter; we would find many dif-
ferent equations of state of the form £(P,V,t) = 0, with a
different functicn [ for each different value of electric field.
Likewise, 1f M 1s held constant, we can eliminaste E between
eguations (1-5) and find a relation hi{p,V,t,M) = 0, which is
an egquation of state for (P,V,t) containing M as a fixed para-
meter.

More generally, 1f an electrical constraint 1s imposed on
the system {for example, by connhecting an external charged
capacitor to the electrodes) so that M is determined by E; i.e.,

there is a functional relation of the form
g{M,E) = const. (1-6)

then {(1-5) and (1-6) constitute three simultanecus equaticns,
from which both E and M may be eliminated mathematically, leading
to a relation of the form h{(P,V,t;gq) = €, which is an eguation of
state for (P,V,t) involving the fixed paralieter g.

We see, then, that as long as a fixed constraint of the form
(1-6) is imposed on the electrical degree of freedom, we can still
ocbserve a reproducible equation of state for nitrobenzene, con-
sidered as a thermodynamic system of only two degrees of freedom.
If, however, thig electrical constraint is removed, so that as
we wvary P and t, the values of E and M vary in an uncoentrolled

way over a two-dimensional regiocn of the (E-M} plane, then we

will find no definite equation of state involving only (P,V,t)

12



This may be stated more colloguially as follows: even
though a system has three degrees of freedom, we can still con-
sider only the variables belonging tc two of them, and we will
find a definite equation of state, provided that in the course
of the experiments, the unused degree cf freedom is not "tampered
with" in an uncontrolled way.

We have already emphasized that any physical svstem cor-
responds to many different thermodynamic systems, depending on
which variables we choose to control and measure. In fact, it
is easy to see that any physical system has, for all practical

purposes, an arbitrarily large number of degrees of freedom. In

the case of nitrobenzene, for example, we may impose any wvariety

0of nonuniform electric fields on our sample. Suppocse we place
(n+l) different electrodes, labelled {eo, e, 25, c ey en} in
contact with the liguid in various positions. Regarding e  as

the "ground," maintained at zero potential, we can. then imposze

n different potentials {v ...,vn} crr the cother electrodes in-

l r
dependently, and we can alsoc measure the n different conjugate
displacements, as the charges {ql,...,qn} accumulated cn elec-

trodes {e ..,en}. Together with the pressure {understood as

IR
the pressure measured at one given positien), volume, and temper-
ature, our sample of nitrobenzene is now a thermodynamic system
of (n+l) degrees of freedom. This number may be as large as we
please, limited in practice only by our patience in constructing
the apparatus needed to control or measure all these quantities.
We leave 1t as an exercise for the reader (Problem 1) to
find the most general condition on the variables {vl,ql,vz,q2,..q
vn,qn} which will ensure that a definite equation of state
£(P,V,t) = 0 1s cbserved in spite of all these new degrees of
freedom. The simplest special case of this relation is, evi-
dently, to ground all electrodes, thereby imposing the conditions
Vi TV, S ... =V oS 0. Egually well (if we regard nitrobenzene
as having negligible electrical conductivity) we may open-circuit
all electrodes, thereby imposing the conditions q; = const. In

the latter case, in addition tc an eguation of state cf the form

£(p,v,t) = 0, which contains these constants as fixed parameters,

i3



there are n additional equations of state of the form v, =
vi(P,t). But if we choose toc ignore these voltages, there will
be no contradiction in considering our nitrocbenzene to be a ther-
modynamlic syvstem of two degrees of freedom, involving only the
variables (P,V,t).

Similarly, if our system of interegt is a crystal, we may
impose on it a wide wvariety of nonuniform stress fields; each
component of the stress tensor Tij may vary with position. We
might expand each of these functions in & complete orthonormal
gset of functions ¢k(x,y,z):

T (x,v,2) =

iq (%,vy.,2) (1L-7)

Ly &9k %k
and with a sufficiently complicated system of levers which in
various ways sgueeze and twist the crystal, we might vary each
0f the first 1,000 expansion coefficients aijk
and measure the conjugate displacements qijk'
then a thermodynamic system of over 1,000 degrees of freedom.

independently,

Our crystal is

The notion of "number of degrees of freedom”" is therefore

rot a physical property of any system; it is entirely anthropo-

morphic, since any physical syvstem may be regarded as a thermo-
dynamic system with any number of degrees of freedom we please.
If new thermodvnamic variables are always introduced in pairs,

consisting of a "force" and a conjugate "digplacement," then a
thermodynamic system of n degrees of freedom must possess (n-1)
independent equations of state, so that specifying n quantities
suffices to determine all the others.

This raises an interesting guestion; whether the scheme of
classifying thermodynamic variables in conjugate palrs is the
most general one. Why, for example, is 1t not natural to in-
troduce three related variables at a time? To the kest of the
writer's knowledge, this 1s an cpen guestion; there seems to be
no fundamental reason why wvariables must always be introduced

in conjugate pairs, but there seems to be no known case in which

a different scheme suggests itself as more appropriate.

1.5 Heat. We are now in a positicn to consider the results and

interpretation of a number of elementary experiments involving
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thermal interaction, which can be carried ocut as soon as a primi-
tive thermometer is at hand. In fact these experiments, which we
summarize so guickly, regulred a very long time for their first
performance; and the essential conclusions of this Section were
first arrived at cnly about 1760--more than 160 years after
Galileo's invention of the thermometer--by Joseph Black, who was
Professor of Chemistry at Glasgow University. Black's analysis
of calorimetric experiments initiated by G. D. Fahrenheit before
1736 led toc the first recognition of the distinction between
temperature and heat, and prepared the way for the work of his
better-known pupil, James Watt.

We first observe that if two bodies at different tempera-
tures are separated by walls of various materials, they scmetimes
maintain their temperature difference for a long time, and some-
times reach thermal eguilibrium very guickly. The differences
in behavior observed must be ascribed to the different procperties
of the separating walls, since nothing else is changed. Mate-
rials such as wood, asbestos, porous ceramicg (and most of all,
modern porous plastics like stvrofocam), are able to sustain a
temperature difference for a long time; a wall of an imaginary
material with this property idealized to the point where a
temperature difference 1s maintained indefinitely is called an
adiabatic wall. A very c¢lose approach to a perfect adiabatic
wall 1s realized by the Dewar flask (thermos bottle), of which
the walls consigt of two lavers of glass separated by a vacuum,
with the surfaces silvered like a mirror. In such a container,
as we all know, liguids may be maintained hot or cold for davs.

On the cther hand, a thin wall of copper or silver 1s hardly
able to sustain anv temperature difference at all; two bodies
separated by such a partition come te thermal eguilibrium very

guickly. Such a wall is called diathermic. It is found in

general that the best diathermic materials are the metals and
good electrical conductors, while electrical insulators make
fairly good adiabatic walls. There are good theoretical reasons
for this rule; a particular case of i1t is given by the Wiedemann-

Franz law of golid-state theory.
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Since a body surrounded by an adiabatic wall is able to
maintain its temperature independently of the temperature of its
surroundings, an adiabatic wall provides a means of thermally
isolating a system f£rom the rest of the universe; it is tc be
expected, therefore, that the laws of thermal interaction between
two systems will assume the simplest form if thev are enclosed
in a common adiabatic container, and that the best way of carry-
ing out experiments on the thermal properties of substances is
te so enclcose them. Such an apparatus, in which systems are
made to interact inside an adiabatic container supplied with a

thermomater, is called a calorimeter.

Let us imagine that we have a calorimeter in which there is

initially a volume Vw of water at a temperature t., and suspended

1
above 1t a volume VI of some othexr substance (say, 1ron) at
temperature t2. When we drop the iron into the water, they
interact thermally (and the exact nature of this interaction is
one of the things we hope to learn now), the temperature of both
changing until they are in thermal equilibrium at a final temper-
ature to.

Now we repeat the experiment with different initial temper-
atures tl‘ and t2', so that a new eguilibrium is reached at
temperature to'. It is found that, 1if the temperature differ=-
ences are sufficiently small (and in practice this is nct a
sericus limitation 1f we uUse a mercury thermometer calibrated
with uniformly spaced degree marks on a capillary of uniform

bore), then whatever the walues of tl‘, t.', t the final

2 17’ t2’
temperatures to', tO will adjust themselves so that the following

relation holds:

= g (1-8)

in other words, the ratio of the temperature changes of the iron
and water is independent of the initial temperatures used.

We now vary the amocunts of iron and water used in the calc-
rimeter. It is found that the ratic (1-8}), although alwayvs in-

dependent of the starting temperatures, does depend on the
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relative amounts of iron and water. It is, in fact, proportional
to the mass Mw of water and inversely proportiocnal to the mass

MI of ircon, so that

t -t Mw
= (1-9)

where KI is a constant.
We next repeat the above experiments using a different
material in place of the iron (say, copper). We find again a

relation

= {L-10)

where Mc is the mass of copper; but the constant KC is different
from the previous KI. In fact, we see that the constant KI is a
new phyvsical property of the substance iron, while Kc is a physi-
cal property of copper. The number X is called the specific

heat of a substance, and it 1s seen that acccrding to this

definition the specific heat of water is unity.

We now have encugh experimental facts to begin speculating
about their interpretation, as was first done in the 18'th
century. First, note that equation {(1-9%) can be put into a
neater form that is symmetrical between the two substances.

We write At, = © - t At = 1t - t. for the temperature
1 o W o] 1

2 r
changes of iron and water resgpectively, and define Kw = 1 for

water. Egquation {(1l-9) then becomes

A = . -
Kw Mw Atw + KI MI tI o (1-11)

The form of this eguation suggests a new experiment; we go back
intec the labocratory, and find n sukstances for which the specific
heats {Kl “ e Kn} have been measured previously. Taking masses
{Ml . Mn} of these substances, we heat them to n different
temperatures {tl . tn} and throw them all into the calorimeter
at once. After they have all come to thermal eguilibrium at
temperature to' we find the differences Atj = tO - tj. Just as
we suspected, it turns out that regardless of the K's, M's, and

t's c¢hosen, the relation
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Y K, M, At, = O (1-12)

is always satisfied! This sort of process is an old story in
scientific investigations; although the great thecoretician
Boltzmann is said to have remarked: "Elegance is for tailors,”
it remalins true that the attempt to reduce equaticns to the most
symmetrical form has often suggested important generalizations

of physical laws, and 1s a great ald to memory. Witness Maxwells

"displacement current," which was needed to fill in a gap and
restore the symmetry of the electromagnetic equations; as soon
as it was put in, the eguations predicted the existence of

electromagnetic waves., In the presgent case, the search for a

rather rudimentary form of "elegance" has alsc been fruitful,

for we recognize that (1-12}) has the standard form of a con-

servaticn law; it defines a new gquantityv which is conserved in

thermal interactions of the tvpe just studied.

The similarity of (1-12) to conservation lawse in general
may be seen as follows. Let A be some guantity that is con-
served; the i'th system has an amcount cof it Ai. Now when the
systems interact such that some A is transferred between them,

the amount of A in the i'th system is changed by a net amount

AR, = (A,) _, - A, ... ; and the fact that there is no

i i"final i“initial
net change in the total amcunt of A i1s expressed by the eguatiocn
23 ﬂAi = 0. Thus, the law of congservation of matter in a chemi-
cal reactiocn is expressed byEJi AMi = 0, where Mi is the mass of

the 1"th chemical component.
What 1s this new conserved guantity? Mathematically, it

can be defined as Qi = Ki Mi ti; whereupon {1-12) becomes

N
.) = —-
i AQi 0 (1-13)

and at this point we can correct a slight guantitative inaccu-
racy . As noted, the above relations hold accurately only when
the temperature differences are sufficiently small; i.e., they
are really only differential laws. ©On sufficiently accurate

measurements cone finds that the specific heats Ki depend on
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temperature; 1f we then adopt the integral definition of AQi
A, = | K, (t) M, 4t (1-14)

the conservation law (1-13) will be found to hold in calorimetric
experiments with liguids and solids, to any accuracy now feasible,
and of course, from the manner in which the Ki(t) are defined,
thig relation will hold however our thermometers are calibrated.
Evidently, the stage is ncw set for a "new" physical theorxy
to account for these facts. In the 17'th century, both Francis
Bacon and Isaac Newton had expressed their opinions that heat
was a form of motion; but they had no supporting factual evidence.
By the latter part of the 18'th century one had definite factual
evidence which seemed to make this view untenable; by the calo-
rimetric "mixing" experiments just descriked, Joseph Black had

recognized the distinction between temperature t as a measure of

"hotness," and heat ¢ as a measure of guantity of something, and
introduced the notion of heat capacity. He also recognized the
latent heats of freezing and vaporization. To agcount for the

conservation laws thus discovered, the theory then suggested 1t-
self, naturally and almost inevitably, that heat was fluid, in-
destructible and uncreatable, which had no appreciable weight
and was attracted differently by different kinds of matter. In
1787, Lavolsier invented the name "caloric" for this fluid.

Looking deown today from our position cf supericr knowledge
(i.e., hindsight}) we perhaps need to be reminded that the caloric
theory was a perfectly respectable scientific theory, fully
deserving of sericus consideration: for it accounted guantita-
tively for a large body of experimental fact, and made new pre-
dictions capable of being tested by experiment.

One of these predictions was the possibilility of accounting
for the thermal expansion of bodies when heated; perhaps the
increase in volume was Jjust a measure of the veolume of caloric
f£luid abksorbed. This view met with some disappointment as a
result of experimenis which showed that different materials, on
absorbing the same guantity of heat, expanded by different

amounts. Of course, this in itself was not enough to overthrow

19



the caloric theory, because one could suppose that the caloric
fluid weas compressible, and was held under different pressure in
different media.

Anothey difficulty that seemed increasingly sericus by the
end of the 18'th century was the failure of all attempts to
weigh this fluid. Many careful experiments were carried out, by
Boyle, Fordyce, Rumford and others (and continued by Landelt al-
most inte the 20'th century), with balances capable of detecting
a c¢hange of weight of one part in a millicen; and no change could
be detected on the melting of ice, heating of substances, or
carrying out of chemical reactions. But even this 1s noct really
a conclusive argument against the caloric theory, since there 1is
no a-priori reason why the fluid should be dense enocugh toc weigh
with balances (of course, we kncw today from Einstein’s E = mc
that small changes in weight should indeed exist in these experi-
ments; but to measure them would regulre balances about 107 times
more sensitive than were available).

Since the caloric theory derives entirely from the empirical
coenservation law (1-13), it c¢an be refuted conclusively only by
exhibiting new experimental facts revealing situations in which
(1-13) is not valid. The first such case was found by Count
Rumford (1798), who was in charge of boring cannon in the Munich
arsenal, and noted that the cannon and chips became hot as a
result of the cutting. He found that heat could be produced in-
definitely, as long as the boring was continued, without any
compensating cccling of any other part of the system. Here,
then, wags a clear case in which calecric was not conserved, as in
{1-13); but could be created at will. Rumford wrote that he
could not conceive of anything that could be produced Iindefi-
nitely by expenditure of work, "except it be motion."”

But even this was not encugh to cause abandonment of the
caloric theory; for while Rumford's observations accomplished
the negative purpose of showing that the conservaticn law (1-13)
is not universally wvalid, they failed to accomplish the positive
one of showing what specific law should replace it (although he

produced a good hint, not sufficiently appreciated at the time,
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in his crude measurements cf the rate of heat production due to
the work of one horse). Within the range of the original calc-
rimetric experiments, (1-13) was still valid, and a theory suc-
cessful in a restricted domain 1s better than no theory at all;
s0 Rumford's work had very little impact on the actual develop-
ment cof thermodyvnamics.

[This situation is a recurrent one in science, and today
physics ocffers ancther good example. It is recognized by all
that our present guantum field theory 1s unsatisfactorv on
logical, conceptual, and mathematical grounds; vet it also con-
tains some importani truth, and no responsible person has sug-
gested that it be abandoned. Once again, a semi-satisfactory
theory is better than none at all, and we will continue to teach
1t and use it until we have something better to put in its place.]

Another failure of the conservation law (1-13) was noted in
1842 by R. Mayer, a German physician, who pointed cut that data
already availlable showed that the specific heat of a gas at con-
stant pressure, Cp, was greater than at constant volume, Cv' He
surmised that the difference was due to the work done in expan-
sion of the gas against atmospheric pressure, when measuring Cp
Supposing that the difference AQ = (CP—CV)AT calories, in the
heat required to raise the temperature by AT was actually a
measure of amount of energy, he could estimate from the amount
PAV ergs of work done the amount of mechanical ensrgy (number
of ergs) corresponding te a caloxrie of heat; but again his work
had very little impact on the development of thermodynamics,
because he merely offered this notion as an interpretation of
the data without performing or suggesting any new experiments
to check his hypothesis further.

Up to the point, then, one had the experimental fact that
a conservation law (1-13) exists whenever purely thermal intex-
actlions were involved; but in processes invelving mechanical

work the conservation law broke down.

1.6 The First Law. Corresponding to the partially valid law of

"conservation of heat," there had long been known another paxr-

tially valid conservation law in mechanics. The principle of
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conservations of mechanical energy had been given by Leibnitz in
1693 in noting that, according to the laws of Newtonian mechanics
one could define potential and kinetic energy so that in mechan-
ical processes they were interconverted into each other, the
total energy remaining constant. But this too was not universally
vallid--the mechanical energy was conserved only in the absence

of frictional feorces. In procegses involving friction, the me-
chanical energy seemed to disappear.

So we had a law of conservation of heat, which brecke down
whenever mechanical work was done; and a law of conservation of
mechanical energy, whicech broke down when frictional forces were
present. If, as Maver had suggested, heat was itself a form of
energy, then one had the possibllity of accounting for both of
these fallures in a new law of conservation of total (mechanical
+ heat) energy. O0On the one hand, the difference Cp—Cv cof heat
capacities of gases would be accounted for by the mechanical
work done in expansiocn; on the other the disappearance of me-
chanical energy would be accounted for by the heat produced by
friction.

But to establish this reguires more than just suggesting
the idea and illustrating its application in one or two cases-—-
if this is rezlly a new conservation law adegquate to replace
the two o0ld ones, it must be shown to be valid for all substances

and all kinds of interacticon. For example, 1f one calorie of

heat corresponded to E ergs of mechanical energy in the gas ex-
periments, but to a different amount E' in heat produced by
fricticn, then there would be no universal conservaticn law.
This "first law'" of thermodynamics must therefore take the form:
There exist§a universal mechanical equivalent of heat, so that
the total {mechanical energy} + (heat energy) remalns constant
in all physical processes.

It was James Prescott Joule who provided the first experi-
mental data indicating this universality, and providing the
first accurate numerical value of this mechanical eguivalent.
The calorie had been defined ag the amount of heat reguired to

raise the temperature of one gram of water by onhe degree
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Centigrade {more precisely, to raise it from 14.5 to 15.5°C).
Joule measured the heating of a number of different ligulds due

to mechanical stirring and electrical heating, and established
that, within the experimental accuracy {(about one percent) a
calorie of heat alwavs corresponded to the same amount of energy.
Modern measurements give this numerical value as: 1 calorie =
4.184 x 107 ergs = 4.184 Jjoules.

The circumstances of this important work are worth noting.
Joule was in frail health as a child, and was educated by private
tutors, including the chemist, John Dalton, who had formuiated
the atomic hypothesis in the early nineteenth century. In 183%,
when Joule was nineteen, his father (a wealthy brewer)] built a
private laboratory for him in Manchester, England; and the good
use he made ¢f it is shown by the fact that, within a few months

of the opening of this laboratory (1840), he had completed his

first important piece of work, at the age of twenty. This was
. . . 2

his establishment of the law of "Joule heating,” P = I R, due

to electric current in a resistor. He then used this effect to

determine the universality and numerical wvalue of the mechaniceal
egquivalent of heat, reported in 1843, His mechanical stirring
experiments reported in 1849, yielded the value 1 calorie = 4.1
b4 107 ergs, about 0.7% too low; this determinaticon was not im-
proved upon for several decades.

The first law of thermodynamics may then be stated mathe-
matically as follows: there exists a state function (i.e., a
definite function of the thermodynamic state) U, representing
the total energy of any system, such that in any process in
which we change from one equilibrium state to another, the net
change in U is given by the difference of the heat § supplied
toc the system, and the mechanical work W done by the system.

On an infinitesinal change of state, this becomes

au = dQ - aw (1-15)
For a system of two degrees of freedom, defined by pressure P,
volume V, and temperature t, we have dW = P4IV. Then if we re-
gard U as a function U(V,t) of volume and temperature, the fact

that U is a state function means that dU must be an exact
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differential; i.e., the integral

| du = U(Vl,t2) - U(Vl,tl) {l-18)

between any two thermodynamic states must be independent of the
path. Equivalently, the integral édU over any closed cyclic
path (for example, integrate fro$ state 1 to state 2 along
path A, then back to state 1 by a different path B) must ke zero.

From (1-15), this gives for any c¢vclic integral,

i

f
# ag ¢ pav (1-17)

J

ancther form of the first law, which states that in any process

in which the system ends in the same thermodynamic state as the

initial one, the total heat absorbed by the system must be equal
te the total work done.

Although the equatiors (1-15)~(1-~17) are rather trivial
mathematically, it is important to avoid later confusions that
we understand their exact meaning. In the first place, we have
to understand that we are now measuring heat energy and mechanical
energy in the sgame units; i.e., 1if we measured Q in calories and
W in ergs, then (1-15) would of course not be correct. I+t does
not matter whether we apply Joule's mechanical equivalent of heat
to express @ in ergs, or whethexr we apply it in the opposite way
to express U and W in calories; each procedure will be useful in
various problems. We can develop the general eguations of thermo-
dvynamics without committing curselves to any particular units,
but of course all terms in a given eguation must be expressed
in the same units.

Secondly, we have already stressed that the theory being
developed must, strictly speaking, ke a theory only of equili-
brium states, since otherwise we have nho operational definition
of temperature. When we integrate over any "path" in the (V-t)
plane, therefore, i1t must be understood that the path of in-

tegration is, strictly speaking, just a locus of equilibrium

states; nonequilibrium states cannot be represented by poilnts

in the (V-t) plane.
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But then, what is the relation between path of equilibrium
states appearing in our egquations, and the ssguence of conditions
produced experimentally when we change the state of a gystem in
the laboratory? With any change of state (heating, compression,
etc.) preoceeding at a finite rate we do not have eguilibrium in-
termediate states; and sc there 1s no corresponding "path” in
the (V-t) plane; only the initial and final eguilibrium states
correspond to definite points. But if we carry out the change
of state more and more slowly, the physical states produced are
nearer and nearer to equilibrium state. Therefore, we ilnterpret
a path of integration in the (V-t) plane, not as representing
the intermediate states ¢of any real experiment carried out at
a finite rate, but as the limit of this sequence of states, in
the limit where the change ¢f state takes place arbitrarily
slowly.

An arbitrarily slow process, so that we remailn arbitrarily
near to equilibrium at all times, has another important property.
If heat is flowing at an arbitrarily small rate, the temperature
difference producing it must be arbitrarily small, and therefore
an arkitrarily small temperature change would be able to reversge
the direction cf heat fiow. If the volume is changing wvery
slowly, the pressure difference responsible for it must be very
gsmall; so a gsmall change in pressure would bhe able to reverse
the directicn of motion. In other words, a process carried out

arbitrarily slowly is reversible; if a system is arbitrarily

close to eguilibrium, then an arbitrarily smzall change in its
environment can reverse the direction of the process.

Recognizing this, we cvan then say that the paths of integra-
tion in our equations are to be interpreted physically as

reversible paths. In practice, some systems (such as gases)

come to eguilibrium so rapidly that rather fast changes of
state (on the time scale of our own percepticns) may be guite
good approximations to reversible changes; thus the change of
state of water vapor in a steam engine may be considered re-

versible to a useful engineering approximation.
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1.7 Intensive and Extensive Parameters. The literature of

thermodynamics has long recognized a distinction between two
kinds of quantities that may be used to define the thermodynamic
state. If we imagine a given system as composed of smaller sub-
gystems, we usually find that some of the thermodvnamic variables
have the same values in each subsystem, while others are additive,
the total amount being the sum of the values of each subsystem.
These are called intensive and extensive variables, respectively.
According to this definition, evidently, the mass of a system is
always an extensive guantity, and at eguilibrium the temperature
is an intensive guantity. Likewise, the energy will be extensive
provided that the interaction energy between the subsvstems can
be neglected.

It is important to note, however, that in general the terms
"intensive" and "extensive" so defined cannot be regarded as
establishing a real physical distinction between the variables.
This distinction is, like the notion of number of degrees of
freedom, in part an anthrepomorphic cne, hecause it may depend
on the particular kind of subdivision we choose to imagine. For
example, a volume of ailr may be imagined fo consist of a number
of smaller contiguous veclume elements. With this subdivision,
the pressure is the same in all subsystems, and is therefore in-
tensive; while the volume is additive and therefore extensive.
But we may egually well regard the volume of alr as composed of
its constituent nitrogen and oxygen subsystems ({(or we could re-
gard pure hydrogen as composed of two subsvstems, in which the
molecules have odd and even rotational guantum numbers respec-
tively, etc.). With this kind of subdivision the volume is the
same in all subsvstems, while the pressure is the sum of the
partial pressures of its constituents; and 1t appears that the

rcles of "intensive" and "extensive"” have been interchanged!
Note that this ambiguity cannot be removed by requiring

that we consider only spatial subdivisions, such that each sub-

system has the same local composition. TFor, ceonsider a stressed

glastic solid, such as a stretched rubber band. If we imagine

the rubber band as diwvided, conceptually, into small subsystems

by passing planes through it normal to 1ts axis, then the tension
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is the same in all subsystems, while the elongation 1s additive.
But 1f the dividing planes are parallel to the axis, the elonga-
ticn is the same in all subsystems, while the +tension is addi-
tive; once again, the roles of "extensive" and "intensive" are
interchanged merely by imagining a different kind of subdivision.
In spite of the fundamental ambiguity of the usual defini-
tions, the notiongs of extensive and intensive variables are use-
ful, and in practice we seem to have no difficulty in degiding
which guantities should be considered intensive. Perhaps the
distinction is better characterized, not by considering subdivi-
sions at all, kut by adopting a different definition, in which
we recocgnize that some guantities have the nature of a "force"
or "potential,” or some other local physical property, and are
therefore called intensive, while others have the nature of a
"displacemant" or a "guantity" of something (i.e., are propor-
ticnal to the size of the system), and are therefore called
extensive. Admittedly, this definition is somewhat vague, in a
way that can also lead to ambiguities; in anv event, let us agree
to c¢lass pressure, stress tensor, mass density, enerxgy density,
particie density, temperature, chemical potential, angular
velocity, as intensive, while volume, mass, energy, particle
numbers, strain, entropv, angular momentum, will be considered

extensive,

1.8 The Kelvin Temperature Scale. The form of the first law,
dU = dQ - dwW, expresses the net energy increment of a system as
the heat energy supplied to it, minus the work done by it. In

the simplest systems of twc degrees of freedom, defined by pres-
sure and voclume as the thermodynamic variables, the work done

in an infinitesimal reversible change of state gan be separated
into a product dW = PAV of an intensive and an extensive gquantitw
FPurthermore, we know that the pressure P is not only the inten-
sive factor of the work; 1t is also the "potential" which governs
mechanical equilibrium (in this case, equilibrium with respect

to exchange of vclume) between two systems; i.e., 1if they are

separated by a flexible but impermeable membrane, the two systems

will exchange velume dV; = - dVz in a directicn determined by the
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pressure difference, until the pressures are equalized., The
energy exchanged 1n this way between the systems is a product

cf the form
(intensity of somethinag) x {(guantity of something exchanged)

Now 1f heat i1s merely a particular form of energy that can
also ke exchanged between systems, the guestion arises whether
the gquantity of heat energy dQ exchanged in an infinitesimal re-
vergsibkle change of state can also be written as a product of cne
factor which measures the "intensity" of the heat, times another
that represents the "gquantity" of something exchanged between
the systems, such that the intensity factor governg the condi-
tions of thermal eguilibrium and the direction of heat exchange,
in the same way that pressure does for volume exchange.

But we already know that the temperature is the quantity

that governs the heat flow {(i.e., heat flows from the hotter to
the cooler bedy until the temperatures are eqgualized). So the
intensive factor in d0Q must be essentially the temperature. But
our temperature scale is at present still arbitrary, and we can
hardly expect that such a facterization will be possible for all
calibraticns of our thermometers.

The same thing is evidently true of pressure; 1f instead of
the pressure P as ordinarily defined, we worked with any mono-
tonic increasing function Pl = Pl(P), we would find that Pl is
just as good as P for determining the direction of volume ex-
change and the condition of mechanical eguilibrium; but the work

done would not be given by P dVv; in general, 1t could not even

1

be expregsed in the form P, dF(V), where F(V) 1s some function

1
cof V.

Therefore we ask: out of all the monotonic functions tl(t)
corresponding toc different empirical temperature scales, is
there one [which we denote as T{t)] which forms a "natural"
intensity factor for heat, such that in a reversible change
dQ = T ds, where 5(U,V) 1s a new function of the thermodynamic
state? If so, then the temperature scale T will have a great
theoretical advantage, in that the laws of thermodynamics will

take an especially simple form in terms of this particular scale;
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and the new guantity S, which we call the entropy, will be a
kind of "wvolume" factor for heat.
We recall that dQ = dU + P 4V 1s not an exact differential;

i.e., on a change from one equilibrium state to another the

integral .2
a9
i
Cannot be set equal to the difference Qz Ql of values of any
state function Q(U,V), since the integral hasg different values

fer different paths connecting the same initial and final states.
Thus there is no “heat function” Q{(U,V}, and the notion of
"amount of heat" Q stored in a body has no meaning {(nor does the
"amount of work" W; only the total energy is a well-defined guan-
tity) . But we want the entropy S(U,V}) to be a definite guantity,
like the energy or volume, and so dS must be an exact differential.
Cn an infinitesimal reversible change from one equilibrium state

to another, the first law requires that it satisfy

_d4Q _du P _
ds{Uu,v) = T 7 T + m av (1-19)

Thus (1/T}) must be an integrating factoy which converts dQ intc

an exact differential.

Now the guestion of the existence and properties of inte-
grating factors 1s a purely mathematical one, which can be in-
vestigated independently of the properties of any particular
substance. Let us denocte this integrating factor for the moment

by w(U,v) = T_l; then the first law becomes
as(u,v) = w dU + wp 4v (1-20)

from which the derivative are

Q2

( S]V =W, [a_g]U = wp . (1-21)

U

(o3

The conditioen that dS be exact 13 that the cross-derivatives be
equal, as in (1-4):

2
3 8 g 8

3USV  3avau (1=22)
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or,

Jap

= wl= (1-23)

Any function w(U,V) satisfying this differential eguation is an
integrating factor for dgQ.

But if w(U,V) is one such integrating factor, which leads

to the new state function S{(U,V), it is evident that
wl(U,V) = w £(58) 1s an egually good integrating factor, where
£f(s) is an arbitrary function. Use of v will lead to a dif-

ferent state function

I

s, (U, V)

1 f £{s) ds . {(1-24)

The mere conversion of dQ into an exact differantial is, there-
fore, not enough to determine any unigque entropy function S5(U,V).

However, the derivative

(o3

[—H}S = -7 (1-25)

Q>

is evidently uniguely determined; so also, therefore, 1s the
family of lines of constant entropy, called adiabats, in the
(U-V) plane. But, as (1-24) shows, the numerical wvalue of S on
each adiabat is still completely undetermined.

In order to fix the relative values of S on different adia-
bats we need to add the condition, noct vet put inte the eguations,
that the integrating factor w(U,V) = T~ is to define a new
temperature scale. Tn other words, we now ask: cut of the
infinite number of different integrating factors allowed by

the differential eguation (1-23), is it possible tc find one

which is a function only of the empirical temperature t? If

w = wi(t}), we can write
3 d 3t
[Eg]u - E%'[gvju (1-26)
bwy _ dw (3t }
[aujv T gt LaU]v (1-27)
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& log w = (1-28)

which shows that w will be determined to within a multiplicative
factor.
Is the temperature scale thus defined independent of the

empirical scale from which we started? To answer this, let

t1 = tl(t) be any monotonic function which defines a different
empirical temperature scale. In place of (1-28) we then have
3P 8P
. . iy ) Solv N
L9V J U SET IR at L'av/u AU V-
or,
% oo w., = 2t 4 ... 4
at Y1 T g, ac %Y
1 1
which reduces to d leg w, = d log w, or
wl = C w {(1-30)

Therefore, integrating factors derived from whatever empirical
temperature scale can differ among themselves only by a multi-
plicative factor. For any given substance, therefore, except
for this factor (which corresponds Jjust to our freedom to choose
the size of the units in which we measure temperature), there is
only one temperature scale T(t) = 1/w with the property that

ds = dg/T is an exact differential.

To find a feasible way of realizing this temperature scale
experimentally, multiply numerator and denominator of the right-
hand side of (1-28) by the heat capacity at constant volume,

Cv' = (BU/Bt)v, the prime denoting that it is in terms of the
empirical temperature scale t. Integrating between any two

states denoted 1 and 2, we have
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T t2 [QE] at
E_% = exp at vat . (1_31)
1 tl P Cvl(gng/

If the guantities on the right-hand side have been determined
experimentally, then a numerical integration yields the ratio
cf Xelvin temperatures of the fwo states.

This process is particularly simple if we choose for our
system a volume of gas with the property found in Jcocule's famous
expansion experiment; when the gas expands freely into a vacuum
{i.e., without doing work, or U = const.), there is no change in
temperature. Real gases when sufficiently far from their con-
densation points are found to obey this rule very accurately.
But then It

(55)y = © (1-32)
and on a change of state in which we heat this gas at constant

volume, (1-31) collapses to

t2
T 1%
2 1/9P 2
T - eXPJ sleely 487" 5 - (1-33)
1 + 1
1

Therefore, with a constant-volume ideal gas thermometer, (or more
generally, a thermometer using any substance obeying (1-32) and
held at constant volume), the measured pressure is directly pro-
portional to the Kelvin temperature.

For an imperfect gas, 1if we have measured (at/av)U and Cv',
Eg. (l1-31) determines the necessary corrections to {(1l-33). How-
ever, an alternative form of (1-31), in which the roles of pres-
sure and volume are interchanged, proves to be more convenient

for experimental determinations. To derive it, introduce the

enthalpy function

jas
I

U + PV {1-34)

with the property
dH

dg + v dp {1-35)
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Equaticn (1-19) then beccmes
as = = - fap . (1-36)

Repeating the steps (1-20} to {(1-31) of the above derivation

starting from (1-36) instead of from (1-19), we arrive at

T f2 (&) ae
2 3t P
— = axp (1-37)
Tl v + C '[EE]
t p 9P H
1
or,
t
T_2._—~ ex 2 C('.' dt (1"‘38)
T, P 1 + (C '"u*yv)
i + P
1
where
, - 1 rov
® v [Bt]P (1-39)
is the thermal expansion coefficient,
.- (3 -
c,' = (53) 5 (1-40)
is the heat capacity at constant pressure, and
N A

is the coefficient measured in the Joule-Thompson porous plug
experiment, the primes denoting again that all are to be measured
in terms of the empirical temperature scale t.

Since a', Cp', u' are all easily measured in the laboratory,
Eg. {(1-38) provides a feasikle way of realizing the Kelvin tem-
perature scale experimentally, taking account of the imperfec-
tions of real gases. For an account of the work of Roebuck and

others based on this relation, see Zemansky (1943); pp. 252-255,

Note that if w' = 0 and we heat the gas at constant pres-
sure, (1-38) reduces to
t
T 2 v
2 J 10V 2
7 explj Sz, atp = 7 (1-42)
!
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so that, with a constant-pressure gas thermometer using a gas for
which the Joule-Thompson ccefficient is zero, the Kelvin tempera-
ture is proportional to the measured volume.

Now consider another empirical fact, Bovle's law. For gases
sufficiently far from their condensation points--which 1s alsoc
the condition under which (1-32) 1is satisfied--Bovle found that
the product PV is a constant at any fixed temperature. This
product is, of course, proportional te the number of moles n

present, and so Bovle's eguation of state takes the form

PYv = n f£(t) (1-43)

where f(t) 1s a function that depends on the particular empirical
temperature scale used. But from (1-33) we must then have £(t)

= RT, where R is a constant, the universal gas c¢onstant whose
numerical value (1.986 calories per mole per degree K), depends
on the size of the units in which we choose to measure the Kelvin
temperature T. In terms of the Kelvin temperature, the ideal gas

equation of state is therefore sinply
PV = nRT (1-44}

The relations (1-32) and (l-44) were found empirically, but
with the develcpment of thermodynamics one could show that they
are not logically independent. In fact, all the material needed
for thig demonstration is now at hand, and we leave it as an
exercise for the reader to prove that Joule's relation (1-32) is
a logical conseguence cof Bovle's egquaticn of state (1l-44) and the
first law.

Historically, the advantages of the gas thermometer were
discovered empirically before the Kelvin temperature scale was
defined; and the temperature scale § defined by

g

¢ = lim (g

B0

(1-45)

was found to be convenient, easily reproducible, and independent
of the properties of any particular gas. It was called the
absclute temperature scale; and from the foregoing it 1s clear

that with the same choice o©of the numerical constant R, the abso-

lute and Kelvin scales are identical.
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For many years the unit of our temperature scale was the
Centigrade degree, go defined that the difference Tb - Tf of
boiling and freezing polints of water was exactly 100 degrees.
However, improvements in experimental technigues have made another
method more reproducible; and the degree was redefined by the
Tenth General Conference of Weights and Measures in 1254, by
the condition that the triple point of water is at 273.16°K,
this number being exact by definition. The freezing point, 0°C,
is then 273.15°K. This new degree is called the Celsius degree.
For further detailsg, see the U.S. National Bureau of Standards
Technical News Bulletin, Cctober 1863.

The appearance of such a strange and arbitrary-locking

number as 273.16 in the definition of a unit igs the result of

the historical development, and is the means by which much
greater confusion igs avoided. Whenever improved techniques make
possible a new and more precige (i.e., more reproducible) defini-
ticn of a physical unit, its numerical value 1is of course chosen
so as to be well inside the limits of error with which the old
unit could be defined, Thus the old Centigrade and new Celsius
scales are the same, within the accuracy with which the Centi-
grade scale could be realized; so the same notaticn, °C, 1s used
for both. Only in this way can cold measurements retain their
value and accuracy, without need of ccrrections every time a
unit is redefined.

Exactly the same thing has happened in the definition of
the calorie; for a century, beginning with the work of Joule,
more and more precise experiments were performed to determine
the mechanical eguivalent of heat more and more accurately. But
eventually mechanical and electrical measurements of energy be-
came far mcre reproducible than calorimetric measurements; so
recently the calorie was redefined to be 4.1840 Joules, this
nunber now being exact by definition. Further details are giwven
in the aforementioned Bureau of Standards Bulletin.

The derivations of this section have shcwn that, for any
particular substance, there 1is (except for choice of units) only
cne temperature scale T with the property that d9 = T dS where

48 is the exact differential of some state functiocn 8. But this
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in itself provides no reasocon to suppose that the same Kelvin
scale will result for all substances; i1.e., if we determine a
"helium Xelwin temperature" and a "carbon dioxide XKelvin tempera-
ture" by the measurements indicated in (1-38), and choose the
units sc¢ that they agree numerically at cne poilint, will they then
agree at other pocints? Thus far we have given no reason to ex-
pect that the Kelvin scale 1s universal, other than the empirical
fact that the limit (1-45) is found to be the same fcocr all gases.
In section 2.0 we will see that this universality i1s a conse-
gquence of the seccond law of thermodynamics (i.e., 1if we ever

find two substances for which the Kelvin scale as defined above
is different, then we can take advantage of this to make a per-
petual motion machine ¢f the second kind}.

Usually, the second law is introduced befcre discussing
entropy or the Kelvin temperature scale. We have chosen this
unusual order so as to demconstrate that the concepts of entropy
and Kelwvin temperature are logically independent of the second
law; they can be defined theoretically, and the experimental
procedures for thelr measurement can be developed, without any
appeal to the second law. From the standpoint of logic, there-
fore, the second law serves only to establish that the Kelvin

temperature scale 1s the same for all substances.

1.9 Entropy of an Ideal Boltzmann Gas. At the present stage

we are far from understanding the physical meaning of the func-
tion S defined by (1-19); but we can investigate 1ts mathematical
form and numerical wvalues. Let us do this for a system con-
sisting of n moles of a substance which ockbeys the ideal gas
egquaticon of state

PV = nRT (1-46)

and for which the heat capacity at constant volume Cv is a
constant. The difference in entropy between any two states (1)

and (2) is from (1-19),

2 2

Sl o= | 82 | jzs (28 | -
S, - 8, = f = = J EBV]T av + (=), dTJ (1-47)
1 1
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where we integrate over any reversible path connecting the twe
states. From the manner in which § was defined, this integral
must be the same whatever path we choose. Consider, then, a

path consisting of a reversible expansion at constant tempera-

ture to a state 3 which has the initial temperature T, and the

final wvolume V2; followed by heating at constant volu;e te the
final temperature T, . Then (1-47) becomes
% 35 s
S, - 8, = J (EGJT av + J (52), a7 (1-48)
3
To evaluate the integral over (1 +3), note that since

dU = T dS8 - P dV, the Helmholtz free energy function F = U - T8
has the property dF = -8 dT - P dV; and of course dF 1s an exact
differential since F is a definite state function. The conditicn

that dF be exact is, analogous to (1-22),

[BS

av]T B (QEJV (1-49)

oT

which is one of the Maxwell relations, discussed further in

Chapter 2. But this is determined by the equation of state
{1-46):
95 nR
paa — falnialcl b
[BV]T v (1-50)
Likewise, along the path (3 > 2), we have
n C
(98 v
= ——— -51
LaT]V T (L=51)

where Cv is the molar heat capacity at constant volume., Cocllec-

ting these results, we have

fnR noc
- = | = + —— g
52 Sl |V dv f T
1 3
= -52
nR log(Vz/Vl) + nCv log(Tz/Tl) {1-52)
since Cv was assumed independent of T. Thus the entropy funciion
must have the form
S{n,V,T) = nR log V + n Cv log T + (const.) (1-53)
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From the derivation, the additive constant must be independent
of V and T; but it can still depend on n. We indicate this by
writing

r
S(n,v,T) = nLR locg V + CV log T} + £(n) (1-54)

where f(n) is a function not determined by the definition (1-47).
The form of £(n) is, however, restricted by the condition that

the entropy be an extensive guantity; i.e., two identical systems
placed teocgether should have twice the entropy of a single system;

or more ¢generally,
S({gn,gv,T) = g S{(n,v,T), 0 < g < . (1-55}

Substituting (1-54 intoc (1-55), we find that f(n) must satisfy

the functional eguation
f{gn) = g f£(n) - Rng log o . (1-56)

To solve this, one can differentiate with respect to g and set

g = l; we then obtain the differential equation
n £'(n) - f{(n) + Rn = 0 (1-57)
which is8 readily solved; alternatively, djust set n = 1 in (1-5&)
and replace g by n. By either procedure we find
f{n) = n £{(1} - Rn log n . (1-58)

As a check, it ig easily verified that this is the sclutiocn of

(1-56) and (1-57). We then have finally,
s{n,v,T) = n[c log T + R log[z] + A} {1-59)
r r Y4 oY

where A = f£(1) is still an arbitrary constant, noct determined
by the definition (1-19), or by the condition {(1-55) that 3 be
extensive. However, A i1s not without physical meaning; we will
see in the next Section that the vapor pressure of this sub-
stance {(and more generally, its chemical potential) depends on
A. Later, it will appear that the numerical value of A involves
Planck's constant, and its theoretical determination thexefore
regulires guantum statistics.

We ccnclude from this that, in any region where experi-

mentally Cv const., and the ideal gas eguation of state is
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obeyed, the entropy must have the form (1-59). The fact that
classical statistical mechanics does not lead to this result,
the term nR lcg (1/n} being missing (Gibbs paradox), was his-
torically one of the earliest clues indicating the need for the
guantum theoxry.

In the case of a liguid, the volume does nct change appre-
ciably on heating, and so dS = n CV d7/T, and 1f CV is indepen-

dent of temperature, we would have in place of (1-59),

s = n[cV In T + Ag] (1-60)

where Ag is an integration constant, which also has physical
meaning in connection with cenditions of equilibrium between

two different phases.

1.10 The Second Law: Definition. Prokbably nc proposition in

physics has been the subject of more deep and sustained confusion
than the second law of thermocdynamics. It is not in the province
of macroscopic thermodynamics to explain the underlving reason
for the second law; but at this stage we should at least be able
toc state this law in c¢lear and experimentally meaningful terms.
However , examination of some current textbooks reveals that,
after more than a century, different authors still disagree as

to the proper statement ¢f the second law, 1ts phvsical meaning,
and its exact range of validity.

Later on in this book it will be one of our major cbjectives
to show, from several different viewpolints, how much clearer and
simpler these problems now appear in the light of recent develop-
ments in statistical mechanics. For the present, however, our
aim is only to prepare the way for this by pointing ocut exactly
what it is that is to be proved later. &As a start on this at-
tempt, we note that the second law conveys a certalin piece of
informations about the direction in which processes take place.
In application 1t enables us to predict such things as the final
eguilibrium state of a system, in situations where the first law
alone ig insufficient to do this.

L concrete example will be helpful. We have a vessel

equipped with & piston, containing N moles cf carbon dioxide.
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The system is initially at thermal equilibrium at temperature To’
volume VO and pressure PO; and under these conditions it contains
n moles of C02 in the vapor phase and N-n moles in the liquid
phase. The system is now thermally insulated from its surround-
ings, and the piston is moved rapidly {i.e., sc that n does not

change appreciably during the motion) so that the system has a

new wvolume vf; and immediately after the motion, a new pressure
Pl' The piston is now held fixed in its new position, and the
system allowed Lo come once more to equilibrium. During this

process, will the CO2 tend tc evaporate further, or condense
further? What will be the final equilibrium temperature Teq'
the final pressure Peq’ and final value of neq?

It i1s clear that the first law alone is incapable of answering
these guestions; for if the only reguirement is conservation of
enexrgy, then the CO2 might condense, giving up its heat of vapor-
izaticen and raising the temperature of the system; or it might
evaporate further, lowering the temperature. Tndeed, all wvalues
of neq in C < neq < N would be possible without any violation of
the first law. In practice, however, this process will be found
to go in only cne direction and the system will reach a definite
final eguilibrium state with a temperature, pressure, and vapor
density predictable from the second law.

Now there are dozens of possible verbal statements of the
second law; and from cne standpoint, any statement which conveys
the same information has equal right to be called "the second
law." However, not all of them are equally direct statements of
experimental fact, or equally ccocnvenient for applications, or
aqually general; and it is on these grcundsg that we ought to
chcose among them.

Some of the most popular statements of the second law be-
long to the class of the well-known "impossibility" assertions;
i.e., it is impossible to transfer heat from a lower to a higher
temperature without leaving. compensating changes in the rest of
the universe, 1t 1s impossible to convert heat into useful work

without leaving compensating changes, it is impossibkble to make

a perpetual motion machine of the second kind, etc.
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Such formulations have cne clear logical merit; they are
stated in such a way that, if the assertion should be false, a
single experiment would suffice to demcnstrate that fact coneclu-
sively. Tt is good tc have ocur principles stated in such a
clear, uneguivocal wayv.

However, ilmpossibility statements alsoc have some disadvan-

tages. In the first place, they are not, and by their very

nature cannot be, statements of experimental fact. Tndeed, we

can put it mere strongly; we have no record of anyone having
seriously tried to do any of the various things which have been
asserted to be impossible, except for one case which actually
succeeded. In the experimental realization of negative spin
temperatures, one c¢an transfer heat from a lower to a higher
temperature without external changes; and so one ©of the cocmmon
impossibility statements is now known to be false [for a clearx
discussion of this, see the article of N. F. Ramsey (1956);
experimental details of calorimetry with negative temperature
spin systems are given by Abragam and Proctor (1958)].

Finally, impossibility statements are of very little use in

applications ¢of thermodynamics; the assertion that a certain kind

of machine cannot be built, or that a certain laborato?y feat
cannot be performed, dces not tell me very directly whether my
carbon dioxide will condense or evaporate. For applications,
such assertions must first be converted intoe a more explicit
mathematical form.

For these reasons, 1t appears that a different kind of
statement ©f the second law will be, not necessarily more

1

"correct,” but more useful in practice. Now both Clausius (1875)
and Planck (1897) have laid great stress on their ccnclusion

that the most general statement, and alsoc the most immediately
useful in applications, is simply the existence of a state
function, called the entropy, which tends to increase. More
precisely: in an adiabatic change of state, the entropy of

a system may increase or may remaln c¢onstant, but does not

decrease. In a process involving heat flow tc or from the

svstem, the total entropy of all bodies invclved may increase
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or may remain constant; but does not decrease; let us call this
the "weak form" of the second law.

The weak form of the second law is capable of answering the
first question posed above; thus the carbon dioxide will evapo-
rate further 1if, and conly if, this leads to an increase in the
total entropy of the system. This alone, however, 1s nct enough
to answer the second guestion; to predict the exact final eguili-
brium state, we need one more fact.

The strong form of the secend law is obtained by adding the
further assertion that the entropy noct only "tends!” toc increase;

in fact it will increase, to the maximum value permitted by the

constraints imposed.* In the case of the carbon dioxide, these

constraints are: fixed total energy (first law), fixed total
amount . of carbon dioxide, and fixed position of the piston. The
finel equilibrium state i1s the one which has the maximum entropy
compatible with these constraints, and it can be predicted guan-
titatively from the strong form of the second law 1f we know,
from experiment or theory, the thermodynamic properties of carbon
dioxide (i.e., heat capacity, eguatiocn of state, heat of wvapor-
ization).

To illustrate this, we set up the proklem in a crude ap-
proximation which supposes that (1) in the range of conditions
of interest, the molar heat capacity CV of the wapor, and Cjl of

the liguid, and the mclar heat of vaporization L, are all con-

stants, and the heat capacities of cylinder and piston are neg-

ligible; (2) the liguid wvolume is always a small fraction c¢f the
total V, so that c¢hanges in vapor volume may be neglected; (3) the
vapor obeys the ideal gas eguation of state PV = nRT. The in-

ternal energy functions of liguid and wvapor then have the form

" 1
u, = (N-n)‘HCQT + A (1L-61)
T 1
U = nC. T+ A& + Lj (1-62)
v Low
where A 1g a constant which plavs nc role in the proklem. The

appearance of L in (1-62) recognizes that the zero from which we

*Nocte, however, that the second law has nothing to say about
how rapidly this apprcach to eguilibrium takes place.
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measure energy of the wvapocr is higher than that of the liguid by
the enerxgy L necessary to form the vapor. Cn evaporation of dn
moles of liguid, the total energy increment is 4U = dU2 + de= 0;
oY

in CV + (N—n)CR]dT + [(Cv - CR)T + Lldn = O (l-¢23)

which 1s the constraint imposed by the first law. As we found
previcusly {(1-59), (1-60) the entropies of vapor and liguid are
given by

§ o= n{Cv In T + K In(v/n) + Av] (1-64)

S2 = (N—n)[cg ln T + AR] (1-65}

where AV, A are the constants of integration discussed in the

)

last Section.
We leave 1t as an exercise for the reader to complete the

derivation from this point, and show that the total entropy

S = 8 + Sv is maximized subject to the constraint (1-63), when

)
the wvalues n , T are related by
eq eqg

=4 B T:q exp (- ——) (1-66)

where B = exp{— 1 - a - wﬁﬁﬂi} and a = (Cv - CQ)/R are constants.

Equation (1-66) i1s recognized as an approximate form of the wvapor
pressure fcrmula.

We note that Al’ AV, which appeared first as integration
constants for the entropy with no particular physical meaning,

now piay a role in determining the vapor pressure.

1.11 The Second Law: Discussion. We have emphasized the dis-

tinction between the weak and strong forms of the second law
because (with the exception of Boltzmann's original unsuccessful
argument based on the H-theorem), most attempts to deduce the
second law from statistical mechanics have considered only the
weak form; whereas it is evidently the strong form that leads

to definite guantitative predictions, and is therefore needed
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for most applications. As we will see later, a demonstration of
the weak form is today almost trivial--given the Hamiltonian form
cof the eguations of motion, the weak form is a necessary condi-
tion for any experiment to be reproducible. But demonstration
cf the strong form is decidedly nontrivial; and we recognize from
the start that the Jjob of statistical mechanics 1is not complete
until that demonstration is accomplished.

2g we have noted, there are many different forms of the
second law, that have been favored by various authors. With
regard to the entropy statement of the second law, we note the
following. In the first place, it is a direcit statement of ex-
rerimental fact, verified in many thousands of guantitative mea-

surements, which have actually been performed. This is worth a

great deal in an age when theoretical physics tends to draw
sweeping conclusions from the assumed cutcomes of "thought-
experiments." Secondly, 1t has stood the test of time; it is
the entropy statement which remsined wvalid in the case of nega-
tive spin temperatures, where some others failed. Thirdly, it
is wvery easy to apply in practice, the weak form leading imme-
diately to ugeful predictions as to which processes will go and
which will not; the strong form giving guantitative predictions
cf the equilibrium state. At the present time, therefore, we
cannot understand what motivates the unceasing attempts of many
textbook authors to state the second law In new and more compli-
cated wavs.

One of the most persistent of these attempts involves the
uze of Caratheodory's principle. This states that, in the neigh-
borhood of any thermcdynamic state there are other states which
cannot be reached by an adiabatic process. BAfter some mathe-
matical analysis [Margenau and Murphy {1943}, pp. 26-31; orx
Wannier (1%966), pp. 126-1321 one infers the existence of a state
functicon {(entropy) which tends to increase; or at least, cannot

decrease. From a mathematical standpoint there can be no cbhjec-

tion at all to this; the analysis is guite rigorous. But from
a physical standpoint it i1s subject to the same cbjectiecn that

its premise is an impossibkbility statement, and therefore not an

experimental fact. Indeed, the conclusion of Caratheodozry's
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argument is a far more direct statement of observed fact than its
premise; and so it would seem more locgical to use the argument
backwards. Thus, from the experimental fact that the entropy
tends to lncrease, we would infer that there must exist neigh-
boring states inaccessible in an adiabatic process; but the
result 1s then trivial. In a similar way, other impossibkbility
statements follow trivially from the entropy statement of the
second law.

Finally, we note that all statements o¢f the second law are
subject to a very important gualification, not always sufficiently
emphasized. As we stress repeatedly, cocnventional thermodyvnamics
is a theory only of states of thermal eguilibrium; such concepts
as temperaiture and entropy are not even defined for others. There
fore, all the above statements of the second law must be under-

stood as describing only the net result of processes which begin

and end in states of complete thermal eguilibrium. Classical

thermodynamicg has nothing to say about processes that do not
meet thig condition, or about intermediate states of processes
that do. Again, it 1s nuclear magnetic resonance (NMR) experi-
ments which provide the most striking evidence showing how es-
sential this gqualification is; the spin-echo experiment (Hahn,
1850) is, as we will see in detail later, a gross vioclation of
any statement of the second law that fails to include it.

This situation has some interesting conseguences, 1in that
impossibility statements may be misleading if we try to read too
much into them. From classical thermodynamics alone, we cannot
logically infer the impossibility of a "perpetual motion machine™
of the second kind (i.e., a machine which converts heat energy
intc useful work without requiring any low temperature heat sink,
as does the Carnot engine); we can infer only that such a machine
cannct operate bheitween equilikrium states. More specifically, if
the machine operates by carrying out some cyclic process, then
the states of (machine + environment) at the keginning and end
of a cycle cannot be states of complete thermal equilibrium, as
in the reversible Carnot engine. But noc real machine operates
between egquilibrium states anyway. Without some further analysis

involving statistical mechanics, we cannot be at all certain that
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a sufficiently clever inventor could not find a way to convert
heat energy intc useful work on a commercially profitable scale;
the energy is there, and the only guestion is whether we could
persuade it to "organize" itself enough to perform useful work
against pistons, magnets, gravitational or electric fields,
chemical activation energy hills, etc.

It was Maxwell himself who first (1871) suggested such pos-

T

sikbilities, in his invention of the "Maxwell Demon," an imaginary
being (or mechanism) which can regulate valves sc as to allow
fast molecules to pass through a partition in one direction only,
thus heating up one side at the expense of the other. We could
then allow the heat to flow back from the hot side to the cold
through a ceonventional Carnot engine, generating useful work; and
the whole arrangement would constitute a perpetual moticon machine
cf the second kind.

Maxwell did not regard such a device as impossible in prin-
ciple; ocnily very difficult technically. Later authors {(Szilard,
1929; Brillouin, 1951, 1956} have argued, on the basis of guantum
theory or connections betwegen entropy and information, that it
ig fundamentally impossible. However, all these arguments seem
tc contain just enough in the way of guestionable assumptions orvr
loopholes in the logic, as to leave the c¢ritical reader not guite
convinced. This is particularly so when we recall the lessons
cof history; clever experimenters .have, over and over again, made
fools of theocrists who were too gquick toc assert that something
cannot be done.

A recent example worth recalling concerns the Overhauser
effect in magnetic rescnance ({(enhancement of the polarization
of one set of spins by irradiaticonof another set coupled to themn)
When this effect was first proposed, several well-known authori-
ties on thermodyvnamics and statistical mechanics ridiculed the
suggestion and asserted that the effect could not possibly exist,
because it viclated the second law of thermodynamics!? This in-
cident is a valuable reminder of how little we really understand
the second law, or how to apply it in new situations.

In this connection, there is a fascinating little gadget

known as the Hilsch tube or Vortex tube, in which a jet of
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compressed alr 1s injected into a pipe at right angles to its
axis, but off center so that it sets up a rapid rectational
motion of the gas. 1In some manner, this causes a separation of
the fast and slow molecules, cold air collecting along the axis
of the tube, and heot air at the walls. On one gide of the Jjet,
a diaphragm with a small hole at the center allows only the cold
alr to escape, the octher side is left open so that the hot air
can escape. The result is that when compressed air at roon
temperature is inijected, one can obtain air from the hot side
at +100°F, from the cold side at -70°F, in sufficient guantities
to be used for guick-freezing small objects, or for cooling
photomultiplier tubes [for construction drawings and experi-
mental data, see Stong (1960); for a partial thermodynamic
analysis, see Hilsch (1947)1.

0f course, the air could alsoc be cooled by adiabatic expan-
sion (i.e., by doing work against a& piston); and it appears that
the amount of cooling achieved in vortex tubes is comparable to,
but gcmewhat less than, what could be obtained this way for the
same pressure drop. However, the operation of the vortex tube
is manifestly nct simple adiabatic =xpansion, since no work is
done; rather, part of the gas is heated up, at the cost of cooling
the rest; 1.e., fast and slow molecules are separated spatially.
There 1s, apparently, no vioclation of the laws of thermocdynamics,
since work must be supplied to compress the air; nevertheless,
the device resembles the Maxwell Demon so much as to make one
uncomfortable. This is so particularly because of our embarras-
sing inakility to explain in detail (i.e., in molecular terms)
how such asimple device works. If we did understand it, would
we be able to see still more exciting possibilities? No one
knows .

It is interesting to note in passing that such considera-

tiong were very much in Planck’'s mind also; in his Treatise on

Thermodynamics (Planck, 1897; 116}, he begins his discussiocon
of the second law in these words (translaticn of A. Cgg): "We...
put forward the following proposition ...: It is impossible to

construct an engine which will work in a complete cycle, and
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produce no effect except the raising of a weight and the cocling

of a heat-reservoir. Such an engine could be used simultaneocusly

as a motor and a refrigerator without any waste ¢f energy or
material, and would in any case be the most profitable engine
ever made. It would, 1t is true, not be eguivalent to perpetual
motion, for it does not produce work from nothing, but from the
heat which it draws from the reservoir. It weuld not, therefore,
like perpetual motion, contradict the principle of energy, but
would nevertheless possess for man the essential advantage of
perpetual motion, the supply of work without cost; for the in-
exhaustible supply of heat in the earth, in the atmosphere, and
in the sea, would, like the oxvgen of the atmosphere, be at
everybody 's immediate disposal. For this reason we take the
above preopesition as ocur starting point. Since we are to deduce
the second law from it, we expect, at the same time, to make a
most serviceable application of any natural phenomenon which may
be discovered to deviate from the second law,"

The ammonia maser (Townes, 1954) is ancther example ©f an
experimental device which, at first glance, violates the second
law by providing "useful work" in the form of coherent microwave
radiation at the expense of thermal energy. The ammonia molecule
has two energy levels separated by 24.8 GHz, with a large electuc
dipole moment matrix element connecting them. We cannot obtain
radiation from ocrdinary ammonia gas because the lower state
populations are slightly greater than the upper, as given by
the usual Boltzmann factors. Howevexr, 1f we release ammonia gas
slowly from a tank intoc a wacuum sco that a well-gollimated jet
of gas is produced, we can separate the upper state mclecules
from the lower. In an electric field, there is a guadratic
Stark effect, the levels "repelling" each other according to
the well-known rule of second-gcrdexr perturbation theory. Thus,
the thermally excited upper-state molecules have their energy
raised further by a strong field; and vice versa for the lower-
state molecules. If the field is inhomogeneocus, the result 1s
that upper-state molecules experience a fcrce drawing them into

regiong of weak field; and lower-state molecules are deflected
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toward strong field regionsg. The effect is so large that, in a
path length of about 15 c¢m, one can achlieve an almost complete
spatial separation. The upper-state molecules then pass through
a small hole into a microwave cavity, where they give up their
energy in the form of coherent radiation.

Zgain, we have something very similar to a Maxwell Demon;
for without performing any work (since no current flows te the
electrodes producing the deflecting field} we have separated
the high~energy molecules from the leow-energy ones, and obtained
useful work from the former. This, toco, was held to be impos-
sible by some theorlists before the experiment succeeded!

Later in thig c¢ourse, when we have learned how to focrmulate
a general theory of irreversgible processes, we will see that the
second law can be extended to a new principle that tells us which

noneguilibrium states can be reached, reproducibly, from cthers;

and this will of course have a direct bearing on the guestion of
perpetual motion machines of the second kind. However, the full
implicaticns of this generalized second law have not yet been
worked out; our understanding has advanced Jjust to the point
whexe confident, dogmatic statements cn either side now seen
imprudent. For the present, therefore, we leave it as an open

guestion whether such machines can or cannot be made.
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