Chapter V

GIBBS FORMALISM--PHYSICAL DERIVATION

In this Chaepter we present physical arguments by which the CGibbs formal-
ism can be derived and justified, deliberately avoiding all use of probability
theory. This will serve to convince us of the wvalidity of Gibbs' formalism
for the particular applications given by Gibbs, and will give us an intuitive
physical understanding of the second law, as well as the physical meaning of
the Xelvin temperature.

Later on {(Chapter 9) we will present an entirely different derivation in
terms of a general prcblem of statistical estimation, deliberately avoiding
all use of physical ideas, and show that the identical mathematical formalism

emerges. This will serve to convince us of the generality of the Gibbs meth-

ods, and show that their applicability is in no way restricted to equilibrium
problems; or indeed, to physics.

It is interesting to note that most of Gibbs' important results were
found independently and almost simultanecusly by Einstein (1202); but it is
to Gibbs that we owe the elegant mathematical formulation of the theory. In
the folliowing we show how, from mechanical censiderations involving the micro-
scopic state of a gsystem, the Gibbs rules emerge as a description of equili-
brium macroscopic properties. Having this, we can then reason backwards, and
draw inferences about microscopic conditions from macroscopic experimental
data. We will consider only classical mechanics here; however, none of this

classical theory will have to be unlearned later, because the Gibbs formalism



lost none of its validity through the development of quantum theory. Indeed,
the full power of Gibbs' methods has been realized only through their suc-

cessful application to guantum theory.

5.1 Review of Classical Mechanics

In classical mechanics a complete description of the state of a system is
given by specifying n coordinates Ay -9y and the corresponding velocities

ql...qn. The equations of motion are then determined by a Lagrangian function

which in simple mechanical problems is

L(qi,c.:{i) =T~V (5-1)

where T and V are the kinetic and potential energies. In problems inveolving
coupling of particles to an electromagnetic field, the Lagrangian function
takes a more general form, as we will see later. 1In either case, the equa-

tions of motion are

L d

L.
e, T @ ) = 0, (5-2)

qu;

The advantage of the Lagrangian form (5-2) over the original Newtonian form

{to which it is compietely eguivalent in simple mechanical problems)
m¥, = - = {5=-3)

is that (5-2} holds for arbitrary choices of the coordinates qi; they can in-
clude angles, or any other parameters which serve to locate a particle in
space. The Newtonlan equations (5-3), on the other hand, hold only when the
x, are rectangular (cartesian) coordinates of a particle.

Still more convenient for our purposes is the Hamiltonian form of the
equations of motion. Define the momentum "canonically conjugate” to the co-

ordinate q; by



[<F]
o

(5-4)

e
m

and a Hamiltonian function H by

- Tn - - . -
H(qlpl---qnpn) = Lio1 Pi9 L(ql---qn) (5=5)

the notation indicating that after forming the right-hand gide of {(5-5) the
velocities éi are eliminated mathematically, so that the Hamiltonian is sx-

pressed as a function of the coordinates and momenta only.

Problem (5.1). A particle of mass m is loccated by specifving (ql,q2,q3)

(r,8,2) respectively, where ¥, 9, z are a cylindrical coordinate system re-
. ) i@ .
lated to the cartesian x, vy, 2 by x + iy = r e , 2z = z. The particle moves

in a potential V(ql,q ,q3). Show that the Hamiltonian in this coordinate

2

system is

H = + + -
(g.p.) o + V(qqu2,q3) (5-6)

and discuss the physical meaning of pl, P, p3.

Problem (5.2). Find the Hamiltonian for the same particle, in the spherical

coordinate system (ql,q2,q3) = (r,8,9¢), related to the cartssian by x + iy
ig

=r gin 0 e” 7, z = r cos 0, and again discuss the physical meaning of Pir Py

Ps-

In terms of the Hamiltonian, the equations of motion assume a more sym-

metrical form:

(5-7}



of which the first follows from the definition (5-5), while the second is
equivalent to (5-2).

Tha above feormulation of mechanics holds conly when all forces are con-
sexrvative; i.e. derivable frocm a potential energy function V(ql....,qn), and
in this case the Hamiltonian is numerically equal to the total energy (T + V).
Cften, in addition to the conservative forces we have non-conservative ones
which depend on the velocities as well as the coordinates. The Lagranglan
and Hamiltonian form of the equations of motion can be preserved if there
exlsts a new potential function M(qi,éi) such that the non-conservative force

acting on coordinate a; is

d aM oM
F, = — —% - — (5-8)
i dt qu qu
We then define the lagrangian as L = T - V - M.
Problem {(5.3). ©Show that the Lagrangian eguations of motion (5-2) are cor-

rect with this modified Lagrangian. Find the new momenta and Hamiltonian.

Carry this through explicitly for the case of a charged particle moving in a
> >

time-varyving electromagnetic field E{x,v,z,t), O(x,v,z,t) for which the non-

conservative force is given by the Lorentz force law,

> = > =>
' = el[B + v X B]

Qi

Hint: Express the potential M in terms of the wvector and scalar potentials

A. Notice that, since

0=

of the field A, ¢, defined by B =V x A, E = - Vo -
the potentials are nct uniquely determined by E, H, there is no longer any
unigue connection between momentum and velocity; or between the Hamiltonian
and the energy. Nevertheless, the Lagrangian and Hamiltonian equations of

motion still describe the correct physical laws.




5.2 Liouville's Theorem

The Hamiltonian form (5-7} is of particular value because of the following
property. Tet the coordinates and momenta (qlpl...qnpn) be regarded as co-
crdinates of a single point in a 2n~-dimensional phase gpace. This point moves,
by wvirtue of the equations of motion, with a velocity v whose components are
(@lﬁl...énﬁn). At each point of phase space there is specified in this way a
particular velocity, and the eguations of motion thus generate a continuous

flow pattern in phase space, much like the flow pattern of a fluid in ordinary

space. The divergence of the velocity of this flow pattern is

div{v)

Il
1
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so that the flow in phase space corresponds tothat of an incompresgible fluid.
In an incompressible flow, the volume occupied by any given mass of the
fluid remains constant as time goes on and the mass of fluid ig carried into
various regions. An exactly analogous property holds in phase space by virtue
of (5-9). Consider at time t = 0 any 2n-dimensiocnal region FO consisting of

scme possible range of initial ceonditions qi(O), p, (0} for a mechanical system,

i
as shown in Fig. {(5.1). This region has a total phase vclume
0) = dg_dp_...dg d . -
2(0) fro g dp, - -.dg dp_ (5-10)

In time t, each point [ql(O)...pn(O)] of Fo is carried, by the equations of

motion, intoc a new point [ql(t)...pn(t)]. The totality of all points which

were coriginally in FO now defines a new region Ft with phase wvolume

Qit) = fr ddy- .- dp

£ n

and from (5-9) it can be shown that

@{t) = Qo). (5-11)



Figure 5.1. Volume-conserving flow in phase space.

An equivalent statement is that the Jacobian determinant of the tramsformation

[ql(O)...pn(O)] > [ql(t)...pn(t)] is identically equal to unity:

91 ... Puy
2 (q o ) 30 914
- 1t nt’ _ : : =1 (5-12)
(d10-+ - Pno’ - .
aqlt apnt
pnO pnO

Problem (5.4). Prove that (5-9), (5-~11), and (5-12} are equivalent statements.

(Hint: See A. I. Khinchin, "Mathematical Foundationg of Statistical Mechan-

iecs"”, Chapter I1I1.)

This result was termed by Gibbs the "Principle of conservation of exten-

sion-in-phase", and ig usually referred to nowadays as Liouville's theorem.
An important advantage of considering the mction of a system referred to phase
space {coordinates and momenta) instead of the coordinate-velocity space of
the Lagrangian is that in general no such conservation law holds in the latter

space (although they amount to the same thing in the special case where all



the gy are cartesian coordinates of particles and all forces are conservative

in the sense of Prcblem 5.3).

Problem (5.5). Liocuville's theorem holds only because of the special form of

the Hamilteonian equations of motion, which makes the divergence (5-9) identi-
cally zero., Generalize it to a mechanical system whose state is defined by a

set of variables {x.,x

1 ..,xn} with squations of motion for Xi(t):

2"

xi(t) = fi(xl...xn) . i=1, 2, ..., n (5~13)

The jaccbian (5-12) then corresponds to

3lx (L)Y...x ()]
1 n

J{xl(O)...xn(O);t} = B[xl(O)...xn(O)] (5-14)

Prove that in place of Liouville's theorem J = 1 = const., we now have

£ BE % (B)...x (D]
J(t) = J(0) exp Zul dat (5-15)
o T

Bxi(t)

5.3 The Structure Function

One of the essential dynamical properties of a system, which controls its
thermodynamic properties, is the total phase volume compatible with various
experimentally cbservable conditions. 1In particular, for a system in which
the Hamiltonian and the energy are the same, the total phase volume helow a

certain energy E is
E) = E - H ‘o -
QE = [ sl (q.p,)] dg...dp_ (5-16)
{When limits of integration are unspecified, we understand integraticn over

all possible values of q; pi.) In (5-186), 6{x) is the unit step function

@
—
»
-
!

(5-17)



The differential phase wvolume, called the structure function, is given by

0B) = 2= [ 61z - nlgp,)] daj...dp_ (5-18)

and it will appear presently that essentially all thermodynamic properties of
the system are known if p(E} is known, in its dependence on such parameters
as volume and mole numbers.

Calculation of p(E) directly from the definition (5-18} is generally
very difficult., It is much easier to calculate first its Laplace transform,

known as the partition function:

Z{R) =j o (E) e PE gg (5-19)
0

where we have assumed that all possible values of energy are positive; this
can always be accomplished for the systems of interest by appropriately choos-
ing the zero from which we measure energy. In additicn, it will develop that
full thermodynamic information isg easily extracted directly from the partition
function Z(B), so that calculation of the structure function p{E} is unneces-
sary for some purposes.

Using (1i-18), the partition function can be written as

-BH(g,p.,)
Z(g) = _[e i dq, - - -dp (5-20)

n

which is the form most useful for calculation. If the structure functicn p (E}
is needed, it is then found by the usual rule for inverting a Laplace trans-

form:

w1 B
D(E) = m _imZ(B) = dB (5 21)

the path ¢f integration passing to the right of all singularities of Z(B), as

in Fig. (5.2).



f-plane

Figure 5.2. Path of integration in Equation (5-21).

To illustrate the above relations, we now compute the partition function

and structure function in two simple examples.

Example 1. Perfect monatomic gas. We have N atoms, located by cartesian co-

ordinates Qo= Gy and denote a particular ccmponent (direction in space) by

N
an index o, o« = 1, 2, 3. Thus, qia denotes the o'th component of the position

vector of the i'th particle. Similarly, the vector momenta of the particles

are denoted Ly pl...pN, and the individual components by Pyy- The Hamiltonian

is then
p 2
N i
H, = — + ~
1= 2 Lm u(qi)} (5-22)
where
2 3 2
p =1 p, (5-23)
i a=1l 1o

and the potential function u{g) defines the box of veclume V containing the

gas:



uo, qi in V
ulg) = . (5-24)

o, otherwise

The arbitrary additive constant u rapresenting the zeroc from which we

measure our energles, will prove convenient later. The partition function is

then
2
Bpi
N T Tom 3 “Rulay) 4
z_(B) = e d p, e d g,
1 . 1 i
i=1
3N
2mmi 2 —Bu N
= e {5-25)
B f
and the structure function is
N 3N/2 o B{E-Nu )
o (B) = vV (27m) e a8
1 omi 3N /2

B

—jie
If ¥ is an even number, the integrand is analytic everywhere in the com-

plex B-plane, except for the pole of order 3N/2 at the origin. If E > Nuo,

the integrand tends to zero very rapidly as |B| - « in the left half-plane

Re () < C. The path cf integration may then be extended to a closed one by

addition of an infinite semicircle to the left, as in Fig. (5.3), the integral

over the semicircle vanishing. We can then apply the Cauchy residue theorem

2Tl n+1l 1 n

In
L [ flz) dz _ 2 d _ £(a (5-27)
C (z-a) B oda

where the closed contour C, iliustrated in Fig. (5.4), encloses the point
z = a once in a counter-clockwige direction, and f(z) is analytic everywhere

on and within C.



E > Nu N E < Nu
O

Figure 5.3. Extensions of integraticon path in Equation (5-26).

Figure 5.4. The Cauchy Residue Theorem.

This gives for (5-23),

N K+1 K B (E-Nu )
Vo2 d
pl(E) = (2mm) < @ © . (5~28)

K!
dB

where K = (3N/2) - 1. If B < NuOr the integrand of (5-26) tends to zero very



rapidly as |B| + » in the right half-plane Re(B) > 0, so the path of integra-
tion may be completed by addition of the infinite semicircle to the right,
also illustrated in Fig. (5.3). ‘The integral over the semicircle is again
zerc, but the closed path now contains no singularities of the integrand, and
by the Cauchy theorem the integral is now zero. Collecting results, we have

for N even,

3N
-— -1
W (2mm) 2
(E - Nu_) P E > Nu
[3N ] o) o
- - 111
2
eLE) = < (5-292)
0 ' E < Nu
Q
If N is odd, we have a second-order branch point, instead of a pole, at § = C.

We then add a branch cut alcong the negative real axis as shown in Fig. (5.5).
If B < Nuo, we can still complete the path to the right as in Fig. (5.3), and
the integral is still zero.

If E > Nuo we cannct complete the path of integration C to the left be-
caugse of the branch cut. We can, however, deform it to Cl in Fig. (5.5),
since the integrals over the two infinite quarter-circles C', C" still wvanish.
If we now make the change of variables s = B(E - Nuo), the integral (5-26)

reduces to

3y
AN
o (F) = v (2m) V2 (5 - ) 2 —l-—j; oS 5 /2 44 (5-30)

But this is just Hankel's integral representation of the Gamma function

[Whittaker and Watson, (1827); Chap. 12]:

= — e s ds {5-31)
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Figure 5.5. Path of integration for N odd.

which holds when z is any complex number. Therefore the previous result
(5-29) actually holds for W even oxr odd, provided that for N odd we understand
(%?'_ 1)! as standing for its analvtic generalization, T'(3N/2). The factorial

notation is often more convenlent than the I'-function notation, and so we

understand that the factorial of any number, real or complex, is defined by

x! = I'(xtl) . (5-32)

Example 2. Assembly of Harmonic Oscillators. We have N particles of mass m,

and this time we label the cartesian coordinates and corresponding momenta by
{ql...qn}, {pl...pn}, with n = 3N. The potential energy is a positive defi-

nite quadratic form in the g, , so the Hamiltonian is
i

2
P

n i 1l cn
_ — el g O 5-33
Hz(qipi) Zi=l 2m 2 ~1,3=1 aijqiqj 2 ( )



where, withcout loss of generality, aij can be considered a symmetric matrix:

aij = aji' The partition function is then

CO

L 7\
, - @.v
//ﬂm wj_m expq{ 5 1] 4,9 } q-- dqn

% (B)

n/2 n/2

(2m)

(5-34)

2T
g

- .

V8 detla,.)
1]

the formula for the integral cver the ¢'s being easily derived from the ele-

mentary integral
r’-OO o l
i [_ 1l con 2] _ 27 _
J_w--ij:m exph > Ik:l &y %y | dxl...dxn {5-35)
by making the substitutions

%, = ). M U oaM M. o= a (5-36)
k T Ly=1 Tx3Y k=1 “k ki kj _ i3

whera M is any matrix with nonvanishing determinant, and using the fact that

the determinant of the product of wmatrices is the product of the determinants:

n
2
det(aij) = [det(M)] LZl ak . {5-37)

Better physical understanding of the result (5-34) is achieved by transforma-
tion of the Hamiltonian (5-33) to normal mode coordinates. The matrix aij is

real and symmetric, and so by a well-known result of matrix theory [Margenau

and Murphy (1943); Chap. 10} there exists an orthogonal matrix N,

n
. N, N, =6, 5-38
z1=l ij ik jk ( )

which diagonalizes a, |
1]

= X & = mw, 8 (5-39)

~ I
N AN N, N =
( )11 zi,j=1 57k 51 - %Cka x ki



The last step merely defines a new quantity w . If now we introduce new co-

k

ordinates Qk, defined by

_ 1l
a; = 7% lx=1 NixQk -

the potential energy reduces to

-3 1

2
i,j=1 213949 7 _'Zk—

The kinetic energy appears in the Lagrangian as

1 . 2
=) 3™ =212=1 Ry
iR

(5-40}

(5-41)

(5-42)

where we used (5-40) and (5-38). The Lagrangian in terms of the new coordi-

nates thus reduces to
_1loven 2 _ 2.2
L =3 =t [Qk o R

The momentum canonically conjugate to Qk is therefore

and the Hamiltonian in the new coordinates is

1 ro2 2. 27
Hy =5 beer B F 009
This yields the equations of mction
ékzgg_=Pk
k
) N
k30 “k *x
k
or
2

Qk + mk Qk =0

(5-43)

(5-44)

(5-45)

(5-46)

(5-47)

(5-48)



and so the w, are the normal mode oscillation frequencies of the system, Qk
is the corresponding normal coordinate. Taking the determinant of (5-39), we
have

n
det(z, ) ldet (0}1° = e (5-49)

k=1 F

but det(N) = £1 from (5-38), and sc the partition function (5-34) reduces to
) {(5-50)

where w is the geometric mean of all the oscillation frequencies, defined by

n
—
w = l w (5-51)
x=1 X

As a check, note that (5-50) can be derived directly from the transformed
Hamilteonian (5-45) by application of (5-20) and (5-35). This is an example of
the fact that the partition function (5-20) is invariant under any canonical

transformation (g .,p ) > (Q ,Pk), so that in calculating Z(B) we are at liberty
iti

k

to use any cocrdinate system that proves to be convenient mathematically.

Problem (5.6). In the Debye model of a crystal, lattice vibraticn modes are

distributed in freguency with a density p{w] proportional to wé; i.e. the

number of modes in a frequency interval du is
plw) do = aw? dw

up to a maximum freguency w ; and pl{w) = 0 for w > w . Find the congtant
max max
A in terxrms of Wy and the number N of atoms in the crystal, and show that

the geocmetrical mean frequency is

o = ~ = 0.716
W exp(-1/3) . @




The structure function for the assembly of harmonic oscillators is now

found immediately by the method of (5-28):

3 oo E 3N -
(E) = J‘ElT_‘ll . _1._.. * EE._ dg = [g."ll‘ E3N t {(5-52)
2 % 2rl gy, 3 - (3N-1) !

In both examples, the structure function increases as a very high power of E.
This is typical of all macroscopic systems, and it is an essential part of the
reason they exhibit reproducible thermodynamic properties.

The phase volume relations can be visualized by means of semi-realistic
diagrams like Fig. (5.6). The vertical coordinate represents the energy.
Imagine a tapered vase filled with water up to a level equal to the energy of
the system. The total volume of water needed to £ill it to this level cor-
regponds to the phase volume {(E), the surface areca toc the structure function
o (E). Because p(E) increases as an enormously high power of E, the vase
flares at an enormous rate, not possible to depict in the diagram. It is, in
fact so rapid that practically all of the phase volume up to energy E is ac-

tually contained in a very small range SE just under the surface E. For ex-

ample, if p(E) = A En—l, then Q(E} = (E/n) p(B), and the energy shell SE con-
tains half the phase volume R(E) if p(E) SE = %—Q(E), or

B _ 1

T - oh (5-53)

i.e., the half-volume shell, for a macroscopic system, has relative thickness

of only about one part in 1024. If we take the still very small energy shell

12

-1
of thickness $¢E = E//g 10 2 R, we find that

(E

Il

o(e) an = am - ek - ) =a@Il - (5-54)

~ E-68E

so that only an infinitesimal fraction



Figure 5.6. Representation of phase volume and structure function.

~(10%%) —(4.3 x 10t1
& ~ 10

of the phase volume Q(E) lies below this energy shell. The suggested analogy
to water filling a wvase actually holds in a much more important sense, as we

will see presently.

Problem (5.7). Calculate the structure function p (E) for a spherical pendulum

consisting of a mass m connected to the origin by a weightiess rod of length

L, for which the Lagrangian is

2.2

. . 1 - .
L(6,$,8,9) = E'mL 67 + %—mL2 sin26 ¢2 + mgL cos § ,

8 keing the angle the rod makes with the wvertical, ¢ the azimuth angle.

5.4 Relation tc Thermodynamics

n

Suppose we place two systemsg with structure functions pl(E) = Al E l,
n

2
p_ (B} = A2 E in loose contact so that they can exchange energy, but not par-



ticles. Together they constitute a larger system with phase volume below

total energy E given by

Q{E) = (5-55)

o (E )92(E~El) dE

P11 1

or, differentiating with respect to E, the structure function of the combined
system is

o(E} = | ©p

i (El)p2(E_El) di (5-56)}

1 1

Now for macroscopic systems the exponents nl, n2 are very large as we have
seen. Therefore the integrand of {5-56) has a single enormously sharp peak,
and practically all the contribution toc the integral (5-56) comes from values
of E. in the immediate neighborhood of this peak. The value of El at the

1

peak is found by differentiating:

jE—l o, (B)0, (B=E))] = py ' (B)p, (B-E;) = o (E))p," (B-E)) = 0

or,

d log pl d log p2

Ay =,

(5-57)

Let us investigate the sharpness of this peak. The logarithm of the integrand

is

‘ = - = + log E. + log (E-E 5-58
L(El) log{pl(El)p2(E El)} log(AlA2) n log E, +n, og { 1) ( )

Expand this in a Taylcor series about the value El = E which maximizes L(E),

10
noting that (E - Elo) = (nz/nl) Elo:
2
L(E,) =L __ - L] ®1 1o +
1’ T “max - "1 n_ | 2
L 2 ] 21 E



DR (P N D Sl 1%
! 2 3
n 31 E
2 10
34 4
n (E. - E. )
S 3tn |14+ -+ L 10 + ... (5-59)
1 3 K
25 ' P10

If the fractional deviaticon from the maximum is small; i.e. if

"2
E1 = Frol << Fpom (5-60)
1
2
then all the succeeding terms are very small compared to the term in (El - Elo) ,
and so a good approximation is
2
(E.) E-F = 1 El— (El - ElO) 5-61
R U L S A Tt Y (5-61)
10
Problem {5.8). As a check on the accuracy of the approximation (5-61), note
that it leads to an approximate expression for p (BE) by using (5-56):
2
1 1 10
P (2) (plp2)maxf SXP ST {1 - nj o 2 4,
10
2TE 2n
= (plpz) « """7'1-9:—2')— (5-62)
max=y n, (n,+n,
Calculate the exact p({E) from (5-58) and compare with (5-62). The following
formulas will be useful here: (1) the Eulerian integral of the first kind,

cr complete Beta function, is

1
a b alb!
jo x (%)l = (5-63)



(2) the Stirling approximation for factorialg of large numbers is

1 1
log NI = N leg N - N + 5—log(2ﬂN) + 0 N (5-64)

The relative contribution of various ranges of E1 to p (E) may be seen

from takbles of the "error function":

X 2
Fxz —= e & dax (5-65)
er = /=
O
Some numerical values of erf x are:
X erf x
0.0 0.00000
0.5 0.52050
1.0 0.84270
1.5 0.96611
2.0 0,99532
2.5 0.99959
3.0 0.999¢8
2
e—X
> 1 -
3 .
. .. 24 .
Suppose, for simplicity, that ny = n, = 16 . Then, letting
E - E E. - E
x =, 420 _ gtz L 10 (5-66)
1 B B
10 10

we see from the table that over 84 per cent of the integral



E
E E-F )} 4B
Io Dl( 1)p2( l} 1

is contributed by values of R, in the range

1

'J

= 1+£1 -
ElO n E I 0 ] (5-67)

Similarly, 99.998 per cent of the integral is contributed by wvalues of El in

12

(1 =+ 3 x 10~ Y. Values of E, which deviate

a range three times as wide: 1

ElO

from Elo by more than one part in a million contribute one part in

2
- 12
e _expl-107] | L -(4.3 x 101t

X /i 106 Jr

{5-68)

to the structure function of the combined system.
To state this remarkable situation in the most useful way of all for our
purposes, suppcse the phase point of a gsystem is known to be in a small region

80 of phase space, comprised within the energy shell of thicknegs 8. If &
1c
contains as much as oneg part in 10 of the total phase volume of this energy
10

-{1
shell; i.e. if &0 > 10 (10 )p(E) SE, then

the fraction of the phase volume &0 in which E

~

differs from E by as much as one part in 106,

10
11
(4 x 10 )

{5-69)

is necessarily less than 10~

Suppose that these two systems were initially given arbitrary energies
El(O), EZ(O} and at time t = C were placed in contact so that the energies
El(t), Ez(t) become redistributed. The systems being otherwise isolated, the

total enerxrgy E = El(t) + E.(t}) will remain constant. Now on the one hand we

2

knew (Liouville's theorem) that phase volume for the combined system is con-

gserved in the time development. On the other hand, we have just seen that



the overwhelmingly greatest part of all the phase volume accessible to the

system corresponds very accurately to one definite distribution of enerqgy El,
B

o5 such that

a o 1
log Dl og D2

- (5-70)
BEl 8E2

Thus, if we are asked to pradict the final distribution of energy reached
after a long interaction time, it will be a pretty safe bet that the subsys-
tems will divide up the available energy in such a way that (5-70) is satis-
fied.

To illustrate the reasoning here in a case where the numbers are much
more modest, suppose the entire surface of the earth painted red, with the
exception of cne particular square centimeter, which is painted blue. Con-
sider now the last nitrogen molecule emitted in the dying gasp of Julius
Cagsar. Evidently, we cannot predict very well just where it is now, but if
we are asked to predict only whether it is at this moment over a red or blue
area, it is a pretty safe bet that the answer is "red". Not because we be-
lieve that the nitrogen molecule has any tendency tc prefer red regions, but

only because there are so many more of them. Indeed, it would take an enor-

mously strong tendency to aveld red regions, before there could be any dif-

ference in our conclusicns; this is the analog of statement (5-69). The

numbers here are nmuch more modest, however, because the total surface area of
. 18 2 .

the earth is oanly about 5 x 10 cm . If the blue region were reduced to one

. 34 .
square Angstrom, we would be concerned with numbers of about 5 x 1077, still
utterly negligible compared to those involved in (5-6%9).

As the reader can easily wverify, this result helds for any number of

systems in contact, so that they share a common energy; the ovaerwhelmingly

greatest part of all the phase volume of the combined system corresponds very



accurately to a particular distribution cof energy among the subsystems such

that

8 log p 3 log p2 J log 03

1l
= = - P (5‘71)
BEl 8E2 SES

We can hardly interpret this otherwise than that equal 3 log p/9E means

egqual temperature. In other words, we infer that the gquantity

2 log p(E,V)
JIE

= x(T) {5~72)

must be some function of the Kelvin temperature T. Toc find what function it
is, there is only one criterion. As we saw in Chapter 1, Sec. 1.8, in a
closed system (i.e. no particles enter or leave), T~ is defined as the in-
tegrating factor that converts the infinitesimal heat flow, dQ = dE + P dv,
into an exact differential 45 = T_l dQ of scome state function S{E,V), where

P, V are the pressure and volume of our system. For convenience, call this

integrating factor w:

) (5-73)
then we can repeat the arqument of Equations (1-20} - (1-28):
ds = w dQ = w dE + wP 4V (5-74)
sc that
- [ p = [éﬁ] (5-75)
Y= \eEl 7 ey
v E

and the condition that 45 1s an exact differential is




or,

_g_i‘i) - _aéwp) ) (5-76)
Vig By
This vields
o 12%) ap , ax
w' {x) (BV = wi{x) {BE) + w' (x)P (BE)
E v v
cr, the function w(x) must satisfy
(3¢
w' {X) o v
av E E v

It is clear that this program will fail unless the right-hand side of
(5-77) turns out to be a function of x alone; and we will not have succeeded
in establishing a universal temperature scale unless the right-hand side of
{5-77) is a universal function (i.e., the same function for all systems) cf x.
These properties are far from obviocus from the form of (5-77).

We cannot solve (5-77) immediately because, although the derivatives in
the denominator are known from (5-72) if p(E,V) is known, we do not vet know
how the pressure 1s related to these quantities. To investigate this, suppose
we increase the volume (for example, by moving a piston). The system does
work, and its energy decreases by

/.
AR = - P dV = E - E 5-78
vo 1 { )

The original and final conditions can be visualized in the semirealistic man-
ner of Fig. {(5.6).

The system has an initial energy EO which we suppose controlled to an
accuracy GEO. Thus at the start of the expansion, the system might be any-

where in the phase wvolume pO(EO) GEO depicted at the top of ¥ig. (5.7a). The



structure function p(E,V) will depend on V in a manner gqualitatively like
Egq. (5-26); il.e. the expansion of V has the effect of widening the "vase" to
the configuration of Fig. (5.7b).

We suppose that on repetitions of this experiment, the change in energy
AE 1s reproducible. Not because we know of any law of pvhysics which says
that i must be so, but merely because thermodynamics is concerned only with
reproducible phenomena. If the work AE varied widely on different repetitiocns
of the experiment, then no one would think of applying thermodynamics to this
process.

More generally, it is an experimental fact that with an easily attainable
degree of control over experimental conditions, the ocbservable behavior of
most macroscopic systems is reproducible. This is a necessary condition for
any general theory to be either useful or possible. Indeed, without this
property of "macroscopic uniformity", our measuring instruments would not work

predictably, and neither experimental nor theoretical physics would be possible.

\ V=vO | Vo=V,
SE o\ ] I
AR
\ I_éEl
6E|“
(o3
SEl

Figure 5.7. Phasge volume relations before and after expansion.



We emphasize this because the fact itself is so commonplace to all of us
that we might not notice that, from the standpoint of general dynamics, as
exemplified in the Hamiltonian equations of motion, it is a rather surprising

property. There is no known property of the Hamiltonian per se that would

lead us to expect this. The fact that macroscopic experiments are reproduci-

ble is thus, from the standpoint of Hamiltonian mechanics, an entirely "new"
fact, from which we should be able to draw new conclusions.

To find such a new conclusion, we might reason as follows. Referring to
Fig. (5.7), if the change AE is reproducible, then it must be that practically
every initisl state in the shaded region of volume pO(EO) SEO leads to a final

energy in the range wE of phase volume p,{E.} SE.,. But since phase volume
171 1

17
is conserved by the equations of motion, the final volume must ke as least
large enough to accommodate all these points. Thus, a necessary condition for
the process to be reproducible with the specified tolerances GEO, GEl on

initial and final energies, is

(El) 6El z pO(EO) SEO (5-79}

°1
But, because of the numerical situation noted above, (5-79) is not the mast
appropriate way of stating this condition. For, the exact phase wvolume cor-
responding to the energy increment S8E is
E
f p(E) dE = Q(E) - Q(E-GE) (5-80)
E-GOE
and if 8E is so small that this is well approximated simply by p (E) SE, then
8E must be far smaller than the tolerance with which we could hope to measure
the energy experimentally. Indeed, if &E represents any reasonable experi-

mental error, then (5-80) reduces, to enormously great accuracy, simply to

Q(E), so that (5-79) ought to be replaced by



Ql(Ell 2 QO(EO) (5-81)

Thus, (5-79) is not a realistic statement of any experimental fact.

In view of this, a weaker condition than (5-792), which exploits the same
idea, will suffice for our purpcses. Referring again to Fig. (5.7), it is
surely a well-verified experimental fact that if the initial energy EO leads

reproducibly, and within experimental error, to the final energy E then any

17
lower initial energy EO' < Egr will lead to a lower final energy El‘ < Ei- In
other words, any initial state in the phase volume QO(EO) must lead to a final
state in the phase volume pl(El). As before, this is possible only if the
final phase volume is large encugh to accommcdate all these states, which
leads again to the condition (5-81).
More generally, we see that an immediate consequence of Liouville's

theorem is that in any reproducible process, the phase volume compatible with

the final macroscopic state cannot be less than the phase volume which mea-

sures the accuracy with which we can reproduce the initial state:

) (5-82)

final 2 Qinitial

Evidently this must held however we specify the initial and final states; i.e.
instead of energy we may specify the observed pressure, stress, magnetization,
angular momentum, or any other macroscopic properties. Furtherxmore, the
result (5-82) must hold whether cr nct the initial and final states are equi-
librium states.

Now suppcose we compress the system from volume Vl back to the original
volume Vo' It will acquire a final energy E2, and we shall have to do work
E2 - El' If this work done is experimentally reproducible, then exactly the

same argument about phase volumes applies, and it is necegsary that

i, (Ey) 2 9y (E)) (5-83)



If the expansion and compression are carried out rapidly, it will be found
experimentally that the work required for compression is greater than that
obtained from the expansion, so that E2 > EO; this is a particular case of
the second law of thermodynamics. But in the limit where these processes are
carried out so slowly that the system is at all times very close to equili-

brium, E. approaches Eo' and we have a reversible process. But, ifZ_=E ,

2 2 O

compariscn of (5-81) and (5-83) shows that
Q (E) =Q_ (E)) {(5=-84)

Under these conditions, the pressure P of (5-78) will be the thermal eguili-
brium wvalue which we needed to find in order to solve (5-77).

Thus, the missing relation we need for (5-77) is

p-- &£ __ % (5-85)

oV Q av log
but let us cast it intc a more useful form. For any macroscopic system we

will have a result more or less 1like (5-29); or

n_m m-1
Q(E) = AV E , o (E) = mAV E (5-86)
where n and m are of the order of Avogadro's number. But then
log @ 2 n log V+ m locg E + const.
(5-87)
log p 2 n log V + (m-1) log E + const.
Now the condition (log & = const.) on (5-85) imposes a relation between E and

V which determines the wvalue of the derivative. TFrom (5-87) it is clear that

the condition {log p = ccnst.) imposes the same relation, to an accuracy of

24 . e
gsomething like cne part in 10 . More specifically,



(QE' - nE

oV log Q my
(5-88)
(E.F;) - _ _ DB
v log o (m=-1)V

. 24
and so, unless we propose to measure the pressure to better than 1 part in 10

12
(which as we will see later is about 10 times smaller than the spontaneous

fluctuations continually taking place in P anyway), we can just as well write

F=- (%%] (5-89)

log p

which is exactly the relation we need to complete the solution of (5=-77).



