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V. On the Equilibrium of Heterogeneous Substances.

Bt J. WlLLARD GiBBS.

" Die Energie der Welt ist constant.

Die Entropie der Welt strebt einera Maximum zu."

CLAfsitrs.*

The comprehension of the laws which govern any material system

is greatly facilitated by considering the energy and entropy of the

system in the various states of which it is capable. As the difference

of the values of the energy for any two states represents the com-

bined amount of work and heat received or yielded by the system

when it is brought from one state to the other, and the difference of

entropy is the limit of all the possible values of the integral /
,

[dQ denoting the element of the heat received from external sources,

and t the temperature of the part of the system receiving it,) the

varying values of the energy and entropy characterize in all that is

essential the effects producible by the system in passing from one

state to another. For by mechanical and theiTuodynamic con-

trivances, supposed theoretically perfect, any supply of work and

heat may be transformed into any other which does not differ from

it either in the amount of work and heat taken together or in the

value of the integral / . But it is not only in respect to the

external relations of a system that its energy and entropy ai'e of

predominant importance. As in the case of simply mechanical sys-

tems, (such as are discussed in theoretical mechanics,) which are capable

of only one kind of action upon external systems, viz., the perform-

ance of mechanical work, the function which expresses the capability

of the system for this kind of action also plays the leading part in

the theory of equilibrium, the condition of equilibrium being that

the variation of this function shall vanish, so in a thermodynamic

system, (such as all material systems actually are,) which is capable of

two different kinds of action upon external systems, the two functions

which express the twofold capabilities of the system afford an almost

equally simple criterion of equilibrium.

*Pogg. Ann. Bd. cxxv (1865), S. 400; or Mechanische Warmetheorie, Abhand. ix., S. 44.
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CRITERIA OF EQUILIBRIUM AND STABILITY.

The criterion of equilibi-ium for a material system which is isohited

from all external influences may be expressed in either of the follow-

ing entirely equivalent forms

:

I. For the equilibrium of any isolated system it is necessary and
sufficient that in all possible variations of the state of the system

which do not alter its energy, the va.riatio7i of its entropy shall either

vanish or be negative. If a denote the energy, and // the entropy of

the system, and we use a subscript letter after, a variation to indicate

a quantity of which the value is not to be varied, the condition of

equilibrium may be written

{^V)e ^0. (1)

II. For the equilibrium of any isolated system it is necessary and
sufficient that in all possible variations in the state of the system

which do not alter its entropy, the variation of its energy shall either

vanish or be positive. This condition may be written

m,= 0. (2)

That these two theorems are equivalent will appear from the con-

sideration that it is always possible to increase both the energy and
the entropy of the system, or to decrease both together, viz., by
imparting heat to any part of the system or by taking it away. For,

if condition (1) is not satisfied, there must be some variation in the

state of the system for which

S}j> and 6e =0;
therefore, by diminishing both the energy and the entropy of the

system in its varied state, we shall obtain a state for which (considered

as a variation from the original state)

dTf=iO and d"£<0;

therefore condition (2) is not satisfied. Conversely, if condition (2)

is not satisfied, there must be a variation in the state of the system

for which
d£< and St/z^ 0;

hence there must also be one for which

de=iO and (J// > ;

therefore condition (1) is not satisfied.

The equations which express the condition of equilibrium, as also

its statement in words, are to be interpreted in accordance with the

general usage in respect to difterential equations, that is, infinitesimals
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of higher orders than the fii-st relatively to tliose which express the

amount of change of the system are to be neglected. But to distin-

guish the different kinds of equilibrium in respect to stability, we
must have regard to the absolute values of the variations. We will

use A as the sign of variation in those equations which are to be con-

strued strictly, i. e., in which infinitesimals of the higher orders are

not to be neglected. With this understanding, we may express the

necessary and sufficient conditions of the different kinds of equi-

librium as follows;—for stable equilil)rium

(•^;/),<0, i. e., (A6),^>0: (3)

for neutral equilibrium there must be some variations in the state of

the system for which

(A//)^ = 0, i. e., {Af),^ = 0, (4)

while in general

{^V)e ^0, i.e., (Af),^^0; (5)

and for unstable equilibrium there must be some variations for which

(A;/),>0, (6)

i. e., there must be some for which

(^f),<0, (V)

while in general
(d7),^0,i.e., (c^f),^0. (8)

In these criteria of equilibrium and stability, account is taken only

oi })ossible variations. It is necessary to explain in what sense tliis is

to be understood. In the first place, all variations in the state of

the system which involve the transportation of any matter through

any finite distance are of course to be excluded from consideration,

although they may be capable of expression by infinitesimal varia-

tions of quantities which perfectly determine the state of the system.

For example, if the system contains two masses of the same sub-

stance, not in contact, nor connected by other masses consisting of

or containing the same substance or its components, an infinitesimal

increase of the one mass with an equal decrease of the other is not to

be considered as a possible variation in the state of the system. In

addition to such cases of essential impossibility, if heat can pass by

conduction or radiation from every part of the system to every other,

only those variations are to be rejected as impossible, which involve

changes which are prevented by passive forces or analogous resist-

ances to change. But, if the system consist of parts between which

there is supposed to be no thermal communication, it will be neces-

sary to regard as impossible any diminution of the entropy of any of
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these parts, as sueli a change can not take place without the passage

of heat. This limitation may most conveniently l>e ai»plied to the

second of the above forms of the condition of equilibrium, which will

then become

ri\ ?/', etc., denoting the entropies of the various parts between which

there is no communication of heat. When the condition of equi-

librium is thus expressed, the limitation in respect to the conduction

of heat will need no farther consideration.

In order to apply to any system the criteria of equilibrium which

have been given, a knowledge is requisite of its passive forces or

resistances to change, in so far, at least, as they are capable of pre-

venting change. (Those passive forces which only retard change,

like viscosity, need not be considered.) Such properties of a system

ai-e in general easily recognized upon the most superficial knowledge

of its nature. As examples, we may instance the passive force of

friction which prevents sliding when two surfaces of solids are

pressed together,—that which prevents the different components of

a solid, and sometimes of a fluid, from having different motions one

from another,—that resistance to change which sometimes prevents

either of two forms of the same substance (simple or compound),

which are capable of existing, from passing into the other,—that

which prevents the changes in solids which imply plasticity, (in other

words, changes of the form to which the solid tends to return,) when

the deformation does not exceed certain limits.

It is a characteristic of all these passive resistances that they pre-

vent a certain kind of motion or change, however the initial state of

the system may be modified, and to whatever external agencies of force

and heat it may be subjected, within limits, it may be, but yet within

limits which allow finite variations in the values of all the quanti-

ties which express the initial state of the system or the mechanical

or thermal influences acting on it, without producing the change in

question. The equilibi-ium which is due to such passive properties

is thus widely distinguished from that caused by the balance of the

active tendencies of the system, where an external influence, or a

change in the initial state, infinitesimal in amount, is sufficient to pro-

duce change either in the positive or negative direction. Hence the

ease with which these passive resistances are recognized. Only in

the case that the state of the system lies so near the limit at which

the resistances cease to be operative to ])revent change, as to create a
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doubt whether the case falls within or without the limit, will a more

accurate knowledge of these resistances be necessary.

To establish the validity of the criterion of equilibrium, we will

consider first the sufficiency, and afterwards the necessity, of the con-

dition as expressed in either of the two equivalent forms.

In the first place, if the system is in a state in which its entropy is

greater than in any other state of the same energy, it is evidently in

equilibrium, as any change of state must involve either a decrease of

entropy or an increase of energy, which are alike impossible for an iso-

lated system. We may add that this is a case of stable equilibrium, as

no infinitely small cause (whether relating to a variation of the initial

state or to the action of any external bodies) can produce a finite

change of state, as this Avould involve a finite decrease of entropy or

increase of energy.

We will next suppose that the system has the greatest entropy

consistent with its energy, and therefore the least energy consistent

with its entropy, but that there are other states of the same energy

and entropy as its actual state. In this case, it is impossible that

any motion of masses should take place ; for if any of the energy

of the system should come to consist of vis viva (of sensible motions),

a state of the system identical in other respects but without the

motion would have less energy and not less entropy, which would be

contrary to the supposition, (But we cannot apply this reasoning to

the motion within any mass of its difierent components in diiferent

directions, as in difiiision, Avhen the momenta of the components

balance one another.) Nor, in the case supposed, can any conduction

of heat take place, for this involves an increase of entropy, as heat is

only conducted from bodies of higher to those of lower temperatiire.

It is equally impossible that any changes should l)e produced by the

transfer of heat by radiation. The condition which we have sup-

posed is therefore sufficient for equilibrium, so far as the motion of

masses and the transfer of heat are concerned, but to show that the

same is true in regard to the motions of difiiision and chemical or

molecular changes, when these can occur without being accompanied

or followed by the motions of masses or the transfer of heat, we must

have recourse to considerations of a more general nature. The fol-

lowing considerations seem to justify the belief that the condition is

sufficient for equilibrium in every respect.

Let us suppose, in order to test the tenability of such a hypothesis,

that a system may have the greatest entropy consistent with its

energy without being in equilibrium. In sucli a case, changes in the
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state of the system must take place, but these will necessarily be

such that the energy and the entropy will remain unchanged and

the system will continue to satisfy the same condition, as initially, of

having the greatest entropy consistent with its energy. Let us con-

sider the change which takes place in any time so short that the

change may be regarded as uniform in nature throughout that time.

This time must be so chosen that the change does not take place in it

infinitely slowly, which is always easy, as the change which we sup-

pose to take place cannot be infinitely slow except at particular

moments. Now no change whatever in the state of the system,

w^hich does not alter the value of the energy, and which commences

with the same state in which the system was supposed at the com-

mencement of the short time considered, will cause an increase of

entropy. Hence, it will generally be possible by some slight varia-

tion in the circumstances of the case to make all changes in the state

of the system like or nearly like that which is supposed actually to

occur, and not involving a change of energy, to involve a necessary

decrease of entropy, which would render any such change impossible.

This variation may be in the values of the variables which determine

the state of the system, or in the values of the constants which deter-

mine the nature of the system, or in the form of the functions which

express its laws,—only there must be nothing in tbe system as modi-

fied which is thermodynamically impossible. For example, we might

suppose temperature or pressure to be varied, or the composition of

the difierent bodies in the system, or, if no small variations which

could be actually realized would produce the required result, we

might suppose the properties themselves of the substances to undergo

variation, subject to the general laws of matter. If, then, there is

any tendency toward change in the system as first supposed, it is a

tendency which can be entirely checked by an infinitesimal variation

in the circumstances of the case. As this supposition cannot be

allowed, we must believe that a system is always in equilibrium

when it has the greatest entropy consistent with its energy, or, in

other words, when it has the least energy consistent with its entropy.

The same considerations will evidently apply to any case in which

a system is in such a state that -^//^O for any possible infinites-

imal variation of the state for which A£ — 0, even if the entropy is

not the least of which the system is capable with the same energy.

(The term possible has here the meaning pi-eviously defined, and the

character A is used, as before, to denote that the equations are to be

Trans. Conn. Acad., Vol. III. 15 October, 1875.
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construed sti'ictly, i. e., without neglect of the infinitesimals of the

higher orders.)

The only case in which the sufficiency of the condition of equi-

librium which has been given remains to be proved is that in which

in our notation 6ij ^ for all possible variations not affecting the

energy, but for some of these variations A;;>.0, that is, when the

entropy has in some respects the characteristics of a minimum. In

this case the considerations adduced in the last paragraph will not

apply without modification, as the change of state may be infinitely

slow at first, and it is only in the initial state that the condition

(Jz/p^O holds true. But the differential coefficients of all orders of

the quantities which determine the state of the system, taken with

respect of the time, must be functions of these same quantities.

None of these differential coefficients can have any value other than

0, for the state of the system for which dr]^ ^ 0. For otherwise, as

it would generally be possible, as before, by some infinitely small

modification of the case, to render impossible any change like or nearly

like that which might be supposed to occur, this infinitely small

modification of the case would make a finite difference in the value

of the differential coefficients which had before the finite values, or

in some of lower orders, Avhich is contrary to that continuity which

we have reason to expect. Such considerations seem to justify us

in regarding such a state as we are discussing as one of theoretical

equilibrium ; although as the equilibrium is evidently unstable, it

cannot be realized.

We have still to prove that the condition enunciated is in every

case necessary for equilibrium. It is evidently so in all cases in

which the active tendencies of the system are so balanced that

changes of every kind, except those excluded in the statement of

the condition of equilibrium, can take place reversibly, (i. e., both in

the positive and the negative direction,) in states of the system dif-

fering infinitely little from the state in question. In this case, we

may omit the sign of inequality and write as the condition of such a

state of equilibrium

((J;/), = 0, i.e., (rJ6),= (10)

But to prove that the condition previously enunciated is in every

case necessary, it must be shown that whenever an isolated system

remains without change, if there is any infinitesimal variation in its

state, not involving a finite change of position of any (even an infini-

tesimal part) of its matter, which would diminish its energy by a
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quantity which is not infinitely small relatively to the variations

of the quantities which determine the state of the system, without

altering its entropy,—or, if the system has thermally isolated parts,

without altering the entroi)y of any such part,—this variation

involves changes in the system which are pi*evented by its passive

forces or analogous resistances to change. Now, as the described

variation in the state of the system diminishes its energy without

altering its entropy, it must be regarded as theoretically possible to

produce that variation by some process, perhaps a very indirect one,

so as to gain a certain amount of work (above all expended on the

system). Hence we may conclude that the active forces or tenden-

cies of the system favor the variation in question, and that equi-

librium cannot subsist unless the variation is prevented by passive

forces.

The preceding considerations will suffice, it is believed, to establish

the validity of the criterion of equilibrium which has been given.

The criteria of stability may readily be deduced from that of equi-

librium. We will now proceed to apply these principles to systems

consisting of heterogeneous substances and deduce the special laws

which a|)])ly to different classes of phenomena. For this purpose we

shall use the second form of the criterion of equilibrium, both because

it admits more readily the introduction of the condition that there

shall be no tliermal communication between the different parts of the

system, and because it is more convenient, as respects the form of

the general equations relating to equilibrium, to make the entropy

one of the independent variables which determine the state of the

system, than to make the energy one of these variables.

THE CONDITIONS OF EQUILIBRIUM FOR HETEROGENEOUS MASSES IN

CONTACT WHEN UNINFLUENCED BY GRAVITY, ELECTRICITY, DISTORTION

OF THE SOLID MASSES, OR CAPILLARY TENSIONS.

In order to arrive as directly as possible at the most characteristic

and essential laws of chemical equilibrium, we will first give our

attention to a case of the simplest kind. We will examine the con-

ditions of equilibrium of a mass of matter of various kinds enclosed

in a rigid and fixed envelop, which is impermeable to and unalter-

able by any of the substances enclosed," and perfectly non-conducting

to heat. We will suppose that the case is not complicated by the

action of gravity, or by any electrical influences, and that in the

solid portions of the mass the pressure is the same in every direction.
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We will farther simplify the problem by supposing that the varia-

tions of the parts of the energy and entropy which depend upon the

surfaces separating heterogeneous masses are so small in comparison

with the variations of the parts of the energy and entropy which

depend upon the quantities of these masses, that the former may be

neglected by the side of the latter; in other words, we will exclude

the considerations which belong to the theory of capillarity.

It will be observed that the supposition of a rigid and non-

conducting envelop enclosing the mass under discussion involves no

real loss of generality, for if any mass of matter is in equilibrium, it

would also be so, if the whole or any part of it were enclosed in an

envelop as supposed ; therefore the conditions of equilibrium for a

mass thus enclosed are the general conditions which must always

be satisfied in case of equilibrium. As for the other suppositions

which have been made, all the circumstances and considerations

which are here excluded will afterward be made the subject of

sj^ecial discussion.

Conditions relating to the Equilihr'nim between the initially existing

Homogeneous Parts of the given Mass.

Let us first' consider the energy of any homogeneous part of the

given mass, and its variation for any possible variation in the com-

position and state of this part. (By homogeneous is meant that the

part in question is uniform throughput, not only in chemical com-

position, but also in physical state.) If we consider the amount and

kind of matter in this homogeneous mass as fixed, its energy f is a

function of its entropy 7/, and its volume y, and the differentials

of these quantities are subject to the relation

de = t dt] — J) dv, (1 1)

t denoting the (absolute) temperature of the mass, and p its pressure.

For t dn is the heat received, and p dv the work done, by the mass
* during its change of state. But if we consider the matter in the

mass as variable, and write mj, mg, . . . m„ for the quantities of the

various substances aS,, S2, . . . S^ of which the mass is composed, e

will evidently be a function of ?;, w, my, ni^, . . . »?„, and we shall

have for the complete value of the differential of e

de^itdi] — pdv -\- iJy dm ^
-\- yw^ ^^'"2 • • • +/^" ^^'"n? (1-)

y^ J, 7^2 5 • • • /'n denoting the differential coefficients of f taken with

respect to m,, mg, . . . ?w„.

The substances aS^,, S21 • • • ^m of which we consider the mass

composed, must of course be such that the values of the differen-
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tials d'm^, dm2, . . . dm„ shall be independent, and shall express

every possible vaination in the composition of the homogeneous mass

considered, including those produced by the absorption of substances

different from any initially present. It may therefore be necessary

to have terms in the equation relating to component substances

which do not initially occur in the homogeneous mass considered,

provided, of course, that these substances, or their components, are

to be found in some part of the whole given mass.

If the conditions mentioned are satisfied, the choice of the sub-

stances which we are to regard as the components of the mass con-

sidered, may be determined entirely by convenience, and independently

of any theory in regard to the internal constitution of the mass. The

number of components will sometimes be greater, and sometimes

less, than the number of chemical elements present. For example,

in considering the equilibrium in a vessel containing water and fi'ee

hydrogen and oxygen, we should be obliged to recognize three com-

ponents in the gaseous part. But in considering the equilibrium of

dilute sulphuric acid with the vapor which it yields, we should have

only two components to consider in the liquid mass, sulphuric acid

(anhydrous, or of any particular degree of concentration) and (addi-

tional) water. If, however, we are considering sulphuric acid in a

state of maximum concentration in connection with substances which

might possibly affoi'd water to the acid, it must be noticed that the

condition of the independence of the differentials will require that we
consider the acid in the state of maximum concentration as one of

the components. The quantity of this component will then be capa-

ble of variation both in the positive and in the negative sense, while

the quantity of the other component can increase but cannot decrease

below the value 0.

For brevity's sake, we may call a substance S,, an actucd component

of any homogeneous mass, to denote that the quantity m„ of that

substance in the given mass may be either increased or diminished

(although we may have so chosen the other component substances

that rn^= 0) ; and we may call a substance S,, a jiossible component

to denote that it may be combined with, but cannot be substracted

from the homogeneous mass in question. In this case, as we have

seen in the above example, we must so choose the component sub-

stances that W4 =z 0.

The units by which we measure the substances of which we regard

the given mass as composed may each be chosen independently. To
fix our ideas for the purpose of a general discussion, we may suppose
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all substances measured by weight or mass. Yet in special cases, it

may be more convenient to adopt chemical equivalents as the units

of the component substances.

It may be observed that it is not necessary for the validity of

equation (12) that the variations of nature and state of the mass to

which the equation refers should be such as do not disturb its homo-

geneity, provided that in all parts of the mass the variations of

nature and state are infinitely small. For, if this last condition be

not violated, an equation like (12) is certainly valid for all the infin-

itesimal parts of the (initially) homogeneous mass ; i. e., if we write

Z>f, Dt], etc., for the energy, entropy, etc., of any infinitesimal part,

cWn = t clD)} - p dlJv -\- /< , dDm^-\- fx, cWni^ . . . -f- //„ clDm^, (13)

whence we may derive equation (12) by integrating for the whole

initially homogeneous mass.

We will now suppose that the whole mass is divided into parts so

that each part is homogeneous, and consider such variations in the

energy of the system as are due to variations in the composition and

state of the several parts remaining (at least approximately) homoge-

neous, and together occupying the whole space within the envelop.

We will at first suppose the case to be such that the component sub-

stances are the same for each of the parts, each of the substances

/S , »S'2, . . . aS„ being an actual component of each part. If we

distinguish the letters referring to the different parts by accents,

the variation in the energy of the system may be expressed by

^f ' _|_ (Jf" _j- etc., and the general condition of equilibrium requires

that
Se' _|- ds" + etc. ^ (14)

for all variations which do not conflict with the equations of condi-

tion. These equations must express that the entropy of the whole

given mass does not vary, nor its volume, nor the total quantities of

any of the substances >S\, /6'g, . . . aS„. We will suppose that there

are no other equations of condition. It will then be necessary for

equilibrium that

t' Sr,' -2^'^v' +///(ym,' -\- juj 6rn,J . . .+//„' (Jm„'

_|_ t" S7/" -p" Sv" -\- pi^" dm^" + /A2" 6m," . . . + //,." 6m^'

-f- etc. ^ (15)

for any values of the variations for which

cJ//'+ (J7" 4- (5/7'" + etc. = 0, (16)

§^'j^Svnj^Sv"'-\- etc. =0, (17)
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(^m/ -f Sm^" + dm^'" + etc. = 0,

1

dm.^' + dni.^" + Sni^'" + etc. = 0, I /jg\

and dm^' -\- Si/i„" -j- (ym„"' -\- etc. =r 0. J

For this it is evidently necessary and sufficient that

t' = t" = t"'= etc. (19)

jj =ip" =p"' — etc. (20)

yu
J

' = yu
J
"= yU

J

'" = etc.
"]

A<2' = A'2" = /<2"'= etc. I

^21)

//,/ = //„" = /u„"' = etc. J

Equations (19) and (20) express the conditions of thermal and

mechanical equilibrium, viz., that the temperature and the pressure

must be constant throughout the whole mass. In equations (21) we
have the conditions characteristic of chemical equilibrium. If we
call a quantity //,, as defined by such an equation as (12), the potential

for the substance S^ in the homogeneous mass considered, these con-

ditions may be expressed as follows

:

TTie potential for each component substance must be constant

throughout the lohole mass.

It will be remembered that we have supposed that there is no

restriction upon the freedom of motion or combination of the com-

ponent substances, and that each is an actual component of all parts

of the given mass.

The state of the whole mass will be completely determined (if we
regard as immaterial the position and form of the various homoge-

neous parts of which it is composed), when the values are determined

of the quantities of which the variations occur in (15). The number

of these quantities, which we may call the independent variables, is

evidently (/i-j-2)r, v denoting the number of homogeneous parts

into which the whole mass is divided. All the quantities which

occur in (19), (20), (21), are functions of these variables, and may be

regarded as known functions, if the energy of each part is known as

a function of its entropy, volume, and the quantities of its com-

ponents. (See eq. (12).) Therefore, equations (19), (20), (21), may
be I'egarded as {y — \) [n { 2) independent equations between the

independent variables. The volume of the whole mass and the total

quantities of the various substances being known aiford n-\- \ addi-

tional equations. If we also know the total energy of the given

mass, or its total entropy, we will have as many equations as there

are independent variables.
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But if any of the substances ^S'j, -8^ . . . S^ are only possible com-

ponents of some parts of the given mass, the variation 6m of the

quantity of such a substance in such a part cannot have a negative

value, so that the general condition of equilibrium (15) does not

require that the potential for that substance in that part should be

equal to the potential for the same substance in the parts of which it

is an actual component, but only that it shall not be less. In this

case instead of (21) we may write

for all parts of which »S^i is an actual component, and

for all parts of which S^ is a possible (but not actual) com- I

ponent, I

/'2 = ^-^2
\ (22)

for all parts of which S^ is an actual component, and

for all parts of which S2 is a possible (but not actual) com-

Donent,
etc.,

J/j, J/2? ^^^-5 clenoting constants of which the value is only deter-

mined by these equations.

If we now suppose that the components (actual or possible) of the

various homogeneous parts of the given mass are not the same, the

result will be of the same character as before, provided that all the

different components are independent., (i. e., that no one can be made

out of the others,) so that the total quantity of each component is

fixed. The general condition of equilibrium (15) and the equations

of condition (16), (17), (18) will require no change, except that, if

any of the substances /S'j, S^ . . . S„ is not a component (actual or

possible) of any part, the term // dru for that substance and part will

be wanting in the former, and the Sin in the latter. This will require

no change in the form of the particular conditions of equilibrium as

expressed by (19), (20), (22); but the number of single conditions

contained in (22) is of course less than if all the component sub-

stances were components of all the parts Whenever, therefore, each

of the different homogeneous parts of the given mass may be regarded

as composed of some or of all of the same set of substances, no one

of Avhich can be formed out of the others, the condition which (with

equality of temperature and pressure) is necessary and sufficient for

equilibrium between the different parts of the given mass may be

expressed as follows:
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The potential for each of the component substances must have a

constant value in all j)'irts of the gioen mass of which that substance

is an actual component, and have a, value not less than this in all

parts of ^ohich it is a jtossible comjjonent.

The number of equations aiForcled by these conditioiiH, after elimina-

tion of iJfj, J/2, . . . J/„, will be less than {n + 2) (k - 1) by the num-

ber of terms in (15) in which the variation of the form 6rn is either

necessarily nothinij or incapable of a negative value. The number of

variables to be determined is diminished by the same number, or, if

we choose, we may write an equation of the form m = for each of

these terms. ]>ut when the substance is a possible component of the

part concerned, there will also l)e a condition (expressed by ^ ) to

show whether the supposition that the substance is not an actual

component is consistent with equilibrium.

We will now suppose that the substances *S\, aSj, . . . 6'„ are not

all independent of each other, i. e., that some of them can be formed

out of others. We will first consider a very simple case. Let Sr^ be

composed of S^ and Sr, combined in the ratio of a to b, S^ and S^

occurring as actual components in some parts of the given mass, and

/iS'g in other parts, which do not contain S^ and 82 as separately

variable components. The general condition of equilibrium will

still have the form of (15) with certain of the terms of the form

IX 6m omitted. It may be written more briefly [(23)

:^'{t6if) -:^{pSv)-\-:^{/J,dm^)-\-^{;i2d^m.,). , .-^2:{/./„drn„)^0,

the sign i' denoting summation in regard to the diiferent parts of

the given mass. But instead of the three equations of condition,

2 dm 1
= 0, 2 6m 2 = 0, :2 6m ^

— 0, (24)

we shall have the two.
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For, although it may be that /z^', for example, is greater than J/^,

yet it can only be so when the following 6m ^' is incapable of a nega-

tive value. Hence, if (27) is satisfied, (2;3) must also be. Again, if

(23) is satisfied, (27) must also be satisfied, so long as the variation

of the quantity of every substance has the value in all the parts of

which it is not an actual component. But as this limitation does not

afiect the range of the possible values of ^ 6m^, 2 drn^, and '2 6m^,

it may be disregarded. Therefore the conditions (23) and (27) are

entirely equivalent, when (19), (20), (22) are satisfied. Now, by

means of the equations of condition (25), we may eliminate :^ dm^

and 2 6ni2 from (27), which becomes

- a3I,2 6m^-bM^^ 6rn^ + {a +b) M^:S 6m^^ 0, (28)

i. e., as the value of ^ 6m^ may be either positive or negative,

a M^ -^-bM^ — {a+ b) M^, (29)

which is the additional condition of equilibrium which is necessary

in this case.

The relations between the component substances may be less

simple than in this case, but in any case they will only affect the

equations of condition, and these may always be found without difii-

culty, i^nd will enable us to eliminate from the general condition of

equilibrium as many variations as there are equations of condition,

after which the coefficients of the remaining variations may be set

equal to zero, except the eoefiicients of variations which are incapable

of negative values, which coefficients must be equal to or greater

than zero. It will be easy to perform these operations in each par-

ticular case, but it may be intei-esting to see the form of the resultant

equations in general.

We will suppose that the various homogeneous parts are considered

as having in all n components, *S'i, S^, . . . /S„, and that there is no

restriction upon their freedom of motion and combination. But we

will so far limit the generality of the problem as to suppose that

each of these components is an actual component of some part of

the given mass.* If some of these components can be formed out of

others, all such relations can be expressed by equations such as

a(Ba+P ©;, + <^tc. =: 7c 3,+ A @,+ etc. (30)

where ©a, (Sj, ©i-, etc. denote the units of the substances S,„ S^,, Sf,, etc.,

* When we come to seek the conditions of equilibrium relating to the formation of

masses unUke any previously existing, we shall take up de novo the whole problem

of the equilibrium of heterogeneous masses enclosed in a non-conducting envelop,

and give it a more general treatment, vs^hich will be free from this hmitation.
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(that is, of certain of the substances S ^, So, . . . f^„,) and <-(-, fi, ;(-,

etc. denote nnmhers. These are not, it will be observed, equations

between abstract quantities, but the sign — denotes qualitative as

well as quantitative equivalence. We will suppose that there are

r independent equations of this character. The equations of con-

dition relating to the component substances may easily be derived

from these equations, but it will not be necessary to consider them

particularly. It is evident that they will be satisfied by any values

of the variations which satisfy equations (18); hence, the particular

conditions of equilibrium (19), (20), (22) must be necessary in this

case, and, if these are satisfied, the general equation of equilibrium

(15) or (2.3) will reduce to

J/j ^ 6m
J + 3I2 2 Sin,^ . . . -\- JI„ 2 (hn„^ 0. (31)

This will appear from the same considerations which were used in

regard to equations (23) and (27). Now it is evidently possible to

give to 2 Srn^, 2 Snii,^ 2 dm^., etc. values proportional to a, /J, — n,

etc, in equation (30), and also the same values taken negatively,

making 2 Sm =^ in each of the other terms ; therefore

a 31^ -f /i 31,, + etc. . . . - k 31, - X 31,,— etc. =^ 0, (32)

or,

a 31,+ p 31, + etc. = h 31,+ A 31, + etc. (33)

It will be observed that this equation has the same form and coeffi-

cients as equation (30), 31 taking the place of ©. It is evident that

there must be a similar condition of equilibrium for every one of the

r equations of which (30) is an example, which may be obtained sim-

ply by changing © in these equations into 3f. When these condi-

tions are satisfied, (31) will be satisfied with any possible values of

Sdm^, 2 Sm^, . . . 2 6111^. For no values of these quantities are

possible, except siich that the equation

{2 6m ,)(^, + {2 6m.,) ©^ . . . + (^' 6m,) ©„= (34)

after the substitution of these values, can be derived from the r equa-

tions like (30), by the ordinary processes of the reduction of linear

equations. Therefore, on account of the correspondence between (31)

and (34), and between the r equations like (33) and the r equations

like (30), tiie conditions obtained by giving any possible values to

the variations in (31) may also be derived from the r equations like

(33) ; that is, the condition (31) is satisfied, if the /• equations like

(33) are satisfied. Therefore the r equations like (33) are with

(19), (20), and (22) the equivalent of the general condition (15)

or (23).
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For fleterminiiig the state of a given mass when in equilibrium

and having a given volume and given energy or entropy, the condi-

tion of equilibrium affords an additional equation corresponding to

each of the r independent relations between the ti component sub-

stances. But the equations which express our knowledge of the

matter in the given mass will be correspondingly diminished, being

n — r in number, like the equations of condition relating to the

quantities of the component substances, which may be derived from

the former by differentiation.

Conditions relating to tlie possible Jb^ormation of Masses Unlike any

Previoush/ Existing.

The variations which we have hitherto considered do not embi'ace

every possible infinitesimal variation in the state of the given mass,

so that the particular conditions already formed, although always

necessary for equilibrium (when there are no other equations of con-

dition than such as we have supposed), are not always sufficient.

For, besides the infinitesimal vai'iations in the state and composition

of different parts of the given mass, infinitesimal masses may be

formed entirely different in state and composition from any initially

existing. Such parts of the whole mass in its varied state as

cannot be regarded as parts of the initially existing mass which

have been infinitesimally varied in state and composition, we will

call nev) parts. These will necessarily be infinitely small. As it is

more convenient to I'egard a vacuum as a limiting case of exti'eme

rarefaction than to give a special consideration to the possible for-

mation of empty spaces within the given mass, the term new parts

will be used to include anj^ empty spaces which may be formed,

when such have not existed initially. We will use De, Dr], Dv, Dm^,
Dm^, . . • D}n„ to denote the infinitesimal energy, entropy, and vol-

ume of any one of these new parts, and the infinitesimal quantities

of its components. The component substances /S\, Sg, . . . S„ must

now be taken to include not only the independently variable com-

ponents (actual or possible) of all parts of the given mass as initially

existing, but also the components of all the new parts, the possible

formation of which we have to consider. The character (i will be

used as before to express the infinitesimal variations of the quantities

I'elating to those parts which are only infinitesimally varied in state

and composition, and which for distinction we will call original parts,

including under this term the empty spaces, if such exist initially,

within the envelop bounding the system. As we may divide the

given mass into as many parts as we choose, and as not only the
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initial boundaries, but also the movements of these boundaries during

any variation in the state of the system are arl)iti'ary, we may so

define the parts wliieh we have called original, that we may consider

them as initially homogeneous and remaining so, and as initially con-

stituting the whole system.

The most general value of the energy of the whole system is

evidently

:^6€-\-:^D£, (35)

the first summation relating to all the original parts, and the second

to all the new parts. (Throughout the discussion of this pi'oblem, the

letter 6 or D following ^ will surticiently indicate whether the sum-

mation relates to the original or to the new parts.) Therefore the

general condition of equilibrium is

:2de->[- :^6e^0, (36)

or, if we substitute the value of 6e taken from equation (12), [(^V)

2De+^{txhj) - 2{pr3v)+ 2U.i,6», ,)+^{i,^6w.,) . . +2{i<„^hn:)^ 0.

If any of the substances S ^, S^^ . . . *S'„ can be formed out of others,

we will suppose, as before (see page 122), that such relations are

expressed by equations between the units of the different substances.

Let these be

^1 ®i + ^2 ®3 • • • + ^>n ©„ = I r equations. (38)

etc.
)

The equations of condition will be (if there is no restriction upon the

freedom of motion and composition of the components)

2 di] -f 2 By= 0, (39)

2 Sv + ^ Dv z=z 0, (40)

and n — r equations of the form

h^ {^dm^ + ^Dm^) -j-h^ {^(hn^ + ^Dm^ • • -1

+ K {2 Sm„ + JS" I)m„) =
j

tj {2Sm, +2Dm.^) +i.^ {^dm„ + 2 JDm^J . . \ (41)^

-f /„ {2 Sm„ + 2 1)m„) =
etc.

* In regard to the relation between the coefficients in (41) and those in (38), the

reader will easily convince liimself tliat the coefficients of any one of equations (41)

are such as would satisfy aU the equations (38) if substituted for S,, S.^, . . . S„- and

that this is the only condition which these coefficients must satisfy, except that the

n — r sets of coefficients shall be independent, i. e., shall be such as to form inde-

pendent equations ; and that this relation between the coefficients of the two sets of

equations is a reciprocal one.
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Now, using Lagrange's "method of multipliers,"* we will sub-

tract T {^^ di] -[ 21)!/) — P{2 6v + 2 D)j) from the iirst member
of the general condition of equilibrium (37), yand P being constants

of which the value is as yet arbitrary. We might proceed in the

same way with the remaining equations of condition, but we may
obtain the same result more simply in another way. We will first

observe that

{2 6m^ -f 2Dm^) ©, + {2 6m„ + 2D)n^) ©„ • • •

+ {2 6m„ + 2 Dm,,) ®„= 0, (42)

which equation would hold identically for any possible values of the

quantities in the parentheses, if for r of the letters ®i, 'B-^, • • • ®„ were

substituted their values in terms of the others as derived from equa-

tions (38). (Although (5 J, ©2, . . . ©„ do not represent abstract quanti-

ties, yet the operations necessary for the reduction of linear equations

are evidently ap])licable to equations (38).) Therefore, equation (42)

will hold true if for ©j, ©2? • • • "Sn we substitute n numbers which

satisfy equations (38). Let il/j, J/o, . . . M„ be such numbers, i. e.,

let

a^M^ + a^Jf.^ . . . + «„ 3f„ — 0, ^

b^M^ + b^M^ . . . -f *„ M„ = 0, 1 r equations, (43)

etc.
)

then
J/, {2 6m^-r2I)m^) + M2 {^dm^^^Bm^) . . .

+ J/„ {2 Sm„ + 2 Dm,,) = 0. (44)

This expression, in which the values of 11 — r of the constants M^, M2,

. . . M„ are still arbitrary, we will also subtract from the first mem-

ber of the general condition of equilibrium (37), which will then

become

2 De + 2 {t (J;/) - 2 {]> Sv) -f 2 {^ , (hn,) . . + 2 (yM„ (hn„)

— T2 67] + F2 8v - M^2dm^ . . . + M„ 2 6m„

- T2Dr]-^P2Dv -M^ 2Dm^ .. . ^3I„2Dm>.0. (45)

That is, having assigned to T, P, 31^, J/2, • • • -^n any values con-

sistent with (43), we may assert that it is necessary and sufficient for

equilibrium that (45) shall hold true for any variations in the state

of the system consistent with the equations of condition (39), (40),

(41). But it will always be possible, in case of equilibrium, to assign

such values to T, P, 31^, iHfg, . . 3f„, without violating equations (43),

* On account of the sign ^ in (3T), and because some of the variations are incapable

of negative values, the successive steps in the reasoning will be developed at greater

length than would be otherwise necessary.
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that (45) shall hold tnie for all variations in the state of the system

and in the quantities of the various substances composing it, even

though these variations are not consistent with the equations of con-

dition (39), (40), (41). For, when it is not possible to do this, it

must be possible by applying (45) to variations in the system not

necessarily restricted by the equations of condition (39), (40), (41) to

obtain conditions in regard to 1\ P, Jf,, M2, . . . M„, some of

which will be inconsistent with others or with equations (43). These

conditions we will represent by

.4^0, ^^0, etc., (46)

A, B^ etc. being linear functions of T, P, 31 1, J/g, . . 31,. Then it

will be possible to deduce from these conditions a single condition of

the form
aA+/3B+ etc, ^ 0, (47)

a, /3, etc. being positive constants, which cannot hold true consist-

ently with equations (43). But it is evident from the form of (47)

that, like any of the conditions (46), it could have been obtained

directly from (45) by applying this formula to a ceitain change in

the system (perhaps not restricted by the equations of condition (39),

(40), (41)). Now as (47) cannot hold true consistently with eqs. (43),

it is evident, in the first place, that it cannot contain T or P, there-

fore in the change in the system just mentioned (for which (45)

reduces to (47))

2 d?f + :^ 1)1}= 0, and :^ 60 + :2 Bv= 0,

so that the equations of condition (39) and (40) are satisfied. Again,

for the same reason, the homogeneous function of the first degree of

iHfj, Jfg, . . . 3f„ in (47) must be one of Avhich the value is fixed by
eqs. (43). But the value thus fixed can only be zero, as is evident

from the form of these equations. Therefore

(
2 dm

1 + 2Bm,).¥,+ (>; dm , -f- li' X>>/i, ) 31^ . . .

+ (
2 dm„ -{- 2 Bm„) 3/„~ (48)

for any values of J/,, 3^2 .. . 3f„ which satisfy eqs. (43), and
therefore

{2^Smj + 2 Bm^) (Bi+ {2dm2 + 2Bm2)(B2 •

+ {2 6m„ + 2 Bm„) ©„= (49)

for any numerical values of (S^, ^2, • • • ®„ which satisfy eqs. (38).

This equation (4D) will therefore hold true, if for r of the letters

(S , Sg, . . Bn we substitute their values in terms of the others

taken from eqs. (38), and therefore it will hold true when we use
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® J, (2 2, . . . ©„, as before, to denote the units of the various com-

ponents. Thus understood, the equation expresses that the values

of the quantities in the pai'entheses are such as are consistent with

the equations of condition (41). The change in the system, there-

fore, which we are considering, is not one which viohites any of the

equations of condition, and as (45) does not hokl true for this change,

and for all values of T, P, M^, M.^, . . . M^ which are consistent

with eqs, (43), the state of the system cannot be one of equilibrium.

Therefore it is necessary, and it is evidently sufficient for equilibrium,

that it shall be possible to assign to T^ P, 31^, J/gi • • • ^^n snch values,

consistent with eqs. (43), that the condition (45) shall hold true for

any change in the system irrespective of the equations of condition

(39), (40), (41).

For this it is necessary and sufficient that

t=l\ p = P, (50)

fj.^
Sm.^^ M^ dm ^,

/.I2 (^»t2=^ ^^2 ^'^^21 ' • Mn^f^n^ M„Sni„ (51)

for each of the original parts as previously defined, and that

Jje ~ TI))j-\-PI>v - J/, Dm^ - M^Dn,^ ... - M,,Drn^^ 0, (52)

for each of the new parts as previously defined. If to these condi-

tions we add equations (43), we may treat 1\ P, Jf^, J/g? • • • -^n

simply as unknown quantities to be eliminated.

In regard to conditions (51), it will be observed that if a sub-

stance, 'S'j, is an actual component of the part of the given mass

distinguished by a single ac<'ent, 6m ^' may be either positive or

negative, and we shall have /<i' = ^f^ ; but if S^ is only a possible

component of that part, 6in^' will be incapable of a negative value,

and we will have /^/^ J/,.

The formulae (50), (51), and (43) express the same particular con-

ditions of equilibrium which we have before obtained by a less gen-

eral process. It remains to discuss (52). This formula must hold

true of any infinitesimal mass in the system in its varied state which

is not approximately homogeneous with any of the surrounding

masses, the expressions Be, />//, Bv, Bm ^, Bm^, . . . B?n„ denoting

the energy, entropy, and volume of this infinitesimal mass, and the

quantities of the substances A'j, S^, . . *S'„ which we regard as com-

posing it, (not necessarily as indepenAently variable components).

If there is more than one way in which this mass may be considered

as composed of these substances, we may choose whichever is most

convenient. Indeed it follows directly from the relations existing

between J/j, M^, . . . and M„ that the result would be the same in
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any case. Now, if we assume that the vahies of Z><^, />//, 7>y, Dm^.,

Dm.^, . . . Dnin are proportional to the A^alues of f, //, t;, mj, y/^^, . . .

w„ for any large homogeneous mass of similar composition, and of

the same temperature aud pressure, the condition is equivalent to

this, that

f _ T)i^Pv - J/, w
1
-J/2 ///^ • . • - J/, '''n ^ (53)

for any large homogeneous body which can be formed out of the

substances 8^,82 . . . 'S'„.

But the validity of this last transformation cannot be admitted

without considerable limitation. It is assumed that the relation

between the energy, entropy, volume, and the quantities of the dif-

ferent components of a very small mass surrounded by substances

of different composition and state is the same as if the mass in ques-

tion formed a ])ait of a large homogeneous body. We started,

indeed, with the assumption that we might neglect the part of the

energy, etc., depending upon the surfaces separating heterogeneous

masses. Now, in many cases, and for many purposes, as, in general,

when the masses are large, such an assumption is quite legitimate,

but in the case of these masses which are formed within or among

substances of different nature or state, and which at their first forma-

tion must be infinitely small, the same assumption is evidently

entirely inadmissible, as the surfaces must be regarded as infinitely

large in proportion to the masses. We shall see hereafter what

modifications are necessary in our formulge in order to include the

parts of the energy, etc., which are due to the surfaces, but this will

be on the assumption, which is usual in the theory of capillarity,

that the radius of curvature of the surfaces is large in proportion to

the radius of sensible molecular action, and also to the thickness of

the lamina of matter at the surface which is not (sensibly) homoge-

neous in all respects with either of the masses which it separates.

But although the formulae thus modified will apply with sensible

accuracy to masses (occurring within masses of a diffei'ent nature)

much smaller than if the terms relating to the surfaces were omitted,

yet their failure when applied to masses infinitely small in all their

dimensions is not less absolute.

Considerations like the foregoing might render doubtful the validity

even of (52) as the necessary and sufiicient condition of equilibrium

in regard to the formation of masses not apprpximately homogeneoiis

with those previously existing, when the conditions of equilibrium

between the latter are satisfied, unless it is shown that in establishing

this formula there have been no quantities neglected relating to the

Trans. Conn. Acad., Vol. III. 17 October, 1ST5.



130 J. W. iJribhs—EnuiUbriura of Ileteroyeaeous Substances.

mutual action of the new and the original parts, which can affect the

result. It will be easy to give such a meaning to the expressions

De, Dtf, Dv, Dm^, Dnio^ . . . I>m„ that this shall be evidently the

case. It will be observed that the qtiantities represented by these

ex])ressions have not been perfectl^^ defined. In the first place, we

have no right to assume the existence of any surface of absolute dis-

continuity to divide the new parts from the original, so that the

position given to the dividing surface is to a certain extent arbitrary.

Even if the surface separating the masses wei-e determined, the

energy to be attributed to the masses separated would be partly

arbitrary, since a part of the total energy depends upon the mutual

action of tlie two masses. We ought perhaps to consider the case

the same in regard to the entropy, although the entropy of a system

never depends upon the mutual relations of parts at sensible dis-

tances from one another. Now the condition (52) will be valid if

the quantities De, iJi], Do, Dra^, ^'"2 • • • -^"^n '^^'^ ^^^^ defined that

none of tlie assumptions which have been made, tacitly or otherwise,

relating to the formation of these new parts, shall be violated. These

assumptions are the following:—that the relation between the varia-

tions of the enei'gy, entropy, volume, etc., of any of the original parts

is not affected by the vicinity of the new parts; and that the energy,

entropy, volume, etc., of the system in its varied state are correctly

represented by tbe sums of the energies, entropies, volumes, etc., of

the vai'ious parts (original and new), so far at least as any of these

quantities are determined or affected by the formation of the new

parts. We will suppose De, TJi], Dv, Dm ^, Dm^ . . . Dm,, to be

so defined that these conditions shall not be violated. This may be

done in various ways. We may suppose that the position of the

surfaces separating the new and the original parts has been fixed in

any suitable way. This will detei-mine the space and the matter

belonging to the parts separated. If this does not determine the

division of the entropy, we may supi)Ose this determined in any suit-

able arbitrary way. Thus we may suppose the total enei'gy in and

about any new part to be so distributed that equation (12) as applied

to the original parts shall not be violated by the formation of the

new parts. Or, it may seem more simple to suppose that the

imaginary surface which divides any new part fi-om the original is

so placed as to include all the matter which is affected by the

vicinity of the new formation, so that the part or parts which we

regard as original may be left homogeneous in the strictest sense,

including uniform densities of energy and entropy, up to the very
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bounding surface. The lioniogeneity of the new parts is of no con-

sequence, as we have made no assumption in that respect. It may

be doubtful whether we can consider the new parts, as thus bonnded,

to be infinitely small even in their earliest stages of development. But

if they are not infinitely small, the otdy way in which this can affect

the validity of our formuhe will be tliat in virtue of the equations of

condition, i. e., in virtue of the evident necessities of the case, finite

variations of the energy, entropy, volume, etc., of the original })arts

will be caused, to which it might seem that equation (12) would not

apply. But if the natui-e and state of the mass be not varied, equa-

tion (12) will hold true of finite differences. (This appears at once,

if we integrate the equation under the above limitation.) Hence,

the equation will hold true for finite differences, provided that the

nature and state of the mass be infinitely little varied. For the dif-

ferences may be considered as made up of two parts, of whicJi the

first are for a constant nature and state of the mass, and the second

are infinitely small. We may therefore regard the new parts to be

bounded as supposed without prejudice to the validity of any of our

results.

The condition (52) understood in either of these ways (or in

others which will suggest themselves to the reader) will have a per-

fectly definite meaning, and will be valid as the necessary and suffi-

cient condition of equilibrium in regard to the formation of new

parts, when the conditions of equilibrium in regard to the original

parts, (50), (51), and (43), are satisfied.

In regard to the condition (53), it may be shown that with (50),

(51), and (43) it is always sufficient for equilibrium. To pi-ove this,

it is only necessary to show that when (50), (51), and (43) are satis-

fied, and (52) is not, (53) will also not be satisfied.

We will first observe that an expression of the form

_ £ + T}/ - Po -f M^ m^ + 31^ m^ . . . + M„m„ (54)

denotes the work obtainable by the formation (by a reversible pro-

cess) of a body of which f, //, v, m^, vy/g, . . . m„ are the energy,

entropy, volume, and the quantities of the components, within a

medium having the pressure P, the temperature 7\ and tiie potentials

ilfj, M2, . . M„. (The medium is supposed so large that its prop-

erties are not sensibly altered in any part by the formation of the

body.) For e is the energy of the body formed, and the remaining

terms represent (as may be seen by applying equation (12) to the

medium) the decrease of tlie energy of the medium, if, after the
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formation of the body, the joint entropy of the medium and the

body, their joint volumes and joint quantities of matter, were the

same as the entropy, etc., of the medium before the formation of the

body. This consideration may convince us that for any given finite

vahies of v and of T, P, M.^ , etc. this expivssion cannot be infinite

when f, ;/, //ij, etc. are determined by any real body, whether homo-

geneous or not, (but of the given volume), even when T^ P, Jif^, etc.

do not represent the values of the temperature, pressure, and poten-

tials of any real substance. (If the substances tS'^, a>'.,, . . . S„ are

all actual components of any homogeneous part of the system of

which the equilibrium is discussed, that part will afibrd an example

of a body having the temperature, pressure, and potentials of the

medium supposed.)

Now by integrating equation (12) on the supposition that the

nature and state of the mass considered remaiii unchanged, we obtain

the equation

£= t7/ ~-pv-\- /i^m^-\- /.(^m^ . . . +//n"?r. (55)

which will hold true of any homogeneous mass whatever. Therefore

for any one of the original pai-ts, by (50) and (51),

f- 7'// + Pw- J/, »/^ - J/2?«2 • • • —M„n>^=zO. (56)

If the condition (52) is not satisfied in regard to all possible new

parts, let i\^be a new part occurring in an original part 0, for which

the condition is not satisfied. It is evident that the value of the

expression

e — Ti] + Py - M^ m^ — J/^ m.2 ... — M„m„ (57)

applied to a mass like including some very small masses like iV^,

will be negative, and Avill decrease if the number of these masses like

JV is increased, until there remains within the whole mass no portion

of any sensible size without these masses like iV, which, it will be

remembered, have no sensible size. But it cannot decrease without

limit, as the value of (54) cannot become infinite. Now we need not

inquire wliether the least value of (57) (for constant values of T, P,

J/j, il/2, . . . M„) would be obtained by excluding entirely the

mass like 0, and filling the whole space considered with masses like

iV^ or whether a certain mixture would give a smaller value,—it is

certain that the least possible value of (57) per unit of volume, and

that a negative value, will be realized by a mass having a certain

homogeneity. If the new part iVfor which the condition (52) is not

satisfied occurs between two different original jjarts 0' and O", the

ai'gument need not be essentially varied. We may consider the
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value of (57) lor a body consisting of masses like O' and 0" sepa-

rated by a lamina N. This value may be decreased by increasing

the extent of this lamina, which may be done within a given volume

by giving it a convoluted form ; and it will be evident, as before,

that the least possible value of (57) will be lor a homogeneous mass,

aiul that the value will be negative. And such a mass will be not

merely an ideal combination, but a body capable of existing, for as the

expression (57) has for this mass in the state considered its least pos-

sible value per unit of volume, the energy of the mass included in a

unit of volume is the least possible for the same matter with the

same entropy and volume,—hence, if confined in a non-conducting

vessel, it will be in a state of not unstable equilibrium. Therefore

when (50), (51), and (43) are satisfied, if the condition (52) is not sat-

isfied in regard to all possible new parts, there will be some homo-

geneous body which can be formed out of the substances aS'j, iS^, , . .

S„ which will not satisfy condition (53).

Therefore, if the initially existing masses satisfy the conditions

(50), (51), and (43), and condition (53) is satisfied by every homoge-

neous body which can be formed out of the given matter, there will

be equilibrium.

On the other hand, (53) is not a necessary condition of equilibrium.

For we may easily conceive that the condition (52) shall hold true

(for any very small formations within or between any of the given

masses), while the condition (53) is not satisfied (for all large masses

formed of the given matter), and experience shows that this is very

often the case. Supersaturated solutions, superheated w%ater, etc.,

are familiar examples. Such an equilibrium will, however, be practi-

cally unstalde. By this is meant that, although, strictly speakino-^

an infinitely small disturbance or change may not be sufficient to

destroy the equilibrium, yet a very small change in the initial state,

perhaps a circumstance which entirely escapes our powers of percej)-

tion, will be sufficient to do so. The presence of a small portion of

the substance for which the condition (53) does not hold true, is suffi-

cient to produce this result, when this substance forms a variable

component of the original homogeneous masses. In other cases,

when, if the new substances are formed at all, different kinds must be

formed simultaneously, the initial presence of the different kinds,

and that in immediate proximity, may be necessary.

It will be observed, that from (56) and (53) we can at once obtain

(50) and (51), viz., by applying (53) to bodies diftering infinitely

little from the various homogene<ms ] tarts of the given mass. There-
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fore, the condition (56) (relating to the various homogeneous parts

of the given mass) and (53) (relating to any bodies which can be

formed of the given matter) with (43) are always sufficient for equi-

librium, and always necessary for an equilibrium which shall be

practically stable. And, if we choose, we may get rid of limitation

in regard to equations (43). For, if we compare these equations

with (38), it is easy to see that it is always immaterial, in applying

the tests (56) and (53) to any body, how we consider it to be com-

posed. Hence, in applying these tests, we may consider all bodies to

be composed of the ultimate components of the given mass. Then

the terms in (56) and (53) which relate to other components than

these will vanish, and we need not regard the equations (43). Such

of the constants Jij, M.^ . . . M„ as relate to the ultimate compo

ponents, may be regarded, like T anc\ J\as unknown quantities sub-

ject only to the conditions (56) and (53).

These two conditions, which are sufficient for equilibrium and

necessary for a practically stable equilibrium, may be united in one,

viz., (if we choose the ultimate components of the given mass for

the component substances to which m^, m^, . . . m„ relate) that it

shall be possible to give such values to the constants T, F, M^, M^.,

M„ in the expression {b1) that the value of the expression for

each of the homogeneous parts of the mass in question shall be as

small as for any body whatever made of the same components.

Effect of Solidity of any Part of the given Mass.

If any of the homogeneous masses of which the equilibrium is in

question are solid, it will evidently be proper to treat the proportion

of their components as invariable in the application of the criterion

of equilibrium, even in the case of conqiounds of variable proportions,

i e. even when bodies can exist which are compounded in pro-

portions infinitesimally varied from those of the solids considered.

(Those solids which are capable of absorbing fluids form of course an

exception, so far as their fluid components are concerned.) It is true

that a solid may be increased by the formation of new solid matter

on the surface where it meets a fluid, which is not homogeneous with

the previously existing solid, but such a deposit will properly be

treated as a distinct part of the system, (viz., as one of the parts

which we have called new). Yet it is worthy of notice that if a homo-

geneous solid which is a compound of variable proportions is in

contact and equilibrium with a fluid, and the actual components of

the solid (considered as of variable composition) are also actual com-
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ponents of the fluid, and the condition (53) is satisfied in regard to

all bodies which can be formed out of the actual components of the

fluid, (which will always be the case unless the fluid is practically-

unstable,) all the conditions will hold true of the solid, which would
be necessary for equilibrium if it were fluid.

This follows directly from the principles stated on the })recedino-

pages. For in this case the value of (57) will be zero as determined

either for the solid or for the fluid considered with reference to their

ultimate components, and will not be negative for any body whatever
which can be formed of these components; and these conditions are

sufticient for equilibrium independently of the solidity of one of the

masses. Yet the point is perhaps of sufticient importance to demand
a more detailed consideration.

Let *S„, . . . S,, be the actual components of the solid, and A',,, . . . S^

its possible components (w^hich occur as actual components in the

fluid) ; then, considering the proportion of the components of the

solid as variable, we shall have for this body by equation (12)

cW= t ill]' — p dv' -\- //„' dmJ , . . -f- fuj dmj

+ f.1,,' dm,,' . . . -i- fx^: dm.,:. (58)

By this equation the potentials //,/ . . . //^.' are perfectly defined.

But the difierentials dm,,' . . . dm^.', considered as independent, evi-

dently express variations which are not possible in the sense required

in the criterion of equilibrium. We might, however, introduce them
into the general condition of equilibrium, if Ave should express the

dependence between them by the proper equations of condition.

But it will be more in accordance with our method hitherto if we
consider the solid to have only a single independently variable com-

ponent S^, of which the nature is represented by the solid itself. We
may then write

de' =t' dt/ — p' dv' -\- t-ij d}uj. (59)

In regai'd to the relation of the potential /// to the potentials occur-

ring in equation (58) it will be observed, that as we have by integra-

tion of (58) and (59)

^'

=

i' '/' - p' "' + /'/ ni,! . . . + //,; 1)1,;, (60)

and e'= t' // - p' v> + //,' mj
; (61)

therefore //^' mj = fij mj . . . + //,/ m,'. (62)

Now, if the fluid has besides S„ . . . S^ and S,, . . . S^. the actual

components S, . . . iS„, we may write for the fluid
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6e" =z t" (h/" — p" Sv" +,/'„" (^nta' . • • -\-l-'J' ^^",i"

-\- l-i,," din,," . . . -^ ji,:' Sm^:'-\-i.i,'' 6)11," . . . + l^i„" (hv„'\ ((53)

and a8 by supposition

mj 2r = m,,' '£„ . . . + ill,' 2„ (64)

equations (43), (50), and (51) will give in this case on elimination of

the constants T, P, etc.,

t' = t", p =p\ (65)

and
m; i.>;

— u,,; }i:'
. . . +»*; //„". (66)

Equations (65) and (66) may be regarded as expressing the condi-

tions of equilibi-ium between the solid and the fluid. The last con-

dition may also, in virtue of (62), be expressed by the equation

m,///,,' . . . -\-iii,l f.1,1
:=zm-^ iA„" . . . -j-inj p{J'. (67)

But if condition (53) liolds true of all bodies which can be formed

of S„ . . . S,„ *S',,, . . . aS'x., S/ . . . jS„, we may write for all such bodies

6 — t" )/ -f-
p" 11 — //„" nt„ ... — //,/' rn,j — ///' m,,

. . . — /V'??J^. — ///'w?, . . . )ij' m„^ 0. (68)

(In applying this formula to various bodies, it is to be observed that

only the values of the unaccented letters are to be deterraiued by

the different bodies to which it is applied, the values of the accented

letters being already determined by the given fluid.) Now, by (60),

(65), and (67), the value of the first member of this condition is zero

Avhen applied to the solid in its given state. As the condition must

hold true of a body differing infinitesimally from the solid, we shall

have

(It — t" di/ -{-})" dv' — f.i,i' diitj . . . f.1,'/ dm,j

— /<//' dm,' ... — ///' diiti! ^ 0, (69)

or, by equations (58) and (65),

{l-ij— Mc") dnij . . . -{- {i-ij — ;j,'') d)iij

+ (/'//-/'/,") dm,' . . . + (/<,'-//,") dm,'^ 0. (70)

Therefoi'e, as these differentials are all independent,

/jj = /u,;', . . . /Y,; =;/,;', M,.'= Hi!\ Mt,'^ /V; (71)

which with (65) are evidently the same conditions which we would

have obtained if we had neglected the fact of the solidity of one of

the masses.
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We have su2)posed the solid to be homogeneous. But it is evident

that in any case the above conditions must hold for every separate

point where the solid meets the fluid. Hence, the temperature and

pressure and the potentials for all the actual components of the solid

must have a constant value in the solid at the surface where it meets

the fluid. Now, these quantities are determined by the nature and

state of the solid, and exceed in number the independent variations

of which its nature and state are capable. Hence, if we reject as

improbable the supposition that the nature or state of a body can

vary without affecting the value of any of these quantities, we may
conclude that a solid which varies (continuously) in nature or state

at its surface cannot be in equilibrium with a stable fluid which con-

tains, as independently variable components, the variable components

of the solid. (There may be, however, in equilibrium mth the same

stable fluid, ^finite number of different solid bodies, composed of the

variable components of the fluid, and having their nature and state

completely determined by the fluid.)*

Effect of Additional Equations of Condition.

As the equations of condition, of which we have made use, are

such as always apply to matter enclosed in a rigid, impermeable, and

non-conducting envelop, the particular conditions of equilibrium

which we have found will always be sufficient for equilibrium. But

the number of conditions necessary for equilibrium, will be dimin-

ished, in a case otherwise the same, as the number of equations

of condition is increased. Yet the problem of equilibrium which has

been treated will sufficiently indicate the method to be pursued in all

cases and the general nature of the results.

It will be observed that the position of the various homogeneous

parts of the given mass, which is otherwise immaterial, may deter-

mine the existence of certain equations of condition. Thus, when

different parts of the system in which a certain substance is a vari-

able component are entirely separated from one another by parts of

which this substance is not a component, the quantity of this sub-

stance will be invariable for each of the parts of the system which are

thus separated, which will be easily expressed by equations of condi-

tion. Other equations of condition may arise from the passive forces

(or resistances to change) inherent in the given masses. In the prob-

* The solid has been considered as subject only to isotropic stresses. The effect of

other stresses will be considered hereafter.

Trans. Conn. Acad., Vol. III. 18 Novejiber, 1875.
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lem which we are next to consider there are equations of condition

due to a cause of a different nature.

Effect of a Diaphragm {Equilibrmm <f Osmotic Forces).

If the given mass, enclosed as before, is divided into two parts,

each of which is homogeneous and fluid, by a diaphragm which is

capable of supporting an excess of pressure on either side, and is per-

meable to some of the components and impermeable to others, we

shall have the equations of condition

6v'=0, 6v"=Qi, (73)

and for the components which cannot pass the diaphragm

67)1^=0, dmj'=0, 6mi;=0, 6m,''=0, etc., (74)

and for those which can

Sm/ + drn,''=. 0, doi/ -f 6m/' = 0, etc. (75)

With these equations of condition, the general condition of equilib-

rium (see (15)) will give the following particular conditions:

t' = t", (76)

and for the components which can pass the diaphragm, if actual com-

ponents of both masses,

1.1,! =11,!', ///=//;", etc., (77)

biit not p'= p",

nor /.i,!=/.i„", /,<j'= /-/,,", etc.

Again, if the diaphragm is permeable to the components in certain

proportions only, or in proportions not entirely determined yet sub-

ject to certain conditions, these conditions may be expressed by

equations of condition, which will be linear equations between diti^\

6m.,', etc., and if these be known the deduction of the particular con-

ditions of equilibrium will present no difficulties. We will however

observe that if the components S^, /S2, etc. (being actual components

on each side) can pass the diaphragm simultaneously in the propor-

tions a , «25 ^^^- (^vithout other resistances than such as vanish with

the velocity of the current), values proportional to «j, a^, etc. are

possible for 6i/i^', 6m J, etc. in the general condition of equilibrium,

6m, " 6m o", etc. having the same values taken negatively, so that

we shall have for one particular condition of equilibrium

aj yUj'+ «2 /'2' + «tc. = «! /f ," + a2 //2"+ etc. (78)

There will evidently be as many independent equations of this form
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as t.liere are independent combinations of the elements whicli can

pass the diaphragm.

These conditions of equilibrium do not of course depend in any

way upon the supposition that the volume of each fluid mass is kept

constant, if the diaphragm is in any case supposed immovable. In

fact, we may easily obtain the same conditions of equilibrium, if we

suppose the volumes variable. In this case, as the equilibrium must

be preserved by forces acting upon the external surfaces of the fluids,

the variation of the energy of the sources of these forces must appear

in the general condition of equilibrium, which will be

di:'-\- (U" + I" (5v' + P" dv" ^ 0, (79)

P' and P" denoting the external forces per unit of area. (Compare

(14).) From this condition we may evidently derive the same

internal conditions of equilibrium as before, and in addition the

external conditions
p' = r, p" = F". (80)

In the preceding paragraphs it is assumed that the permeabilit}'^ of

the diaphragm is perfect, and its impermeability absolute, i. e., that it

ofiers no resistance to the passage of the components of the fluids in

certain proportions, except such as vanishes with the velocity, and
that in other proportions the components cannot pass at all. How
far these conditions are satisfied in any particular case is of course to

be determined by experiment.

If the diaphragm is permeable to all the n components without

restriction, the temperature and the potentials for all the components

must be the same on both sides. Now, as one may easily convince

himself, a mass having n components is capable of only?i + l inde-

pendent variations in nature and state. Hence, if the fluid on one

side of the diaphragm remains without change, that on the other side

cannot (in general) vary hi nature or state. Yet the pressure will

not necessarily be the same on botli sides. For, although the pres-

sure is a function of the temperature and the n potentials, it may be

a many-valued function (or any one of several functions) of these

variables. But when the pressures are difierent on the two sides,

the fluid which has the less pressure wdll be practicalhj unstable., in

the sense in which the term has been used on page 133. For

f" _ ^''^i"+yu"— yu/'m/'— //^''^a" . . . — //„"/;/„" = 0, (81)

as appears from equation (12) if integrated on the supposition that

the nature and state of the mass remain unchanged. Therefore, if

p' <p" while t^ ^^t"., ;(j'=;/i", etc.,



140 J. W. Gihbs—Equilihrium of Heterogeneous Snhstances.

e" — t' ij" -\-2)' v" — ).i^' m^" — j.io' n't'2" • • • — /'n' »>'n"<0. (82)

This relation indicates the instability of tlie fluid to Avhicli the single

accents refer. (See page 133.)

But independently of any assumption in regard to the permeability

of the diaphragm, the following relation will hold true in any case in

which each of the two fluid masses may be regarded as uniform

throughout in nature and state. Let the character d be used with

the variables which express the nature, state, and quantity of the

fluids to denote the increments of the values of these quantities actu-

ally occurring in a time either finite or infinitesimal. Then, as the

heat received by the two masses cannot exceed t'mf +t" d?/', and as

the increase of their energy is equal to the diflTerence of the heat

they receive and the work they do,

Dt' -(- Ttt" ^t'Di/ + t"r)>/'— 2)'vv' — p"Tni", (83)

i.e., by (12),

//,' Dm/ -\- Ml" ^»h" + /^2' i^'^'s' + /^2" D^'s" + etc. ^ 0, (84)

or
(//," — ///) i>m,"-|- i/io" - Ms) i>"'2"+ etc. to. (85)

It is evident that the sign = holds true only in the limiting case in

which no motion takes place.

DEFINITION AND PROPERTIES OF FUNDAMENTAL EQUATIONS.

Tlie solution of the problems of equilibrium which we have been

considering has been made to depend upon the equations which

express the relations between the energy, entropy, volume, and the

quantities of the various components, for homogeneous combinations

of the substances which are found in the given mass. The nature of

such equations must be determined by experiment. As, however, it

is only differences of energy and of entropy that can be measured, or

indeed, that have a physical meaning, the values of these quantities

are so far arbitrary, that we may choose independently for each

simple substance the state in which its energy and its entropy are

both zero. The values of the energy and the entropy of any com-

pound bodv in any particular state will then be fixed. Its energy

will be the sum of the work and heat expended in bringing its com-

ponents from the states in which their energies and their entropies

are zero into combination and to the state in question ; and its

entropy is the value of the integral / — for any reversible process
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by which that change is effected [dQ denoting an element of the

heat communicated to the matter thus treated, and t the tempeiature

of the matter receiving il). In the determination both of the energy

and of the entropy, it is understood that at the close of the process,

all bodies which have been used, other than those to which the deter-

minations relate, have been restored to their original state, with the

exception of the sources of the work and heat expended, which must

be used only as such sources.,

We know, however, a priori, that if the quantity of any homoge-

neous mass containing n independently variable components varies

and not its nature or state, the quantities f, ?/, v, m,, mg, . . . m„ will

all vary in the same proportion ; therefore it is sufficient if we learn

from experiment the relation between all but any one of these quan-

tities for a given constant value of that one. Or, we may consider

that we have to learn from experiment the relation subsisting

between the 7i 4- 2 ratios of the n -{• 'i quantities f, ij, v, m^, rn^,

. . . m^. To fix our ideas we may take for these ratios -, -, —^,
—-,

etc., that is, the separate densities of the components, and the ratios

- and -, which may be called the densities of energy and entropy.

But when there is but one component, it may be more convenient to

choose —, — , — as the three variables. In any case, it is only a func-
ni in m

tion of w + 1 independent variables, of which the form is to be deter-

mined by experiment.

Now if f is a known function of //, w, m^, m^, . . . »?„, as by equa-

tion (12)

dE=Lt di] — pdv + ^^ dni^ + /1 2 dni2 . . . + /<„dni„, (86)

t, p, pi-i, 1^21 • • /^'n ^'"^ functions of the same variables, which may
be derived from the original function by differentiation, and may
therefore be considered as known functions. This will make n -\- 3

independent known relations between the 2n + 5 variables, e, ;/, v

w?j, mg, . . . m„, t,p, yUj, Uo, . . . //„. These are all that exist, for

of these variables, n + 2 are evidently independent. Now upon

these relations depend a very large class of the properties of the

compound considered,—we may say in general, all its thermal,

mechanical, and chemical properties, so far as active tendencies are

concerned, in cases in which the form of the mass does not require

consideration. A single equation from which all these relations may
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be deduced we will call a fundamental equation for the substance in

question. We shall hereafter consider a more general form of the fun-

damental equation for solids, in which the pressure at any point is not

supposed to be the same in all directions. But for masses subject only

to isotropic stresses an equation between £, ;/, v, m^,m„, . . . »/„ is

a fundamental equation. Tliere are other equations which possess

this same property.*

Let
t=:e-t ;/, (87)

then by differentiation and comparison with (86) we obtain

(If = — //dt — pdv + //, dm^ -|- ^2 f^»'^2 • • +/'f.c?>yi„. (88)

If, then, //' is known as a function of t, v, m ^^ ni.^, . . . m„, we can

find 1/, p, Ml, /'}, • /'n ill terms of the same variables. If we then

substitute for //' in our original equation its value taken from eq. (87),

we shall have again n -f- 3 independent relations between the same

2n -\- 5 variables as before.

Let
X=e+pv, (89)

then by (86),

dx — tdif + V dp + /<! (7m
J
+ /'g ^^'"2 • • • + /'« ^^"^n- (90)

If, then, X be known as a function of ?/, p, m^, tn^, . . . ?;?„, we can

find t, V, /^j, /.i^, . . . //„ in terms of the same variables. By elimi-

nating Xi we may obtain again n + 3 independent relations between

the same 2n + 5 variables as at first.

Let
K = s - t,j +pv, (91)

then, by (86)

d'Q=~- i]dt -\- V dp -{•
/^i dm^ -f- j-i2dm„ . . . -f- /'„f?wv (92)

If, then, 'C, is known as a function of #, p., m^, m.^, . . . »»„, we can

* M. Massieu (Comptes Rendus, T. Ixix, 1869, p. 858 and p. 1057) has shown

how all the properties of a fluid " which are considered in thermodynamics" may be

deduced from a single function, which he calls a characteristic function of the fluid

considered. In the papers cited, he introduces two different functions of this kind

;

viz., a function of the temperature and volume, which he denotes by ip, the value of

— e + tr/ — tp

which in our notation would be 7 or —7—
;
and a function of the temperature

and pressure, which he denotes by rp', the value of which in our notation would be

p _i, y« jj'y — L

or -7-. In both cases he considers a constant quantity (one kilogram)
t t

of the fluid, which is regarded as invariable in composition.



+ yWn ^n„,
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the subscript numerals refer, (but not excluding the case in which

// = 1 and the composition of the body is invariable,) there is a rela-

tion between the quantities enumerated in any one of the above sets,

from which, if known, with the aid only of general principles and

relations, we may deduce all the i-elations subsisting for such a mass

between the quantities 6, //-, j, i:, //, y, ni^^ m.^, . . . iii„, t, jy, ji^, pi.^,

. . . i-i„. It will be observed that, besides the equations which

define ^', j, and c, thei-e is one finite equation, (93), which subsists

between these q^^antities independently of the form of the fundamental

equation.

Other sets of quantities might of course be added which possess

the same property. The sets (100), (101), (102) are mentioned on

account of the important properties of the quantities i/\ j, 'Q, and

because the equations (88), (90), (92), like (86), afford convenient

definitions of the potentials, viz.,

;,,=(*) =(m =im =(/L) (104)

etc., where the subscript letters denote the quantities which remain

constant in the differentiation, m being written for brevity for all the

letters m^, r/ig, . • . }n„ except the one occurring iu the denominator.

It will be observed that the quantities in (103) are all independent

of the quantity of the mass considered, and are those which must, in

general, have the same value in contiguous masses in equilibrium.

On the quantities ip, x, 'i-

The quantity //' has been defined for any homogeneous mass by the

equation
//' — € ~ ttj. (105)

between

with one between

As. by (86),

e, ?7, «, m,, m2, . . . m„

e, t, V, m,, m.2, . . . m„.

^= il) •

the second equation may evidently be derived from the first. But the first equation

cannot be derived from the second; for an equation between

e> (^) ,
V, TO,, m,, . . . TO„

is equivalent to one between

ldv\

[del 1 ^. ^' "^M ™2! • • • ^n-
' vm

which is evidently not sufficient to determine the value of // in terms of the other

variables.
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We may extend this definition to any material system whatever

which has a uniform temperature throughout.

If we compare two states of the system of the same temperature,

we have

f-,l"=e-e''-t(v'~>j"). (106)

If we suppose the system brought from the first to the second of

these states without change of temperature and by a reversible pro-

cess in which W is the work done and Q the heat received by the

system, then
e' - t"-W- Q, {101)

and t{7i" ~ ]/) = Q. (108)

Hence

f-f' = W', (109)

and for an infinitely small reversible change in the state of the

system, in which the temperature remains constant, we may write

-dip = dW. (110)

Therefore, — //' is the force function of the system for constant

temperature, just as — £ is the force function for constant entropy.

That is, if we consider //' as a function of the temperature and the

variables which express the distribution of the matter in space, for

every different value of the terapei-ature — //' is the diffei-ent force

function required by the system if maintained at that special

temperature.

From this we may conclude that when a system has a uniform

temperature throughout, the additional conditions which are necessary

and sufficient for equilibrium may be expressed by

W).^o.* (Ill)

* This general condition of equilibrium might be used instead of (2) in such prob-

lems of equiUbrium as we have considered and others which we shall consider here-

after with evident advantage in respect to tlie brevity of the formulae, as the limitation

expressed by the subscript < in (111) applies to every part of the system taken sepa-

rately, and diminishes by one the number of independent variations in the state of

these parts which we have to consider. The more cumbersome course adopted in this

paper has been chosen, among otlier reasons, for the sake of deducing all the particular

conditions of equilibrium from one general condition, and of having the quantities

mentioned in this general condition such as are most generally used and most simply

defined
; and because in the longer formulas as given, the reader will easily see in each

case the form which they would take if we should adopt (111) as the general condi-

tion of equilibrium, which would be in effect to take the thermal condition of equilibrium

for granted, and to seek only the remaining conditions. For example, in the problem

treated on pages 116 ff., we would obtain from (111) by (88) a condition precisely like

(15), except that the terms tSri', t^r)", etc. would be wanting.

Trans. Conn. Acad., Vol. III. 19 January, 1876.
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When it is not possible to bring the system from one to the other

of the states to which //;' and '/;" rehite by a reversible process without

altering the temperature, it will be observed that it is not necessary

for the validity of (107)-(109) that the temperature of the system

should remain constant during the reversible process to which TFand

Q relate, provided that the only source of heat or cold used has the

same temperature as the system in its initial or final state. Any
external bodies may be used in the process in any way not aifect-

ing the condition of reversibility, if restored to their original con-

dition at the close of the process ;
nor does the limitation in regard

to the use of heat apply to such heat as may be restored to the

source from which it has been taken.

It maybe interesting to show directly the equivalence of the condi-

tions (111) and (2) when applied to a system of which the temperature

in the given state is uniform throughout.

If there are any variations in the state of such a system which do

not satisfy (2), then for these variations

(^6 < and 6t; :=. 0.

If the temperature of the system in its varied state is not uniform,

we may evidently increase its entropy without altering its energy

by supposing heat to pass from the warmer to the cooler parts.

And the state having the greatest entropy for the energy f -|- (Jf will

necessarily be a state of uniform temperature. For this state (regarded

as a variation from the original state)

S£<Q and (SjjX).

Hence, as we may diminish both the energy and the entropy by cool-

ing the system, there must be a state of uniform temperature for

which (regarded as a variation of the original state)

6e<0 and djj= 0.

From this we may conclude that for systems of initially uniform tem-

perature condition (2) will not be altered if we limit the variations

to such as do not disturb the uniformity of temperature.

Confining our attention, then, to states of uniform temperature, we

have by differentiation of (105)

6£ - t6t/=z6f-]-t/6t. (112)

Now there are evidently changes in the system (produced by heating

or cooling) for which

d£ - t6?j=0 and therefore rh/- -f ?/ f)7= 0, (113)
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neither 6)j nor St having the value zero. This consideration is suffi-

cient to show that the condition (2) is equivalent to

de — tdi]^0. (114)

and that the condition (111) is equivalent to

6il^-{-if6t^0 (115)

and by (112) the two last conditions are equivalent.

In such cases as we have considered on pages 115-137, in which

the form and position of the masses of which the system is composed

is immaterial, uniformity of temperature and pressure are always

necessary for equilibrium, and the remaining conditions, when these

are satisfied, may be conveniently expressed by means of the func-

tion C, which has been defined for a homogeneous mass on page 142,

and which we will here define for any mass of uniform temperature

and pressure by the same equation

l = e — tt]-\-pv. (Ii6)

For such a mass, the condition of (internal) equilibrium is

m,p^^- (iiv)

That this condition is equivalent to (2) will easily ap[)ear from con-

siderations like those used in respect to (111).

Hence, it is necessary for the equilibi'ium of two contiguous masses

identical in composition that the values of t, as determined for equal

quantities of the two masses should be equal. Or, when one of three

contiguous masses can be formed out of the other two, it is necessary

for equilibrium that the value of C for any quantity of the first mass

should be equal to the sum of the values of C for such quantities of the

second and third masses as together contain the same matter. Thus,

for the equilibrium of a solution composed of <i i)arts of water and b

parts of a salt which is in contact with vapor of water and crystals of

the salt, it is necessary that the value of C for the quantity ((-\-b oi the

solution should be equal to the sum of the values of 'Q for the quanti-

ties a of the vapor and b of the salt. Similar propositions will hold

true in more complicated cases. The reader will easily deduce these

conditions from the particular conditions of equilibrium given on

page 128.

In like manner we may extend the definition of x to any mass or

combination of masses in which the pressure is everywhere the same,

using s for the energy and v for the volume of the whole and setting

as before

X=t-\-pv. (118)
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If we denote by Q the heat received by the combined masses from

external sources in any process in which the pressure is not varied,

and disting-iiisli tlie initial and final states of the system by accents

we have

x" - x' = ^" - f' +i> ('"" - "') = Q- (iif»)

This function may therefore be called the heat function for constant

pressure (just as the energy might be called the heat function for

constant volume), the diminution of the function representing in all

cases in which the pressure is not varied the heat given out by the

system. In all cases of chemical action in which no heat is allowed

to escape the value of x I'emains michanged.

POTENTIALS.

In the definition of the potentials /z^, /y,, etc., the energy of a

homogeneous mass was considered as a function of its entropy, its

volume, and the quantities of the various substances composing it.

Then the potential for one of these substances was defined as the dif-

ferential coefficient of the energy taken with respect to the variable

expressing the quantity of that substance. Now, as the manner in

which we consider the given mass as composed of various substances

is in some degree arbitrary, so that the energy may be considered as

a function of various different sets of variables expressing quantities

of component substances, it might seem that the above definition

does not fix the value of the potential of any substance in the given

mass, until we have fixed the manner in which the mass is to be con-

sidered as composed. For example, if we have a solution obtained

by dissolving in water a certain salt containing water of crystalliza-

tion, we may consider the liquid as composed of m^ weight-units of the

hydrate and w?„- of water, or as composed of m, of the anhydrous

salt and m„ of water. It will be observed that the values of m., and

m, are not the same, nor those of m„. and ?«„,, and hence it might

seem that the potential for water in the given liquid considered as

composed of the hydrate and water, viz.,

I
ds \

Xdinjylr/, V, ms

would be different from the potential for water in the same liquid con-

sidered as composed of anhydrous salt and water, viz.,

\ dmjr), V, m.



./. W. Gihbs—EquilihrluTn of Heterogeneous Substances. 149

The value of the two expressions is, however, the same, for, although

m^- is not equal to m,^., we may of course suppose dm^- to be equal to

c?m„, and then the numerators in the two fractions will also be equal,

as they each denote the increase of energy of the liquid, when the

quantity dm^y or dni,„ of water is added without altering the entropy

and volume of the liquid. Precisely the same considerations will

apply to any other case.

In fact, we may give a definition of a potential which shall not pre-

suppose any choice of a particular set of substances as the components

of the homogeneous mass considered.

Definition.—If to any homogeneous mass we suppose an infinitesi-

mal quantity of any substance to be added, the mass remaining

homogeneous and its entropy and volume remaining unchanged, the

increase of the energy of the mass divided by the quantity of the

substance added is the potential for that substance in the mass con-

sidered. (For the purposes of this definition, any chemical element or

combination of elements in given proportions may be considered a

substance, whether capable or not of existing by itself as a homoge-

neous body.)

In the above definition we may evidently substitute for entropy,

volume, and energy, respectively, either temperature, volume, and

the function ?/• ; or entropy, pressure, and the function j ; or tempera-

ture, pressure, and the function 'Q. (Compare equation (104).)

In the same homogeneous mass, therefore, we may distinguish the

potentials for an indefinite number of substances, each of which has a'

perfectly determined value.

Between the potentials for different substances in the same homo-
geneous mass the same equations will subsist as between the units

of these substances. That is, if the substances, aS',„ aS',„ etc., aS^., /S'„ etc.,

are components of anj^ given homogeneous mass, and are such that

i^ ^„+ /^ ©6 + etc. = K (5;. + A ®, -|- etc.,
( 1 20)

®a, ®6, etc., (Bk, S;, etc. denoting the units of the several substances,

and a, /J, etc., h, A, etc, denoting numbei-s, then if /<„, //,„ etc., /z^, //,,

etc. denote the potentials for these substances in the homogeneous

mass,
a /<„ 4- fJ //,, + etc. = K /ii + A //, + etc. (121)

To show this, we will suppose the mass considered to be very large.

Then, the first number of (121) denotes the increase of the energy of

the mass produced by the addition of the matter represented by the

first member of (120), and the second member of (121) denotes the
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increase of energy of the same mass produced by the addition of the

matter represented by the second member of (120), the entropy and

A^olume of the mass remaining in each case unchanged. Therefore, as

the two members of { 1 20) represent the same matter in kind and

quantity, the two members of (121) must be equal.

But it must be understood that equation (120) is intended to

denote equivalence of the substances represented in the mass con-

sidered, and not merely chemical identity ; in other words, it is sup-

posed that there are no passive resistances to change in the mass

considered which prevent the substances represented by one member

of (120) from passing into those represented by the other. For

example, in respect to a mixture of vapor of water and free hydrogen

and oxygen (at ordinary temperatures), we may not write

but water is to be treated as an independent substance, and no neces-

sary relation will subsist between the potential for water and the

potentials for hydrogen and oxygen.

The reader will observe that the relations expressed by equations

(43) and (51) (which are essentially relations between the poten-

tials for actual components in diffei-ent parts of a mass in a state of

equilibrium) are simply those which by (121) would necessary sub-

sist between the same potentials in any homogeneous mass containing

as variable components all the substances to which the potentials

relate.

In the case of a body of invariable composition, the potential for

the single component is equal to the value of C for one unit of the

body, as appears from the equation

r=j.im
'

(122)

to which (96) reduces in this case. Therefore, when n =. 1, the fun-

damental equation between the quantities in the set (102) (see page

143) and that between the quantities in (103) may be derived either

from the other by simple substitution. But, with this single excep-

tion, an equation between the quantities in one of the sets (99)-(103)

cannot be derived from the equation between the quantities in

another of these sets without differentiation.

Also in the case of a body of variable composition, when all the

quantities of the components except one vanish, the potential for

that one will be equal to the value of 'C, for one lanit of the body.

We may make this occur for any given composition of the body by
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choosing as one of the components the matter constituting the l)ody

itself, so that the value of t. for one unit of a body may always be

considered as a potential. Hence the relations between the values of

t, for contiguous masses given on page 14Y may be regarded as rela-

tions between potentials.

The two following propositions afford definitions of a potential

which may sometimes be,convenient.

The potential for any substance in any homogeneous mass is equal

to the amount of mechanical work required to bring a unit of the

substance by a reversible process from the state in which its energy

and entropy are both zero into combination with the homogeneous

mass, which at the close of the process must have its original volume,

and which is supposed so large as not to be sensibly altered in any

part. All other bodies used in the ])rocess must by its close be

restored to their original state, except those used to supply the

work, which must be used only as the source of the work. For, in

a reversible process, when the entropies of other bodies are not

altered, the entropy of the substance and mass taken together will

not be altered. But the original entropy of the substance is zero

;

therefore the entropy of the mass is not altered by the addition of the

substance. Again, the work expended will be equal to the increment

of the energy of the mass and substance taken together, and therefore

equal, as the original energy of the substance is zero, to the increment

of energy of the mass due to the addition of the substance, which by
the definition on page 149 is equal to the potential in question.

The potential for any substance in any homogeneous mass is equal

to the work required to bring a unit of the substance by a reversible

process from a state in' which ij: = and the temperature is the same
as that of the given mass into combination with this mass, which at

the close of the process must have the same volume and temperature

as at first, and which is supposed so large as not to be sensibly

altered in any part. A source of heat or cold of the temperature

of the given mass is allowed, with this exception, other bodies are

to be used only on the same conditions as before. This may be

shown by applying equation (109) to the mass and substance taken

together.

The last proposition enables us to see very easily, how the value of

the potential is affected by the arbitrary constants involved in the

definition of the energy and the entropy of each elementary sub-

stance. For we may imagine the substance brought from the state

in which //' =: and the temperature is the same as that of the given
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mass, first to any specified state of the same temperature, and then

into combination with the given mass. In the first part of the pro-

cess the work expended is evidently represented by the value of ip

for the unit of the substance in the state specified. Let this be

denoted by '/•', and let /< denote the potential in question, and W the

work expended in bringing a unit of the substance from the specified

state into combination with the given mass as aforesaid ; then

ju z=z f -[- W. (123)

Now as the state of the substance for which 6=0 and // zz: is

arbitrary, we may simultaneously increase the energies of the unit of

the substance in all possible states by any constant C, and the

entropies of the substance in all possible states by any constant IT.

The value of •'/•, or e — f //, for any state would then be increased by

C ^ t JC, t denoting the temperature of the state. Applying this

to //'' in (123) and observing that the last term in this equation is

independent of the values of these constants, we see that the potential

would be increased by the same quantity C — ( K, t being the tem-

perature of the mass in which the potential is to be determined.

ON COEXISTENT PHASES OF MATTER.

In considering the different homogeneous bodies which can be

formed out of any set of component substances, it will be convenient

to have a term which shall refer solely to the composition and ther-

modynamic state of any such body without regard to its quantity or

form. We may call such bodies as differ in composition or state dif-

ferent phases of the matter considered, regarding all bodies which

differ only in quantity and form as different examples of the same

phase. Phases which can exist together, the dividing surfaces being

plane, in an equilibrium which does not depend upon passive resist-

ances to change, we shall call coexistent.

If a homogeneous body has n independently variable components,

the phase of the body is evidently capable of n. -}- 1 independent vari-

ations. A system of r coexistent phases, each of which has the same

n independently variable components is capable of n -{- 2 — r varia-

tions of phase. For the temperature, the pressure, and the poten-

tials for the actual components have the same values in the different

phases, and the variations of these quantities are by (97) subject to

as many conditions as there are different phases. Therefore, the num-

ber of independent variations in the values of these quantities, i. e.,

the number of independent variations of phase of the system, will be

n+2 -r.
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Or, when the r bodies considered have not the same independently

variable components, if we still denote by n the number of independ-

ently variable components of the r bodies taken as a whole, the

number of independent variations of phase of which the system is

capable will still be n-\-2 —r. In this case, it will be necessary to

consider the potentials for more than n component substances. Let

the number of these potentials be n-\-h. We shall have by (97), as

before, r relations between the variations of the temperature, of the

pressure, and of these n + h potentials, and we shall also have by (43)

and (51) h relations between these potentials, of the same form as the

relations which subsist between the units of the different component

substances.

Hence, if r z= w + 2, no variation in the phases (remaining coex-

istent) is possible. It does not seem probable that r can ever exceed

71 + 2. An example of n =z 1 and r z=. 3 is seen in the coexistent solid,

liquid, and gaseous forms of any substance of invariable composition.

It seems not improbable that in the case of sulphur and some other

simple substances there is more than one triad of coexistent phases

;

but it is entirely improbable that there are four coexistent phases of

any simple substance. An example of 7i = 2 and r:=4 is seen in a

solution of a salt in water in contact with vapor of water and two

different kinds of crystals of the salt.

Concerning n -\- I Coexistent Phases.

We will now seek the differential equation which expresses the

relation between the variations of the temperature and the pressure

in a system of w -f 1 coexistent phases (« denoting, as before, the

number of independently variable components in the system taken as

a whole).

In this case we have >i + 1 equations of the general form of (97)

(one for each of the coexistent phases), in which we may distinguish

the quantities //, v, mj, m^, etc. relating to the different phases by

accents. But t and^ will each have the same value throughout, and

the same is true of //j, //g, etc., so far as each of these occurs in the

different equations. If the total number of these potentials is w + A,

there will be h independent relations between them, corresponding to

the h independent relations between the units of the component sub-

stances to which the potentials relate, by means of which we may
eliminate the variations of h of the potentials from the equations of

the form of (97) in which they occur.

Trans. Conn. Acad., Vol. III. 20 January, 1876.



154 J. W. Gihhs—Equilibrium of Heterogeneous Substances.

Let one of these equations be

v' dp=z 7/ dt + mj dj.!^, + m,' df-ij, + etc., (124)

and by the proposed elimination let it become

W dp=:zif dt + A^' dfi^ + A2' d).i2 . . . -\-A,!df.i„. (125)

It will be observed that //,„ for example, in (124) denotes the poten-

tial in the mass considered for a substance *S„ which may or may not

be identical with any of the substances y8j, AS'2, etc. to which the

potentials in (125) relate. Now as the equations between the poten-

tials by means of which the elimination is performed are similar to

those which subsist between the units of the corresponding sub-

stances, (compare equations (38), (43), and (51),) if we denote these

units by ®„, ®j, etc., ©i, ©3, etc., we must also have

^?\'®a + »''6'®A+etc. = ^/ ©1 + ^12' ®2 • • • +^^n'©„. (126)

But the first member of this equation denotes (in kind and quantity)

the matter in the body to which equations (124) and (125) relate. As

the same must be true of the second member, we may regard this same

body as composed of the quantity A^' of the substance S^, with the

quantity AJ of the substance S2, etc. We will therefore, in accord-

ance with our general usage, write m^' m^\ etc. for A ^\ ^2? ®^^' ^"

(125), which will then become

\i' dp=L rf dt -^^ m^ d}.i^ -{ rn^ dj-i^, . . -{• rnj djJ^. (12V)

But we must remember that the components to which the m/, mg',

etc. of this equation relate are not necessarily independently variable,

as are the components to which the similar expressions in (97) and

(124) relate. The rest of the 71 + \ equations may be reduced to a

similar form, viz.,

v" dp = if dt + 7n^" df.1^ ^m.^'dj-i^ • • . -^m^'dpt^, (128)

etc.

By elimination of <:?yu,, df.i^t dj.4„ from these equations we obtain

V
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When 11-=. 1,

(„/' v' - rn' v") dp — {m" if - ui' ,/') (7t, (130)

or, if we make ni' =. 1 and tn" = 1, we have the usual formula

^=3'^:^=:—^^- (131)
dt v'-v" t{v" -v'Y ^ '

in which Q denotes the heat absorbed by a unit of the substance in

passing from one state to the other without change of temperature or

pressure.

Concerning Cases in ^vhlch the Number of Coexistent Phases is less

than n-\- 1.

When 7i> 1, if the quantities of all the components 8y, -Sg, . . . S^

are proportional in two coexistent phases, the two equations of the

form of (127) and (128) relating to these phases will be sufficient

for the elimination of the variations of all the potentials. In fact,

the condition of the coexistence of the two phases together with the

condition of the equality of the n — 1 ratios of w/, mg', . . . »?„'

with the n — 1 ratios of «*/', "iJ', . . • wi„" is sufficient to determine

ji> as a function of t if the fundamental equation is known for each of

the phases. The differential equation in this case may be expressed

in the form of (130), m' and m" denoting either the quantities of any

one of the components or the total qiiantities of matter in the bodies

to which they relate. Equation (131) will also hold true in this case,

if the total quantity of matter in each of the bodies is unity. But

this case differs from the preceding in that the matter which absorbs

the heat Q in passing from one stat^ to another, and to which the other

letters in the formula relate, alt^iough the same in quantity, is not in

general the same in kind at different temperatures and pressures.

Yet the case will often occur that one of the phases is essentially

invariable in composition, especially when it is a crystalline body,

and i)i this case the matter to which tlie letters in (131) relate will

not vary with the temperature and pressure.

When n = 2, two coexistent phases are capable, when the temper-

ature is constant, of a single variation in phase. But as (130) will

hold true in this case when m^' : m^ : : m/' : ni^'^ it follows that for

constant temperatui-e the pressure is in general a maximum or a min-

imum when the composition of the two phases is identical. In like

manner, the temperature of the two coexistent phases is in general a

maximum or a minimiam, for constant pressure, when the composition

of the two phases is identical. Hence, the series of simultaneous

values of t and p for which the composition of two coexistent phases
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is identical separates tliose sii)iultaneous values of t and 2^ foi" which

no coexistent phases are possible from those for which there are two

pair of coexistent phases. This may be applied to a liquid having

two independently variable components in connection with the vapor

which it yields, or in connection with any solid which may be formed

in it.

When n z=. 3, we have for three coexistent phases three equations

of the form of (127), from which we may obtain the following,

V m
V m
V m,

rf m^ m^

dp=.\?f tn^" tn^'

\

}}'" )/l^"' Dl.j'"

df- +
""1

m," dM^. (132)

Now the value of the last of these determinants will be zero, when

the composition of one of the three phases is such as can be produced

by combining the other two. Hence, the pressure of three coexistent

phases will in general be a maximum or minimum for constant tem-

perature, and the temperature a maximum or minimum for constant

pressure, when the above condition in regard to the composition of

the coexistent phases is satisfied. The series of simultaneous values

of t and 2^ foi" which the condition is satisfied separates those simul-

taneous values of t and /> for which three coexistent phases are not

possible, from those for which there are two triads of coexistent

phases. These propositions may be extended to higher values of ?i,

and illustrated by the boiling temperatures and pressures of saturated

solutions of 71 — 2 diiferent solids in solvents having two independ-

ently variable components,

INTERNAL STABILITY OF HOMOGENEOUS FLUIDS AS INDICATED BY

FUNDAMENTAL EQUATIONS.

We will now consider the stability of a fluid enclosed in a rigid

envelop which is non-conducting to heat and impermeable to all the

components of the fluid. The fluid is supposed initially homogeneous

in the sense in which we have before used the word, i. e., uniform in

every respect throughout its whole extent. Let S^, S.j, . . . /S„he

the idtimute components of the fluid ; we may then consider every

body which can be formed out of the fluid to be composed of /S'j, /Sg,

. . . ;S'„, and that in only one way. Let m^, m^, . . . m„ denote

the quantities of these substances in any such body, and let f, //, v,

denote its energy, entropy, and volume. The fundamental equation

for compounds of S^, S^, . . . aS'„, if completely determined, will give

us all possible sets of simultaneous values of these variables for homo-

oeneous bodies.
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Now, if it is possible to assign such values to the constants T, P,

M^, M2, . . . M„ that the value of the expression

e - Tt]-\- Pv ~ J/, mj - M2 m^ . . . - 3f„m„ (133)

shall be zero for the given fluid, and shall be positive for every other

phase of the same components, i. e., for every homogeneous body*

not identical in nature and state with the given fluid (but composed

entirely of aS\, /S'g, . . . /S„), the condition of the given fluid will be

stable.

For, in any condition whatever of the given mass, whether or not

homogeneous, or fluid, if the value of the expression (133) is not

negative for any homogeneous part of the mass, its value for the

whole mass cannot be negative; and if its value cannot be zero for

any homogeneous part which is not identical in phase with the mass

. in its given condition, its value cannot be zero for the whole except

when the whole is in the given condition. Therefore, in the case

supposed, the value of this expression for any other than the given

condition of the mass is positive. (That this conclusion cannot be

invalidated by the fact that it is not entirely correct to regard a

composite mass as made up of homogeneous parts having the

same properties in respect to energy, entropy, etc., as if they were

parts of larger homogeneous masses, will easily appear from consider-

ations similar to those adduced on pages 131-133.) If, then, the

value of the expression (133) for the mass considered is less when it

is in the given condition than when it is in any other, the energy of

the mass in its given condition must be less than in any other condi-

tion in which it has the same entropy and volume. The given con-

dition is therefore stable. (See page 110.)

Again, if it is possible to assign such values to the constants in

(133) that the value of the expression shall be zero for the given

fluid mass, and shall not be negative for any phase of the same com-

ponents, the given condition will be evidently not unstable. (See

page 110.) It will be stable unless it is possible for the given matter

in the given volume and with the given entropy to consist of homo-

geneous parts for all of which the value of the expression (133) is zero,

but M^hich are not all identical in phase with the mass in its given con-

dition. (A mass consisting of such parts would be in equilibrium, as

we have already seen on pages 133, 134.) In this case, if we disre-

gard the quantities connected with the surfaces which divide the

* A vacuum is throughout this discussion to be regarded as a limiting case of an

extremely rarified body. We maj^ thus avoid the necessity of the specific mention of a

vacuum in propositions of this kind.
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homogeneous parts, we must regard the given condition as one of

neutral equilibrium. But in regard to these homogeneous parts,

which we may evidently consider to be all diiFerent phases, the fol-

lowing conditions must be satisfied. (The accents distinguish the

letters referring to the different parts, and the unaccented letters

refer to the whole mass.)

rf + if + etc. = /^, 1

v' + v" -\- etc. = V,
I

?Mj' + m/' -|- etc. =/>!',, )^ (134)

etc. J

Now the values of //, v, m^, m2, etc. are determined by the whole

fluid mass in its given state, and the values of — ,
—

,, etc., —j-. —jj-.

etc. ^-, —
>, , etc., etc., are determined by the phases of the various

parts. But the phases of these parts are evidently determined by

the phase of the fluid as given. They form, in fact, tlie whole set of

coexistent phases of which the latter is one. Flence, we may regard

(134) as n + 2 linear equations between v', v" , etc. (The values of

v' v", etc. are also subject to the condition that none of them can be

negative.) Now one solution of these equations must give us the

given condition of the fluid ; and it is not to be expected that they

will be capable of any other solution, unless the number of different

homoo-eneous parts, that is, the number of different coexistent phases,

is o-reater than n + 2. We have already seen (page 153) that it is

not probable that this is ever the case.

We may, however, remark that in a certain sense an infinitely large

fluid mass will be in neutral equilibrium in regard to the formation

of the substances, if such there are, other than the given fluid, for

which the value of (133) is zero (when the constants are so deter-

mined that the value of the expression is zero for the given fluid,

and not negative for any substance) ; for the tendency of such a for-

mation to be reabsorbed will diminish indefinitely as the mass out of

which it is formed increases.

When the substances S^, xS'g, . . . S„ are all independently vari-

able components of the given mass, it is evident from (86) that the

conditions that the value of (133) shall be zero for the mass as given,

and shall not be negative for any phase of the same components, can

only be fulfilled when the constants T, F, M^, M^, . . . M„ are equal

to the temperature, the pressure, and the several potentials in the given
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mass. If we give these values to the constants, the expression (133)

will necessarily have the value zero for the given mass and we sliall only

have to inquire whether its value is positive for all other phases.

But when S^, 1S2, . . S„ are not all independently variable compo-

nents of the given nuiss, the values which it will be necessary to give

to the constants in (133) cannot be determined entirely from the

properties of the given mass; but T and P must be equal to its

temperature and pressure, and it will be easy to obtain as many eqiia"

tions connecting J/,, Jf^, . . . M„ with the potentials in the given

mass as it contains independently variable components.

When it is not possible to assign such values to the constants in

(133) that the value of the expression shall be zero for the given

fluid, and either zero or positive for any phase of the same compo-

nents, we have already seen (pages 129-134) that if equilibrium

subsists without passive resistances to change, it must be in virtue of

properties which are peculiar to small masses surrounded by masses

of different nature, and which are not indicated bj' fundamental

equations. In this case, the fluid will necessarily be unstable, if we
extend this term to embrace all cases in which an initial disturbance

confined to a small part of an indefinitely large fluid mass will cause

an ultimate change of state not indeflnitely small in degree through-

out the whole mass. In the discussion of stability as indicated by
fundamental equations it will be convenient to use the term in this

sense.*

* If we wish to know the stability of the given fluid when exposed to a constant tem-

perature, or to a constant pressure, or to both, we have only to suppose that there is

enclosed in the same envelop witli the given fluid another body (which cannot combine

with the fluid) of which the fundamental equation is e = Ty, or e = ~ Fv. or e = T>)

— Pv. as the case may be, (Tand P denoting the constant temperature and pressure,

which of course must be those of the given fluid,) and to apply the criteria of page

110 to the whole system. When it is possible to assign such values to the constants

in (133) that the value of the expression shall be zero for the given fluid and positive

for every other phase of the same components, the value of (133) for the whole system

will be less when the system is in its given condition than when it is in any other.

(Changes of form and position of the given fluid are of course regarded as immaterial.)

Hence the fluid is stable. When it is not possible to assign such values to the con-

stants that the value of (133) shall be zero for the given fluid and zero or positive for

any other phase, the fluid is of course unstable. In the remaining case, when it is

possible to assign such values to the constants that the value of (133) shall be zero

for the given fluid and zero or positive for every other phase, but not without the

value zero for some other phase, the state of equilibrium of the fluid as stable

or neutral will be determined by the possibUity of satisfying, for any other than

the given condition of the fluid, equations like (134), in which, however, the first

or the second or both are to be stricken out, according as we are considering the
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In determining for any given positive values of T and P and any

given values whatever of 31^, M2, . . . M„ whether the expression

(133) is capable of a negative value for any j^hase of the components

/Sj, JS^, . . . *S'„, and if not, whether it is capable of the value zero

for any other phase than that of which the stal)ility is in question, it

is only necessary to consider phases having the temperature T and

pressure P. For we may assume that a mass of matter represented

by any values of w^j, w^, . . . m„is capable of at least one state ot

not unstable equilibrium (which may or may not be a homogeneous

state) at this temperature anrl pressure. It may easily be shown

that for such a state the value of f — T7}-\- Pv must be as small as

for any other state of the same matter. The same will therefore be

true of the value of (133). Therefore if this expression is capable of

a negative value for any mass whatever, it will have a negative value

for that mass at the temperature T and pressure P. And if this

mass is not homogeneous, the value of (133) must be negative for at

least one of its homogeneous parts. So also, if the expression (133) is

not capable of a negative value for any phase of the comj)onents,

any phase for which it has the value zero must have the temperature

T and the pressure P.

It may easily be shown that the same must be true in the limiting

cases in which 7'= and Pz= 0. For negative values of P, (133)

is always capable of negative vahies, as its value for a vacuum is Pv.

For any body of the temperature T and pressure P, the expression

(133) may by (91) be reduced to the form

? — J/i m, — J/2 ^"'2 . • . — 3/„m„. (135)

We have already seen (pages 131, 132) that an expression like

(133), when T, P, 3/,, ll^, . . . M„ and v have any given finite

values, cannot have an infinite negative value as applied to any real

body. Hence, in determining whether (133) is capable of a negative

value for any phase of the components >S',, S^^ . . . jS„, and if not,

whether it is capable of the value zero for any other phase than that

of which the stability is in question, we have only to consider the

least value of which it is capable for a constant value of v. Any

body giving this value must satisfy the condition that for constant

volume
de - Teh/ — J/j drn^ — J/^ din., ... — 3f„dm„^ 0, (136)

stability of the fluid for constant temperature, or for constant pressure, or for both.

The number of coexistent phases will sometimes exceed by one or two the number of

the remaining equations, and then the equilibrium of the fluid will be neutral in

respect to one or two independent changes.
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or, if we substitute the value of (Is taken from equation (SO), nsing sub-

script a . . . g for the quantities rehiting to tlie actual corai)onents of

the body, and subscript h . . . k for those relating to the possible,

t di] + yM„ dm,, ... + yM„ dm,, -f- /</, dm,,, . . . + /^^. dm,^

— Tdi] - Jfj dm^ —M2 dm^ ... - M„dm„^ 0. (137)

That is, the temperature of the body must be equal to T, and the

potentials of its components must satisfy the same conditions as if it

were in contact and in equilibrium with a body having potentials

Mj, M2, . . . M„. Therefore the same relations must subsist between

yu„ . . . //,„ and M^ . . . Jf„ as between the units of the corresponding

substances, so that

m^.lA^. . . -j- m,^ /x^ = m^ M-^^ . . . -{- m„M„; (138)

and as we have by (93)

E=.t 7] — pv -\- /A„ m„ ...-}- yu,, m^, (139)

the expression (133) will reduce (for the body or bodies for which it

has the least value per unit of volume) to

[P-p)v, (140)

the value of which will be positive, null, or negative, according as

the value of

P —

^

(141)

is positive, null, or negative.

Hence, the conditions in regard to the stability of a fluid of which all

the ultimate components are independently variable admit a very sim-

ple expression. If the pressure of the fluid is greater than that of any

other phase of the same components which has the same temperature

and the same values of the potentials for its actual components, the

fluid is stable without coexistent phases ; if its pressure is not as great

as that of some other such phase, it will be unstable ; if its pressure is

as great as that of any other such phase, but not greater than that

of every other, the fluid will certainly not be unstable, and in all

probability it will be stable (when enclosed in a rigid envelop which

is impermeable to heat and to all kinds of matter), but it will be one

of a set of coexistent phases of which the others are the phases which

have the same pressure.

The considerations of the last two pages, by Avhich the tests

relating to the stability of a fluid are simplified, apply to such bodies

as actually exist. But if we should form arbitrarily any equation as

a fundamental equation, and ask whether a fluid of which the proper-

Trans. Conn. Acad., Vol. III. 21 January, 1876.
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ties were oiven by that equati<in would be stable, the tests of stability-

last given would be insufficient, as some of our assumptions might

not be fultilled by the equation. The test, liowever, as tirst given

(pages 156-159) would in all cases be sufficient.

Stability in respect to Goutbiuous Changes of Phase.

In considering the changes which may take place in any mass, we
have already had occasion to distinguish between infinitesimal changes

in existing phases, and the formation of entirely new phases. A
phase of a fluid may be stable in regard to the former kind of change,

and unstable in regard to the latter. In this case it may be capable

of continued existence in virtue of properties which prevent the com-

mencement of discontinuous changes. But a phase which is unstable

in regard to continuous changes is evidently incapable of permanent

existence on a large scale except in consequence of passive resistances

to change. We will now consider the conditions of stability in

respect to continuous changes of phase, or, as it may also be called,

stability in respect to adjacent phases. We may use the same gen-

eral test as before, except that the expression (133) is to be applied

only to phases which difier infinitely little from tlie phase of which

the stability is in question. In tliis case the component substances

to be considered will be limited to the independently variable com-

ponents of the fluid, and the constants il/'j, J/g? '^tc. must have the

values of the potentials for these components in the given fluid. The

constants in (133) are thus entirely determined and the value of the

expression for the given phase is necessarily zero. If for any infi-

nitely small variation of the phase, the value of (133) can become

negative, the fluid will be unstable ; but if for every infinitely small

variation of the phase the value of (133) becomes positive, the fluid

will be stable. The only remaining case, in which the phase can be

varied without altering the value of (133) can hardly be expected to

occur. The phase concerned would in such a case have coexistent

adjacent phases. It will be sufficient to discuss the condition of sta-

bility (in respect to continuous changes) without coexistent adjacent

This condition, which for brevity's sake we will call the condition

of stability, may be written in the form

e" — t' if + jo' v" -/</;«,"...- /4' m„" > 0, (142)

in which the quantities relating to the phase of which the stability is

in question are distinguished by single accents, and those relating to
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the otlier phase by double accents. This condition is by (93) equiva-

lent to

e"^t'if^p'v"-~n,'m," . . . — //„'m„"

- f'4- «'//-/ w'
-{-/<, 'm/ . . . -j- j-i„' m„' > 0, (143)

and to

^t'7f-\-p'v" -fi.'m," . . . ~/^:m„"

+ t" yf - p" v" + A' x" m," . . . + /.„" mj' > 0. (144)

The condition (143) may be expressed more briefly in the form

Ae.>tAn~iy^v + i^i^J)ii^ . . . -{-jj„zlm„, (1^5)

if we use the character J to signify that the condition, although

relating to infinitesimal differences, is not to be interpreted in accord-

ance with the usual convention in respect to differential equations

with neglect of infinitesimals of higher orders than the first, but is

to be interpreted strictly, like an equation between finite differences.

In fact, when a condition like (145) (interpi-eted strictly) is satisfied

for infinitesimal difierences, it must be possible to assign limits within

which it shall hold true of finite differences. But it is to be remem-

bered that the condition is not to be applied to any arbitrary values

of /Iff, Av, Ani^, . . . Am„, but only to such as are determined by a

change of phase. (If only the quantity of the body which determines

the value of the variables should vary and not its phase, the value of

the first member of (145) would evidently be zero.) We may free

ourselves from this limitation by making v constant, which will

cause the term — p Jv to disappear. If we then divide by the con-

stant v, the condition will become

A->tA--\-i.i.J~^ . . . +yu„J—

,

(146)

in which form it will not be necessary to regard v as constant. As

we may obtain from (86)

d-=itd^ 4- /.i,d—^ . . . -4-u^d-^, (147)

we see that the stability of anyphase in regard to continuous changes

depends upon the same conditions in regard to the second and higher

differential coefficients of the density of energy regarded as a function

of the density of entropy and the densities of the several components,

which would maJce the density of energy a minimum, if the necessary

conditions in regard to the first differential coefficients were fulfilled.

When n -rz 1, it may be more convenient to regard ui as constant
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in (145) than v. Regarding m a constant, it appears that the stability

of a phase depends upon the same conditions in regard to the second

and higher differential coefficients of the energy of a unit of mass

regarded as a function of its entropy and volume, which would make

the energy a minimum, if the necessary conditions in regard to the

first differential coefficients were fulfilled.

The formula (144) expresses the condition of stability for the phase

to which t', />', etc. relate. But it is evidently the necessary and

sufficient condition of tlie stability of all phases of certain kinds of

matter, or of all phases within given limits, that (144) shall hold true

of any two infinitesimally differing phases within the same limits, or,

as the case may be, in general. For the purpose, therefore, of such

collective determinations of stability, we may neglect the distinction

between the two states compared, and write the condition in the form

- 1} Jt-{- V Jp — m^ J/Y
J
... - m^ J//„ > 0, (148)

or

Jp>ljt+'^J,i, . . . 4-^-^/V (149)

Comparing (98), we see that it is necessary and sufficient for the sta-

bility in regard to continuous changes of all the phases within any

given limits, that within those limits the same conditions should be

fulfilled in respect to the second and higher differential coefficients of

the pressure regarded as a function of the temperature and the sev-

eral potentials, which would make the pressure a minimum, if the

necessary conditions with respect to the first differential coefficients

were fulfilled.

By equations (87) and (94), the condition (142) may be brought to

the form

^f — t' if —p' v' -\- )A^' m^' . . . +//„';/«„'> 0. (150)

For the stability of all phases within any given limits it is necessary

and sufficient that within the same limits this condition shall hold

true of any two phases which differ infinitely little. This evidently

requires that when v'= y", //</ = /></', . . . m^ =z ?«„",

f -f+{t" -t'),/'>i); (151)

and that when t' = t"

- f ~ p' r'
-\- fi ^' m ^' . . . -\- jjj mj > 0. (152)

These conditions may be written in the form
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[Atl.^ + vAt\^<0, (153)

[/iil:-\-2)^'0 - |X^Am^ . . . - //„ Z/>?i„], > 0, (154)

in which the subscript letters indicate the quantities which are to be

regarded as constant, m standing for all the quantities m , . . . m„.

If these conditions hold true within any given limits, (150) will also

hold true of any two infinitesimally differing phases within the same

limits. To prove this, we will consider a third phase, determined

by the equations

t'" = t\ (155)

and
v"' = v", m,"' = m,", . . . m„"' = m„". (156)

Now by (153),

'/'"-'/•"+(^"'-O'/"<0; (157)

and by (154),

f" J^ p' v'" - 1^1 ^' m^'" . . . -/V >/'„'"

- //'' —j^v' -i-//,'/n/ . . . -\- ^aJ tnj >0. (158)

— f — t'" //" -p' v' + //
1

' m / . . . + //„' ///„' > 0, (159)

which by (155) and (156) is equivalent to (150). Therefore, the con-

ditions (153) and (154) in respect to the phases within any given

limits are necessary and sufficient for the stability of all the phases

within those limits. It will be observed that in (153) we have the

condition of thermal stability of a body considered as unchangeable

in composition and in volume, and in (154), the condition of mechan-

ical and chemical stability of the body considered as maintained at a

constant temperature. Comparing equation (88), we see that the

condition (153) will be satisfied, if -^ <0, i. e., if-/ or ^— (thespe-

cific heat for constant volume) is positive. When /^:= 1, i. e., when
the composition of the body is invariable, the condition (154) will

evidently not be altered, if we regard m as constant, by which the

condition will be i-educed to

{Af + p Av\,„>(). (160)

This condition will evidently be satisfied if -^ >0, i. e., if —L qy
dv^ dv

d7)— v-~- (the elasticity for constant temperature) is positive. But

when n> 1, (154) may be abbreviated more symmetrically by making

V constant.

Again, by (91) and (96), the condition (142) may be brought to

the form
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^" j^t",f-p"v" - ix.'m," . . . -lA^m:

-l;' -t' if +y v" +/<//»/... + /'n' ra: > 0. (161)

Therefore, for the stability of all phases within any given limits it is

necessary and sufficient that within the same limits

[Jl;-]- 7/Jt - V /lp],,<0, (162)

and
[JC-yU,^mi . . . -yw„Jm„],,,>0, (163)

as may easily be proved by the method used with (153) and (154),

The first of these formulae expresses the thermal and mechanical con-

ditions of stability for a body considered as unchangeable in compo-

sition, and the second the conditions of chemical stability for a body

considered as maintained at a constant temperature and pressure. If

n z=. 1, the second condition falls away, and as in this case C= m^,

condition (162) becomes identical Avith (148).

The foregoing discussion will serve to illustrate the relation of the

general condition of stability in regard to continuous changes to

some of the principal forms of fundamental equations. It is evident

that each of the conditions (146), (149), (154), (162), (163) involve

in general several particular conditions of stability. We will now

ofive our attention to the latter. Let

<^ =: t — t' 7} + p V — ^^' m^ . . . — /V»>^n, (164)

the accented letters refei-ring to one phase and the unaccented to

another. It is by (142) the necessary and sufficient condition of the

stability of the first phase that, for constant values of the quantities

relating to that phase and of v, the value of shall be a minimum

when the second phase is identical with the first. Differentiating

(164), we have by (86)

d^={t - t') ch] — {p -p') dv + (/ij - /f,') dm^

... - (//„ - ^„')dm„. (165)

Therefore, the above condition requires that if we regard v, m^, . . .

m„ as having the constant values indicated by accenting these letters,

t shall be an inci-easing function of ;/, when the variable phase differs

sufficiently little from the fixed. But as the fixed phase may be any

one within the limits of stability, t must be an increasing function of

1/ (within these limits) for any constant values of v, m^, . . . m„.

This condition may be written

1^) >0. (166)
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Wlien this condition is satisfied, the value of (Z>, for any given values

of y, m , . . . ?/'„, will be a minimum when t=.t'. And therefore, in

applying the general condition of stability relating to the value of

(f , we need only consider the j)hases for which t = t'.

We see again by (165) that the general condition requires that

if we reo-ard t, v, m^, . . rn„ as having the constant values indicated

by accenting these letters, //, shall be an increasing function of m^,

when the variable phase difters sufficiently little from the fixed. l)ut

as the fixed phase may be any one within the limits of stability, //
j

must be an increasing function of m^ (within these limits) for any

constant values of ;;, w, mo, . . . m„. That is,

(-p-X >0. (167)
\nm^!t, V, m.2 . . . m„

When this condition is satisfied, as well as (166), will have a min-

imum value, for any constant values of v, m^, . . . »'„, when t= t'

and yu, = A<j'; so that in applying the general condition of stability

we need only consider the phases for which t= t' and /<, = yw/-

In this way we may also obtain the following particular conditions

of stability

:

(P) >0, (168)
\Zlm2ft, V, m,, m;5, . . . ?«n

\JmJt. V,

>0. (169)

When the n-\- 1 conditions (166)-(169) are all satisfied, the value

of 0, for any constant value of v, will be a minimum when the tem-

perature and the potentials of the variable phase are equal to those

of the fixed. The pressures will then also be equal and the phases

will be entirely identical. Hence, the general condition of stability

will be completely satisfied, when the above particular conditions are

satisfied.

From the manner in which these particular conditions have been

derived, it is evident that we may interchange in them ?;, m^, . . . m^

in any way, provided that we also interchange in the same way

^, yUj, . . . /J„. In this way we may obtain difierent sets of ?i + 1

conditions which are necessary and sufficient for stability. The quan-

tity V might be included in the first of these lists, and — p in the

second, except in cases when, in some of the phases considered, the

entropy or the quantity of one of the components has the value zero.
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Tlieii the condition that that quantity shall be constant would create

a I'estriction iipoii the variations of the phase, and cannot be substi-

tuted for the condition that the volume shall be constant in the state-

ment of the general condition of stability relative to the minimum

value of ^.

To indicate more distinctly all these particular conditions at once,

we observe that the condition (1^4), and thei'efore also the condition

obtained by interchanging the single and double accents, must hold

true of any two intinitesimally difiering phases within the limits of

stability. Combining these two conditions we have

(t" - t') (;/" - //') - (/' -i>') W - v')

+ (/^i" - y"i') h'^x" - ''H') • • • « - /^«') «'-m„')>0, (170)

which may be written more briefly

^tJjj— /ip^v + Jfx^/lm^ . . . +z/yu„z/m„>0. (iVl)

This must hold true of any two infinitesimally difiering phases within

the limits of stability. If, then, we give the value zero to one of the

difierences in every term except one, but not so as to make the phases

completely identical, the values of the two differences in the remain-

ing term will have the same sign, except in the case of Jp and Jv,

which will have opposite signs. (If both states are stable this will

hold true even on the limits of stability.) Therefore, within the

limits of stability, either of the two quantities occurring (after the

sio-n J) in any term of (171) in an increasing function of the other,

—except p and v, of which the opposite is triie,—when we regard as

constant one of the quantities occurring in each of the other terms,

but not such as to make the phases identical.

If we write ^? for /} in (166)-(169), we obtain conditions which are

always sufficient for stability. If we also substitute ^ for >, we

obtain conditions which ai-e necessary for stability. Let us consider

the form which these conditions will take when r^, v, m^, . . . m„ are

reo-arded as independent variables. When dv =: 0, we shall have

^ dt ^ ,
dt ^ ^ dt ^

dt=z — df]+ -z— dm , . . . + —— d)n„
dy dm

J
am„

du. , d^x^ ^ du„ ^

d^„ dfi„
,
d^„

d^^=-^-dv\-^^^drn, . . . +^fm„

(172)
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Let us write -S„+i for the determinant of the order n -\- 1

d^8 d^e d^E

drf dm j dy} ' ' ' dm„ djj

d-^e d^E d^e

dm. dm.d.T] d)n ,
dm j

^

dm,'^

(173)

d^E d'^E

di] dm„ dm, j dm„
'

of which the constituents are by (86) the same as the coeificients in

equations (172), and i?„, Rn^t, t-'tc. for the minors obtained by erasing

the last column and row in the original determinant and in the minors

successively obtained, and H^ for the last remaining constituent.

Then if dt, df-i.^, . . . f?/'„_i, and dv all have the value zero, we have

by (172)
Ii„ dpi, = ^„+i dni„, (174)

that is,

/^\ =^-K (175)

In like manner we obtain

\dm„_Jt,v,ii,, f^n^Z^ ™,

etc.

(176)

Therefore, the conditions obtained by writing d for /} in (166)-(169)

are equivalent to this, that the determinant given above with the n

minors obtained from it as above mentioned and the last remaining

d^ E
constituent -j-^ shall all be positive. Any ]^hase for which this con-

dition is satisfied will be stable, and no phase will be stable for

which any of these quantities has a negative vahie. But the condi-

tions (166)-(169) will remain valid, if we interchange in any way

Tf, W2j, . . , m,„ (with corresponding interchange of ^, /ij, . . . //„).

Hence the order in which we erase successive columns with the cor-

responding rows in the determinant is immaterial. Therefore none

of the minors of the determinant (173) which are formed by erasing

corresponding rows and columns, and none of the constituents of the

principal diagonal, can be negative for a stable phase.

We will now consider the conditions which characterize the limits

of stability (i. e., the limits which divide stable from unstable phases)

Trans. Conn. Acad., Vol. III. 22 January, 1876.
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with respect to continuous changes.* Here, evidently, one of the

conditions (166)-(169) must cease to hold true. 'Therefore, one of the

differential coefficients formed by changing A into d in the first mem-

bers of these conditions must have the value zero. (That it is the

numerator and not the denominator in the differential coefficient

which vanishes at the limit appears from the consideration that the

denominator is in each case the differential of a quantity which is

necessarily capable of progressive variation, so long at least as the

phase is capable of variation at all under the conditions expressed

by the subscript letters.) The same will hold true of the set of dif-

ferential coefficients obtained from these by interchanging in any

way /;, m,, . . . m„, and simultaneously interchanging t, /x^, . . . /u^

in the same way. But we may obtain a more definite result than this.

Let us give to ?/ or t, to m^ or /^j, . . . to m„_^ or /*«_i, and to v,

the constant values indicated by these letters when accented. Then

by (165)
d^ = {pt„ - /tj)dm„. (177)

Now

""-"•-(.Irj'c""-"'-') ("«)

approximately, the differential coefficient being interpreted in accord-

ance with the above assignment of constant values to certain vari-

ables, and its value being determined for the phase to which the

accented letters refer. Therefore,

and

1 [<^l-'A'r—
•

i (4/7, — rn,

The quantities neglected in the last equation are evidently of the

same order as {vi„ — mj)^. Now this value of will of course be

different (the differential coefficient having a different meaning)

according as we have made /; or t constant, and according as we have

made i/i^ or pi^ constant, etc. ; but since, within the limits of stability,

the value of 0, for any constant values of ?n„ and v, will be the least

when t,p,/iXi . . . //„_, have the values indicated by accenting these

letters, the value of the differential coefficient will be at least as small

* The limits of stability with respect to discontinuous changes are formed by phases

which are coexistent with other phases. Some of the properties of such phases have

already been considered. See pages 152-156.
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when we give these variables these constant values, as when we

adopt any other of the suppositions mentioned above in regard to the

quantities remaining constant. And in all these relations we may
interchange in any way ?/, w,, . . . m„, if we interchange in the same

way t, /Vj, . . . /./„. It follows that, within the limits of stability,

when we choose for any one of the diiferential coefficients

dt du. dj.in

-J-, -f^, • • • -7— (181)
d}] dm^ d>n„ ^ '

the quantities following the sign d in the numerators of the others

together with v as those which are to remain constant in differentia-

tion, the value of the differential coefficient as thus determined will

be at least as small as when one or more of the constants in differen-

tiation are taken from the denominators, one being still taken from

each fraction, and v as before being constant.

Now we have seen that none of these differential coefficients, as

determined in any of these ways, can have a negative value within

the limit of stability, and that some of them must have the value zero

at that limit. Therefore, in virtue of the relations just established

one at least of these differential coefficients determined by considerino-

constant the quantities occurring in the numerators of the others

together with y, will have the value zero. But if one such has the

value zero, all such will in general have the same value. For if

\drnjt^ V, fii, . . . nn-i ^ '

for example, has the value zero, we may change the density of the

component S^ without altering (if we disregard infinitesimals of

higher orders than the first) the temperature or the potentials, and
therefore, by (98), without altering the pressure. That is, we may
change the phase without altering any of the quantities ;^, /->, yUj,

//„. (In other words, the phases adjacent to the limits of stability

exhibit approximately the relations characteristic of neutral equili-

brium.) Xow this change of phase, which changes the density of

one of the components, will in general change the density of the

others and the density of entropy. Therefore, all the other differen-

tial coefficients formed after the analogy of (182), i. e., formed from
the fractions in (181) by taking as constants for each the quantities in

the numerators of the others together with y, will in general have
the value zero at the limit of stability. And the relation which
characterizes the limit of stability may be expressed, in general, by
setting any one of these differential coefficients equal to zero. Such
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an equation, when the fundamental equation is known, may be

reduced to the form of an equation between the independent variables

of the fundamental equation.

Again, as the detei'minant (173) is equal to the product of the

differential coefficients obtained by writing d for A in the first

members of (160)-(169), the equation of the limit of stability may be

expressed by setting this determinant equal to zero. The form of

the differential equation as thus expressed will not be altered by the

interchange of the expi-essions ?;, ?«,, . . . m^, but it will be altered

by the substitution of v for any one of these expressions, which will

be allowable whenever the quantity for which it is substituted has

not the value zero in any of the phases to which the formula is to be

applied.

The condition formed by setting the expression (182) equal to zero

is evidently equivalent to this, that

r d^A

that is, that

=0,

fJ-n—
1

dr-
V

i, F-\ jWn^l

(183)

(184)

or by (98), if we regard if, yw^, . . . yw„ as the independent variables,

td^\_
XdiJ^^I

(185)

d^p

~dP

d^p
(186)

In like manner we may obtain

d^p

Any one of these equations, (185), (186), may be regarded, in gen-

eral, as the equation of the limit of stability. We may be certain

that at every phase at that limit one at least of these equations will

hold true.

GEOMETRICAL ILLUSTRATIONS.

Surfaces in lohich the Composition of the Body represented is

Constant.

In vol. ii, p. 382, of the Trans. Conn. Acad., a method is described of

representing the thermodynamic properties of substances of invariable

composition by means of surfaces. The volume, entropy, and energy
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of a constant quantity of a substance are represented by rectangular

co-ordinates. This method corresponds to the first kind of funda-

mental equation described on pages 140-144. Any other kind of

fundamental equation for a substance of invariable composition will

suggest an analogous geometrical method. Thus, if we make m con-

stant, the variables in any one of the sets (99)-(103) are reduced to

three, which may be represented by rectangular co-ordinates. This

will, ho\vever, afford but four different methods, for, as has already

(page 150) been observed, the two last sets are essentially equivalent

when n =. \.

The method described in the preceding volume has certain advan-

tages, especially for the purposes of theoretical discussion, but it may
often be more advantageous to select a method in which the proper-

ties represented by two of the co-ordinates shall be such as best serve

to identify and describe the difi*erent states of the substance. This

condition is satisfied by temperature and pressure as well, perhaps, as

by any other properties. We may represent these by two of the

co-ordinates and the potential by the third. (See page 143.) It

will not be overlooked that there is the closest analogy between these

three quantities in respect to their parts in the general theory of

equilibrium. (A similar analogy exists between volume, entrojjy, and

energy.) If we give m the constant value unity, the third co-ordinate

will also represent C, which then becomes equal to //.

Comparing the two methods, we observe that in one

vz=zx, i]= y, e= z,
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The surfaces detined by equations (187) and (189) may be distin-

guished as the v-7]-e surface, and the t-p-t surface, of the substance to

which they relate.

In the t-2>'C surface a line in which one part of the surface cuts

another represents a series of pairs of coexistent states. A point

through which pass three different parts of the surface represents a

triad of coexistent states. Through such a point will evidently pass

the three lines formed by the intersection of these sheets taken two

by two. The perpendicular projection of these lines upon the p-t

plane will give the curves which have recently been discussed by Pro-

fessor J. Thomson.* These curves divide the space about the projec-

tion of the triple point into six parts which may be distinguished as

follows: Let C^'', ?*^\ C^"^' denote the three ordinates determined for

the same values of 2> and t by the three sheets passing through the

triple point, then in one of the six spaces

^(n<KX)<^(S)^
(191)

in the next space, separated from the former by the line for which

^(r)<^(.?)<^(X)^
(192)

in the third space, separated from the last by the line for which

^(S)<^(r)<^W (193)

in the fourth ^^^ < ?(^> < C^''^ (194)

in the fifth ^(^)<?(^><?(^ (195)

in the sixth ?(«<^(^) <?(*). (196)

The sheet which gives the least values of 'C, is in each case that which

represents the stable states of the substance. From this it is evident

that in passing around the projection of the triple point we pass

through lines representing alternately coexistent stable and coexistent

unstable states. But the states represented by the intermediate

values of t, may be called stable relatively to the states represented

by the highest. The differences ^^^^ — ?^''>, etc. represent the amount

of work obtained in bringing the substance by a reversible process

from one to the other of the states to which these quantities relate,

in a medium having the temperature and pressure common to the

two states. To illustrate such a process, we may suppose a plane

perpendicular to the axis of temperature to pass through the points

* See the Reports of the British Association for 1871 and 1872 ; and Philosophical

Magazine, vol. xlvii. (1874), p. 447.
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representing the two states. This will in general cut the double line

formed by the two sheets to which the symbols (X) and ( V) refer.

The intersections of the plane with the two sheets will connect the

double point thus determined with the points representing the

initial and final states of the process, and thus form a reversible path
for the body between those states.

The geometrical relations which indicate the stability of any state

may be easily obtained by applying the principles stated on pp. 156 ff.

to the case in which there is but a single component. The expres-

sion (133) as a test of stability will reduce to

e — t' 1] -\- 2)' V — ji' rn^ (197)

the accented letters referring to the state of which the stability is in

question, and the unaccented letters to any other state. If we con-

sider the quantity of matter in each state to be unity, this expression

may be reduced by equations (91) and (96) to the form

'Q-'Q'-[-{t-t')n-{2y-p')v, (198)

which evidently denotes the distance of the point {t',p\ C') below the

tangent plane for the point {t,p, t), measured parallel to the axis of t,.

Hence if the tangent plane for every other state passes above the

point representing any given state, the latter will be stable. If any

of the tangent planes pass below the point representing the given

state, that state will be unstable. Yet it is not always necessary to

consider these tangent planes. For, as has been observed on page
160, we may assume that (in the case of any real substance) there

will be at least one not unstable state for any given temperature and
pressure, except when the latter is negative. Therefore the state

represented by a point in the surface on the positive side of the

plane p=.Q will be unstable only when there is a point in the surface

for which t and jo have the same values and t, a less value. It follows

from what has been stated, that where the surface is doubly convex
upwards (in the direction in which 'Q is measured) the states repre-

gented will be stable in respect to adjacent states. This also appears

directly from (162). But where the surface is concave upwards in

either of its principal curvatures the states represented will be unsta-

ble in respect to adjacent states.

When the number of component substances is greater than unity,

it is not possible to represent the fundamental equation by a single

surface. We have therefore to consider how it may be represented

by an infinite number of surfaces. A natural extension of either of

the methods already described will give us a series of suifaces in
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which every one is the ^7-;/-f surface, or every one the t-jy-t surface for

a body of constant composition, the proportion of the components

varying as we pass from one surface to another. But for a simultaneous

view of the properties which are exhibited by compounds of two or

three components without change of temperature or pressure, we may
more advantageously make one or both of the quantities t ov p con-

stant in each surface.

Surfaces and Curves in v:ihich the Composition of the Body repre-

sented is Variable and its Temperature and Pressure are Constant.

When there are three components, the position of a point in the

^-I^ plane may indicate the composition of a body most simply, per-

haps, as follows. The body is supposed to be composed of the quan-

tities mj, mg, nis of the substances S^, /S'g, /Sg, the value of m, -f

mg + ni^ being unity. Let Pj, P2, Pg be any three points in the

plane, which are not in the same straight line. If we suppose masses

equal to w?,, m2, m 3 to be placed at these three points, the center of

gravity of these masses will determine a point which will indicate

the value of these quantities. If the triangle is equiangular and has

the height unity, the distances of the point from the three sides will

be equal numerically to m^^ mg, ni^. Now if for every possible

phase of the components, of a given temperature and pressure, we

lav off from the point in the JT- 3^ plane which represents the compo-

sition of the phase a distance measured parallel to the axis of Z and

representing the value of l (when m^ -j- "'2 "h^s ^= 1)5 ^^® points

thus determined will form a surface, which may be designated as the

m^-m2-"^3-? surface of the substances considered, or simply as their

m-'Q surface, for the given temperature and pressure. In like manner,

when there are but two component substances, we may obtain a

curve, which we will suppose in the X-Z plane. The coordinate y
may then represent temperature or pressure. But we will limit our-

selves to the consideration of the properties of the ni-i;. surface for

n =r 3, or the m-'C curve for n r= 2, regarded as a surface, or curve,

which varies with the temperature and pressure.

As by (96) and (92)

and (for constant temperature and pressure)

dt,=: /.i^ dm^ -f /U2 dm^ + yWg dm^,

if we imagine a tangent plane for the point to which these letters

relate, and denote by 'q' the ordinate for any point in the plane,
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and by /«,', /^a? "^3? the distances of tlie foot of this ordinate from

the three sides of the triangle P^ Po P3, we may easily obtain

'Q' = yWjm,' + fx„ m„' -f //g w^a', (199)

which Ave may regard as the equation of the tangent plane. There-

fore the ordinates for this ])lane at P^, P2, and P3 are equal respect-

ively to the potentials //j, ^^^ ^^^^ A's- ^^^ ^" general, the ordinate

for any point in the tangent plane is eqvial to the potential (in the

phase represented by the point of contact) for a substance of which

the composition is indicated by the position of the ordinate. (See

page 149.) Among the bodies which may be formed of S^, jS^, and

S^, there may be some which are incapable of variation in composi-

tion, or which are capable only of a single kind of variation. These

will be represented by single points and curves in vertical planes.

Of the tangent plane to one of these curves only a single line will be

fixed, which will determine a series of jDotentials of which only two

will be independent. The phase represented by a separate point will

determine only a single potential, viz., the potential for the substance

of the body itself, which will be equal to 'Q.

The points representing a set of coexistent phases have in general

a common tangent plane. But when one of these points is situated

on the edge where a sheet of the surface terminates, it is sufiicient if

the plane is tangent to the edge and passes below the surface. Or,

when the point is at the end of a separate line belonging to the sur-

face, or at an angle in the edge of a sheet, it is sufficient if the plane

pass through the point and below the line or sheet. If no part of the

surface lies below the tangent plane, the points where it meets the

plane will represent a stable (or at least not unstable) set of co-

existent phases.

The surface which we have considered represents the relation

between t. and m^, m^, m^ for homogeneous bodies when t and p
have any constant values and m^ -j- mg + ^^5 =: 1. It will often be

useful to consider the surface which represents the relation between

the same variables for bodies which consist of parts in different but

coexistent phases. We may suppose that these are stable, at least in

regard to adjacent phases, as otherwise the case would be devoid of

interest. The point which represents the state of the composite

body will evidently be at the center of gi-avity of masses equal to

the parts of the body placed at the points representing the phases of

these parts. Hence from the surface representing the properties of

homogeneous bodies, which may be called the primitive surface, we

Trans. Conn. Acad., Vol. III. 23 January, 1876.
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may easily construct the surface representing the properties of bodies

which are in equilibiium but not homogeneous. This may be called

the secondary or derived surface. It will consist, in general, of

various portions or sheets. The sheets which represent a combina-

tion of tAVO phases may be formed by rolling a double tangent plane

upon the primitive surface : the part of the envelop of its successive

positions which lies between the curves traced by the points of con-

tact will belong to the derived surface. When the primitive surface

has a triple tangent plane or one of higher order, the triangle in the

tangent plane formed by joining the points of contact, or the smallest

polygon without re-entrant angles which includes all the points of

contact, will belong to the derived surface, and will represent masses

consisting in general of three or more phases.

Of the whole thermodynamic surface as thus constructed for any

temperature and any positive pressure, that part is especially impor-

tant which gives the least value of ? for any given values of m,, mg,

m^.- The state of a mass represented by a point in this part of the

surface is one in which no dissipation of energy would be possible if

the mass were enclosed in a rigid envelop impermeable both to

matter and to heat ; and the state of any mass composed of S^, S^, S^

in any proportions, in which the dissipation of energy has been com-

pleted, so far as internal processes are concerned, (i. e., under the

limitations imposed by such an envelop as above supposed,) would be

represented by a point in the part which we are considering of the

m-'C, surfece for the temperatvire and pressure of the mass. We may

therefore briefly distinguish this part of the surface as the surface of

dissipated energy. It is evident that it forms a continuoiis sheet, the

projection of which upon the A'^ Y plane coincides with the triangle

P Pg P3, (except when the pressure for which the m-'C, surface is

constructed is negative, in which case there is no surface of dissipated

enero"y,) that it nowhere has any convexity upward, and that the

states which it represents are in no case unstable.

The general properties of the ni-'Q lines for two component sub-

stance? are so similar as not to require separate consideration. We
now proceed to illustrate the use of both the surfaces and the lines

by the discussion of several particular cases.

Three coexistent phases of two component substances may be

represented by the points A, B, and C, in figure 1, in which 'Q is

measured toward the top of the page from PjPg,
>'^i

toward the left

from P2Q25 ^"^^^ ^2 toward the right from P,Q^. It is supposed

that PjPjj = 1. Portions of the curves to which these points belong
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Q..

receive the increment

b

Fig. 1.

are seen in the figure, and will be denoted by the symbols (A), (B),

(C). We may, for convenience, speak of these as separate curves,

without implying anything in regard to their possible continuity in

parts of the diagram remote from their common tangent AC. The

line of dissipated energy includes the straight line AC and portions

of the primitive curves (A) and (0). Let us first consider how the

diagram will be altered, if the temper-

ature is varied while the pressure re-

mains constant. If the temperature

receives the increment dt, an ordinate

of which the position is fixed will

dt) '^^'
''^'

\ai j j)^ m
— If dt. (The reader will easily con-

vince himself that this is true of the

ordinates for the secondary line AC, as well as of the ordinates for

the primitive curves.) Now if we denote by // the entropy of the

phase represented by the point B considered as belonging to the

curve (B), and by if the entropy of the composite state of the same

matter represented by the point B considered as belonging to the

tangent to the curves (A) and (C), t (//' — jf) will denote the heat

yielded by a unit of matter in passing from the first to the second

of these states. If this quantity is positive, an elevation of temper-

ature will evidently cause a part of the (;urve (B) to protrude below

the tangent to (A) and (C), which will no longer form a part of the

line of dissipated energy. This line will then include portions of the

three curves (A), (B), and (C), and of the tangents to (A) and (B)

and to (B) and (C), On the other hand, a lowering of the tempei'a-

ture will cause the curve (B) to lie entirely above the tangent to (A)

and (C), so that all the phases of the sort represented by (B) will be

imstable. If t {if — rf) is negative, these eifects will be produced by

the opposite changes of temperature.

The effect of a change of pi-essui-e while the temperature remains

constant may be found in a manner entirely analogous. The varia-

volume of the homogeneous phase represented by the point B is

a greater than the volume of the same matter divided between the

the phases represented by A and C, an increase of pressure will give

diagram indicating that all phases of the sort represented by curve

(B) are unstable, and a decrease of pressure will give a diagram indi-

tion of any ordinate will be dp or V dp. Therefore, if the
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eating two stable pairs of coexistent phases, in each of which one of

the pliases is of the sort represented by the curve (B). When the

rehition of the volumes is the reverse of that supposed, these results

will be produced by the opposite changes of pressure.

When we have four coexistent phases of three component substances,

there are two cases which must be distinguished. In the hrst, one of

the points of contact of the primitive surface with the quadruple

tangent plane lies within the triangle formed by joining the other

three ; in the second, the four points may be joined so as to form a

quadrilateral withoiit re-entrant angles. Figure 2 represents the

projection upon the X- Y plane (in which ^?^,, mg, m^ are measured)

of a part of the surface of dissipated energy, when one of the points

of contact D falls within the triangle formed by the other three A, B,

C. This surface includes the triangle ABC in the quadruple tangent

l^lane, portions of the three sheets of the primitive surface which

touch the triangle at its vertices, EAF, GBH, ICK, and portions of

the three developable surfaces formed by a tangent plane rolling

upon each pair of these sheets. These developable surfaces are repre-

Fig. 2. Fig.

sented in the figui-e by ruled surfaces, the lines indicating the direc-

tion of their rectilinear elements. A point within the triangle ABC
represents a mass of which the matter is divided, in general, between

three or four different phases, in a manner not entirely determined by

the position of a point. (The quantities of matter in these phases are

such that if placed at the corresponding points. A, B, C, D, their

center of gravity would be at the point representing the total mass.)
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Such a mass, if exposed to constant temperature and pressure, would

be in neutral equilibrium. A point in the developable surfaces repre-

sents a mass of which the matter is divided between two coexisting

phases, which are represented by the extremities of the line in the

figure passing through that point, A point in the primitive surface

represents of course a homogeneous mass.

To determine the effect of a change of temperature without change

of pressure upon the general features of the surface of dissipated

energy, we must know whether heat is absorbed or yielded by a

mass in passing from the phase represented by the point D in the

primitive surface to the composite state consisting of the phases A,

B, and C which is represented by the same point. If the first is the

case, an increase of temperature will cause the sheet (D) (i. e., the

sheet of the pi-imitive surface to which the point D belongs) to sep-

arate from the plane tangent to the three other sheets, so as to be

situated entirely above it, and a decrease of temperature, will cause

a part of the sheet (D) to protrude through the plane tangent to

the other sheets. These effects will be produced by the opposite

changes of temperature, when heat is yielded by a mass passing

from the homogeneous to the composite state above mentioned.

In like manner, to determine the effect of a variation of pressure

without change of temperature, we must know whether the volume

for the homogeneous phase represented by D is greater or less than

the volume of the same matter divided between the phases A, B, and

C. If the homogeneous phase has the greater volume, an increase of

pressure will cause the sheet (D) to separate from the plane tangent to

the other sheets, and a diminution of pressure will cause a part of the

sheet (D) to protrude below that tangent plane. And these effects

will be produced by the opposite changes of pressure, if the homoge-

neous phase has the less volume. All this appears from precisely the

same considerations which were used in the analogous case for two

component substances.

Now when the sheet (D) rises above the plane tangent to the other

sheets, the general features of the surface of dissipated energy are

not altered, except by the disappearance of the point D. But when

the sheet (D) protrudes below the plane tangent to the other sheets,

the surface of dissipated energy will take the form indicated in figure 3.

It will include portions of the four sheets of the primitive surface,

poi-tions of the six developable sui-faces formed by a double tangent

plane rolling upon these sheets taken two by two, and portions of

three triple tangent planes for these sheets taken by threes, the sheet

(D) being always one of the three.
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But wlieu the points of contact with the quadruple tangent plane

which represent the four coexistent phases can be joined so as to

form a quadrilateral ABCD (fig. 4) without reentrant angles, the

surface of dissipated energy will include this plane quadrilateral,

portions of the four sheets of the primitive surface which are tangent

to it, and portions of the four developable surfaces formed by double

Fig. 4. Pig. 5.

tangent planes rolling upon the four pairs of these sheets which corres-

pond to the four sides of the quadrilateral. To determine the gen-

eral effect of a variation of temperature upon the surface of dissipated

energy, let us consider the composite states represented by the point

I at the intersection of the diagonals of the quadrilateral. Among
these states (which all relate to the same kind and quantity of matter)

there is one which is composed of the phases A and C, and another

which is composed of the phases B and D. Now if the entropy of

the first of these states is greater than that of the second, (i. e., if

heat is given out by a body in passing from the first to the second

state at constant temperature and pressure,) which we may suppose

without loss of generality, an elevation of temjjerature while the

pressure remains constant will cause the triple tangent planes to

(B), (D), and (A), and to (B), (D), and (C), to rise above the

triple tangent planes to (A), (C), and (B), and to (A), (C),

and (D), in the vicinity of the point I. The surface of dissipated

energy will therefore take the form indicated in figure 5, in Avhich

there are two plane triangles and five developable surfaces besides

portions of the four primitive sheets. A diminution of temperature

will give a difierent but entirely analogous form to the surface of dis-

sipated energy. The quadrilateral ABCD will in this case break

into two triangles along the diameter lU). The effects produced by
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variation of the pressure while the temperature remains constant will

of course be similar to those described. By considering the difference

of volume instead of tlie difference of entropy of the two states repre-

sented by the point I in the quadruple tangent plane, we may distin-

guish between the effects of increase and diminution of pressure.

It should be observed that the points of contact of the quadruple

tangent plane with the primitive surface may be at isolated points or

curves belonging to the latter. So also, in the case of two component

substances, the points of contact of the triple tangent line may be at

isolated points belonging to the primitive curve. Such cases need

not be separately treated, as the necessary modifications in the pre-

ceding statements, when applied to such cases, are quite evident.

And in the remaining discussion of this geometrical method, it will

generally be left to the reader to make the necessary limitations or

modifications in analogous cases.

The necessary condition in regard to simultaneous variations of

temperature and pressure, in order that four coexistent phases of

three components, or three coexistent phases of two components, shall

remain possible, has already been deduced by purely analytical pro-

cesses. (See equation (129).)

We will next consider the case of two coexistent phases of identi-

cal composition, and first, when the number of components is two.

The coexistent phases, if each is variable in composition, will be

represented by the point of contact of two curves. One of the

curves will in general lie above the other except at the point of con-

tact ;
therefore, when the temperature and pressure remain constant,

one phase cannot be varied in composition without becoming unstable

while the other phase will be stable if the proportion of either com-

ponent is increased. By varying the temperatui'e or pressure, we
may cause the upper curve to protrude below the other, or to rise

(relatively) entirely above it. (By comparing the volumes or the

entropies of the two coexistent phases, we may easily determine

which result would be produced by an increase of temperatiire or

of pressure.) Hence, the temperatures and pressures for which two

coexistent phases have the same composition form the limit to the

temperatures and pressures for which such coexistent phases are pos-

sible. It will be observed that as we pass this limit of temperature

and pressure, the pair of coexistent phases does not simply become
unstable, like pairs and triads of coexistent phases Avhich we have

considered before, but there ceases to be any such pair of coexistent

phases. The same result has already been obtained analytically on
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Fig. 6.

page 155. But on that side of the limit on which the coexistent

phases are possible, thei-e will be two pairs of coexistent phases for

the saniJ values of t and p, as seen in figure 6. If the curve AA' repre-

sents vapor, and the curve BB' liquid, a liquid

(represented by) B may exist in contact with

a vapor A, and (at the same temperature and

pressure) a liquid B' in contact with a vapor

A'. If we compare these phases in respect to

their composition, we see that in one case the

vapor is richer than the liquid in a certain

component, and in the other case poorer. Therefore, if these liquids

are made to boil, the effect on their composition will be opposite. If

the boiling is continued under constant pressure, the temperature will

rise as the liquids approach each other in composition, and the curve

BB' will rise relatively to the curve AA', until the curves are tangent

to each other, when the two liquids become identical in nature, as also

the vapors which they yield. In composition, and in the value of t per

unit of mass, the vapor will then agree with the liquid. But if the

curve BB' (which has the greater curvature) represents vapor, and

AA' represents liquid, the effect of boiling will make the liquids A
and A' differ more in composition. In this case, the relations indi-

cated in the figure will hold for a temperature higher than that for

which (with the same pressure) the curves are tangent to one another.

When two coexistent phases of three component substances have

the same composition, they are represented by the point of contact of

two sheets of the primitive surface. If these sheets do not intersect

at the point of contact, the case is very similar to that which we have

just considered. The upper sheet except at the point of contact

represents unstable phases. If the temperature or pressure are so

varied that a part of the upper sheet protrudes through the lower, the

points of contact of a double tangent plane rolling upon the two

sheets will describe a closed curve on each, and the surface of dissi-

pated energy will include a portion of each sheet of the primitive sur-

face united by a ring-shaped developable siirface.

If the sheet having the greater curvatures represents liquid, and

the other sheet vapor, the boiling temperature for any given pressure

will be a maximum, and the])ressure of saturated vapor for any given

temperature will be a minimun, when the coexistent liquid and vapor

have the same composition.

But if the two sheets, constructed for the temperature and pressure

of the coexistent phases which liave the same composition, intersect
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at the point of contact, tlie whole primitive sui-face as seen from

below will in general ])resent four re-entrant furrows, radiating from

the point of contact, for each of Avhich a developable suriace may he

formed by a rolling double tangent plane. The different parts of the

surface of dissipated energy in the vicinity of the point of contact are

represented in tigure 7. ATB, ETF are parts of one sheet ol the

primitive surface, and CTD, GTH are parts of the other. These are

united by the developable surfaces BTC, DTE, FTG, HTA. Now
we may make either sheet of the primitive sui'face sink relatively to

the other by the proper variation of tempei'ature or pressure. If the

sheet to which ATB, ETF belong is that which sinks relatively, these

parts of the surface of dissipated energy will

be merged in one, as well as the developable

surfaces BTC, DTE, and also FTG, HTA.
(The lines CTD, BTE, ATF, HTG will

separate from one another at T, each forming

a continixous curve.) But if the sheet of the

primitive surface which sinks relatively is

that to which CTD and GTH belong, then

these parts will be merged in one in the sur-

face of dissipated energy, as will be the developable surfaces BTC,

ATH, and also DTE, FTG.
It is evident that this is not a case of maximum or minimum tem-

perature for coexistent phases under constant "pressure, or of maximum

or minimum pressure for coexistent phases at constant temperature.

Another case of interest is when the composition of one of three

coexistent phases is such as can be produced by combining the other

two. In this case, the primitive surface must touch the same plane

in three points in the same straight line. Let us distinguish the parts

of the primitive surface to which these points belong as the sheets (A),

(B), and (C), (C) denoting that which is intermediate in position.

The sheet (C) is evidently tangent to the developable surface formed

upon (A) and (B). It may or it may not intersect it at the point of

contact. If it does not, it must lie above the developable sur-

face, (unless it represents states which are unstable in regard

to continuous changes,) and the surface of dissipated energy

will include parts of the primitive sheets (A) and (B), the develop-

able surface joining them, and the single point of the sheet (C)

in which it meets this developable surface. Now, if the tempera-

ture or pressure is varied so as to make the sheet (C) rise above the

Trans. Conn. Acad., Vol. III. 24 Februaby, 1876.
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developable surface formed on the sheets (A) and (B), the surface of

dissipated energy will be altered in its general features only by the

removal of the single point of the sheet (C). But if the temperature

or pressure is altered so as to make a part of the sheet (C) protrude

through the developable surface formed on (A) and (B), the surface

b of dissipated energy will have the

form indicated in figure 8. Tt

will include two plane triangles

ABC and A'B'C, a part of each of

the sheets (A) and (B), represented

in the figure by the spaces on the

left of the line aAA'a' and on the

\ right of the line bBB'b', a small
^''^- ^- " part CC of the sheet (C), and de-

velopable surfaces formed upon these sheets taken by pairs ACC'A',

BCC'B', aABb, a'A'B'b'. the last two being different portions of the

same developable surface.

But if, when the primitive surface is constructed for such a

temperature and pressure that it has three points of contact with

the same plane in the same straight line, the sheet (C) (which has

the middle position) at its point of contact with the triple tangent

plane intersects the developable surface formed upon the other sheets

(A) and (B), the surface of dissipated energy will not include this

develojjable surface, but will consist of portions of the three primi-

tive sheets with two developable surfaces formed on (A) and (C) and

on (B) and (C). These developable surfaces meet one another at

the point of contact of (C) with the tri2)le tangent plane, dividing the

portion of this sheet which be-

longs to the sxxrface of dissipated

energy into two pai'ts. If now
the temperature or pressure are

vai'ied so as to make the sheet

((') sink relatively to the de-

velopable surface formed on (A)

and (B), the only alteration in

the general features of the sur-

face of dissipated energy will

be that the developable surfaces

formed on (A) and (C) and on (B) and (C) will separate from

one another, and the two parts of the sheet (C) will be merged in

one. But a contrary variation of temperature or pressure will give a

Fig. 9.
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surface of dissipated energy such as is represented in figure (9), con-

taining two plane triangles ABC, A'B'C belonging to triple tangent

planes, a portion of the sheet (A) on the left of the line aAxV'a', a por-

tion of the sheet (B) on the right of the line bBB'b', two separate

portions cCy and c'Cy' of the sheet (C), tAVo separate portions aACc
and a'A'C'c' of the developable surface formed on (A) and (0), two

separate portions bBC;^ and b'B'C';/' of the developable surface

formed on (B) and (C), and the portion A'ABB' of the developable

surface formed on (A) and (B).

From these geometrical relations it appears that (in general) the

temperature of three coexistent phases is a maximum or minimum for

constant pressure, and the pressure of three coexistent phases a maxi-

mum or minimum for constant temperature, when the composition of

the three coexistent phases is such that one can be formed by com-

bining the other two. This result has been obtained analytically

on page 150.

The preceding examples are amply sufficient to illustrate the use

of the m-'Q surfaces and curves. The physical properties indicated by

the nature of the surface of dissipated energy have been only occa-

sionally mentioned, as they are often far more distinctly indicated by
the diagrams than they could be in words. It will be observed that

a knowledge of the lines which divide the various dilFerent portions

of the surface of dissipated energy and of the direction of the recti-

linear elements of the developable surfaces, as projected upon the

X-Y^ plane^ without a knowledge of the form of the tn-'C, surface in

space, is sufficient for the determination (in respect to the quantity

and composition of the resulting masses) of the combinations and

separations of the substances, and of the changes in their states of

aggregation, which take place when the substances are exposed to

the temperature and pressure to which the projected lines relate,

except so far as such transformations are prevented by passive re-

sistances to change.

CRITICAL PHASES.

It has been ascertained by experiment that the variations of two
coexistent states of the same substance are in some cases limited in

one direction by a terminal state at which the distinction of the

coexistent states vanishes.* This state has been called the critical

state. Analogous properties may doubtless be exhibited by com-

pounds of variable composition without change of temperature or

* See Dr. Andrews '' On the continuity of the gaseous and liquid states of matter."

Phil. Trans., vol. 159, p. 575.
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pressure. For if, at any given temperature and pressure, two liquids

are capable of forming a stable mixture in any ratio ni
^

: mg less than

«, and in any greater than h, a and b being the values of that ratio

for two coexistent phases, while either can form a stable mixture with

a third liquid in all proportions, and any small quantities of the first

and second can unite at once with a great qiiantity of the third to

form a stable mixture, it may easily be seen that two coexistent mix-

tures of the three liquids may be varied in composition, the tempera-

ture and pressure remaining the same, from initial phases in each of

which the quantity of the third liquid is nothing, to a terminal phase

in which the distinction of the two phases vanishes.

In general, we may define a critical phase as one at which the dis-

tinction between coexistent phases vanishes. We may suppose the

coexistent phases to be stable in respect to continuous changes, for

although relations in some respects analogous might be imagined to

hold true in regard to phases which are unstable in respect to con-

tinuous changes, the discussion of such cases would be devoid of

interest. But if the coexistent phases and the critical phase are

unstable only in respect to the possible formation of phases entirely

different from the critical and adjacent phases, the liability to such

changes will in no respect affect the relations between the critical and

adjacent phases, and need not be considered in a theoretical discussion

of these relations, although it may prevent an experimental realiza-

tion of the phases considered. F'or the sake of brevity, in the follow-

ing discussion, phases in the vicinity of the critical phase will gen-

erally be called stable, if they are unstable only in respect to the

formation of phases entirely different from any in the vicinity of the

critical phase.

Let us first consider the number of independent variations of which

a critical phase (while remaining such) is capable. If we denote by

n the number of independently variable comjjonents, a pair of coexis-

tent phases will be capable of n independent variations, which may be

expressed by the variations oi n of the quantities t, p^ i.i^, /j^, . . . /j„.

If we limit these variations by giving to n — l of the quantities the

constant values which they have for a certain critical phase, we

obtain a linear* series of pairs of coexistent phase's terminated by the

critical phase. If we now vary infinitesimally the values of these

n— l quantities, we shall have for the new set of values considered con-

stant a new linear series of pairs of coexistent phases. Now for every

pair of phases in the first series, there must be pairs of phases in the

* This term is used to characterize a series having a single degree of extension.
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second series differing infinitely little from the pair in the first, and

vice versa, therefore the second series of coexistent phases must be

terminated by a critical phase which differs, but differs infinitely

little, from the first. We see, therefore, that if we vary arbitrarily

the values of any ;/ — 1 of the quantities ^,jtj, /^ j, //g? • • • /^n, as deter-

mined by a critical phase, we obtain one and only one critical phase

for each set of varied values ; i. e., a critical phase is capable of

n~-l independent variations.

The quantities t, p, /v^, fj.2, • • • A'n, have the same values in two

coexistent phases, but the ratios of the quantities i],v,m^,m^,, . . m„,

are in general dift'erent in the two phases. Or, if for convenience we
compare equal volumes of tlie two phases (which involves no loss of

generality), the quantities r/, m^, m,2, . . . ni„ will in general have

different values in two coexistent phases. Applying this to coexis-

tent phases indefinitely near to a critical phase, we see that in the

immediate vicinity of a critical phase, if the values of n of the quanti-

ties t, p, /<,, //g, . . . Mn, are regarded as constant (as well as v), the

variations of either of the others will be infinitely small compared

with the variations of the quantities ?/, m^, mg, . . . m„. This con-

dition, whicli we may write in the form

(-j—

)

=0, (200)

characterizes, as we have seen on page 171, the limits which divide

stable from unstable phases in respect to continuous changes.

In fact, if we give to the quantities ^, yWj, yUg, . • . /<„_i constant

values determined by a pair of coexistent phases, and to —- a series

of values increasing from the less to the greater of the values which it

has in these coexistent phases, we determine a linear series of phases

connecting the coexistent phases, in some part of which yM„—since it

has the same value in the two coexistent phases, but not a uniform

value throughout the series (for if it had, Avhich is theoretically im-

probable, all these phases would be coexistent)—must be a decreasing

function of —^, or of m„, if v also is supposed constant. Therefore,

the series must contain phases which are unstable in respect to con-

tinuous changes. (See page 1 68.) And as such a pair of coexistent

phases may be taken indefinitely near to any critical phase, the

unstable phases (with respect to continuous changes) must approach

indefinitely near to this phase.
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Critical phases have similar properties with reference to stability

as determined with regard to discontinuous changes. For as every

stable phase which has a coexistent phase lies upon the limit which

separates stable from unstable phases, the same must be true of any

stable critical phase. (The same may be said of critical phases which

are unstable in regard to discontinuous changes if we leave out of

account the liability to the particular kind of discontinuous change

in respect to which the critical phase is unstable.)

The linear series of phases determined by giving to n ol the quanti-

ties ^, jo, yUj, fX2-> • ' Mn t.he constant values which they have in any

pair of coexistent phases consists of unstable phases in the part

between the coexistent phases, but in the part beyond these phases in

either direction it consists of stable phases. Hence, if a critical phase

is varied in such a manner thatn of the quantities t,p, /x^, /U2, . . • J-^n

remain constant, it will remain stable in respect both to continuous and

to discontinuous changes. Therefore, yu„ is an increasing function of

rn„ when t, v, jj^, ^Iq, • • • pin-i have constant values determined by

any critical phase. But as equation (200) holds true at the critical

phase, the following conditions must also hold true at that phase

:

(^'-^1 =0, '

(20,)

\dm„^Jt, V,
^0. (202)

If the sign of equality holds in the last condition, additional condi-

tions, concerning the differential coefficients of higher orders, must be

satisfied.

Equations (200) and (201) may in general be called the equations

of critical phases. It is evident that there are only two independent

equations of this character, as a critical phase is capable of n—1 inde-

pendent variations.

We are not, however, absolutely certain that equation (200) will

always be satisfied by a critical phase. For it is possible that the

denominator in the fraction may vanish as well as the numerator for

an infinitesimal change of phase in which the quantities indicated

are constant. In such a case, we may siippose the subscript n to

refer to some different component substance, or use another differen-

tial coefficient of the same general form (such as are described on

page 171 as characterizing the limits of stability in respect to con-

tinuous changes), making the corresponding changes in (201) and

(202). We may be certain that some of the formulae thus formed

will not fail. But for a perfectly rigorous method there is an advan-
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tage in the use of //, «, mj,*^,, . . . w„ as independent variables. The

condition that the phase may be varied without altering any of the

quantities t, ii^, //o, ...//„ will then be expressed by the equation

i?„+t=^. (203)

in which Rn+x ^^enotes the same determinant as on page 169. To

obtain the second equation characteristic of critical phases, we observe

that as a phase which is critical cannot become unstable when varied

so that n of the quantities ^, />, //j, //g, • • • A'n remain constant, the

differential of i?„^_j for constant volume, viz.,

dt}

"n+ldtf^^I^^l dm. _j_
dli^,

^j^^^ (204)
dm^ '

'

dtrir,

cannot become negative when a of the equations (172) are satisfied.

Neither can it have a positive value, for then its value might become

negative by a change of sign of c?//, dm,^^ etc. Therefore the expres-

sion (204) has the value zero, \in of the equations (172) are satisfied.

This may be expressed by an equation

aS'=0, (205)

in which aS denotes a determinant in which the constituents are the

same as in 7?„+,, except in a single horizontal line, in which the

differential coefliicicnts in (204) are to be substituted. In whatever

line this substitution is made, the equation (205), as well as (203),

will hold true of every critical phase without exception.

If we choose ^, /), Wj, Wg, , . . wi„ as independent variables, and

write TJ for the determinant

dH_ ^?^?_
^2r

c?m,2 dm^dm^ dm^_^dm,^

dn dn dn
dnt-ydm,^

d^^
drn^dm„

dm2^

dH

dm,^_^dm^

_dH

(206)

and V for the determinant formed from this by substituting for the

constituents in any horizontal line the expressions

dU dU dU
dtn^ dm?^ dn/in^^ ^ ''

the equations of critical phases will be

U= 0, F= 0. (208)

It results immediately from the definition of a critical phase, that

an infinitesimal change in the condition of a mass in such a phase
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may cause the mass, if it remains in a state of dissipated energy (i. e.,

in a state in which the dissipation of energy by internal processes is

complete), to cease to be homogeneous. In this respect a critical phase

resembles any phase which has a coexistent phase, but differs from

such phases in that the two parts into which the mass divides when

it ceases to be homogeneous differ infinitely little from each other and

from the original phase, and that neither of these parts is in general

infinitely small. If we consider a change in the mass to be deter-

mined by the values of (///, dv, dm^, dm 2, . . . dm„, it is evident

that the change in question will cause the mass to cease to be homo-

geneous whenever the expression

^^1 a,j+ ^i^^i dv+ ^"±-' dm,, . . . + ^^^ c7m„ (209)
d?] dv dm

,
dm„

has a negative value. For if the mass should remain homogeneous,

it would become unstable, as Hn-^i ^voukl become negative. Hence,

in general, any change thus determined, or its reverse (determined by

giving to c?//, dv, dm,, dm2, . . . dm„ the same values taken nega-

tively), will cause the mass to cease to be homogeneous. The condi-

tion which must be satisfied with reference to dt^, dv, dm,, dm^,

. . . dm„, in order that neither the change indicated, nor the

reverse, shall destroy the homogeneity of the mass, is expressed by

equating the above expression to zero.

But if we consider the change in the state of the mass (supposed to

remain in a state of dissijiated energy) to be determined by arbitrary

values of n-\-\ of the differentials dt, dp, dfA,, d}x^, . . . d^^, the case

will be entirely different. For, if the mass ceases to be homogeneous,

it will consist of two coexistent phases, and as applied to these only

n of the quantities t-,pi j^i-, P-2-) • - • /^n will be independent. There-

fore, for arbitrary variations of n-^\ of these quantities, the mass

must in general remain homogeneous.

But if, instead of supposing the mass to remain in a state of dissi-

pated energy, we suppose that it remains homogeneous, it may easily

be shown that to certain values of w -j- 1 of the above differentials

there will correspond three different phases, of which one is stable

with respect both to continuous and to discontinuous changes, another

is stable with respect to the former and unstable with respect to the

latter, and the third is unsta})le with respect to both.

In general, however, if n of the quantities p, t, /.i „ j-i.^, . . //„,

or n arbitrary functions of these quantities, have the same constant

values as at a critical phase, the linear series of phases thus deter-

mined will be stable, in the vicinity of the critical phase. But if less
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than n of these quantities or functions of tlie same together with cer-

tain of the quantities //, v, ni^, m^, . . . m,„, or arbitrary functions of

the latter quantities, have the same values as at a critical phase, so

as to determine a linear series of phases, the difterential of -K„+j in

such a series of phases will not in general vanish at the critical phase,

so that in general a part of the series will be unstable.

We may illustrate these relations by considering separately the

cases in which n=zl and n= 2. If a mass of invariable composi-

tion is in a critical state, we may keep its volume constant, and

destroy its homogeneity by changing its entropy (i. e., by adding or

subtracting heat—probably the latter), or we may keep its entropy

constant and destroy its homogeneity by changing its volume ; but if

we keep its pressure constant we cannot destroy its homogeneity by
any thermal action, nor if we keep its temperature constant can we
destroy its homogeneity by any mechanical action.

When a mass having two independently variable components is in

a critical phase, and either its volume or its pressure is maintained

constant, its homogeneity may be destroyed by a change of entropy

or temperature. Or, if either its entropy or its temperature is main-

tained constant, its homogeneity may be destroyed by a change

of volume or pressure. In both these cases it is sup^^osed that

the quantities of the components remain unchanged. But if we
suppose both the temperature and the pressure to be maintained con-

stant, the mass will remain homogeneous, however the proportion of

the components be chilnged. Or, if a mass consists of two coexistent

phases, one of which is a critical phase having two independently

variable components, and either the temperature or the pressure of

the mass is maintained constant, it will not be possible by mechanical

or thermal means, or by changing the quantities of the components,

to cause the critical phase to change into a pair of coexistent phases,

so as to give three coexistent phases in the whole mass. The state-

ments of this paragraph and of the preceding have reference only to

infinitesimal changes.*

* A brief abstract (which came to the author's notice after the above was in type)

of a memoir by M. Duclaux, " Sur la separation des liquides melanges, etc." will be

found in Comptes Bendus, vol. Ixxxi. (1875), p. 815.

Trans. Conn. Acad., Vol. III. 25 February, 1876.
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ON THE VALUES OF THE POTENTIALS WHEN THE QUANTITY OF ONE
OF THE COMPONENTS IS VERY SMALL.

If we apply equation (97) to a homogeneous mass having two inde-

pendently variable components S^ and aS'j, and make <, jo, and mj
constant, we obtain

„,ip\ +,„Jp) ^0. (2,0)

Therefore, for ^21=0, either

(P) =»' (21 >)
\am2/t,p, m, ^ '

or

ydm^Jt, p, m,
(212)

Now, whatever may be the composition of the mass considered,

we may always so choose the substance S-^ that the mass shall consist

solely of that substance, and in respect to any other variable com-

ponent /Sg, we shall have ^2=0. But equation (212) cannot hold

true irt, general as thus applied. For it may easily be shown (as has

been done with regard to the potential on pages 148, 149) that the

value of a differential coefficient like that in (212) for any given mass,

when the substance ^S', (to which m^ and }.i„ relate) is determined, is

independent of the particular substance which we may regard as the

other component of the mass; so that, if equation (212) holds true

when the substance denoted by S^ has been so chosen that ???2=0, it

must hold true without such a restriction, which cannot generally

be the case.

In fact, it is easy to prove directly that equation (211) will hold

true of any phase which is stable in regard to continuous changes

and in which ^3=0, if nn.^ is capable of neggiive as well as positive

values. For by (171), in any phase having that kind of stability, /<,

is an increasing function of m^ when t^ p, and m^ are regarded as

constant. Hence, /<j will have its greatest value when the mass con-

sists wholly of /6'j, i. e., when mo^O. Therefore, if mg is capable

of negative as well as positive values, equation (211) must hold true

for m^ = 0. (This appears also from the geometrical representation

of potentials in the m-C curve. See page 177.)

But if m^ is capable only of positive values, we can only conclude

from the preceding considerations that the value of the differential

coefficient in (211) cannot be positive. Nor, if we consider the physi-

cal significance of this case, viz., that an increase of m,^ denotes an
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addition to the mass in question of a substance not before contained

in it, does any reason appear for supposing that this differential coeffi-

cient has generally the value zero. To fix our ideas, let us suppose

that *S^j denotes water, and 82 ^ *^'^^t (either anhydrous or any partic-

ular hydrate). The addition of the salt to Avater, previously in a

state capable of equilibrium with vapor or with ice, will destroy the

possibility of such equilibrium at the same temperature and pressure.

The liquid will dissolve the ice, or condense the vapor, which is

brought in contact with it under such circumstances, which shows

that //, (the potential for water in the liquid mass) is diminished by

the addition of the salt, when the temperature and pi'essure are main-

tained constant. Now there seems to be no a priori reason for

supposing that the ratio of this diminution of the potential for water

to the quantity of the salt which is added vanishes with this quantity.

We should rather expect that, for small quantities of the salt, an

effect of this kind would be proportional to its cause, i. e,, that the

differential coefficient in (211) would have a finite negative value for

an infinitesimal value of mg. That this is the case with respect to

numerous watery solutions of salts is distinctly indicated by the

experiments of Wtillner* on the tension of the vapor yielded by such

solutions, and of Riidorfff on the temperature at which ice is formed

in them; and unless we have experimental evidence that cases are

numerous in which the contrary is true, it seems not unreasonable

to assume, as a general law, that when mg has the value zero and is

incapable of negative values, the differential coefficient in (211) will

have a finite negative value, and that equation (212) will therefore

hold true. But this case must be carefully distinguished from that

in which mg is capable of negative values, which also may be illus-

trated by a solution of a salt in water. For this purpose let S
denote a hydrate of the salt which can be crystallized, and let IS.y

denote water, and let us consider a liquid consisting entirely of S
and of such temperature and pi'essure as to be in equilibrium with

crystals of >S,. In such a liquid, an increase or a diminution of the

quantity of w^ater would alike cause crystals of S^ to dissolve, which
requires that the differential coefficient in (211) shall vanish at the

particular phase of the liquid for which m^ = 0.

Let us return to the case in which m^'m incapable of negative values

and examine, without other restriction in regard to the substances

* Pogg. Ann., vol. ciii. (1858j, p. 529; vol. cv. (1858), p. 85; vol. ex. (I860), p. 564.

f Pogg. Ann., vol. cxiv. (1861), p. 63.
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denoted by S^ and S^, the relation between ia„ and — tor any con-

stant temperature and pressure and for such small values of ^ that

the differential coefficient in (211) may be regarded as having the same

constant value as when m^ = 0, the values of t, p, and m
,
being un-

changed. If we denote this value of the differential coefficient by

1± the value of ^4 will be positive, and will be independent oi m^.

Then for small values of — , we have by (210), approximately,

m

1. e.,

(214)

If we write the integral of this equation in the form

/^2=^4 1og-^, (215)

j5 like A will have a positive value depending only upon the tempera-

ture and pressure. As this equation is to be applied only to cases in

which the value of ^2 is very small compared with ni^, we may

regard —- as constant, when temperature and pressui-e are constant,

and write

/i2 = ^log-^, (216)

C denoting a positive quantity, dependent only upon the temperature

and pressure.

We have so far considered the composition of the body as varying

only in regard to the proportion of two components. But the argu-

ment will be in no respect invalidated, if we suppose the composition

of the body to be capable of other variations. In this case, the quan-

tities A and 6' will be functions not only of the temperature and

pressure but also of the quantities which express the composition of

the substance of which together with /S^ the body is composed. If

the qiiantities of any of the components besides iS^ are very small

(relatively to the quantities of others), it seems reasonable to assume

that the value of /a^, and therefore the values of A and C, will be

nearly the same as if these components were absent.
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Hence, if the independently variable components of any body are

/S„, . . . S,i, and S,,^ . . . /S'^., the quantities of the latter being very small

as compared with the quantities of the former, and are incapable of

negative values, we may express approximately the values of the

potentials for S,„ . . . tS^. by equations (subject of course to the uncer-

tainties of the assumptions which have been made) of the form

(217)/^;,=
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these may be more complicated. Otlier cases are explained by mole-

cules which differ in the quantity of matter which they contain, but

not in the kind of matter, nor in the proportion of the different kinds.

In still other cases, there appear to be different sorts of molecules,

which differ neither in the kind nor in the quantity of matter which

they contain, but only in the manner in which they are constituted.

What is essential in the cases referred to is that a certain number of

some sort or sorts of molecules shall be equivalent to a certain number

of some other sort or sorts in respect to the kinds and quantities of

matter which they collectively contain, and yet the former shall never

be transformed into the latter within the body considered, nor the

latter into the former, however the proportion of the numbers of the

different sorts of molecules may be varied, or the composition of the

body in other respects, or its thermodynamic state as represented by

temperature and pressure or any other two suitable variables, pro-

vided, it may be, that these variations do not exceed certain limits.

Thus, in the example given above, the temperature must not be

raised beyond a certain limit, or molecules of hydrogen and of oxygen

may be transformed into molecules of water.

The differences in bodies resulting from such differences in the con-

stitution of their molecules are capable of continuous variation, in

bodies containing the same matter and in the same thermodynamic

state as determined, for example, by pressure and temj^erature, as the

numbers of the molecules of the different sorts are varied. These

differences are thus distinguished from those which depend upon the

manner in which the molecules are combined to form sensible masses.

The latter do not cause an increase in the number of variables in the

fundamental equation ; but they may be the cause of different values

of which the function is sometimes capable for one set of values of

the independent variables, as, for example, when we have several

different values of ? for the same values of t, p, m^, in^, . . . in„, one

perhaps being for a gaseous body, one for a liquid, one for an amor-

phous solid, and others for different kinds of crystals, and all being

invariable for constant values of the above mentioned independent

variables.

B\it it must be observed that when the differences in the constitu-

tion of the molecules are entirely detei-mined by the quantities of

the different kinds of matter in a body with the two variables which

express its thermodynamic state, these differences will not involve

any increase in the number of variables in the fundamental eqnation.

For example, if we should raise the temperature of the mixture of
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vapor of water and free liydrogen and oxygen, which we have just

considered, to a point at which the numbers of the] different sorts of

molecules are entirely determined by the temperature and pressure

and the total quantities of hydrogen and of oxygen which are present,

the fundamental equation of such a mass would involve but four inde-

pendent variables, which might be the four quantities just mentioned.

The fact of a certain part of the matter present existing in the

form of vapor of water would, of course, be one of the facts which

determine the nature of the relation between "Q and the independent

variables, which is expressed by the fundamental equation.

But in the case first considered, in which the quantities of the

different sorts of molecules are not determined by the temperature

and pressure and the quantities of the different kinds of matter in the

body as determined by its ultimate analysis, the components of which

the quantities or the potentials appear in the fundamental equation

must be those which are determined by the proximate analysis of the

body, so that the variations in their quantities, with two variations

relating to the thermodynamic state of the body, shall include all the

variations of which the body is capable.* Such cases present no

especial difliculty ; there is indeed nothing in the physical and

chemical properties of such bodies, so far as a certain range of experi-

ments is concerned, which is different from what might be, if the

proximate components were incapable of farther reduction or trans-

formation. Yet among the the various phases of the kinds of matter

concerned, represented by the different sets of values of the variables

which satisfy the fundamental eqiiation, there is a certain class which

merit especial attention. These are the phases for which the entropy

has a maximum value for the same matter, as detei*mined by the

ultimate analysis of the body, with the same energy and volume. To
fix our ideas let us call the proximate components aS\, . . . S„^ and the

ultimate components S„, . . . S,,\ and let w^^j, . . . m^ denote the

quantities of the former, and «?„, . . . m^, the quantities of the latter.

It is evident that w?„ . . . m.,^ are homogeneous functions of the first

degree of r>^,, . . . «7„; and that the relations between the substances

aSj, . . . S„ might be expressed by homogeneous equations of the first

degree between the units of these substances, equal in number to the

difference of the numbers of the proximate and of the ultimate com-

* The terms proximate or ultimate are not necessarily to be understood in an abso-

lute sense. All that is said here and in the following paragraphs will apply to many
cases in which components may conveniently be regarded as proximate or ultimate

which are such only in a relative sense.
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ponents. The phases in question are those for which ?; is a maximum
for constant values of f, w, m„, . . . 7n,, ; or, as they may also be

described, those for which £ is a minimum for constant values of ?;, w,

m„, . . . ni,, ; or for which C is a minimum for constant values of

^, jo, m,„ . . . m,,. The phases which satisfy this condition may be

readily determined when the fundamental equation (which will con-

tain the quantities m^, . . . m^ or yUj, . . . //„,) is known. Indeed it is

easy to see that we may express the conditions which determine these

phases by substituting yUj, , . . /<„ for the letters denoting the units

of the corresponding substances in the equations which express the

equivalence in ultimate analysis between these units.

These phases may be called, with reference to the kind of change

which we are considering, phases of dissipated energy. That we

have used a similar term before, with reference to a different kind of

changes, yet in a sense entirely analogous, need not create confusion.

It is characteristic of these phases that we cannot alter the values

of «i
J

, . . . w„ in any real mass in such a phase, while the volume of

the mass as well as its matter remain unchanged, without diminish-

ino- the energy or increasing the entropy of some other system.

Hence, if the mass is large, its equilibrium can be but slightly dis-

turbed by the action of any small body, or by a single electric spark,

or by any cause which is not in some way proportioned to the effect

to be produced. But when the proportion of the proximate compo-

nents of a mass taken in connection with its temperature and pressure

is not such as to constitute a phase of dissipated energy, it may be

possible to cause great changes in the mass by the contact of a very

small body. Indeed it is possible that the changes produced by such

contact may only be limited by the attainment of a phase of dissipated

energy. Such a result will probably be produced in a fluid mass by

contact with another fluid which contains molecules of all the kinds

which occur in the first fluid (or at least all those which contain

the same kinds of matter which also occur in other sorts of molecules),

but which differs from the first fluid in that the quantities of the

various kinds of molecules are entirely determined by the ultimate

composition of the fluid and its temperature and pressure. Or, to

speak without reference to the molecular state of the fluid, the result

considered would doubtless be brought about by contact with another

fluid, which absorbs all the proximate components of the first,

S ... S„, (or all those betw^ien which there exist relations of equiva-

lence in respect to their ultimate analysis), independently, and with-

out passive resistances, but for which the phase is completely deter-
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mined by its temperature and pressure and its ultimate composition (in

respect at least to the particular substances just mentioned). By the

absorption of the substances aS\, . . . 8^ independently and without

passive resistances, it is meant that when the absorbing body is in

equilibrium with another containing these substances, it shall be

possible by infinitesimal changes in these bodies to produce the ex-

change of all these substances in either direction and independently.

An exception to the preceding statement may of course be made for

cases in which the result in question is prevented by the occurrence of

some other kinds of change ; in other words, it is assumed that the

two bodies can remain in contact preserving the properties which

have been mentioned.

The term catalysis has been applied to such action as we are con-

sidering. When a body has the property of reducing another, with-

out limitation with respect to the proportion of the two bodies, to a

phase of dissi]iated energy, in regard to a certain kind of molecular

change, it may be called a. perfect catalytic agent with respect to the

second body and the kind of molecular change considered.

It seems not improbable that in some cases in which molecular

changes take place slowly in homogeneous bodies, a mass of which

the temperature and pressure are maintained constant will be finally

brought to a state of equilibrium which is entirely determined by its

temperature and pressure and the quantities of its ultimate compo-

nents, while the various transitory states through which the mass

passes, (which are evidently not completely defined by the quantities

just mentioned,) may be completely defined by the quantities of cer-

tain proximate components with the temperature and pressure, and

the matter of the mass may be brought by processes approximately

reversible from permanent states to these various transitory states.

In such cases, we may form a fundamental equation with reference to

all possible phases, whether transitory or permanent ; and we may
also form a fundamental equation of different import and containino-

a smaller number of independent variables, which has reference solely

to the final phases of equilibrium. The latter are the phases of dissi-

pated energy (with reference to molecular changes), and when the

more general form of the fundamental equation is known, it will be

easy to derive from it the fundamental equation for these permanent
phases alone.

Now, as these relations, theoretically considered, are independent

of the rapidity of the molecular changes, the question naturally arises

whether in cases in which we are not able to distinguish such trausi-

Trans. Conn. Acad., Vol. III. 26 February, 1876.
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tory phases, they may not still have a theoretical significance. If so,

the consideration of the subject from this point of view, may assist

us, in such cases, in discovering the form of the fundamental equation

with reference to the ultimate components, which is the only equation

required to express all the properties of the bodies which are capable

of experimental demonstration. Thus, when the phase of a body is

completely determined by the quantities of n independently vari-

able components, with the temperature and pressure, and we have

reason to suppose that the body is composed of a greater number
?^' of proximate components, which are therefore not independ-

ently variable (while the temperature and pressure remain constant),

it seems quite possible that tlie fundamental equation of the body

may be of the same form as the equation for the phases of dissi-

pated energy of analogous compounds of n' proximate and n ultimate

components, in which the proximate components are capable of

independent variation (without variation of temperature or pressure).

And if such is found to be the case, the fact will be of interest as

affording an indication concerning the proximate constitution of the

body.

Such considerations seem to be especially applicable to the very

common case in which at certain temperatures and pressures, regarded

as constant, the quantities of certain proximate components of a

mass are capable of independent variations, and all the phases pro-

duced by these variations are permanent in their nature, while at other

temperatures and pressures, likewise regarded as constant, the quan-

tities of these proximate components are not capable of independent

variation, and the jDhase may be completely defined by the quantities

of the ultimate components with the temperature and pressure. There

may be, at certain intermediate temperatures and pressures, a condi-

tion with respect to the independence of the proximate components

intermediate in character, in which the quantities of the proximate

components are independently \ariable when we consider all phases,

the essentially transitory as well as the permanent, but in which these

quantities are not independently variable when we consider the

permanent phases alone. Now we have no reason to believe that the

passing of a body in a state of dissipated energy from one to another

of the three conditions mentioned has any necessary connection with

any discontinuous change of state. Passing the limit which separates

one of these states from another will not therefore involve any dis-

continuous change in the values of any of the quantities enumerated

in (99)-(103) on page 143, if m,, m^, . . . m„, /^j, /<2, • • • yWn are
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understood as always relating to the ultimate components of the body.

Therefore, if we regard masses in the different conditions mentioned

above as having different fundamental equations, (which we may sup-

pose to be of any one of the five kinds described on page 143,) these

equations will agi-ee at the limits dividing these conditions not only

in the values of all the variables which appear in the equations, but

also in all the differential coefficients of the first order involving these

variables. We may illustrate these relations by supposing the values

of t, I),
and C for a mass in which the quantities of the ultimate com-

ponents are constant to be represented by rectilinear coordinates.

Where the proximate composition of such a mass is not determined

by t and p, the value of 'Q will not be determined by these variables,

and the points representing connected values of <, jo, and I will form

a solid. This solid will be bounded in the direction opposite to that

in which 'Q is measured, by a surface which represents the phases of

dissipated energy. In a part of the figure, all the phases thus repre-

sented may be permanent, in another part only the phases in the

bounding surface, and in a third part there may be no such solid

figure (for any phases of which the existence is experimentally

demonstrable), but only a surface. This surface together with the

bounding surfaces representing phases of dissipated energy in the

parts of the figure mentioned above forms a continuous sheet, without

discontinuity in regard to the direction of its normal at the limits

dividing the different parts of the figure which have been mentioned.

(There may, indeed, be different sheets representing liquid and

gaseous states, etc., but if we limit our consideration to states of one

of these sorts, the case will be as has been stated.)

We shall hereafter, in the discussion of the fundamental equations

of gases, have an example of the derivation of the fundamental equa-

tion for phases of dissipated energy (with respect to the molecular

changes on which the proximate composition of the body depends)

from the more general form of the fundamental equation.

THE CONDITIONS OF EQUILIBRIUM FOR HETEROGENEOUS MASSES UNDER
THE INFLUENCE OF GRAVITY.

Let US now seek the conditions of equilibrium for a mass of various

kinds of matter subject to the influence of gravity. It will be con-

venient to suppose the mass enclosed in an immovable envelop which

is impermeable to matter and to heat, and in other respects, except

in regard to gravity, to make the same suppositions as on pages 115,

116. The energy of the mass will now consist of two parts, one of
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which depends upon its intrinsic nature and state, and the other upon

its position in space. Let JJm denote an element of the mass, Ds the

intrinsic energy of this element, A its height aboAe a fixed horizontal

plane, and g the force of gravity ; then the total energy of the mass

(when without sensible motions) will be expressed by the formula

fDe-\-fghJ)m, (219)

in which the integrations include all the elements of the mass ; and

the general condition of equilibrium will be

d/De + dfg hDm ^ 0, (220)

the variations being subject to certain equations of condition. These

must express that the entropy of the whole mass is constant, that the

surface bounding the whole mass is fixed, and that the total quanti-

ties of each of the component substances is constant. We shall sup-

pose that there are no other equations of condition, and that the

independently variable components are the same throughout the

whole mass ; and we shall at first limit ourselves to the consideration

of the conditions of equilibrium with respect to the changes which

may be expressed by infinitesimal variations of the quantities which

define the initial state of the mass, without regarding the possibility

of the formation at any place of infinitesimal masses entirely difl:erent

from any initially existing in the same vicinity.

Let Z>//, Z>y, 7>mj, . . . Dm„ denote the entropy of the element

Z>m, its volume, and the quantities which it contains of the various

components. Then

Dm = Dm^ . . . + Z>m„, (221)

and

dDm— dBm^ • • • + SI>m„. (222)

Also, by equation (12),

6Da = t 6I)ij —p dJJv + /ij SBm^ . . . -\- ,u„ 6J)m„. (223)

By these equations the general condition of equilibrium may be

reduced to the form

ft 6Dri -fp 6Dv +//', 6Bm^ . . . + ///„ SD^n^

Jrfg Sh Dm -\-/gh SDm ^ . . . J^fgh dDm„ ^ 0. (224)

Now it will be observed that the different equations of condition

affect diflf'erent parts of this condition, so that we must have, sepa-

rately,

ftSDtj^O, if fdDrf=Q; (225)
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-fp 6Dv -\-fg 6h Dm ^ 0, (226)

if the bounding surface is mivaried
;

fl.1^ dihn
, + fgh dlJra^ ^ 0, if /6Dm j = U n

[ (227)

y>„ 6Dm^ + f<i h 6JJrn„ ^ 0, if J'6lJni„= 0. )

From (225) we may derive the condition of thermal equilibrium,

t = Const. (328)

Condition (226) is evidently the ordinary mechanical condition of

equilibrium, and may be transformed by any of the usual methods.

We may, lor example, apply the formula to such motions as miglit

take place longitudinally within an infinitely narrow tube, terminated

at both ends by the external surface of the mass, but otherwise

of indeterminate form. If we denote by m the mass, and by v the

volume, included in the part of the tube between one end and a

transverse section of variable position, the condition will take the

form
- fp 6dv +fg 6h dm ^ 0, (229)

in which the integi'ations include the whole contents of the tube.

Since no motion is possible at the ends of the tube,

fp 6dv + fdv dp =:fd{p 6v) =z 0. (230)

Again, if we denote by y the density of the fluid,

fg 6h dm =fg -^ Sv y dv =^fg y Sv dh. (231

)

By these equations condition (229) may be reduced to the form

f6v {dp -\- g y dh) ^ 0. (232)

Therefore, since 6v is arbitrary in value,

dp=~gydh, (233)

which will hold true at any point in the tube, the difierentials being

taken with respect to the direction of the tube at that point. There-

fore, as the form of the tube is indeterminate, this equation must
hold true, without restriction, throughout the whole mass. It evi-

dently requires that the pressure shall be a function of the height

alone, and that the density shall be equal to the first derivative of

this function, divided by — g.

Conditions (227) contain all that is characteristic .of chemical

equilibrium. To satisfy these conditions it is necessary and sufiicient

that

/^i + ff^ — Const. \

[ (234)

Mn + 9^=. Const. )
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The expressions pi^, . . . //„ denote quantities which we have called

the potentials for the several components, and which are entirely

determined at any point in a mass by "the nature and state of the

mass about that point. We may avoid, all confusion between these

quantities and the potential of the force of gravity, if we distinguish

the former, when necessary, as Intrinsic potentials. The relations

indicated by equations (234) may then be expressed as follows

:

W/ten afluid mass is in equilibrium under the influence of gravity^

and has the same independently variable cotnpofients throughout, the

intrinsic potentials for the several components are constant in any

given level, and diminish uniformly as the height increases, the differ-

ence of the values of the intrinsic potential for any component at two

different levels, being equal to the work done by the force of gravity

xohen a unit of matter falls from the higher to the longer level.

The conditions expressed by equations (228), (233), (234) are

necessary and sufficient for equilibrium, except with respect to the

possible formation of masses which are not approximately identical in

phase with any previously existing about the points where they may

be formed. The possibility of such formations at any point is evidently

independent of the action of gravity, and is determined entirely by

the phase or phases of the matter about that point. The conditions

of equilibrium in this respect have been discussed on pages 128-134.

But equations (228), (233), and (234) are not entirely independent.

For with respect to any mass in which there are no surfaces of dis-

continuity (i. e., surfaces where adjacent elements of mass have finite

diiFerences of phase), one of these equations will be a consequence of

the others. Thus by (228) and (234), we may obtain from (97),

which will hold true of any continuous variations of phase, the equa-

tion

vdp—-g {m 1 . . . + m„) dh

;

(235)

or dp= - gy dh
;

(236)

which will therefore hold true in any mass in which equations (228)

and (234) are satisfied, and in which there are no surfaces of discon-

tinuity. But the condition of equilibrium expressed by equation

(233) has no exception with respect to surfaces of discontinuity;

therefore in any mass in which such surfaces occur, it will be necessary

for equilibrium, in addition to the relations expressed by equations

(228) and (234), that there shall be no discontinuous change of pressure

at these surfaces.

This superfluity in the particular conditions of equilibrium which

we have found, as applied to a mass which is everywhere continuous
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in phase, is due to the fact that w^e liave made tlie elements of volume

variable in position and size, while the matter initially contained in

these elements is not supposed to be confined to them. Now, as the

different components may move in different directions when the

state of the system varies, it is evidently im])Ossible to define the

elements of volume so as always to include the same matter; we
must, therefore, suppose the matter contained in the elements of

volume to vary ; and therefore it would be allowable to make these

elements fixed in space. If the given mass has no surfaces of discon-

tinuity, this would be much the simplest plan. But if there are any

surfaces of discontinuity, it will be possible for the state of the given

mass to vary, not only by infinitesimal changes of phase in the fixed

elements of volume, but also by movements of the surfaces of discon-

tinuity. It woiild therefore be necessary to add to oixr general con-

dition of equilibrium terms relating to discontinuous changes in the

elements of volume about these surfaces,—a necessity which is

avoided if we consider these elements movable, as we can then sup-

pose that each element remains always on the same side of the sui'face

of discontinuity.

Method of treating the preceding problem, in xohich tJie elements of
volume are regarded as fixed.

It may be interesting to see in detail how the particular conditions

of equilibrium may be obtained if we I'egard the elements of volume

as fixed in position and size, and consider the possibility of finite as

well as infinitesimal changes of phase in each element of volume. If

we use the character J to denote the differences determined by such

finite differences of phase, we may express the variation of the intrin-

sic energy of the whole mass in the form

fdDe+fABE, (237)

in which the first integral extends over all the elements which are

infinitesimally varied, and the second over all those which experience

a finite variation. We may regard both integrals as extending

throughout the whole mass, but their values will be zero except for

the parts mentioned.

If we do not wish to limit ourselves to the consideration of masses

so small that the force of gravity can be regarded as constant

in direction and in intensity, we may use T to denote the potential of

the force of gravity, and express the variation of the part of the

energy which is due to gravity in the form

—fT6Dm—fTADm. (238)
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We shall then have, for the general condition of equilibrium,

J'SDe + /ADe -J'TdDm - fTADrn ^ ; (239)

and the equations of condition will be

fSBi) -\-fAI)i] = 0, (240)

f8Dm , + fADm , = 0, ^

. . . . . . [ (241)

J'6I)m„ + fADm^ = 0. )

We may obtain a condition of equilibrium independent of these equa-

tions of condition, by subtracting these equations, multiplied each

by an indeterminate constant, from condition (239). If we denote

these indeterminate constants by T^ Jfj, . . . iff„, we shall obtain

after arranging the terms

/ SDi — T 6Dm — T6Dt] - Jf, 6Dm , . . . — Jlf„ 6Dm^

fADE-TADm - TABij^M^ ADm^ . . . -lf„dDm„^o^ (242)

The variations, both infinitesimal and finite, in this condition are

independent of the equations of condition (240) and (241), and ai'e

only subject to the condition that the varied values of De, Z>//,

Dm I,
. . . Dnin.ioY each element are determined by a certain change

of phase. But as we do not suppose the same element to experi-

ence both a finite and an infinitesimal change of phase, we must have

6IJ£^ rSDiu - T6I)ij - J/, 6I)m^ ... - 3I„6J)m„^0, (243)

and

ADe— TADm - TABrj— lf, ABm^ ... - M„ADm„^0. (244)

By equation (12), and in virtue of the necessary relation (222), the

first of these conditions reduces to

{t—T) SD,f + (yu, - r— M,) SBm^ . . .

+ {/J„ - r- M„) SDm„ ^ ; (245)

for which it is necessary and sufficient that

t = T, (246)

V* (247)

//„-r=jf„. )

* The gravitation potential is liere supposed to be defined in the usual way. But if

it were defined so as to decrease when a body falls, we would have the sign + instead

of — in these equations; i. e., for each component, the sum of the gravitation and

intrinsic potentials would be constant throughout the whole mass.
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Condition (244) may be reduced to the form

JZ>£- TJDt] ~ {r-\-M,)Jnm, . . . — (r+ J/„) JX»>y?„^0; (248)

and by (246) and (247) to

Ji>f - tJD)] - /<, JI)ni^ ... — /J„JI)m„^0. (249)

If values determined subsequently to the change of })base ai-e distin-

guished by accents, this condition may be written

Be' - t Dtf — /^j Dm^ ... - //„2>w„'

— DE-^tDi]-\- yu, Dm^ . . . + /'„ ^'/^„^ 0, (250)

which may be reduced by (93) to

De' - tJJif - //, 7>>«j, ... - i-i„JJniJ + pDv^O. (251)

Now if the element of volume Dv is adjacent to a surface of discon-

tinuity, let us suppose Dt\ Drf, lJm^\ . . . J)m^ to be determined

(for the same element of volume) by the phase existing on the other

side of tlie surface of discontinuity. As #,//,,.. . //„ have the same

values on both sides of this surface, the condition may be reduced by

(93) to

— p'Bv +pBv^O. (252)

That is, the pressure must not be greater on one side of a surface of

discontinuity than on the other.

Applied more generally, (251) expresses the condition of equilibrium

with respect to the possibility of discontinuous changes of phases at

any point. As Dv' = Bv, the condition may also be written

Ba' - tBif +pBv' - yu, Z>m,', ... — u^BmJ^O, (253)

which must hold true when t, p, /u^, . . . yw„ have values determined

by any point in the mass, and Be', By', Bv', Bm^', . . . BmJ have

values determined by any possible phase of the substances of which

the mass is composed. The application of the condition is, however,

subject to the limitations considered on pages 128-134. It may
easily be shown (see pages 160, 161) that for constant values of ^, /.i^,

. . . //„, and of Bv', the first member of (253) will have the least possi-

ble value Avhen Be', />//, Bm^', . . . Bm„' are determined by a phase

for which the temperature has the value t, and tlie potentials the

values //,,... //„. It will be sufficient, therefore, to consider the

condition as applied to such phases, in which case it may be reduced

by (93) to

p^p'^0. (254)

That is, the pressure at any point must be as gieat as that of any

phase of the same components, for which the temperature and the

Tbans. Conn. Acad., Vol. III. 27 April, 1876.
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potentials have the same values as at that point. We may also

express this condition by saying that the pressure must be as great

as is consistent with equations ('240), (247). This condition with the

equations mentioned will always be sufficient for equilibrium ;
when

the condition is not satisfied, if e(|uilil)riuni subsists, it will be at

least practically unstable.

Hence, the phase at any ])oint of a fluid mass, which is in stable

equilibrium under the influence of gravity (whether this force is due

to external bodies or to the mass itself), and which has throughout

the same independently variable components, is completely deter-

mined by the phase at any other point and the difference of the

values of the gravitation potential for the two points.

FUNDAMENTAL EQUATIOXS OF IDEAL GASES AND GAS-MIXTURES.

For a constant quantity of a perfect or ideal gas, the product of

the volume and pressure is proportional to the temperature, and the

variations of energy are proportional to the variations of tempera-

ture. For a unit of such a gas we may write

2) V = a t,

d8^ c dt,

a and c denoting constants. By integration, we obtain the equation

€=CJ+E,

in which E also denotes a constant. If by these equations we elimin-

ate t and }) from (11), we obtain

f-^ , a s-B ,
de =i di] dv,

C V c

or
ds -, dv

c v^ = di) — a—

.

The integral of this equation may be written in the form

c log z=i T) -• a log V — H,

where ^denotes a fourth constant. We may regard JS'as denoting the

energy of a unit of the gas for ^=0 ; //its entropy for ^=rl and i'=l

;

a its pressure in the latter state, or its volume for t=z\ and p=.\
;

c its specific heat at constant volume. We may extend the ajiplication

of the equation to any quantity of the gas, without altering the

£ 11 V
values of the constants, if we substitute — , - ,

— for f , //, v. respec-m in m ^

tively. This will give
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e—Em If ^^ . m ,-. _v
c loo- = H ^ a loo-—. (2o5)

"^ cm in "u ^ '

This is a fundamental equation (see pages 140-144) for an ideal gas of

invariable composition. It will be observed that if we do not have

to consider the ])roperties of the matter which forms the gas as ap-

pearing in any other form or combination, but solely as constituting

the gas in question (in a state of jiurity), we may without loss of

generality give to E and 11 the value zero, or any other arbitrary

values. But when the scope of our investigations is not thus limited,

we may have determined the states of the substance of the gas for

which 6—0 and i)-=:0 Avith reference to some other form in which the

substance appears, or, if the substance is compound, the states of its

components for which f=:0 and ?/=0 may be already determined; so

that the constants ^"and Zf cannot in general be treated as arbitrary.

We obtain from (255) by ditferentiation

cE—^^— cte := — ell] civ + I
-c - 1 ^ a , / cE c+a '/ \ ,=— f/f= —an CIV + I ,^r- H M (tni, (256)'—Em m V \e~Em, m m^ / ^ '

whence, in virtue of the general relation expressed by (86),

^ — Em,
t— , (257)

c m ^

£—Em
p=ia , (25S)

cv ^ '

^ e —E III

1.1=1 E -\ s- (c m + a m — ii). (259)
c rii^

^

We may obtain the fundamental equation between //-, t, v, and m
from equations (87), (255), and (257). Eliminating € we have

// = Em + c m t — ^ //,

and f.\ovt= — ~ H -{ a log -
;

and eliminating i/, we have the fundamental equation

?/' = Em + m ti< — H — clog t -f <i log '-^

|. (260)

Differentiating this equation, we obtain

dih =^ — m I H -\- c log t + a log — \ cit dv
\

" m/ V

-^ Ie + f U {- 't - IT - c log t -\- a log —
)

jdm
; (261)
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whence, by the general equation (88),

?7= m (^+ clog^+alog — j, (262)

P = —-, (263)

c-\-a-JI—c\ogt-^a\og — \. (264)

From (260), by (87) and (91), we obtain aT'?

'C, = Em -\- mt i c —H— c log t + a log —
I + ^^ v,

and eliminathig v by means of (263), we obtain the fundamental equa-

tion

? = Em + m tic + a - H - (c+a) log t + a log — j. (265)

From this, by differentiation and comparison with (92), we may

obtain the equations

?/=:m (^-f (c+«) log if — « log — ), (266)

amt
, ^sv= , (267)

P

— E+ tie -\- a — H- ((•+ a) \og t + a log —V (268)

The last is also a fundamental equation. It may be written in the

form

log ^ = + ^^ log t+'-~-, (269)® a a a at ^

or, if we denote by e the base of the Naperian system of logarithms,

H—c—a c + a fi—E

p =: ae t . e (2<0)

The fundamental equation between j, /;, p, and m may also be

easily obtained ; it is

{c+a) logf^4^= -^-//+«log^, (271)
^ * {c+a)m m '^ a

which can be solved with respect to j.

Any one of the fundamental equations (255), (260), (265), (270),

and (271), which are entirely equivalent to one another, may be

/^
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regarded as defining an ideal gas. It will be observed that most of

these equations might be abbreviated by the use of diiferent con-

stants. In (270), for example, a single constant might be used for

H—c—a— C ~\~ O-

a e " , and another for The equations have been given
a '

in the above form, in order that the relations between the constants

occurring in the different e(iuations might be most clearly exhibited.

The sum c+a is the specific heat for constant pressure, as ap})ears if we

difierentiate (266) regarding^ and m as constant.*

* We may easily obtain the equation between the temperature and pressure of a

saturated vapor, if we know the fundamental equations of the substance Ijoth in the

gaseous, and in the liquid or solid state. K we suppose that the density and the specific

heat at constant pressure of the liquid may be regarded as constant quantities (for such

moderate pressures as the liquid experiences while in contact with the vapor), and

denote this specific heat by k. and the volume of a unit of the liquid by V. we shall

have for a unit of the liquid

t d?/ = k dt,

whence
?/ = A-log t + H',

where H' denotes a constant. Also, from tliis equation and (97),

dfi = -(k log t + H') dt+ Vdp,
whence

/n = kt-M log t-H' t-i-Vp + E', (A)

where E' denotes another constant. This is a fundamental equation for the substance

in the liquid state. If (268) represents the fundamental equation for the same sub-

stance in the gaseous state, the two equations will both hold true of coexistent liquid

and gas. Eliminatmg u we obtain

p H—H' + k—c—a k~c—a E—E' V p
log — = logi! — + ^.

a a a at a t

If we neglect the last term, which is evidently equal to the density of the vapor

divided by the density of the liquid, we may write

log i)=A—B\og t -,

A, B, and C denoting constants. If we make similar suppositions in regard to the

substance in the solid state, the equation between the pressure and temperature of

coexistent solid and gaseous phases will of course have the same form.

A similar equation will also apply to the phases of an ideal gas which are coexis-

tent with two different kinds of solids, one of which can be formed by the combina-

tion of the gas with the other, each being of invariable composition and of constant

specific heat and density. In this case we may write for one solid

/I, = k't-k'l log t-H-t+ V'p-^ E,

and for tlie other

fi., = k"t~k"t log t-H"t+ V"p + E",

and for the gas

//;, = E+t(c + a —H— (c + a) log / + a log — j.
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The' preceding fundamental equations all apply to g-Ases of constant

composition, for which the matter is entirely determined by a single

Now if a unit of the gas unites with the quantity /I of the first sohd to form the

quantity 1 +/ of the second it will be necessary for equilibrium (see pages 121, 122)

that

/":j+A//, =(1 +>^)/I.2.

Substituting the values of fi,/i.2, fi,,, given above, we obtain after arranging the

terms and dividing by ai

when

log ^ = ^ - C log ^ - ^ + D ^,

A - ^+^-g'- (l+^) -g''-c-a-Afc' + (l + X)A;^-

(l+?i)k"- W—c—aB— ,

a

E+lE'-{\+l) E" (1+A)F"-AF'
a a.

We may conclude from this that an equation of the same form may be applied to

an ideal gas in equilibrium with a liquid of which it forms an independently variable

component, when the specific heat and density of the liquid are entirely determined

by its composition, except that the letters A. B, C, and I) must in this case be under-

stood to denote quantities which vary with the composition of the liquid. But to

consider the case more in detail, we have for the liquid by (a)

"^ — u=kt-kt\os t-H't+ Vp + E',
m

where k, H'. F, E' denote quantities which depend only upon the composition of the

liquid. Hence, we may write

C = kit-kHog /-H^ + ViJ + E,

where k, H, V, and B denote functions of m,, mj, etc. (the quantities of the several

components of the liquid). Hence, by (92),

dk. ^ dk , dU. dV dE
//, = ~j—t—'—tlogt — -j—t+ -,— P+ T^dm^ fflTO, dm-i arw, a?n,

If the component to which this potential relates is that which also forms the gas, we

.shall have by (269)

p H—c—a c + a^
, H-\—E

log ^ =r + log <+'-i— .

a a a at

Eliminating ;"
i

, we obtain the equation

log-=^-51og<—^+ D^,
a it

in which A, B, C, and Z> denote quantities which depend only upon the composition

of the liquid, viz

:

I I ^ dU dk \

a \ dm^ dm
I I

„ 1 /f^k \B=—l' c-a).
a \ dm

,
/
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variable (m). We may obtain corresponding fundamental equations

for a mixture of gases, in which the proportion of the components

shall be variable, from the following considerations.

It is a rule Avhich admits of a very general and in many cases very

exact experimental verification, that if several liquid or solid sub-

stances which yield different gases or- vapors are simultaneously in

equilibrium with a mixture of these gases (cases of chemical action

between the gases being excluded,) the pressure in the gas-mixture

is equal to the sum of the pressures of the gases yielded at the same

temperature by the various liquid or solid sul)stanccs taken separately.

Now the potential in any of the liquids or solids for the substance

which it yields in the form of gas has very nearly the same value

when the liquid or solid is in equilibrum with the gas-mixture as

when it is in equilibrium with its own gas alone. The difference of

the pressure in the two cases will cause a certain difference in the

values of the potential, but that this difference will be small, we may
infer from the equation

i^ =('*)
, (272)

which may be derived from equation (92). In most cases, there will

be a certain absorption by each liquid of the gases yielded by the

others, but as it is well known that the above rule does not apply to

cases in which sucli absorption takes place to any gi'eat extent, we
may conclude that the effect of this circumstance in the cases with

which we have to do is of secondary importance. If we neglect the

slight differences in the values of the potentials due to these circum-

stances, the rule may be expressed as follows

:

The pressure in a mixture of different gases is equal to the sum of
the pressures of the different gases as existing each by itself at the

same temperature and with the same value of its potential.

To form a precise idea of the practical significance of the law as

thus stated with reference to the equilibrium of two liquids with a

mixture of the gases which they emit, when neither liquid absorbs the

gas emitted by the other, we may imagine a long tube closed at each

end and bent in the form of a W to contain in each of the descending

a \ am , / a dm.

With respect to some of the equations which have here been deduced, the reader

may compare Professor Kirchhoff " Ueber die Spannung des Dampfes von Mischungen
aus Wasser und Schwefelsaure," Pogg. Ann., vol. civ. (185.-^), p. 6] 2

; and Dr. Raukine
"On Saturated Vapors," Pliil. Mag., vol. xxxi. (1866), p. 199.



216 J. W. Gibbs—Equilihriuni of Heterogeneous Substances.

loops one of the liquids, and above these liquids the gases which they

emit, viz., the separate gases at the ends of the tube, and the mixed

gases in the middle. We may suppose the whole to be in equilibrium,

the difference of the pressures of the gases being balanced by the

proper heights of the liquid columns. Now it is evident from the

principles established on pages 203-210 that the potential for either

gas will have the same value in the mixed and in the separate gas

at the same level, and therefore according to the rule in the form

which we have given, the pressure in the gas-mixture is equal to the

sum of the pressures in the separate gases, all these pressures being

measured at the same level. Now the experiments by which the rule

has been established relate rather to the gases in the vicinity of the

surfaces of the liquids. Yet, although the differences of level in these

surfaces may be considerable, the corresponding differences of pres-

sure in the columns of gas will certainly be very small in all cases

which can be regarded as falling under the laws of ideal gases, for

which very great pressures are not admitted.

If we apply the above law to a mixture of ideal gases and distin-

guish by subscript numerals the quantities relating to the different

gases, and denote by ^\ the sum of all similar terms obtained by

changing the subscript numerals, we shall have by (270)

I a, a, «,<
]

p=^, \«i e t e J

,

(273)

It will be legitimate to assume this equation provisionally as the

fundamental equation defining an ideal gas-mixture, and afterwards

to justify the suitableness of such a definition by the properties which

may be deduced from it. In particular, it will be necessary to show

that an ideal gas-mixture as thus defined, when the proportion of its

components remains constant, has all the properties which have

already been assumed for an ideal gas of invariable composition ; it

will also be desirable to consider more rigorously and more in detail

the equilibrium of such a gas-mixture with solids and liquids, with

respect to the above rule.

By differentiation and comparison with (98) we obtain

H,—Cj—aj c, fi^—Ei

\ I, — V «i «. ^1^

y f



J. W. Gibhs—EqulUhriiDii of Heterof/eneoiis Suhstauces. 217

H,

V

H9—C9

V

etc.

H-i-E-i (275)

Equations (275) indicate that the I'ehition between the temperature,

the density of any component, and the potential for that component, is

not affected by tlie presence of the other components. They may
also be written

/^i
= ^i^+^(^i+«i-^A—t'ilog« + a,log'^j^

[ (276)

etc. )

Eliminating yw,, /'a? t^tc. from (2 73) and (274) by means of (275)

and (276), we obtain

ri= :S^^m,II, +m,Cilog t-\-m^a,\og ~j.

(277)

(278)

E(iuation (277) expresses the familiar principle that the pressure in a

gas-mixture is equal to the sum of the pressures which the component

gases would possess if existing sepai'ately with the same volume at

the same temperature. Equation (278) expresses a similar principle

in regard to the entropy of the gas-mixture.

From (276) and (277) we may easily obtain the fundamental equa-

tion between 1/:, t, v, m^, ni^, etc. For by substituting in (94) the

values of j(?, //,, /<2, etc. taken from these equations, we obtain

ij)= 2J^^m^-\-ni^t ( Cj—^i-Cilog t -f a^log —
j). (279)

If we regard the proportion of the various components as constant,

this equation may be simplified by writing

m for

and

am, for

Em for

Hm, - a m losf /n for

^1 ^1,
c m for 2 J

(c, m,),

^1 {H^ ni^—a^ mj log m,^).

The values of c, a, E, and H, will then be constant and m will denote

the total quantity of gas. As the equation will thus be reduced to the

Trans. Conn. Acad., Vol. III. 28 April. 1876.
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form of (260), it is evident that an ideal gas-mixture, as defined by

(273) or (279), when the proportion of its components remains un-

changed, will have all the properties which we have assumed for an

ideal gas of invariable composition. The relations between the specific

heats of the gas-mixture at constant volume and at constant pressure

and the specific heats of its components are expressed by the equations

e=^^'^-\ (280)
ni

and

c' + a=^\''^-^^l±^-^i. (281;

We have already seen that the values of t, v, m^, /.i^ in a gasr

mixture are such as are possible for the component G^ (to which

m, and /< , relate) existing separately. If we denote by p^, //j, ?/'j,

£j, Xi, Cj the connected values of the several quantities which the

letters indicate determined for the gas G^ as thus existing sepa-

rately, and extend this notation to the other components, we shall

have by (273), (274), and (279)

P=^iPi, '/=^i'U, t=^i'l\\ (282)

whence by (87), (89), and (91)

f=^'ifn A'=^'iJi, l-^^',;,. (283)

The quantities p, >/, //, f, j, 'C, relating to the gas-mixture )nay

therefore be regarded as consisting of parts which may be attrib-

uted to the several components in such a mannei- that between the

parts of these quantities which are assigned to any component, the

quantity of that component, the potential for that component, the

temperature, and the volume, the same relations shall subsist as if

that component existed separately. It is in this sense that we

should understand the law of Dalton, that every gas is as a vacuum

to every other gas.

It is to be remarked that these relations are consistent and pos-

sible for a mixture of gases which are not ideal gases, and indeed

without any limitation in regard to the thermodynamic properties of

the individual gases. They are all consequences of the law that the

pressure in a mixture of different gases is equal to the sum of the

pressures of the different gases as existing each by itself at the same

temperature and with the same value of its potential. For let

Pii V\i ^1^ 'I'l^ Xn ^1 l P2i etc.; etc. be defined as relating to the

different gases existing each by itself with the same volume, tem-

perature, and potential as in the gas-mixture ; if

P = ^iPi,



J. W. Gibhs—Equilihriuni of Heterogeneous Suhstances. 219

and tlierefore, by (98), the quantity of any component gas G
^
in the

gas-mixture, and in the separate gas to which p^, r/^, etc. relate, is

the same and may be denoted by the same symbol nt ^. Also

^
\ dt j/^i, . f^" '\ dtj/i, ^

"

whence also, by (93)-(06),

All the same relations will also hold true whenever the value of //•

for the gas-mixture is equal to the sum of the values of this func-

tion for the several component gases existing each by itself in

the same quantity as in the gas-mixture and with the temperature

and volume of the gas-mixture. For if />i, //j, fj, '/';,, Xn ?i 5 P2'>

etc. ; etc. are defined as relating to the components existing thus

by themselves, we shall have

whence

/dif^\ =(&1l\ *

Therefore, by (88), the potential //, has the same value in the gas-

mixture and in the gas 6r, existing separately as supposed. More-

over,

\dt /ij^ ffi \ dt /v, m

whence

Whenever different bodies are combined without communication of

work or heat between them and external bodies, the energy of the

body formed by the combination is necessarily equal to the sum of the

energies of the bodies combined. In the case of ideal gas-mixtures,

when the initial temperatures of the gas-masses which are combined

* A subscript m after a differential coefficient relating to a body having several

independently variable components is used here and elsewhere in this paper to indi-

cate that each of the quantities m. ,, m.^, etc., unless its differential occurs in the

expression to which the suffix is applied, is to be regarded as constant in the differ-

entiation.
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are the same, (whether these gas-masses are entirely difterent gases,

or gas-mixtures differing only in the proportion of their components,)

the condition just mentioned can only be satisfied when the tempera-

ture of the resultant gas-mixture is also the same. In such com-

binations, therefore, the final temperature Avill be the same as the

initial.

If we consider a vertical column of an ideal gas-mixture which is

in equilibrium, and denote the densities of one of its components at

two different points by y ^ and ;//, we shall have by (275) and (234)

^^, = e
^'' =e *''

. (284)

From this equation, in which we may regard the quantities distin-

guished by accents as constant, it appears that the relation between

the density of any one of the components and the height is not

aflfected by the presence of the other components.

The work obtained or expended in any reversible process of com-

bination or separation of ideal gas-mixtures at constant temperature,

or when the temperatures of the initial and final gas-masses and of

the only external source of heat or cold which is used are all the same,

will be found by taking the difference of the sums of the values of ip

for the initial, and for the final gas-masses. (See pages 145, 146).

It is evident from the form of equation (279) that this work is equal

to the sum of the quantities of work which would be obtained or

expended in producing in each different component existing separately

the same changes of density which that component experiences in

the actual process for which the work is sought.*

We will now return to the consideration of the equilibrium of a

liquid with the gas which it emits as affected by the presence of

different gases, when the gaseous mass in contact with the liquid may
be regarded as an ideal gas-mixtm-e.

It may first be observed, that the density of the gas which is

emitted by the liquid will not be affected by the presence of other

gases which are not absorbed by the liquid, when the liquid is pro-

tected in any way from the pressure due to these additional gases.

This may be accomplished by separating the liquid and gaseous

*This result has been given by Lord Eayleigh, (Phil. Mag., vol. xlix, 18'75, p. 3J1).

It will be observed that equation (279) might be deduced immediately from this

principle in connection with equation (260) which expresses the properties ordinarily

assumed for perfect gases.
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masses by a diaphragm which is permeable to the liquid. It will

then be easy to maintain the liquid at any constant pressure which is

not greater than that in the gas. The potential in the liquid for the

substance which it yields as gas will then remain constant, and there-

fore the potential for the same substance in the gas and the density

of this substance in the gas and the part of the gaseous pressure

due to it will not be affected by the other components of the gas.

But when the gas and liquid meet under ordinary circumstances,

i. e., in a free plane surface, the pressure in both is necessarily the

same, as also the value of the potential for any common component

*S\. Let us suppose the density of an insoluble component of the gas

to vary, while the composition of the liquid and the temperature

remain unchanged. If we denote the increments of pressure and of

the potential for S^ by dp and <?/<,, we shall have by (272)

* \d2)jt,m \dmjt,p,m

the index (l) denoting that the expressions to which it is affixed refer

to the liquid. (Expressions wdthout such an index will refer to the

gas alone or to the gas and liquid in common.) Again, since the gas

is an ideal gas-mixture, the relation between p^ and /ij is the same

as if the component jS^ existed by itself at the same temperature,

and therefore by (268)

(//<j = (^(

I
t d log />j.

Therefore
(dv \^^^

-;—
I dp. (285)

dmjt,p,m ^- ^ ^

This may be integrated at once if we regard the differential coeffi-

cient in the second member as constant, which will be a very close

approximation. We may obtain a result more simple, but not quite

so accurate, if we vrrite the equation in the form

(dv \^^'

where j/^ denotes the density of the component >S^ in the gas, and

integrate regarding this quantity also as constant. This wall give

/ dv Y^^
i^i-Pi—riLT— I, ip-p')- (287)

\uni^jt, p, m

where p^' and p' denote the values of p^ and p when the insoluble

component of the gas is entirely wanting. It will be observed that

p—p' is nearly equal to the pressure of the insoluble component, in

the phase of the gas-mixture to which j)y relates. S is not neces-
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sarily the only common component of the gas and liquid. If there

are others, we may find the increase of the part of the pressure in the

gas-mixture belonging to any one of them by equations differing from

the last only in the subscript numerals.

Let us next consider the effect of a gas which is absorbed to some

extent, and which must therefore in strictness be regarded as a com-

ponent of the liquid. We may commence by considering in general

the equilibrium of a gas-mixtiire of two components S^ and S^ with a

liquid formed of the same components. Using a notation like the

previous, we shall have by (98) for constant temperature,

and
d}) = ;/\^^ d^i^-^-y'i'^ d^i^

;

whence

{yf^-Yx) <^Ml = (/2-H'^O ^/'2-

Now if the gas is an ideal gas-mixture,

a.t ^ dp, ^ -, a^t -, dp a

du , =z -^ dp ,=. ^^—

,

and «//„ = -^ «», = -^-^,
^' P, r. P2 72

therefore

^ \\dp^=\\-^\ dp^. (288)

We may now suppose that /S', is the principal component of the

liquid, and S.^ is a gas which is absorbed in the liquid to a slight

extent. In such cases it is well known that the ratio of the densities

of the substance S2 in the liquid and in the gas is for a given tem-

perature approximately constant. If we denote this constant by ^,

we shall have

lU Udp^={\- A) dp,. (28P)

It would be easy to integrate this equation regarding ;/j as variable,

but as the variation in the value of />j is necessarily very small we
(L)

shall obtain sufficient accuracy if we regard y^ as well as y^ as con-

stant. We shall thus obtain

(--'-l)(Pt-^i')=(l-^l) P2^ ('^90)

where ^j' denotes the pressure of the saturated vapor of the pure

liquid consisting of S^. It will be observed that when .4= 1, the

presence of the gas /S'g will not affect the pressure or density of the

gas S^. When yl<l, the pressure and density of the gas S^ are

greater than if S.^ were absent, and when .i>l, the reverse is true.
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The properties of jui ide:il gas-mixture (according- to the definition

which we have assumed) when in equilibrium with liquids or solids

have been developed at length, because it is only in respect to these

properties that there is any variation from the properties usually

attributed to perfect gases. As the pressure of a gas saturated with

vapor is usually given as a little less than the sum of the pressure of the

gas calculated from its density and that of saturated vapor in a space

otherwise empty, while our formula^ would make it a little more, when

the gas is insoluble, it would appear that in this respect our formula?

are less accurate than the rule which would make the pressure of the

gas saturated with vapor equal to the sum of the two pressures

mentioned. Yet the reader will observe that the magnitude of the

quantities concerned is not siich that any stress can be laid upon

this circumstance.

It will also be observed that the statement of Dalton's law Avhich we
have adopted, while it serves to complete the theory of gas-mixtures

(with respect to a certain class of properties), asserts nothing with

reference to any solid or liquid bodies. But the common rule that

the density of a gas necessary for equilibrium with a solid or liquid

is not altered by the presence of a ditierent gas which is not absorbed

by the solid or liquid, if construed strictly, will involve consequences

in regard to solids and liquids which are entirely inadmissible. To
show this, we will assume the correctness of the rule mentioned. Let

aSj denote the common component of the gaseous and liquid or solid

masses, and S2 the insoluble gas, and let quantities relating to the

gaseous mass be distinguished when necessary by the index (g), and
those relating to the liquid or solid by the index (l). Now while the

gas is in equilibrium with the liquid or solid, let the quantity which

it contains of S2 receive the increment dm^, its volume and the

quantity which it contains of the other component, as well as the

temperature, remaining constant. The potential for S^ in the o-aseous

mass will receive the increment

\dmj t, V.

dm
2

and the pressure will receive the increment

/ dp\^^^

\dm2lt, V, m ^'

Now the liquid or solid remaining in equilibrium with the gas must
experience the same variations in the values of ju^ and /:>. But by (272)

\ dp/t,m \dmjt,p,m'
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Therefore,

\ dm2 ft, V,

dp yG)

Xdm^Jt, V, m

It will be observed that the first member of this equation relates

solely to the liquid or solid, and the second member solely to the

gas. Now we may suppose the same gaseous mass to be capable of

equilibrium with several different liquids or solids, and the first mem-

ber of this equation must therefore have the same value for all such

liquids or solids ; which is quite inadmissible. In the simplest case, in

which the liquid or solid is identical in substance with the vapor

which it yields, it is evident that the expression in question denotes

the reciprocal of the density of the solid or liquid. Hence, Avhen a

gas is in equilibrium with one oi its components both in the solid

and liquid states (as when a moist gas is in equilibrium with ice and

water), it would be necessary that the solid and liquid should have

the same density.

The foregoing considerations appear sufficient to justify the defini-

tion of an ideal gas-raixture which we have chosen. It is of course

immaterial whether we regard the definition as expressed by equation

(273), or by (279), or by any other fundamental equation which can

be derived from these.

The fundamental equations for an ideal gas-mixture corresponding

to (255), (265), and (271) may easily be derived from these equations

by using inversely the substitutions given on page 217. They are

= 7 + ^\ («. -, log^.^^^ -^,..,), (292)

}; = 2jB,m^+ m, «(c,+«, - ^,)
j

- ^\ (c, m, + a, m,) t log t +^\ (a, m, t log ^-^^^^). (293)

The components to which the fundamental equations (273), (279),

(291) (292), 293) refer, may themselves be gas-mixtures. We may

for example apply the fundamental equations of a binary gas-mixture
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to a mixture of hydrogen and air, or to any ternary gas-mixture in

which the proportion of two of the components is fixed. In fact, the

form of equation (279) which applies to a gas-mixture of any particu-

lar number of components may easily be reduced, when the propor

tions of some of these components are fixed, to the form which applies

to a gas-mixture of a smaller number of components. The necessary

substitutions will be analogous to those given on page 217. But the

components must be entirely diiferent from one another with respect

to the gases of which they are formed by mixture. We cannot, for

example, apply equation (279) to a gas-mixture in which the com-

ponents are oxygen and air. It would indeed be easy to form a

fundamental equation for such a gas-mixture with reference to the

designated gases as components. Such an equation might be derived

from (279) by the proper substitutions. Hut the result would be an

equation of more complexity than (279). A chemical compound,

however, with respect to Dalton's law, and with respect to all the

equations which have been given, is to be regarded as entirely diifer-

ent from its components. Thus, a mixture of hydrogen, oxygen, and

vapor of water is to be regarded as a ternary gas-mixture, having the

three components mentioned. This is certainly true when the quanti-

ties of the compound gas and of its components are all independently

variable in the gas-mixture, without change of temperature or pres-

sure. Cases in which these quantities are not thus independently

variable will be considered hereafter.

Inferences in regard to Potentials in Liquids and Solids.

Such equations as (264), (268), (276), by which the values of

potentials in pure or mixed gases may be derived from quantities

capable of direct measurement, have an interest which is not confined

to the theory of gases. For as the potentials of the independently

variable components which are common to coexistent liquid and gas-

eous masses have the same values in each, these expressions will

generally afford the means of determining for liquids, at least ap-

proximately, the potential for any independently variable compon-

ent which is capable of existing in the gaseous state. For although

every state of a liquid is not such as can exist in contact with a

gaseous mass, it will always be possible, when any of the components

of the liquid are volatile, to bring it by a change of pressure

alone, its temperature and composition remaining unchanged, to

a state for which there is a coexistent phase of vapor, in which

Trans. Conn. Acad., Vol. Ill 29 May, 1,s7<;.
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the values of the potentials of tiie volatile components of the liquid

may be estimated from the density of these substances in the vapor.

The variations of the potentials in the liquid due to the change of

pressure Avill in general be quite trifling as compared with the

variations which are connected with changes of temperature or of

composition, and may moreover be readily estimated by means of

equation (272). The same considerations will apply to volatile solids

with respect to the determination of the potential for the substance

of the solid.

As an application of this method of determining the potentials

in liquids, let us make use of the law of Henry in regard to the

absorption of gases by liquids to determine the relation between

the quantity of the gas contained in any liquid mass and its potential.

Let us consider the liquid as in equilibrium with the gas, and let

m'-^^ denote the quantity of the gas existing as such, ni^l'^ the

quantity of the same substance contained in the liquid mass, /< j the

potential for this substance common to the gas and liquid, v^^^ and

v^^^ the volumes of the gas and liquid. When the absorbed gas

forms but a very small i)art of the liquid mass, we have by Henry's

law

,y(L)
'

y

where ^1 is a function of the temperature ; and by (-76)

(L) — '^ ,,(G)' ^^ '

ni(G)

A., =S+6Mog -,-;,,. (296)

I<, = J^+ (Mog-^, (295)

jB and C also denoting functions of the tem})erature. Therefore

A y(L)
•

It will be seen (if we disregard the difl'erence of notation) that this

equation is equivalent in form to (216), which was deduced from

a priori considerations as a probable relation between the quantity

and the potential of a small component. When a liquid absorbs

several gases at once, there will be several equations of the form of

(296), which will hold true simultaneously, and which we may regard

as equivalent to equations (217), (218). The quantities A and ( in

(216), with the corresponding quantities in (217), (218), were regarded

as functions of the temperature and pressure, but since the potentials

in liquids are but little affected by the pressure, we might anticipate

that these quantities in the case of liquids might be regarded as func-

tions of the temperature alone.
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111 regard to equations (216), (21'7), (218), we may now observe

that by (204) and (276) they are shown to liold true in ideal gases or

gas-mixtures, not only for components which form only a small ])art

of the whole gas-mixture, but without any such limitation, and not

only approximately but al)solutely. It is noticeable that in this case

quantities A and (J are functions of the tjmperature alone, and do

not even depend upon the nature of the gaseous mass, except upon

the particular component to which they relate. As all gaseous bodies

are generally supposed to approximate to the laws of ideal gases when

sufficiently rarefied, we may regard these equations as approximately

valid for gaseous bodies in general when the density is sufficiently

small. When the density of the gaseous mass is very great, but

the separate density of the component in question is small, the equa-

tions will probal)ly hold true, but the values of A and C may not be

entirely independent of the pressure, or of the composition of the mass

in respect to its principal components. These equations will also

apply, as we have just seen, to the potentials in liquid bodies for com-

ponents of Avhich the density in the licjuid is very small, whenever

these components exist also in the gaseous state, and conform to the

law of Henry. This seems to indicate that the law expressed by

these equations has a very general application.

Considerations relating to the Increase of Entropy due to the

Mixture of Gases hy Diffusion.

From equation (278) we may easily calculate the increase of

entropy which takes place when two different gases ai'e mixed by

diffusion, at a constant temperature and pressure. Let us suppose

that the quantities of the gases are such that each occupies initially

one half of the total volume. If we denote this volume by T^, the

increase of entropy will be
V V

ni^ «j log V-\- m^ a 2 log T^— m,^ «j log w/g ^2 ^^g" ~?
z z

or {ni ^ (/j -1- m^ (f^) log 2.

XT P^ 1 P^
JSlow m, a. =z -— , and m^ a, = ~—

.

11 2t ^ ^ It

Therefore the increase of entropy may be represented by the expres-
sion

pV
-.- log 2. (297)

It is noticeal)le that the value of this expression does not depend

upon the kinds of gas which are concerned, if the quantities are such

as has been su[»p()sed, except that the gases which are mixed must be
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of diflferent kinds. If we should bring into contact two masses of the

same kind of gas, they would also mix, but there would be no in-

crease of entropy. But in regard to the relation which this case

bears to the preceding, we must bear in mind tlie following considera-

tions. When we say that when two different gases mix by diffusion,

as we have supposed, tlie energy of the whole remains constant, and
the entropy receives a certain increase, we mean that the gases could

be separated and brought to the same volume and temperature which

they had at first by means of certain changes in external bodies, for

example, by the passage of a ceitain amount of heat from a warmer
to a colder body. But when we say that when two gas-masses of the

same kind are mixed under similar circumstances there is no change

of energy or entropy, we do not mean that the gases which have been

mixed can be separated without change to external bodies. On the

contrary, the separation of the gases is entirely impossible. We call

the energy and entropy of the gas-masses when mixed the same as

when they were unmixed, because we do not recognize any difference

in the substance of the two masses. So when gases of different kinds

are mixed, if we ask what changes in external bodies are necessary to

bring the system to its original state, we do not mean a state in

which each particle shall occupy more or less exactly the same posi-

tion as at some previous epoch, but only a state which shall be

undistinguishable from the previous one in its sensible properties.

It is to states of systems thus incompletely defined that the problems

of thermodynamics relate.

But if such considerations explain why the mixture of gas-masses

of the same kind stands on a different footing from the mixture of

gas-masses of different kinds, the fact is not less significant that the

increase of entropy due to the mixture of gases of different kinds, in

such a case as we have supposed, is independent of the nature of the

gases.

Now we may without violence to the general laws of gases which

are embodied in our eqixations suppose other gases to exist than such

as actually do exist, and there does not appear to be any limit to the

resemblance which there might be betAveen two such kinds of gas.

But the increase of entropy due to the mixing of given volumes of

the gases at a given temperature and pressure would be independent

of the degree of similarity or dissimilarity between them. We might

also imagine the case of two gases which should be absolutely identi-

cal in all the properties (sensible and molecular) which come into

play while they exist as gases either pure or mixed with each other,
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but which shouM differ in respect to tlie attractions between their

atoms and the atoms of some other substances, and therefore in tlieir

tendency to combine witli sucli substances. In tlie mixture of such

gases by diffusion an increase of entropy wovdd take ))hice, although

the pi'ocess of mixture, dynaniicallv considered, might be absohitely

identical in its minutest details (even with respect to the precise path

of each atom) with processes wliicli miglit take phice without any

increase of entropy. In sucli respects, entropy stands strongly con-

trasted with energy. Again, Miien such gases have been mixed, there

is no more impossibility of the separation of tlie two kinds of molecules

in virtue of their ordinary motions in the gaseous mass without any

especial external influence, than there is of tlie separation of a homo-

geneous gas into the same two parts into Avhicli it has once been

divided, after these have once been mixed. In other words, the

impossibility of an uncompensated decrease of entropy seems to be

reduced to improbability.

There is perhaps no fact in the molecular theory of gases so well

established as that the number of molecules in a given volume at a

given temperature and pressure is the same for every kind of gas

when in a state to which the laws of ideal gases apply. Hence the

pV

.

quantity -— in (2f»7) must be entirely detei-mined by the number of
Z

molecules which are mixed. And the increase of entropy is therefore

determined by the number of these molecules and is independent of

their dynamical condition and of the degree of difference between

them.

The result is of the same nature when the volumes of the gases

which are mixed ai'e not equal, and Avhen more than two kinds of gas

are mixed. If we denote by -y^, y^? *tc., the initial volumes of the

different kinds of gas, and by V as before the total volume, the

increase of entropy may be written in the form

^1 (mj aj) log V- 2^ (m, a^ loguj.

And if we denote by rj, r^, etc., the numbers of the molecules of the

several different kinds of gas, we shall have

r^ = Cm^ «,, r, = Cm^ a^, etc.,

where C denotes a constant. Hence

V
J

: V: '.m^a^: 2^{ni^ay) : : r, : ^', ?•,

;

and the increase of entropy may be written

2,r^\og2,r, - ^\ (r, log r,)
^
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The Phases of Dissipated Energy of an Ideal Gas-mixture loith

(Joni2yo7ients which are Chemically Related.

We will now pass to the consideration of the phases of dissipated

energy (see page 200) of an ideal gas-mixtiare, in which the nnmber
of the proximate components exceeds that of the ultimate.

Let us first suppose that an ideal gas-mixture has for proximate

components the gases G ^, G^, and G^, the units of which are

denoted by @^, (S).^, ©3, and that in ultimate analysis

@3 = A, ®, +A2®2, (299)

A
J
and Ag denoting positive constants, such that Aj + Ag = 1. The

phases which we are to consider are those for which the energy of

the gas-mixture is a minimum for constant entropy and volume and

constant quantities of G^ and G2, as determined in ultimate analysis.

For such phases, by (86),

yUj 6rti^ 4- /'o f^""'o + Ms ^'it^-^O. (300)

for such values of the variations as do not affect the quaaitities of

G^ and G^ as determined in ultimate analysis. Values of 6tn^,

Sm^, Sni^ proportional to A,, Ag, — 1, and oidy such, are evidently

consistent with this restriction : therefore

A, /<j + Ag //2 = Ms- (301)

If we substitute in this equation values of /.i^, /<2, Ms taken from

(276), we obtain, after arranging the terms and dividing by t,

^1 «i log "^+ ^2 «2 log ~ - (>s log '^ = A^B\ogt-j, (302)

where

A=\^H^+ ^2^2 — ^3 - '^
1

^'
1
- ^^2^2 + ^3 - ^ 1 « 1

- ^ 3«2 + «35 (303)

^ = A,r, -f Ag Cg — C3, (304)

Czr Aj^j +A. ^2 — ^3. (305)

If we denote by p^ and (d^ the volumes (determined under stand-

ard conditions of temperature and pressure) of the quantities of

the gases 6^j and G^ which are contained in a unit of volume of the

gas 6^3, we shall have

/i, = -^\ and /:/, =r ^, (306)

and (302) will reduce to the form

log —'

,3 , n ^=r— _i_ logi5 . (30/)
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Moreover, as by (277)

pv = («i rn^ + €12 m^ + a^ m^) t, (308)

we have on eliminating v

W ^1 "'2 P

;/t3 [a I m, H- «3 m^ + «3 Wg)

=^ + ^^^^'-.71' ('*'')
O '-f'o tC o t'

where

B'=X^ C1 + A3C2 - <'3H-Ai«i + Agtt^ - «3. (310)

It will be observed that the quantities /S^j, /^g will always be posi-

tive and have a simple relation to unity, and that the value of

/?j + /^2 * 1 will be positive or zero, according as gas 6^3 is formed

of Gj and G^ with or without condensation. If we should assume,

according to the rule often given for the specific heat of compound

gases, that the thermal capacity at constant volume of any quantity

of the gas 6^3 is equal to the sum of the thermal capacities of the

quantities which it contains of the gases G^ and G2, the value of Ji

would be zero. The heat evolved in the formation of a unit of the gas

Gq out of the gases G ^ and 6^35 without mechanical action, is by

(283) and (257)

A, (^c,t + A\)-\-X2 (cot + B.J - (c^t + E^),

or Bt + C,

which Avill reduce to C when the above relation in regard to the

specific heats is satisfied. In any case the quantity of heat thus

evolved divided by a^ t^ will be equal to the diiferential coefiicient of

the second member of equation (307) with respect to t. Moreover,

the heat evolved in the formation of a unit of the gas G.^ out of the

gases 6rj and G2 imder constant pressui'e is

£ t 4- 0-\- A 1 a, « -I- A , «2 t -a^t—B't-\- C,

which is equal to the differential coefiicient of the second member of

(309) with respect to t, multiplied by a,^ t'^

.

It appears by (307) that, except in the case when y6^j + /ig = 1

for any given finite values of ;;/j, m^^ tn^, and t (infinitesimal values

being excluded as well as infinite), it will always be possible to

assign such a finite value to v that the mixture shall be in a state of

dissipated energy. Thus, if we regard a mixture of hydrogen, oxy-

gen, and vapor of water as an ideal gas-mixture, for a mixture con-

taining any given quantities of these three gases at any given tern-
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peratiire there will be a certain volume at which the mixture will be

in a state of dissipated energy. In such a state no such phenomenon

as explosion will be possible, and no formation of water by the action

of platinum. (If the mass should be expanded beyond this volume,

the only possible action of a catalytic agent would be to resolve the

water into its components.) It may indeed be true that at oi'dinary

temperatures, except when the quantity either of hydrogen or of

oxygen is very small compared with the quantity of water, the state

of dissipated energy is one of such extreme rarefaction as to lie

entirely beyond our power of experimental verification. It is also to

be noticed that a state of great rarefaction is so unfavorable to any

condensation of the gases, that it is quite probable that the catalytic

action of platinum may cease entirely at a degree of rarefaction far

short of what is necessary for a state of dissipated energy. But with

respect to the theoretical demonstration, such states of great rarefac-

tion are precisely those to which we should suppose that the laws of

ideal gas-mixtures would apply most perfectly.

But when the compound gas G^ is formed of G^ and G^ without

condensation, (i. e,, when /?, + /io = 1,) it appears from equation (307)

that the relation between m^, m^, and /^g which is necessary for a

phase of dissipated energy is determined by the temperature alone.

In any case, if we regard the total quantities of the gases G^ and

G2 (as determined by the ultimate analysis of the gas-mixture), and

also the volume, as constant, the quantities of these gases which

appear uncombined in a phase of dissipated energy will increase with

the temperature, if the formation of the compound G^ without

change of volume is attended with evolution of heat. Also, if we

regard the total quantities of the gases G^ and G^, and also the

pressure, as constant, the quantities of these gases which appear un-

combined in a phase of dissipated energy, will increase with the

temperature, if the formation of the compound G^ under constant

pressure is attended with evolution of heat. If ^ = 0, (a case, as

has been seen, of especial importance), the heat obtained by the

formation of a unit of G^ out of G^ andtrg without change of volume

or of temperature will be equal to G. If this quantity is positive,

and the total quantities of the gases G^ and G2 and also the volume

have given finite values, for an infinitesimal value of t we shall have

(for a phase of dissipated energy) an infinitesimal value either of mj

or of »«25 '^'^"^ ^^^'" ^" iiifiiiite value of t we shall have finite (neither in-

finitesimal nor infinite) values of m,, mg, and m^. But if we sui)pose

the pressure instead of the \'olume to liave a given finite value (with
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suppositions otherwise the same), we shall have for infinitesimal

values of t an infinitesimal value either of m,^ or m.^, and for infinite

values of t finite or infinitesimal values oi rn^ according as /ij -|- (i.^

is equal to or greater than unity.

The case which we have considered is that of a ternary gas-mix-

ture, but our results may easily be generalized in this respect. In

fact, whatever the number of component gases in a gas-mixture, if

there are relations of equivalence in ultimate analysis between these

components, such relations may be expressed by one or more equa-

tions of the form

A, @, + A2®o + A3 @3 + etc. = 0, (311)

where @i, ©2? ^^c. denote the units of the various component gases,

and A,, Ag, etc. denote positive or negative constants such that

^\ A, = 0. From (311) with (86) we may derive for phases of dis-

sipated energy,

A, /<, -f Ag ^lo + A3 /<3 + etc. = 0,

or :^\.(A, /^) = 0. (312)

Hence, by (276),

^^(A.«ilog'^) = ^ +B\ogt~ -, (313)

where A, B and (J are constants determined by the equations

-4 = 2, (Ai^x - A,c, - A,«.), (314)

B=z^,{\,c,\ (315)

G=2,{X,E,). (316)

Also, since j) v =^ 2
^
(a

,
nt

^ ) t,

^1 (A, «i logw,) - 2 (A^ a,) log^\ (a, m,)

H- ^^ (A , «,) log p = A-\-B'\ogt--, (317)

where
B'=2^ (A.c,+ A,aJ. (318)

If there is more than one equation of the form (311), we shall have

more than one of each of the forms (313) and (317), which will hold

ti'ue simultaneously for phases of dissipated energy.

It will be observed that the relations necessary for a phase of dis-

sipated energy between the volume and temperature of an ideal gas-

mixture, and the quantities of the components which take part in

the chemical processes, and the pressure due to these components, are

not affected by the presence of neutral gases in the gas-mixture.

Trans. Conn. Acad., Vol. III. 30 May, 1876.
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From equations (312) and (234) it follows that if there is a phase

of dissipated energy at any point in an ideal gas-mixture in equili-

brium under the influence of gravity, the whole gas-mixture must

consist of such phases.

The equations of the phases of dissipated energy of a binary gas-

mixtui-e, the components of which are identical in substance, are com-

paratively simple in form. In this case the two components have the

ci

same potential, and if we write /i for — (the ratio of the volumes of

equal quantities of the tAvo components under the same conditions of

temperature and pressure), we shall have

where

1 m/ A B (J
log i _ _ _^ _ lop- ;; _ —

-

13—1 «„ .' «2 <(2 f
m^ V d ^ ^
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In the first place, if we consider the case of a gas-mixture which

only differs from an ordinary ideal gas-mixture for which some of

the components are equivalent in that there is perfect freedom

in regard to the transformation of these components, it follows at

once from the general formula of equilibrium (l) or (2) that equili-

brium is only possible for such phases as we have called phases of

dissipated energy, for which some of the characteristic equations have

been deduced in the preceding pages.

Tf it should be urged, that regarding a gas-mixture which has

convertible components as an ideal gas-mixture of which, for some

reason, only a part of the phases are actually capable of existing, we

might still suppose the particular phases which alone can exist to be

determined by some other j)rinciple than that of the free convertibility

of the components (as if, perhaps, the case were analogous to one

of constraint in mechanics), it may easily be shown that such a hypo-

thesis is entirely untenable, when the quantities of the proximate

components may be varied independently by suitable variations of the

temperatui'e and pressure, and of the quantities of the ultimate com-

ponents, and it is admitted that the relations between the energy,

entropy, volume, temperature, pressure, and the quantities of the

several proximate components in the gas-mixture are the same as for

an ordinary ideal gas-mixture, in which the components are not con-

vertible. Let us denote the quantities of the n' proximate compo-

nents of a gas-mixture A by m^, m^, etc., and the quantities of its n

ultimate components by nii, nig, etc. {n denoting a number less than

n'), and let us suppose that for this gas-mixture the quantities s, ?j, v,

t, p, wij, ^2, etc. satisfy the relations characteristic of an ideal gas-

mixture, while the phase of the gas-mixture is entirely determined by
the values of m-i, nig, etc., with two of the quantities 6, 7, v, t,p.

We may evidently imagine such an ideal gas-mixture J^ having n'

components (not convertible), that every phase of ^ shall correspond

with one of J^ in the values of e, 7], v, t,p,m
j

, m^, etc. Now let us give

to the quantities mj, 1112, etc. in the gas-mixture A any fixed values,

and for the body thus defined let us imagine the v-tj-s surface (see

page 1 74) constructed ; likewise for the ideal gas-mixture B let us

imagine the v-r/s surface constructed for every set of values of

m^, ^2, etc. which is consistent with the given values of m,, m^,
etc., i. e., for every body of which the ultimate composition would be

expressed by the given vahies ofm
,

, in2 , etc. It follows immediately

from our supposition, that every point in the v-rj-s surface relating to

A must coincide with some point of one of the v-t/-e surfaces relating



236 ./. W. Glbbs—£Jqullibrmiii. of Heterogeneous Substances.

to B not only in respect to position but also in respect to its tangent

plane (which represents temperature and pressure); therefore the

i)-t]-e surface relating to ^1 must be tangent to the various y-r/-£ sur-

faces relating to B, and therefore must be an envelop of these sur-

faces. P'rom this it follows that the points which represent phases

common to both gas-mixtures must represent the phases of dissipated

euergy of the gas-mixture B.

The properties of an ideal gas-mixture which are assumed in

regard to the gas-mixture of convertible components in the above

demonstration are expressed by equations (277) and (278) with the

equation

f = ^, (c, ;//j «; 4- /// , E^). (324)

It is usual to assume in regard to gas-mixtures having convertible

components that the convertibility of the components does not affect

the relations (277) and (324). The same cannot be said of the equa-

tion (278). But in a very important class of cases it will be sufficient

if the applicability of (277) and (324) is admitted. The cases referred

to are those in which in certain phases of a gas-mixture the compo-

nents are convertible, and in other phases of the same proximate

composition the components are not convertible, and the equations of

an ideal gas-mixture hold true.

If there is only a single degree of convertibility between the com-

ponents, (i. e., if only a single kind of conversion, with its reverse, can

take place among the components,) it will be sufficient to assume, in

regard to the phases in which con\ersion takes place, the validity of

equation (277) and of the following, which can be derived from (324)

by differentiation, and comparison Avith equation (11), which expresses

a necessary relation,

[tdtj—i^dv - :^^ (Cj m^)dt\„, = 0* (325)

We shall confine our demonstration to this case. It will be observed

that the physical signification of (325) is that if the gas-mixture is

subjected to such changes of volume and temjoerature as do not alter

its proximate composition, the heat absorbed or yielded may be cal-

culated by the same formula as if the components were not conver-

tible.

Let us suppose the thermodynamic state of a gaseous mass J/, of

such a kind as has just been described, to be varied while within the

limits within which the components are not convertible. (The quan-

tities of the proximate components, therefore, as well as of the ulti-

* This notation is intended to indicate that Wi, mj, etc. are regarded as constant
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mate, ai"e supposed constant). If we use the same method of geome-

trical representation as before, the point representing the volume,

entropy, and energy of the mass will describe a line in the v--q-B sur-

face of an ideal gas-mixture of inconvertible components, the form

and position of this surface being determined by the proximate compo-

sition of M. Let us now suppose the same mass to be carried beyond

the limit of inconvertibility, the variations of state after passing the

limit being such as not to alter its proximate composition. It is

evident that this will in general be possible. Exceptions can only

occur when the limit is formed by phases in Avhich the proximate

composition is uniform. The line traced in the region of convertibility

m\ist belong to the same D-rf-s. surface of an ideal gas-mixture of in-

convertible component? as before, continued beyond the limit of

inconvertibility for the components of ill/, since the variations of

volume, entropy and energy are the same as would be possible if the

components were not convertible. But it must also belong to the

v-r]-s. surface of the body J/, which is here a gas-mixture of conver-

tible components. Moreover, as the inclination of each of these

surfaces must indicate the temperature and pressure of the phases

through which the body passes, these two surfaces must be tangent

to each other along the line which has been traced. As the w-//-«

surface of the body M in the region of convertibility must thus be

tangent to all the surfaces representing ideal gas-mixtxires of every

possible proximate composition consistent with the idtimate composi-

tion of J!/, continued beyond the region of inconvertibility, in which

alone their form and position may be capable of experimental demon-

stration, the former surface must be an envelop of the latter surfaces,

and therefore a continuation of the surface of the phases of dissipated

energy in the region of inconvertibility.

The foregoing considerations may give a measure oi a priori prob-

ability to the results which are obtained by applying the ordinary

laws of ideal gas-mixtui'es to cases in which the components are con-

vertible. It is only by experiments upon gases in phases in which

their components are convertible that the validity of any of these

results can be established.

The very accurate determinations of density which have been made
for the peroxide of nitrogen enable us to subject some of our equa-

tions to a very critical test. That this substance in the gaseous state

is properly regarded as a mixture of diiferent gases can hardly be

doubted, as the proportion of the components derived from its density

on the supposition that one component has the molecular formula
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NO2 and the other the formuhx N^O^ is the same as that derived

from the depth of the color on the supposition that th^ absorption of

light is due to one of the components alone, and is proportioned to

the separate density of that component.*

MM. Sainte-Claire Deville and Troostf have given a series of deter-

minations of what we shall call the relative densities of peroxide of

nitrogen at various temperatures under atmospheric pressure. We
use the term relative density to denote Avhat it is usual in treatises on

chemistry to denote hy the term density^ viz., the actual density of a

gas divided by the density of a standard perfect gas at the same

pressure and temperature, the standard gas being air, or more strictly,

an ideal gas which has the same density as air at the zero of the

centigrade scale and the pressure of one atmosphei*e. In order to

test our equations by these determinations, it will be convenient to

transform equation (320), so as to give directly the relation between

the relative density, the pressure, and the temperatiire.

As the density of the standard gas at any given temperature and

pressure may by (263) be expressed by tiie formula — , the relative

density of a binary gasrmixture may be expressed by

Now by (263)

I>= (m, -i-mo)'^. (326)

p V

By giving to wig ^^^^ "*i successively the value zero in these equa-

tions, we obtain

i>i = —

,

1^2 = -, (328)

where D-^ and D2 denote the values of D when the gas consists

wholly of one or of the other component. If we assume that

JJ., = 2J\, (329)

we shall have

From (326) we have

«,=:2«2- (330)

' ^ ^ a
J'

*Salet, "Sur la coloration du peroxyde d'azote," Comptes Rendus, vol. Ixvii, p. 488.

f Comptes Rendus, vol. Ixiv, p. 237.
*
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and from (327), by (328) and (330),

2 m, + hi., = Z>o ^- — 2 i5, ^—

,

whence

m. = (i>, -i>)|^^, (331)

m, = 2(i>-/J.)|^^. (332)

By (327), (331), and (332) we obtain from (320)

log ^^ -r.\ = log ^ . (333)
*= 2 (Z) - Z>J a, «2 «3 '--^

This formula will be more convenient for purposes of calculation if

we introduce common logarithms (denoted by log,^) instead of

hyperbolic, the temperature of the ordinary contigrade scale t,, instead

of the absolute temperature t, and the pressure in atmospheres p„t

instead of 2^ the pressure in a rational system of units. If we also

add the logarithm of a, to both sides of the equation, we obtain

'°""%i~Jj- = ^ + I -S." (' +«-^) - M^3- ('^'^

where A and C denote constants, the values of which are closely con-

nected with those of^ and C
From the molecular formuUie of peroxide of nitrogen N0„ and

NoO^, we may calculate the relative densities

14 4. 32 ^ ^ 28 + 64
D, =z-—--— .0691 = 1.589, and B^ = — .0691 = 3.178. (335)

1
2

' ~
2 ^ ^

The determinations of MM. Deville and Troost are satisfactorily

represented by the equation

(3.178 - 2>)2 », ,^ 3118.6

which gives

i>=:3.l78 + (-> - \/<'^ (3.178+0)

3118.6
where log^^ W= 9.4/056 - fTr^~^^Si oPa,-

In the first part of the following table are given in successive col-

umns the temperature and pressure of the gas in the several experi-

ments of MM. Deville and Troost, the relative densities calculated

from these numbers by equation (336), the relative densities as

observed, and the difierence of the observed and calculated relative
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densities. It will be observed that these differences are quite small,

in no case reaching .03, and on the average scarcely exceeding .01.

The signific.^ance of such correspondence in favor of the hypothesis by
means of which equation (336) has been established is of course

diminished by the fact that two constants in the equation have been

determined from these experiments. If the same equation can be

shown to give correctly the relative densities at other pressui'es than

that for which the constants have been determined, such correspon-

dence will be much more decisive.

t,.
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peroxide of nitrogen by (3;^3), (334), and (336) will not be attected

by the presence of free nitrogen, if the pressure expressed by p or

/>„« and contained implicitly in the symbol IJ (see equation (326) by

which D is defined) is understood to denote the total pressure dimin-

ished by the pressure due to the free nitrogen. The determinations

of Playfair and Wanklyn are given in the latter part of the

above table. The pressures given are those obtained by subtracting

the pressure due to the free nitrogen from the total pressure. We
may suppose such reduced pressures to have been used in the reduction

of the observations by which the numbers in the column of observed

relative densities were obtained. Besides the relative densities

calculated by equation (336) for the temperatures and (reduced)

pressures of the observations, the table contains the relative densities

calculated for the same temperatures and the pressure of one atmos-

phere.

The reader will observe that in the second and third experiments

of Playfair and Wanklyn there is a very close accordance between

the calculated and observed values of Z>, while in the second

and fourth experiments there is a considerable difference. Now the

weight to be attributed to the several determinations is very differ-

ent. The quantities of peroxide of nitrogen which were used in the

several experiments were respectively .2410, .5893, .3166, and .2016

grammes. For a rough approximation, we may assume that the

probable errors of the relative densities are inversely proportional to

these numbers. This would make the probable error of the first and

fourth observations two or three times as great as that of the second

and considerably greater than that of the third. We must also

observe that in the first of these experiments, the observed relative

density 1.783 is greater than 1.687, the relative density calculated by

equation (336) for the temperature of the experiment and the pres-

sure of one atmosphere. Now the number 1.687 we may regard as

established directly by the experiments of Deville and Troost.

For in seven successive experiments in this part of the series the

calculated relative densities differ from the observed by less than .01.

If then we accept the numbers given by experiment, the effect of

diluting the gas with nitrogen is to increase its relative density. As
this result is entirely at variance with the facts observed in the case

of other gases, and in the case of this gas at lower temperatures,

as appears fi'om the three other determinations of Playfair and

Wanklyn, it cannot possibly be admitted on the strength of a single

Trans. Conn. Acad., Vol. III. ?,\ May, 187(5.
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observation. The first experiment of this series cannot thei'efore

properly be used as a test of our equations. Similar considerations

apply with somewhat less force to the last experiment. By compar-

ing the temperatures and pressures of the three last experiments

with the observed relative densities, the reader may easily convince

himself that if we admit the substantial accuracy of the determina-

tions in the two first of these experiments (the second and third of

the series, which have the greatest weight), the last determination of

relative density 2.588 must be too small. In fact, it should evidently

be greater than the number in the preceding experiment 2.645.

If we confine our attention to the second and third experiments of

the series, the agreement is as good as could be desired. Nor will

the admission of errors of .152 and .120 (certainly not large in deter-

minations of this kind) in the first and fourth experiments involve

any serious doubt of the substantial accuracy of the second and third,

when the diflerence of weight of the determinations is considered.

Yet it is much to be desired that the relation expressed by (336), or

with more generality by (334), should be tested by more numerous

experiments.

It should be stated that the numbers in the column of pi'essures are

not quite accurate. In the experiments of Deville and Troost

the gas was subject to the actual atmospheric pressure at the time of

the experiment. This varied from 747 to 764 millimeters of mercury.

The precise pressure for each experiment is not given. In the ex-

periments of Playfair and Wauklyn the mixture of nitrogen and

peroxide of nitrogen was subject to the actual atmospheric pressure

at the time of the experiment. The numbers in the column of pres-

sures express the fraction of the whole pressure which remains after

substracting the part due to the free nitrogen. But no indication is

given in the published account of the experiments in regard to the

height of the barometer. Now it may easily be shown that a vai'ia-

tion of y'g^^ in the value of p can in no case cause a variation of more

than .005 in the value of D as calculated by equation (336). In any

of the experiments of Playfair and Wanklyn a variation of more

than 30""" in the height of the barometer would be necessary to

produce a variation of .01 in the value of D. The errors due to this

source cannot thei'efore be very serious. They might have been

avoided altogether in the discussion of the experiments of Deville

and Troost by using instead of (336) a formula expressing the

relation between the relative density, the temperature, and the actual

densitv, as the reciprocal of the latter quantity is given for each ex-
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periment of this series. It seemed best, however, to make a trifling

sacrifice of accuracy for the sake of simplicity.

It might be thouglit that the experiments under discussion would

be better represented by a formula in which the term containing log t

(see equation (333)) w^as retained. But an examination of the figures

in the table will show that nothing important can be gained in this

respect, and there is hardly sufficient motive for adding another term

to the formula of calculation. Any attempt to determine the real

values of ^, B' , and G in equation (333), (assuming the absolute

validity of such an equation for peroxide of nitrogen,) from the ex-

periments under discussion would be entirely misleading, as the

reader may easily convince himself.

From equation (336), however, the following conclusions may
deduced. By comparison with (334) we obtain

^ ,
B' . C ,^ 3118.6A+— logjo « - 7 = 9-4V056 ^ ,

which must hold true approximately between the temperatures 11*^

and 90*^'. (At higher temperatures the relative densities vary too

slowly with the temperatures to afford a critical test of the accuracy

of this relation.) By dift'erentiation we obtain

J/:S'C_ 3118.6

where Jf denotes the modulus of the common system of logarithms.

Now by comparing equations (333) and (334) we see that

^ MC C
C = =.43429—

.

Hence
B' t-\- G— 7181 «2 = 3590 rtj,

which may be regarded as a close approximation at 40*^^ or 50*^, and
a tolerable approximation between the limits of temperature above

mentioned. Now B' t -\- G represents the heat evolved by the con-

version of a unit of NO2 into NgO^ under constant pressure. Such

conversion cannot take place at constant pressure without change of

temperature, which renders the experimental verification of the last

equation less simple. But since by equations (322)

B' = B-\-a^ - «2 = ^+ i«i,

we shall have for the temperature of 40^^^

Bt-{- 6'= 3434 a,.

Now B t -\- G represents the decrease of energy when a unit of NOg is

transformed into NgO^ without change of temperature. It therefore
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represents the excess of the heat evolved over the work done by

external forces when a mass of the gas is compressed at constant

temperature until a unit of NOg has been converted into NgO^.

This quantity will be constant if J5zii 0, i. e., if the specific heats at

constant volume of NO^ and ^2^4 ^^'^ ^^ same. This assumption

would be more simple from a theoretical stand-point and perhaps

safer than the assumption that B' := 0. If JB = 0, H' = u^. If we

wish to embody this assumption in the equation between Z>, p, and t,

we may substitute

2977 4
6.5228 + log,

„ (C+ 2V3) ^
j^^^Tf:^'

for the second member of equation (336). The relative densities

calculated by the equation thus modified from the temperatures and

pressures of the experiments under discussion will not differ from

those calculated from the unmodified equation by more than .002 in

any case, or by more than .001 in the first series of experiments.

It is to be noticed that if we adniit the validity of the volumetrical

relation expressed by equation (333), which is evidently equivalent

to an equation between p, t, v, an<l ni (this letter denoting the quan-

tity of the gas without reference to its molecular condition), or if we

admit the validity of the equation only between certain limits of

temperature and for densities less than a certain limit of density, and

also admit that between the given limits of temperature the specific

heat of the gas at constant volume may be regarded as a constant

quantity when the gas is sufliciently rarefied to be regarded as con-

sisting wholly of NOg,—or, to speak without reference to the molecu-

lar state of the gas, when it is rarefied until its relative density J)

approximates to its limiting value 2>,,—we must also admit the

validity (within the same limits of temperature and density) of all the

calorimetrical relations which belong to ideal gas-mixtures with

convertible components. The premises are evidently equivalent to

this,—that we may imagine an ideal gas with convertible components

such that between certain limits of temperature and above a certain

limit of density the relation between p, t, and v shall be the same for

a unit of this ideal gas as for a unit of peroxide of nitrogen, and for

a very ^reat value of v (within the given limits of temperature) the

thermal capacity at constant volume of the ideal and actual gases

shall be the same. Let us regard t and v as independent variables

;

we may let these letters and p refer alike to the ideal and real gases,

but we must distinguish the entropy //' of the ideal gas from the

entropy /; of the real gas. Now by (88)
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^^ = *, (387)

d dij _ d dr] _ d dp _ drp '

ns8^
do 7lt ~ lit dv ~ dt ~di ~ ~dt^'

^

Since a similar relation will hold true for ?/', we obtain

d_ dj}^_d_ dr[

dv dt dv dt''

which must hold true within the given limits of temperature and

density. Now it is granted that

^-'#' (3^0)
dt dt ^ '

for very great values of v at any temperature within the given limits,

(for the two members of the equation represent the thermal capacities

at constant volume of the real and ideal gases divided by t,) hence,

in virtue of (339), this equation must hold true in general within the

given limits of temperature and density. Again, as an equation like

(337) will hold true of ?/', w^e shall have

dt} dt}'

dv dv' v
)

From the two last equations it is evident that in all calorimetrical

relations the ideal and real gases are identical. Moreover the energy

and entropy of the ideal gas are evidently so far arbitrary that we
may suppose them to have the same values as in the real gas for any

given values of t and v. Hence the entropies of the two gases are

the same within the given limits ; and on account of the necessary

relation

de-=. t dr] — p dv,

the energies of the two gases are in like manner identical. Hence
the fundamental equation between the energy, entropy, volume, and
quantity of matter must be the same for the ideal gas as for the

actual.

We may easily form a fundamental equation for an ideal gas-mix-

ture with convertible components, which shall relate only to the

phases of equilibrium. For this purpose, we may use the equations

of the form (312) to eliminate from the equation of the form (273)

which expresses the relation between the pressure, the terapei-ature

and the potentials for the proximate components, as many of the

potentials as there are equations of the former kind, leaving the
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potentials for those components which it is convenient to regard as

the ultimate comj^onents of the gas-mixture.

In the case of a binary gas-mixture with convertible components,

the components will have the same potential, which may be denoted

by //, and the fundamental equation will be

Ci+a, // — £', C2-\-a.2 fi — E-i

p:=za^L^t e -\-a.^L„t e
, (342)

where

L, = e
""'

, X.^e "^ . (343)

From this equation, by differentiation and comparison with (98), we

obtain

c, n-E,

+ ^2(^2 +«2-—f" ) ^5 e ', (244)

Ci fi — E, Ci II—E^

^ t e

-=L^t'e -\- L^t e ^ . (345)

From the general equation (93) with the jDreceding equations the

following is easily obtained,

—

Cj_ II—Ey Cj_ ii-Ej

-= Z^{c,t+E^)t''' e
"'^

+L^{e2t+E.^)t''' e
""'*

. (346)

We may obtain the relation between p, t, v, and m by eliminating

// from (342) and (345). For this purpose we may proceed as follows-

From (342) and (345) we obtain

p-a,t'^={a,-a,)L^t "'
e

"'^
(347)

C2 + a-z li^—E-i

rtl
, , ^ rt, a,.,t , . ,

a^t p — («i - a^) ^2 ^ ^ " '> (=^48)

and from these equations we obtain

«1 log [P - «2 « ^) " «2 log
f
^^ ^

'^* " ^^
)
= (^1 ~ ^^s) ^^S (^ 1

— «2)

jp -pi

4- a^ logZi-aglog L^ +(^2 -''2 +^«, ~''2)log« ~T^ ' ^^^^^
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(In the particular case when a, =2 Wg this equation will be equiva-

lent to (833)). By (347) and (348) we may easily eliminate fx from

(346).

The reader will observe that the relations thus deduced from the

fundamental equation (34 2) without any reference to the different

components of the gaseous mass are equivalent to those which relate

to the phases of dissipated energy of a binary gas-mixture with com-

ponents which are equivalent in substance but not convertible, except

that the equations derived from (342) do not give the quantities of

the proximate components, but relate solely to those properties which

are capable of direct experimental verification without the aid of any

theory of the constitution of the gaseous mass.

The practical application of these equations is rendei'ed more simple

by the fact that the ratio «, -.a^ will always bear a simple I'elation to

unity. When a^ and f/g are equal, if we write a for their common
value, we shall have by (342) and (345)

j)V=zamt.^ (350)

and by (345) and (346)

£ _ L,{c^t+E^)^Lo{c^ t-\- E^)t "" e ""^

m Cj—Ci El —Eft

-J- -I-
a at

(351)

By this equation we may calculate dii-ectly the amount of heat

required to raise a given quantity of the gas from one given tempera-

ture to another at constant volume. The equation shows that the

amount of heat will be independent of the volume of the gas. The

heat necessary to produce a given change of temperature in the gas

at constant pressure, may be found by taking the difference of the

values of J, as defined by equation (89), for the initial and final states

of the gas. From (89), (350), and (351) we obtain

C2—C; E1—E2

X L,{c^t^ at^E^)^L^(c^t-^at^E^)t " e ''^ ._^.

L^^^LJ, e

By differentiation of the two last equations we may obtain directly

the specific heats of the gas at constant volume and at constant pres.

sure.

The fundamental equation of an ideal ternary gas-mixture with a
single relation of convertibility between its components is
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di ^ a, a.t
p = a^ e t e

, 0.2 ^ cb., a.,t

+ «3 « ' t ' e
^

, (35.3)

where A^ and X.^ Iiave the same meaning as on page 230.

{To be co7itinued.)

ERRATA.

Page 1G7, formula (168), for m, read ^,.

" formula (169), for to,, . . . to„_j read//,, . . . //„_!.

Page 239. formula (333), for.^ read -^.
t a,t



IX. On the Equilibrium of Heterogeneous Substances.

By J. WlTXARD GiBBS.

{Continued from page 248).

THE conditions OF INTERNAL AND EXTERNAL EQUILIBRIUM FOR

SOLIDS IN CONTACT WITH FLUIDS WITH REGARD TO ALL POSSIBLE

STATES OF STRAIN OF THE SOLIDS.

In treating of the physical properties of a solid, it is necessary to

consider its state of strain. A body is said to be strained when the

relative position of its parts is altered, and \i^ \%% state of strain \^

meant its state in respect to the relative position of its parts. We
have hitherto considered the equilibrium of solids only in the case in

which their state of strain is determined by pressures having the

same values in all directions about any point. Let us now consider

the subject without this limitation.

If cc', 2/', s' are the rectangular co-ordinates of a point of a solid

body in any completely determined state of strain, which we shall

call the state of reference^ and cc, y, z, the rectangular co-ordinates of

the same point of the body in the state in which its properties are the

subject of discussion, we may regard ;«, _y, z as functions of a;', y\ z'

,

the form of the functions determining the second state of strain.

For brevity, we may sometimes distinguish the variable state, to

which X, y, z relate, and the constant state (state of reference), to

which x\ y\ z' i-elate, as the strained and the unstrained states ; but

it must be remembered that these terms have reference merely to the

change of form or strain determined by the functions which express

the relations of ic, y, z and x', y\ z', and do not imply any particular

physical properties in either of the two states, nor prevent their

possible coincidence. The axes to which the co-ordinates a*, y, 2, and
x'^ y\ z' relate will be distinguished as the axes of A', Y, Z, and

AT', Y', Z'. It is not necessary, nor always convenient, to regard

these systems of axes as identical, but they should be similar, i. e.,

capable of superposition.

The state of strain of any element of the body is determined by the

values of the differential eotfficients of x, y, and z with respect to

x\ ;y', and z'\ for changes in the values of .v, y, 2, when the differential

coefficients remain the same, only cause motions of translation of the

Trans. Conn. Acad., Vol. III. 44 May, 187T,
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body. When the diiFereutial coefficients of the first order do not

vary sensibly except for distances greater than the radins of sensible

molecular actioji, we niaj^ regard them as completely determining the

state of strain of any element. There are nine of these differential

coefficients, viz.,

dx dx dx

dx'^ dif dz'"'

^2/ dy dy , .

^" dy'^ dz'^ ^
^^^^^

dz dz dzW %" Ih''

It will be observed that these quantities determine the orientation of

the element as well as its strain, and both these particulars must be

given in order to determine the nine differential coefficients. There-

fore, since the orientation is capable of tliree independent variations,

which do not affect the strain, the strain of the element, considered

without regard to directions in space, must be capable of six indepen-

dent variations.

The physical state of any given element of a solid in any unvary-

ing state of strain is capable of one variation, which is produced by

addition or subtraction of heat. If we write fy/ find ;/v, for the

energy and entropy of the element divided by its volume in the

state of reference, we shall have for any constant state of strain

But if the strain varies, we may consider 6v» as a function of 7/v, and

the nine quantities in (354), and may write

8e^,=.t 6,/y, +A\. S^. + A-v, (^^ + A',, rJ^
CCOC tv(j (Jjt<j

_- - dz , „ „ dz ^, .^ dz

dx dy dz

where A'x,, . . • Zy, denote the differential coefficients of fv» taken

d'T^ dz
witli respect to -y^, . . . -j-,- The physical signiffeation of these

quantities will be apparent, if we apply the formula to an element

which in the state of reference is a right parallelopiped having the

edges dx, dy', dz', and suppose that in the strained state the face in

which x' has the smaller constant value remains fixed, while the

opposite face is moved parallel to the axis of A". If Ave also suppose.
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no heat to be imparted to the element, we shall have, on multiplying

by dx' dy' dz\

Ssy, dx' dy' dz = A'x, (^-77, dx' dy' dz'.

Now the first member of this equation evidently represents the work

done upon the element by the surrounding elements ; the second

member must therefore have the same value. Since we must regard

the forces acting on opposite faces of the elementary parallelepiped as

equal and opposite, the whole work done will be zero except for the

face which moves })arallel to X. And since 3-^—, dx represents the

distance moved by this face, A"x» <iy' <^'^' niust be eqiial to the com-

ponent parallel to A" of the force acting upon this face. In general,

therefore, if by the positive side of a surface for which x! is constant

we understand the side on which x has the greater value, we may say

that A"x, denotes the component parallel to A^ of the force exerted by

the matter on the positive side of a surface for which a;' is constant

upon the matter on the negative side of that surface per unit of the

surface measured in the state of reference. The same may be said,

mutatis mutandis, of the other symbols of the same type.

It will be convenient to use ^ and 2' to denote summation with

respect to quantities relating to the axes ^T, Y, Z, and to the axes

X', V, Z', respectively. With this understanding we may write

Sey.= t tf;/v< + :^ 2' (a:,, d^ij. (356)

This is the complete \'alue of the variation of £y, for a given element

of the solid. If we multiply by dx' dy' dz', and take the integral for

the whole body, we shall obtain the value of the variation of the total

energy of the body, when this is supposed invariable in substance.

But if we suppose the body to be inci-eased or diminished in substance

at its surface (the increment being continuous in nature and state

with the part of the body to which it is joined), to obtain the com-

plete value of the variation of the energy of the body, we must add

the integral

fey, SX' Ds'

in which Ds' denotes an element of the surface measured in the state

of reference, and (^X' the change in position of this surface (due to

the substance added or taken away) measured normally and out-

ward in the state of reference. The complete value of the variation

of the intrinsic energy of the solid is therefore
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y;

This is entirely independent of any supposition in regard to the

homogeneity of the solid.

To obtain the conditions of equilibrinni for solid and fluid masses

in contact, we shonld make the variation of the enei'gy of the whole

equal to or greater than zero. But since we have already examined

the conditions of equilibrium for fluids, we need here only seek the

conditions of equilibrium for the interior of a solid mass and for the

surfaces where it comes in contact with fluids. For this it will be

necessary to consider the variations of the energy of the fluids only

so far as they are immediately connected with the changes in the

solid. We may suppose the solid with so much of the fluid as is in

close proximity to it to be enclosed in a fixed envelop, which is

impermeable to matter and to heat, and to which the solid is firmly

attached wherever they meet. We may also suppose that in the

narrow space or spaces between the solid and the envelop, which are

filled with fluid, there is no motion of matter or transmission of heat

across any sui'faces which can be generated by moving normals to the

surface of the solid, since the terms in the condition of equilibrium

relating to such processes may be cancelled on account of the internal

equilibrium of the fluids. It will be observed tliat this method is

perfectly applicable to the case in which a fluid mass is entirely

enclosed in a solid. A detached portion of the envelo}) will then be

necessary to separate the great mass of the fluid from the small

portion adjacent to the solid, which alone Ave have to consider. Now
the variation of the energy of the fluid mass will be, by equation

(13),

f^t SDt] - f^^p dIJv + 2^,r /-' , ^>'^'>*i

,

(358)

where f^ denotes an integration extending over all the elements of

the fluid (within the envelop), and ^\ denotes a summation with

regard to those independently variable components of the fluid of

which the solid is composed. Where the solid does not consist of

substances which are components, actual or possible (see page 11 V),

of the fluid, this term is of course to be cancelled.

If we wish to take account of gravity, we may suppose that it acts

in the negative direction of the axis of Z. It is evident that the

variation of the energy due to gravity for the whole mass considered

is simply

fjfgn 6z dx' dy' dz\ (359)

where g denotes the force of gravity, and F' the density of the
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element in the state of reference, and the triple integration, as before,

extends throughout the solid.

We have, then, for the general condition of equilibrium,

ffft 6if„ dx' d.J dz! +/./:/--^^ ^' (a^x, ^^,) cW dy' dx!

+ fffg r' 6z dx' dy' dz' +./"fv, 6N' Ds'

+fH dBtj ^p'p 6Dv H- :S
, f'li-^ 6Dm

^ ^ 0. (:H)())

The equations of condition to which these variations are subject are:

(1) that which expresses the constancy of the total entropy,

fff Srjy, dx' dy' dz' -{-fVs, ^N' Ds' + J'^dDrj= ; (3H 1

)

(2) that Avhich expresses how the value of SDv for any element of

the fluid is determined by changes in the solid,

dDv = — {a (h- + /i 6y + r (^z) Ds — v^, SJV' Ds', (362)

where a, /i, y denote the direction cosines of the normal to the

surface of the body in the state to which ;«, y, z relate, Ds the element

of the surfjice in this state corresponding to Ds' in tlie state of

reference, and Vx, the volume of an element of the solid divided by

its volume in the state of reference
;

(3) those which express how the values of dDni^, dDtn.^, etc. for

any element of the fluid are determined by the changes in the solid,

dDm, = - r^'dJV'Ds',
]

SDm^ = - r^' dN' Ds', \ (363)

etc., J

where /', , F^', etc. denote the separate densities of the several com-

ponents in the solid in the state of reference.

Now, since the variations of entropy are independent of all the

other variations, the condition of equilibrium (360), considered witli

regard to the equation of condition (361), evidently requires that

throughout the whole system

«= const. (364)

We may therefore use (361) to eliminate the first and fifth integrals

from (360). If we multiply (362) by />, and take the integrals for

the whole surface of the solid and for the fluid in contact with it, we

obtain the equation

y*> SDv = - fij {a dx ^ fddy ^ydz) Ds - fp v^, 6N' Ds', (365)

by means of Avhich we may eliminate the sixth integral from (360).

If we add equations (363) multiplied respectively by //^, /<2, etc.,

and take the integrals, we obtain the equation
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2,rM,<Wm, = -/^\(//,r/) SA^'Bs', (866)

by means of wliicli we may eliminate the last integral from (360).

The condition of equilibrium is thus reduced to the form

///^ 2' (JTx, S ^,) d.c' dy' dz' +ff/g F' Sz dxf dy' dz

+y fv, dN' Ds' —ft //v, SN' Us ^f2y {a8x^ /i 6y \ y 6z) Ds

^fpi\.,SN'Bs' -/^\ (/',^V) QN' Bs'^^, (867)

in whicli the variations are independent of the equations of condition,

and in which the only quantities relating to the fluids are p and //j,

//o, etc.

Now by the ordinary method of the calculus of variations, if we

wa'ite ix\ ff ,
y' for tlie direction-cosines of the normal to the surface

of the solid in the state of reference, we have

yyy'A'x, ^^^A dx' dy' dz'

=fa' X^, dx Ds -ff/~~ Sx dx' dy' dz'

,

(868)

with similar expressions for the other parts into which the first

integral in (367) may be divided. The condition of equilibrium is

thus reduced to the form

-fff:^ 2' (-^ Sx\ dx' dy' dz' +fff;/ F' dz dx! dy' dz

+/:^' ^' {a' X^, 6x) Bs -^fp 2 {a dx) Bs

+f[ey.-tt/y,+pv„ - ^, {i.iJ\')]6X'Bs'^ 0. (369)

It must be observed that if the solid mass is not continuous

throughout in nature and state, the surface-integral in (868), and

therefore the first surface-integral in (369), must be taken to apply

not only to the external surface of the solid, but also to every surface

of discontinuity within it, and that with reference to each of the

two masses separated by the surface. To satisfy the condition of

equilibrium, as thus understood, it is necessary and sufficient that

throughout the solid mass

2 2'
(-ff

Sx\ ~-yrSz=0

;

(370)

that throughout the surfaces where the solid meets the fluid

Bs' 2 2' {a X^, dx) -f Bsp ^^ {a dj-) =0, (37 1)

and
[8^,^trfy,+pv„-^,{/UJ\')]dX'^0; (872)

and that throughout the internal surfaces of discontinuity
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2 2' {a'Xy,, (Jic) ,+ 2 2' {a> X^, 8x)^ =. 0, (373)

where the suffixed numerals distinguish the expressions relating to

the masses on opposite sides of a surface of discontinuity.

Equation (370) expresses the mechanical conditions of internal

equilibriitin for a continuous solid under the influence of gravity. If

we expand the first term, and set the coefficients of 6x^ dy, and 6z

separately equal to zero, we obtain

^I^^ I ^"l' ^ ^^' — n
dx'

"^
dy'

"^
dz' ~ '

dY^ dY^ dY^ .

dx' ^ dy' ^ dz' '
'

^ ^

d'^XI (l^\i UjAj'j, ,,

1^ + "dAf + ~c¥'
~

''
'

The first member of any one of these equations multiplied by dx' dy'

dz' evidently represents the sum of the components parallel to one of

the axes X, Y, Z of the forces exerted on the six faces of the element

dx' dy' dz' by the neighlioring elements.

As the state which we have called the state of reference is arbitrarj^,

it may be convenient for some purposes to make it coincide with the

state to which x, y, z relate, and the axes X', Y', Z' with the axes

X, Y, Z. The values of X^,, . . . Zy, on this particular sup|)Osition

may be represented by the symbols A%;, • • • ^z- i^ince

dsy,
, ^^ d€y,

d^, 4^dy dx

and since, when the states x, //, z and x', y', z' coincide, and the axes

X, Y, Z, and X', Y', Z', d-^, and d~ represent displacements

which difi^er only by a rotation, we must have

X^ = Y^, (375)

and for similar i-easons,

Yy,= Zy, Z^ = X,. (376)

The six quantities ^x, ^^y, ^z, ^y or Yx, Y^ or Zy, and Z^ ovX^ are

called the rectangidar components of stress, the three first being the

longitudinal stresses and the three last the shearing stresses. The

mechanical conditions of internal equilibrium for a solid under the

infiiience of gravity may therefore be expressed by the equations
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dx dy dz
'

dY^
,
dl\

,

dT,

dZx dZy dZy^

where F denotes the density of the element to which the other sym-

bols relate. Equations (375), (376) are rather to be regarded as

expressing necessary relations (when X^^ . , . Z^ are regarded as

internal forces determined by the state of strain of the solid) than as

expressing conditions of equilibrium. They will hold true of a solid

which is not in equilibrium,—of one, for example, through which

vibrations are propagated,—which is not the case witli equations (377).

Equation (373) expresses the mechanical conditions of equilibrium

for a surface of discontinuity within the solid. If we set the coeffi-

cients of fJir, 6y^ 6z, separately equal to zero we obtain

{a' rx,+/i' J\.,-\-y' Ty,,)
, + {a' T^.-^fi' Y„+/ r,,),:=0, } (378)

{a' z^,+ii' Zy,-{-r' z„)^-^{a' z^,-\-fi z,,+r' z,,)„=o. J

Now when the a\ ft' ,
y' re])resent the dii-ection-cosincs of the normal

in the state of reference on the positive side of any surface within the

solid, an expression of the form

a'X^, + ft'X„^y'X,,, (379)

represents the component ]iarallel to ^Y of the force exerted upon

the surface in the strained state by the matter on the positive

side per unit of area measured in the state of reference. This is

evident from the consideration that in estimating the force upon

any surface we may substitute for the given surface a broken one

consisting of elements for each of which either x' or y' or z' is

constant. Applied to a surface bounding a solid, or any portion of a

solid which may not be continuous with the rest, when the normal is

drawn outward as usual, the same expression taken negatively repre-

sents the component parallel to X of the force exerted upon the

surface (per unit of surface measured in the state of reference) by the

interior of the solid, or of the portion considered. Equations (378)

therefore express the condition that the force exerted ujion the

surface of discontinuity by the matter on one side and determined by

its state of strain shall be equal and opposite to that exerted by the

matter on the other side. Since
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{a'), = - {a'),, iff), = - (/i')„ (/), = - (k%,

we may also write

etc.,
i

where the signs of (x\ ft\ y' may be determined by the normal on

either side of tlie surface of discontinuity.

Equation (371) expresses the mechanical condition of equilibrium

for a surface where the solid meets a fluid. It involves the separate

equations

a X,,-^ ft' X„ + y' X„= - ap^^,

cx'Y^.^ft' y,. + y'Y^,= -ftp^, } (381)

JDs
the fraction -=—, denoting the ratio of the areas of the same element

Us
of the surface in the strained and unstrained states of the solid.

These equations evidently express that the force exerted by the

interior of the solid upon an element of its surface, and determined

by the strain of the solid, must be normal to the surface and equal

(but acting in the opposite direction) to the pressure exerted by the

fluid upon the same element of surface.

If we wish to replace a and Ds by a\ ft', y\ and the quantities

which express the strain of the element, we may make use of the

following considerations. The product a Ds is the projection of the

JJs
element Ds on the 3 -Z plane. Now since the ratio -—-, is indepen-

Ds
dent of the form of the element, we may suppose that it has any

convenient form. Let it be bounded by the three surfaces x' = const.,

y' =. const., z' = const., and let the parts of each of these surfaces

included by the two others with the surface of the body be denoted

by i, M, and X, or by i', M' and N', according as we have reference

to the strained or unstrained state of the body. The areas of Z', J/',

and X' are evidently a' Ds', ft' Ds', and y' Ds' ; and the sum of the

projections of Z^, Jf and iV upon any plane is equal to the projection

of Ds upon that j^lane, since L, M, and X with Ds include a solid

figure. (In propositions of this kind the sides of surfaces must be

distinguished. If the normal to Ds falls outward from the small

solid figure, the normals to X, M, and X must fall inward, and vice

Trans. Conn. Ac.\d., Vol. III. 45 May,- 1877,
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versa). Noav L' is a I'ight-aiigled triangle of which tlie perpendicular

sides may be called dy' and dz'. The projection of L on the Y-Z

plane will be a triangle, the angular points of which are determined

by the co-ordinates

dy -, ,
dz ^ ,

dy -, , , dz ^ ,

the area of such a triangle is

^
( dy dz dz dy \ -, , j t

or, since h dy' dz' re[»resents the area of L\

fdy_ dz __<h_ dy\

\ dy' dz' dy' dz'
)'' ^ -

(That this expression has the proper sign will aj^pear if w^e suppose

for the moment that the strain vanishes.) The areas of the pro-

jections of TUT and A^ upon the same plane will be obtained by chang-

ing y', z' and a' in this expression into z', «', and (i' , and into x'
,
y',

and y'. The sum of the three expressions may be substituted for

a I)s in (3S1).

We shall hereafter use '2' to denote the sum of the three terms

obtained by rotary substitutions of quantities relating to the axes

JT', Y\ Z', (i. e., by changing x
,
y', z' into y', z, ;«', and into z', x', y',

with similar changes in regard to a', ft', y', and other quantities

relating to these axes,) and 2 to denote the sum of the three terms

obtained by similar rotary changes of quantities relating to the axes

Jl, Y, Z. This is only an extension of our previous use of these

symbols.

With this understanding, equations (381) may be reduced to the

form

etc. j

The formula (372) expresses the additional condition of equilibrium

whicli relates to the dissolving of the solid, or its growth without

discontinuity. If the solid consists entirely of substances which are

actual components of the fluid, and there are no passive resistances

which impede the formation or dissolving of the solid, 6N' may have

either positive or negative values, and we must have

fv, - t vv, + V Vy, = 2, {/I
,

/ ',
'). (383)

But if some of the components of the solid are only ]»ossible com-
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ponents (see page 117) of the fluid, diY' is incapable of positive

values, as the quantity of the solid cainiot be increased, and it is

sufficient for equilibrium that

iy,-tVy,+Py,^:>\{ft^I\'). (384)

To express condition (383) in a form independent of the state of

reference, we may use €y, ijy, r^, etc., to denote the densities of

enei'gy, of entropy, and of the several component substances in the

variable state of the solid. We shall obtain, on dividing the equa-

tion by Vy„

It will be remembered that the summation relates to the several

components of the solid. If the solid is of uniform composition

throughout, or if we only care to consider the contact of the solid

and the fluid at a single point, we may treat the solid as composed of

a single substance. If we use yu^ to denote the potential for this

substance in the fluid, and F to denote the density of the solid in the

variable state, (/", as before denoting its density in the state of

reference,) we shall have

fv, - tl/y, +J)Vy,= H^ r', (3SG)

and

€y ~tl/y-\-J>=:Z l.(J\ (387)

To fix our ideas in discussing this condition, let us apply it to the

case of a solid body which is homogeneous in nature and in state of

strain. If we denote by s, //, v, and m, its energy, entropy, volume,

and mass, we have

€ — 1 1/ -\- p V = l-i ^ m. (388)

Now the mechanical conditions of equilibrium for the surface where

a solid meets a fluid require that the traction upon the surface deter-

mined by the state of strain of the solid shall be normal to the sur-

face. This condition is always satisfied with respect to three surfaces

at right angles to one another. In proving this well known proposi-

tion, we shall lose nothing in generality, if we make the state of

reference, which is arbitrary, coincident with the state under discus-

sion, the axes to which these states are referred being also coincident.

We shall then have, for the normal component of the traction per unit

of surface across any surface for which the direction-cosines of the

normal are «, /i, ;/, [compare (379), and for the notation JT^, etc.,

page 349,]
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+ y {a Zx + /i Zv + r ^z),

or, by (375), (376),

S=a^X^-\-f5^Y^J^y^Z^

-\-2 a f3Xy~\-2/3y Yj_ + 2 y a Z^. (389)

We may also choose any convenient directions for the co-ordinate

axes. Let us suppose that the direction of the axis ofX is so chosen

that the valne of S for the surface perpendicular to this axis is as

great as for any other surface, and that the direction of the axis of Y
(supposed at right angles to X) is such that the value of S for the

surface perpendicular to it is as great as for any other surface

, ,1 • <• 1^ mi • .> • (iS diS diS
,,

passing through the axis oi A. 1 hen, it we write -=— , -7—
,
^- lor

CtOt (tfj CCJ^

the differential coefficients derived from the last (equation by treating

a, fi, and y as independent variables,

dS
^ ,

dS dS
,

when a da -j- p dp -\- y dy = 0,

and a=l, p = 0, ;/ = 0.

That is, ^77,= 0, and ^ - = 0,
dp dy

when nrrl, P = 0, y = 0.

Hence, A^y = 0, and Z^ == 0. (390)

dS -, ,, ,
dS

Moreover, -yr, «/^ + ^- "K = ^',
' dp dy '

when a r= 0, da =: 0,

pdp-Vydy^(\
and /:^=1, K = 0.

Hence i'z = 0. (391)

Therefore, when the co-ordinate axes have the supposed directions,

which are called the principal axes of stress, the rectangular com-

ponents of the traction across any surface {a, /i, y) are by (379)

aXx, PY^, yZ^. (392)

Hence, the traction across any surface will be normal to that

surface,

—

(1), when the surface is perpendicular to a principal axis of stress;
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(2), if two of theprincipal tractions A'x, Y^, Z, are equal, when the

surface is perpendicular to the plane containing the two correspond-

ing axes, (in tliis case the traction across any such surface is equal to

the common value of the two principal tractions)

;

(3), if the principal tractions are all equal, the traction is normal and

constant for all surfaces.

It will be observed that in the second and third cases the position of

the principal axes of stress are partially or wholly indeterminate, (so

that these cases may be regarded as included in the first,) but the

values of the principal tractions are always determinate, although not

always different.

If, therefore, a solid which is homogeneous in nature and in state of

strain is bounded by six surfaces perpendicular to the principal axes

of strain, the mechanical conditions of equilibrium for these surfaces

may be satisfied by the contact of fluids having the proper pressures,

[see (381),] which will in general be different for the different pairs of

opposite sides, and may be denoted by /)', p'\ p'"
. (These pressures

are equal to the principal tractions of the solid taken negatively.)

It will then be necessary for equilibrium with respect to the tendency

of the solid to dissolve that the potential for the substance of the

solid in the fluids shall have values //,', yu/', fx^" determined by the

equations
E — t}-i-\-p' n:=i }.i^ m^ (393)

£ — t i]-\-p" V =L lA^" m., {'iM)

€— tt/ -\-p"' v = fA^"m. (395)

These values, it will be observed, are entirely determined by the

nature and state of the solid, and their differences are equal to the

differences of the corresponding pressures divided by the density of

the solid.

It may be interesting to compare one of these potentials, as ///,

with the potential (for the same substance) in a fluid of the same

temperature t and pressure />' which would be in equilibriiim with the

same solid subjected on all sides to the uniform pressure p'. If we
write [£\,, [f/]j.>, ["]/'? ^"*^ [^'i]/.' for the values which £, ?;, v, and

//, would receive on this supposition, we shall have

[4' - f ['/].' +P' L"l'= bu]r' '"• (=^96)

Subtracting this from (393), we obtain

f - [f];,- —«//-!-« [n],, +;V V - p' [vl., = n ,
;// — [// J^„ m. (397)

Now it follows immediately from the definitions of energy and entropy
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that the first four terms of this equation represent the work spent

upon the solid in bringing it from the state of hydrostatic stress to the

other state without change of temperature, and />' y — ^:>' [«]^„ evi-

dently denotes the work done in displacing a fluid of pressure p
surrounding the solid during the operation. Therefore, the first

numlier of the equation represents the total work done in bringing

the solid when surrounded by a flxdd of pressure p> from the state of

hydrostatic stress p' to the state of stress jt>', p'\ p'". This quantity is

necessarily positive, except of course in the limiting case when
p' =i 2^" ^=^p"'- If the quantity of matter of the solid body be unity,

the increase of the potential in the fluid on the side of the solid on

which the pressure remains constant, which will be necessary to

maintain equilibrium, is equal to the work done as above described.

Hence, /// is greater than [yuj^,, ,and for similar reasons, yw/'is

greater than the value of the potential which would be necessary for

equilibrium if the solid were subjected to the uniform pressure p", and

yWj'" greater than that which would be necessary for equilibrium if

the solid were subjected to the uniform pr-essure />"'. That is, (if we
adapt our language to what we may regard as the most general case,

viz., that in which the fluids contain the substance of the solid but

are not Avholly composed of that substance,) the fluids in equilibrium

with the solid are all supersaturated witli respect to the substance

of the solid, except when the solid is in a state of hydrostatic stress ; so

that if there were present in any one of these fluids any small frag-

ment of the same kind of solid subject to the hydrostatic pressure of

the fluid, such a fragment would tend to increase. Even when no

such fragment is present, although there must be perfect equilibrium

so far as concerns the tendency of the solid to dissolve or to increase

by the accretion of similarly strained mattei", yet the presence of the

solid which is subject to the distorting stresses, will doubtless

facilitate the commencement of the formation of a solid of hydrostatic

stress upon its surface, to the same extent, perhaps, in the case of

an amorphous body, as if it were itself subject only to hydrostatic

stress. This may sometimes, or perhaps generally, make it a necessary

condition of eqiiilibrium in cases of contact between a fluid and an

amorphous solid which can be formed out of it that the solid at the

surface where it meets the fluid shall be sensibly in a state of hydro-

static stress.

But in the case of a crystalline solid, subjected to distorting stresses

and in contact with solutions satisfying the conditions deduced above,

although crystals of hydrostatic stress would doubtless commence to
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t'oi-ni upon its surface (if the distorting stresses and consequent

supersaturation of the fluid should be carried too far), before

they would commence to be formed within the fluid or on

the surface of most other bodies, yet within certain limits the

relations expressed by equations (39:3)-(395) must admit of realiza-

tion, especially when the solutions are such as can be easily super-

saturated.*

It may be interestino; to compare the variations of ^j, the pressure

in the fluid which determines in part the stresses and the state of

strain of the solid, with other variations of the stresses or strains in

the solid, with respect to the relation expi'essed by equation (388).

To examine this point with complete generality, we may proceed in

the following manner.

Let us consider so much of the solid as has in the state of reference

the form of a cube, the edges of which are equal to unity, and

parallel to tlie co-ordinate axes. We may suppose this body to be

homogeneous in nature and in state of strain both in its state of

reference and in its variable state. (This involves no loss of

generality, since we may make the unit of length as small as we
choose.) Let the fluid meet the solid on one or both of the surfaces

for which Z' is constant. We may suppose these surfaces to remain

perpendicular to the axis ofZ in the variable state of the solid, and the

edges in which y' and z are both constant to remain ]iarallel to the

axis of JT. It will be observed that these suppositions only fix the

position of the strained body relatively to the co-ordinate axes, and
do not in any way limit its state of strain.

It follows from the suppositions which we have made that

clz dz dy-^r= const. ==0, _ = const, =0, -^ = const. = ; (398)

and

.V„ = 0, Yy,,= Q, Zy_,= —2y~^-,. (399)

Hence, by (355),

7 w 1^-7 f^''
I ^- 7 ^^^ . T^ 7 <^y (^^ (iy

-, dz
ch...^,.J„...+X.4^, +-\..d^, + I ,4^-p^ JL, a _. (400)

Again, by (388),

* The effect of distorting stresses in a solid on the phenomena of crystallization and

liquefaction, as well as the effect of change of hydrostatic pressure common to the

solid and liquid, was first described by Professor James Thomson. See Trans. R. S.

Edin., vol. xvi, -p. 57.5 ; and Proc. Roy. Soc. vol. xi, p. 41?>, or PMl. Mufj., S. 4, vol.

xxiv, p. 395.
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de — t (hi -|- '/ dt — p dv — v dp 4- in dyi^. (^01)

Now the suppositions which have been made require that

dx du dz

and
dii dz -, dx dz dx , dy dx du ., dz

dv =
-f-, -r d-^, + -yr "T- d-f-, + ^-1 -/-, d .

.

403)
di/ dz dx dz dx dy dx dy dz

Combining equations (400), (401), and (403), and ohservino- that

fy, and //v, are equivalent to f and /;, Ave obtain

;; dt — V dp -f- Tn df.i^

'^ dy dz\ ^dx , ,^ -.dx
, /^^ ,

dz dx\ ^dy
,

:^^'+fW ISy^' ^^^•"w +( ^
^+" ly- T.rw ("^'

Tlie reader will observe that when the solid is subjected on all sides

to the uniform normal pressure p, the coefficients of the difterentials

in the second member of this equation will vanish. For the expres-

sion ^, -^ri represents the projection on the J^-Z plane of a side of
dy dz

the parallelopiped for Avhich x' is constant, and multiplied by p it

will be equal to the component parallel to the axis of A" of the total

pressui-e across this side, i. e., it will be equal to JTx, taken negatively.

The case is similar with respect to the coefficient of d^, ;
and A\.,

evidently denotes a force tangential to the surface on which it acts.

It will also be observed, that if we regard the forces acting upon the

sides of the solid parallelopiped as composed of the hydrostatic pres-

sure ^> together with addition forces, the work done in any infinitesimal

variation of the state of strain of the solid by these additional forces

will be represented by the second member of the equation.

We will first consider the case in which the fluid is identical in

substance with the solid. We have then, by equation (97). for a

mass of the fluid equal to that of the solid,

7/f dt — Vpdp -\- m djA^ = 0, (405)

/^F and Wf denoting the entropy and volume of the fluid. By subtrac-

tion we obtain

- {Vv - V) dt + (vf— -y) dp

/^ ,
dy dz\ jdx dx / dz dx\ dy

rTr UjQt Uj%I

Now if the quantities -^,, ^„ ^ remain constant, we shall have

for the relation between the variations of temperature and pressure

whicli is necessary for the preservation of equilil»iiuni
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dt^v,-^v^^^^,-^v^
(407)

dp Vv—V Q

where Q denotes the heat which would he absorbed if the solid body

should 2J<'iss into the fluid state without change of temperature or

pressure. This equation is similar to (131), which applies to bodies

subject to hydrostatic pressure. But the value of -j will not gener-

ally be the same as if the solid were subject on all sides to the uni-

form normal pressure p ; for the quantities v and ?; (and therefore

Q) will in general have different values. But when the pressures on

all sides are normal and equal, the value of — will be the same,
dp

whether we consider the pressure when varied as still normal and

QjO^ cloC (A/tJ

equal on all sides, or consider the quantities -^„ -^„ -j-, as constant,
(AjtL' (XiJ Ct'iJ

But if we wish to know how the temperature is affected if the pres-

sure between the solid and fluid remains constant, but the strain of

the solid is varied in any way consistent with this supposition, the

differential coefiicients of t with respect to the quantities which ex-

press the strain are indicated by equation (406). These differential

coefficients all vanish, when the pressures on all sides are normal and

fit ffni* ftnc fi^i

equal, biat the differential coefficient -y-, when -=—„ -^„ -j-, are con-

stant, or when the pressures on all sides are normal and equal, van-

ishes only when the density of the fluid is equal to that of the solid.

The case is nearly the same when the fluid is not identical in sub-

stance with the solid, if we suppose the composition of the fluid to

remain unchanged. We have necessarily with respect to the fluid

where the index (f) is used to indicate that the expression to which

it is affixed relates to the fluid. But by equation (92)

/^f =_(^r ,
and feV" ={4^T . (409)

Substituting these values in the preceding equation, transposing

terms, and multiplying by m, we obtain

* A suflBxed m stands here, as elsewhere in this paper, for all the symbols m,, m.^.

etc., except such as may occur in the differential coefficient.

Trans. Conn. Acad., Vol. III. 46 May, 1877.
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/ dti Y^'^ / dv Y"^^
m.i^- )

dt - m (
-—

I
dp + in df-i. — 0. (410)

\dni
J / 1, p, m \am

, / 1, 'p, m

By subtracting this eqiitition from (404) we may obtain an equation

similar to (406), except that in place of //f and v^ we shall have the

expressions

/ di] Y^ ^ I dv Y^w(^--
I

and m( -—
)\dm

J / i, p, m \am i/t, p, m'

The discussion of equation (406) Avill therefore apply mutatis mutan-

dis to this case.

We may also wish to tind the variations in the composition of the

fluid which will be necessary for equilibrium when the pressure 2^ oi*

the quantities ~, -j-, ~^, are varied, the temperature remaining

constant. If we know the value for the fluid of the quantity repre-

sented by 'C, on page 142 in terms of ^,^>, and the quantities of the

several components m ^^ m^, m^, etc., the first of which relates to the

substance of which the solid is formed, we can easily find the value

of yw, in terms of the same variables. Now in considering variations

in the composition of the solid, it will be sufficient if we make all but

one of the components variable. We may therefore give to m ^ a

constant value, and making t also constant, we shall have

dfi,={~i^) dp + r,—M dm^ + -^1 dm^ + etc.
^ ^ \dp /t, TO \dm„/t, p, TO Xdm^/t, p, m

Substituting this value in equation (404), and cancelling the term

containing dt, we obtain

I \dph,7n ) \dm„/t,p.m

/du-,\^^ , / ^^ dy dz\ ^dx
+ '"

(*»i)<, ,, ».
*"=

+

''" = (-^- + '" <^' <¥) "ii^'

^^ ^dx / ^^ ,
dz dx\ -.dy .^^ .

+Av,<?^,+ (lv, + /'^,;^,)"!^,. (411)

This equation shows the variation in the quantity of any one of the

components of the fluid (other than the substance which forms the

(I'X/ (%Q^> ^)%i

solid) which will balance a variation of /;, or of -j-,, -v-„ -i—„ with re-

spect to the tendency of the solid to dissolve.
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Fundamental Equations for Solids.

The principles developed in the preceding jjages show that the

solution of problems relating to the equilihrium of a solid, or at least

their reduction to purely analytical processes, may he made to de-

pend upon our knowledge of the composition and density of the solid

at every point in some particular state, which we have called the

state of reference, and of the lelation existing between the quantities

which have been represented by fy,, Vy<-> ^" ^" ' • • ^ '
'''^

>
•^''

and z. When the solid is in contact with fluids, a certain knowledge

of the properties of the fluids is also requisite, but only such as is

necessary for the solution of ))r())»lems relating to the equilibi-ium of

fluids among themselves.

If in any state of which a sofid is capable, it is homogeneous in its

nature and in its state of strain, we may choose this state as the state

dx dz
of reference, and the relation between fy/, '/¥»•. t-/ ? • • "i— •.

will be
dx dz'

independent of cc', y\ z'. But it is not always possible, even in the

case of bodies Avhich are homogeneous in nature, to bring all the

elements simultaneously into the same state of strain. It would not

be possible, for example, in the case of a Prince Riipert's droj).

If, however, we know the relation between fy* , '/v» , j—, , • • • -7-0

for any kind of homogeneous solid, with respect to any given state of

reference, we may derive from it a similar relation with respect to

any other state as a state of reference. For if x', y\ z' denote the

co-ordinates of points of the solid in the first state of reference, and

x'\ y'\ z" the co-ordinates of the same points in the second state of

reference, we shall have necessarily

dx dx dx" dx dy"
,
dx dz" , . . ^^ = d^'W-^ dy" tc' + d^' dx' '

^*^- (""'^ ^^q"^^tions), (412)

and if we write R for the volume of an element in the state (,»•", y", z")

divided by its volume in the state {x\ y\ z'), we shall have

iM dx"^ dx"

dx' dy' dz'

dy^ (i/ dy"

dx' dy' dz'

<M d2![ dz!^

dx' dy' dz'

R=z (413)
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8y,= Ji€y,„ ,;,,= i? ,/,,.. (414)

If, tlien, we liave ascertained by experiment the value of Sy, in terms

dm' dz
of 7/v,, --^, . . . -^,, and the quantities which express the composi-

tion of the body, by the substitution of the vahies given in (412)-

, ,, , . . „ dx dz dx" dz"
(414), we shall obtam e^,, in terms of ?/v„, -^„, . . . ^,, ^o • • • ^»
and the quantities which express the composition of the body.

We may apply this to the elements of a body which may be varia-

ble from point to point in composition and state of strain in a given

state of reference {x", y\ s"), and if the body is fully described in

that state of reference, both in respect to its composition and to the

displacement which it would be necessary to give to a homogeneous

solid of the same composition, for wliich fy, is known in terms of //y,,

dx dz
-y—

,
, . . . ^, , and the quantities which express its composition, to

bring it from the state of reference (;c', y', z') into a similar and

similarly situated state of strain with that of the element of the non-

dx" dz"
homogeneous body, we may evidently regard -^, . . . -=^, as known

for each element of the body, that is, as known in terms of x\ y", z^\

We shall then have fy" ii^i terms of ?/v„, -^, , . . . -p, ^ x",y",z" \
and

since the composition of the body is known in terms of x", y", z", and

the density, if not given directly, can be determined from the density

of the homogeneous body in its state of reference {x', y', .-;'), this is

sufficient for determining the equilibrium of any given state of the

non-homogeneous solid

An equation, therefore, which expresses for any kind of solid, and

with reference to any determined state of reference, the relation

between the quantities denoted by fy,, i/y,, -^, , ... -^, , involving

also the qviantities which express the composition of the body, when

that is capable of continuous variation, or any other equation from

which the same relations may be deduced, may be called a pmda-
mentcd equation for that kind of solid. It will be observed that the

sense in which this term is here used, is entirely analogous to that in

which we have already applied the term to fluids and solids which

are subject only, to hydrostatic pressure.

When the fundamental equation between fv», '/v»5 7^/ ? ' • • ^t ^^
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known, we may obtain by diiFerentiation the values of t, A'x,, . . . ^z.

in terms of the former quantities, vvliicli will give eleven independent

relations between the twenty-one quantities

^"' ^^^" dx" ' ' ' di' ^' ^" • '" ^^^^^

which are all that exist, since ten of these quantities are independent.

All these equations may also involve variables which express the

composition of the body, when that is capable of continuous varia-

tion.

If we use the symbol ?/>, to denote the value of //• (as defined on

pages 144, 145) for any element of a solid divided by the volume of

the element in the state of reference, we shall have

^V,= fv, — ^7/v,. (416)

The equation (356) may be reduced to the form

6t„ = - ;a, St + ^ ^' (^A\, (J^,). (417)

Thei'cfore, if we know the value of if-y, in terms of the variables t,

-y-, , , . . -y, , together with those which express the composition of

the body, we may obtain by differentiation the values of 7/v„ J^xt »

. . . Zy, in terms of tlie same variables. This will make eleven inde-

pendent relations between the same quantities as before, except that

we shall have if\, instead of Sy,. Or if we eliminate if-y, by means

of equation (416), we shall obtain eleven independent equations be-

tween the quantities in (415) and those which express the composi-

tion of the body. An equation, therefore, which determines the

value of i/'v, , as a function of the quantities t, -y^, , . . . —
,

, and the

quantities which express the composition of the body when it is capa-

ble of continu.ous variation, is a fundamental equation for the kind of

solid to which it relates.

In the discussion of the conditions of equilibrium of a solid, we

might have started with the principle that it is necessary and sufficient

for equilibrium that the temperature shall be uniform throughout the

whole mass in question, and that the variation of the force-function

(-//") of the same mass shall be null or negative for any variation in

the state of the mass not affecting its temperature. We might have

assumed that the value of //• for any same element of the solid is a
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function of the tem]>eratnre and the state of strain, so that for con-

stant temperature we miglit write

""" = ^^'(-^-4)'

the quantities A'x, , . . . Zy, being defined by this equation. This

would be only a formal change in the definition of A'x, , • • . ^z» and

Avoiild not aifect their values, for this equation holds true of A'x.

,

. . . Zy_, as defined by equation {'355). With such data, by transfor-

mations similar to those which we have employed, we might obtain

similar results.''' It is evident that the only difterence in the equa-

tions would be that //-y, would take the place of e^,, and that the

terms relating to entropy would be wanting. Such a method is

evidently preferable with respect to the directness with which the

results are obtained. The method of this paper shows more distinctly

the role of energy and entropy in the theory of equilibrium, and can

be extended more naturally to those dynamical problems in which

motions take place under the condition of constancy of entropy of

the elements of a solid (as when vibrations are propagated through a

solid), just as the other method can be more naturally extended to

dynamical problems in which the temperature is constant. (See

note on page 145.)

We have already had occasion to remark that the state of strain

of any element considered without reference to directions in space is

capable of only six independent variations. Hence, it must be possi-

ble to express the state of strain of an element by six functions of

—;, . . . -^-, , which are independent of the position of the element.
dx dz

For these quantities we may choose the squares of the ratios of

elongation of lines parallel to the three co-ordinate axes in the state

of reference, and the jjroducts of the ratios of elongation for each

pair of these lines multiplied by the cosine of the angle which they

include in the variable state of the solid. If we denote these quanti-

ties by A, B, C, a, b, c, we shall have

* For an example of this method, see Thomson and Tait's Natural Philosophy, vol. i,

p. 705. With regard to the general theory of elastic solids, compare also Thomson's

Memoir " On the Thermo-elastic and Thermo-magnetic Properties of Matter" in the

Quarterly Journal of Mathematics, vol. i, p. 57 (1855), and Green's memoirs on the

propagation, reflection, and refraction of ligiit in the J'ransactions of the Cambridge

Philosophical Society, vol. vii.
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^=^(1)^ ^=^($^- -=^(£y- <-)

^/dx dx\ - ^-,/dxdx\ ^ fdx dx\

^=^W^'> ^=^\d^'dx'} '-=^\d^'dy'} ^'''^

The determination of the fnndamental equation for a solid is thus

reduced to the determination of the relation between fy, , 7/v, , A, 7i,

C, a, b, c, or of the relation between i/.\,, t, A, i>, C, a, b, c.

In the case of isotropic solids, the state of strain of an element, so

far as it can aftect the relation of Sy, and t/y,, or of i/\, and t, is capa-

ble of only three independent variations. This appears most dis-

tinctly as a consequence of the pi'oposition that for any given strain

of an element there are three lines in the element which are at right

angles to one another both in its inistrained and in its strained

state. If the unstrained element is isotropic, the ratios of elonga-

tion for these three lines must with //y, determine the value fy*, or

with t determine tlie value of i/\,.

To demonstrate the existence of such lines, which arc (tailed the

principal axes of strain, and to find the relations of the elongations

of such lines to the quantities -^, ,...—,, we may proceed as fol-

lows. The ratio of elongation r of any line of which <t', /i', y' are

the direction-cosines in the state of reference is evidently given by
the equation

/dx , ,
dx „, ,

dx A 2

,
(dz , ,

dz ^, ,
dz A 2

Now the proposition to be established is evidently equivalent to this

—that it is always possible to give such directions to the two sys-

tems of rectangular axes JT', Y\ Z', and X, Y, Z, that

(421)

We may choose a line in the element for which the value of r is at

least as great as for any other, and make the axes of -.Tand A"' par-

allel to this line in the strained and unstrained states respectively.

dx



.366 J. W. Glhbs—Equilifyrium of Heterbgeneous /Substances.

f/fr^) (:?(r-) d{r^\
Moreover, if we write -A^-r , —V-r , —V-r for the difFerential coefii-

da d/y dy
cients obtained from (420) by treating rv', /J', y' as itidependent

variables,

when «' <?^v' + /J' r7/f -f ;/' dy' =z 0,

and «' z= 1, /i' = 0, ;/' ;= 0.

That IS, A.y^O, and A J == 0,

when «' = 1, /i' = 0, y' = 0.

dx dx
, , „\

Hence, ^-,= 0, ^. = 0. (423)

Therefore a line of the element which in the unstrained state is per-

pendicular to X' is perpendicular to JY" in the strained state. Of all

such lines we may choose one for whicli the value of r is at least as

gi'eat as for any other, and make the axes of Y' and I" parallel to

this line in the unstrained and in the strained state respectively.

Then

|,-,
= 0. (424)

and it may easily be shown by reasoning similar to that which has

just been employed that

1 = 0. ,42.)

Lines parallel to the axes of A"', Y\ and Z' m the unstrained body

will therefore be parallel to JT, Y, and Z in the strained body, and

the ratios of elongation for such lines will be

dx dy dz

dx' ' dy' ' dz'

'

These lines have the common property of a stationary value of

the ratio of elongation for varying directions of the line. This

appears from the form to which the general value of r^ is reduced by

the positions of the co-ordinate axes, viz..
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Having thus proved the existence of lines, with reference to any

particiUar strain, which have the properties mentioned, let us pro-

ceed to find the relations between the ratios of elongation for these

. . dx dz
lines (the Jor^?tc^/:>«/ axes of strain) and the quantities y^, , . • • -rj

under the most general supposition with respect to the position of

the co-ordinate axes.

For any principal axis of strain we have

when a' da' + // dfV + y' dy' = 0,

the diflferential coefficients in the first of these equations being deter-

mined from (420) as before. Therefore,

1 c?(r2) _ 1 d{r^-) _ l_ d{r^)

a' 1i^ ~
'ft'

"dj^ ~ y' dy'
'

From (420) we obtain directly

2 da ^ 2 dft'
^ 2 dy'

From the two last equations, in virtue of the necessary relation

a'2 ^ ft'2 _^ y'2 — i^ we obtain

(426)

(427)

^d{r-^)

^
dft'

- ^^ '
' ^ dy'

y r-' (428)

or, if we substitute the values of the ditterential coefficients taken

from (420),

If we
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We may write

Then

- /-e + Er^ — Fr^ +(9 = 0. (431)

(432)

Also

F (dx dx \ /dx dx\)
"

c' dy'J \dx' dy'j S( \dxi) \dy'J \dx'

j /dx \ 2 /dx \ - dx dx /dx dx\\_

/dx\^ /dy \^_|A^^ y /cfe \2 6fe c?£c % <^y (^'^ dx dz dz^\

\dx') \dy') ~^W/ \dy') ~dx'dy'd^'dy'~dx'dy'd^dy']

c YY^^y \^
,

(dy y/dx Y _ t?.K f?a; dy dy
]

^') W'/ Wv \%7 ~ dx'dy'dx'dy')

_ ^^ ^/dxdy^_dy^ dxy
\dx' dy' dx' dy'j

2'^

z=i2'2
dx

dx'

This may also be written

F=i ^' 2

dx dx

dx' dy'

dy dy

dx' dy'

(434)

In the reduction of the value of G, it will be convenient to use the

symbol ^ to denote the sum of the six terms formed by changing
3 + 3

X, y, z, into y, z, x-, z, x, y; x, z, y; y, x, z; and z, y, x; and the

symbol 2 in the same sense except that the last three terms are to
3-3

be taken negatively ; also to use 2' in a similar sense with respect
3-3

to x', y,' z' ; and to use x', y', z' as equivalent to x', y', z', except that

they are not to be affected by the sign of summation. With this

understanding we may write

G= :^'

3-3

, /dx dx\ ^ /dx dx \ /dx dx \

\dl' d^'J \dy' dy'j \d^' dz')
(435)

* The values of F and G given in equations (434) and (438), which are here

deduced at length, may be derived from inspection of equation (430) by means of the

usual theorems relating to the multiplication of determinants. See Salmon's Lessona

Introductory to the Modern Higher Algebra^ 2d Ed., Lesson III; or Baltzer's Theorie und

Anwendung der Determi'aanten^ § 5,
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In expanding the product of the three sums, we may cancel on
account of the sign ^' the terms which do not contain all the three

3-3

expressions dx, dy, and dz. Hence we may write

p „, ^ /dx dx dy dy dz dz \

3-3 3+3 \dx' dx' dj' dy' d?! dz'/

^ ^ dx dy dz /dx dy dz \ )

3+3 ( dx' dy' dz' z^^\dx' dy' dz'J )

(dx dy dz \
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single-valued function of //y, , E^ E, and H. The determination of

the fundamental equation for isotropic bodies is therefore reduced to

the determination of this function, or (as appears from similar con-

siderations) the determination of //\ , as a function of t, E^ E, and H.

It appears from equations (489) that E represents the sum of the

squares of the ratios of elongation for the principal axes of strain,

that ^represents the sum of the squares of the ratios of enlargement

for the three surfaces determined by these axes, and that G repre-

sents the square of the ratio of enlargement of volume. Again, equa-

tion (432) shows that E represents the sum of the squares of the

ratios of elongation for lines parallel to X', 1", and Z'; eqiiation

(434) shows that J^ represents the sum of the squares of the ratios of

enlargement for surfaces parallel to the planes X'- Y\ Y'-Z\ Z'-X'
;

and equation (438), like (439), shows that G represents the square

of the ratio of enlargement of volume. Since the position of the

co-ordinate axes is arbitrary, it follows that the sum of the squares of

the ratios of elongation or enlargement of three lines or surfaces

which in the unstrained state are at right angles to one another, is

otherwise independent of the direction of the lines or surfaces.

Hence, ^^and ^F are the mean squares of the ratios of linear elon-

gation and of superficial enlargement, for all possible directions in

the unstrained solid.

There is not only a practical advantage in regarding the strain as

determined by E, E, and H, instead of E^ F, and G^ l^ecause H is

more simply expressed in terms of -^, , . . . ^, , l)ut there is also a

certain theoretical advantage on the side of E^ F^ H. If the sys-

tems of co-ordinate axes X^ Y, Z, and X\ Y\ Z', are either iden-

tical or such as are capable of super}>o8ition, which it will always be

convenient to suppose, the determinant TI will always have a posi-

tive value for any strain of which a l>ody can be capable. But it is

possible to give to a*, y, z such values as functions of x\ y\ z' that H
shall have a negative value. For example, we may make

X = x', y = y\ 2 = -- s'. (440)

This will give I[t= — 1, while

X := a-.', y r= y\ z =z z' (441

)

will give 11= 1. Both (440) and (441) give G — \. Now although

such a change in the position of the jjarticles of a body as is repre-

sented by (440) cannot take place wliil(> the body remains solid, yet
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a method of representing strains may be considered incomplete,

which confuses the cases represented by (440) and (441).

We may avoid all such confusion by using E, 1\ and II to repre-

sent a strain. Let us consider an element of the body strained which in

the state (a?', y\ z') is a cube with its edges parallel to the axes of

X\ Y\ Z\ and call the edges c^a?', dy\ dz according to the axes to

which tliey are parallel, and consider the ends of the edges as posi-

tive for whicli the values of cc', y\ or 2' are the greater. Whatever

may be the nature of the parallelopiped in the state (,t, ?/, 2) which

corresponds to the cube fZ^c', dy\ dz' and is determined by the quanti-

ties ~, , . . . -^ , it may always be brought by continuous changes

to the form of a cube and to a position in whicli the edges ffe', dy'

shall be parallel to the axes of X and 1", the positive ends of the

edges toward the positive directions of the axes, and this may be done

without giving the volume of the parallelopiped the value zero,

and therefore without changing the sign of H. Now tw^o cases are

possible ;—the positive end of the edge ffe' may be turned toward the

positive or toward the negative direction of the axis of Z. In the

first case, ^ is evidently positive; in the second, negative. The

determinant // will therefore be positive or negative,—we may say,

if we choose, that the volume will be ])Ositive or negative,—according

as the element can or cannot be brought from the state (a*, y, z) to the

state (a;', y\ z') by continuous changes without giving its volume the

value zero.

If we now recur to the consideration of the principal axes of strain

and the principal ratios of elongation r^, ^2, /"g, and denote by C/j,

f/2, ZTg and T^, ', U2', U^ the principal axes of strain in the strained

and unstrained element respectively, it is evident that the sign of r.,

for example, depends upon tlie direction in U-^^ which Ave regard as

corresponding to a given direction in JJ^. If we choose to associate

directions in these axes so that r,, rg, r^ shall all be positive, the

positive or negative value of^ will determine whether the system of

axes t^j, U^, f/3 is or is not capable of superposition upon the sys-

tem ?7j', ZT21 C^a' so that corresponding directions in the axes shall

coincide. Or, if we prefer to associate dii-ections in the two systems

of axes, so that they shall be capable of superposition, correspondino-

directions coinciding, the positive or negative value of H will deter-

mine whether an even or an odd number of the quantities r^^r^^^r

arc negative. In this case we may write
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= H=

dx

dx'
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values to //v/, etc., when the stresses in the solid vanish. If we

denote by r^ the common value of rj, r2, r^ which will make the

stresses vanish at any given temperature, and imagine the true value

of rpy,
, and also the vahie given by equation (444) to be expressed in

terms of the ascending powers of

''i-^o, ^2—^0. ''a-'^o. (446)

it is evident that the expressions will coincide as far as the terms of

the second degree inclusive. That is, the errors of the values of if.\,

given by equation (444) are of the same order of magnitude as the

cubes of the above diiferences. The errors of the values of

dlj:y, dipy, dipy,

dr^ ' dr^ ' dr^

will be of the same order of magnitude as the squares of the same

differences. Therefore, since

dipy,_ dipy, dr^ dipy.dr^ . dipy, dr^

<dx dr. <dx dr.. jIx dr.. Ax ^ ^'

d-^. ^ dr^j-i <^-^r-> ci^n
ax dx dx dx

whether we regard the true value of ipy, or the value given by equa-

tion (444), and since the error in (444) does Jiot affect the values of

dr. dr^ dr..

-AJjvU -J.tJC' ~.\A/iMj

dx' dx' dx'

which we may regard as determined by equations (431), (432), (434),

(437) and (438), the errors in the values of A'x, derived from (444)

will be of the same order of magnitude as the squares of the differ-

ences in (446). The same will be true with respect to A\,, , X^,, Yy^,

etc., etc.

It will be interesting to see how the quantities e, /* and h are

related to those which most simply represent the elastic properties of

isotropic solids. If we denote by V and R the elasticity of volume
and the rigidity'^ (both determined under the condition of constant

temperature and for states of vanishing stress), we shall liave as

definitions

:

^'^~''\£)t' ^^^"^ v = r,^v', (448)

* See Thomson and Tait's Natural Philosophy, vol. i, p. 711.
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where j^ denotes a uniform pressure to which the solid is subjected,

V its volume, and v' its volume in the state of reference ; and

dx / f&y

when ^_^_^_,.
\

(449)

dx ^^dx dy di/ dz dz
j

dy' dz' dz' dx' dx' dy' '
J

Now when the solid is subject to uniform pressure on all sides, if

we consider so much of it as has the volume unity in the state of

reference, we shall have
1

r, =r„ =: r-g =: y^, (450)

and by (444) and (430),

if\; = i + 3 e /'^ + 3/ 0^ + h V. (451)

Hence, by equation (88), since //v, is equivalent to //•,

~^' =
(M)t

== 2 e ^'-^ + ifvi + ^ (452)

-^,(^)^=-t6^)-* + i/•.i; (453)

and by (448);

Frr-t-^ + 1/V,, (454)
'

To obtain the value of Ji in accordance with the definition (449),

we may suppose the values of E, F^ and ^ given by equations (432),

(434), and (437) to be substituted in equation (444), This will give

for the value of R
i^zz: 2e + 4/r^,2. (455)

Moreover, since ^ must vanish in (452) when v = r^^, we have

2e + 4/r„2+A,.^:^0. (45G)

From the three last equations may be obtained the values of e, /',

A, in terms of r^, F, and R\ viz.,

The quantity r^, like R and V, is a function of the temperature, the

differential coefficient ^—^'* representing the rate of linear expan-

sion of the solid when without stress.
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It will not be necessary to discuss equation (443) at length, as the

case is entirely analogous to that which has just been treated. [It

must be remembered that i]xi , bi the discussion of (443) will take the

place everywhere of the temperature in the discussion of (444).] If

we denote by Y' and R' the elasticity of volume and the rigidity,

both determined under the condition of constant entropy, (i. e., of no

transmission of heat,) and for states of vanishing sti-ess, Ave shall

have the equations

:

1e'

F'=~;t-- + I/'^o, (458)

7^' = 2e' + 4/'r(,2, (459)

2 e' + 4/' r„2 j^ h' r„ = 0. (460)
Whence

P^'-^r,V' ^,_R'+^r,V'
j^, ^ _ I^

f'=~~V-l-^'--^ ^^'=-^- (461)

In these equations r,,, R', and V are to be regarded as functions of

the quantity i/y,.

If we wish to change from one state of reference to another (also

isotropic), the changes required in the fundamental equation are

easily made. If a denotes the length of any line of the solid in the

second state of reference divided by its length in the first, it is evi-

dent that when we change from the first state of reference to the

second the values of the symbols €y,, ?/v, , i/\,, H are divided by a^,

that of E by a"^ , and that of E by a*. In making the change of the

state of reference, we must therefore sul)stitute in the fundamental

equation of the form (444) r<3//v,, ci^E, a^F, a^H for //•,,, E, F,

and H, respectively. In the fundamental equation of the form (443),

we must make the analogous substitutions, and also substitute a^7]x,

for 7/v,. [It will be remembered that i', e',f', and Jt represent func-

tions of i]y,, and that it is only when their values in terms of ijy, are

sul)stitiited, that equation (443) becomes a fundamental equation.]

Concernrng Solids uihich absorb Fluids.

There are certain bodies which are solid with respect to some of

their components, while they have other components which are fluid.

In the following discussion, we shall suppose both the solidity and

the fluidity to be perfect, so far as any properties are concerned

which can aflect the conditions of equilibrium,—i. e., we shall sup-

pose that the solid matter of the body is entirely free from plasticity,

and that there are no passive resistances to the motion of the fluid

Trans. Conn. Acad., Vol. III. 48 June, 1877.
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components except such as vanisli with the velocity of the motion,

—

leaving it to be determined by experiment how far and in what cases

these suppositions are realized.

It is evident that equation (356) must hold true with regard to

such a body, when the quantities of the fluid components contained

in a given element of the solid remain constant. Let 7',,', IV, etc.,

denote the quantities of the several fluid components contained in an

element of the body divided by the volume of the element in the

state of reference, or, in other words, let these symbols denote the

densities which the several fluid components would have, if the body
should be brought to the state of reference while the matter con-

tained in each element remained unchanged. We may then say that

equation (356) will hold true, when /"„', /"/, etc., are constant. The

complete value of the differential of fyi will therefoie be given by an

equation of the form

fZfv, = t di],., -\-:2 2' Ix^. £^\ + X„ cir: + L,, cir,! + etc. (462)

Now when the body is in a state of hydrostatic stress, the tei'm in

this equation containing the signs of summation will reduce to

— joc^Uvi (^Y» denoting, as elsewhere, the volume of the element

divided by its volume in the state of reference). For in this case

:2:e

— j> d

dx

dx' dy' dz'

dy dy dy

dx dy' dz'

dz dz dz

dx' dy' dz'

= — 2^ dvy,.

We have, therefore, for a state of hydrostatic stress,

dsy, = t d)]y, — 2^ <Jvy, + L,, drj + Z^ dl]! -f etc., (465)

and multiplying by the volume of the element in the state of refer-

ence, which we may regard as constant,

de = t di] —J) dv -\- L„ dm^, + Z,, dm,. + etc., (466)

(464)



J. TF. Gibbs—Equilihriuin of Heterogeneous Substances. 377

where f, //, v, w<„, ni^, etc., denote tlie energy, entropy, :vnd volume of

the element, and the quantities of its several fluid components. It is

evident that the equation will also hold true, if these symbols are

understood as relating to a homogeneous body of finite size. The

only limitation with respect to the variations is that the element or

body to which tlie symbols relate shall always contain the same solid

matter. The varied state may be one of hydrostatic stress or

otherwise.

But when the body is in a state of hydrostatic stress, and the solid

matter is considered invariable, we have by equation (12)

de =^ t ih] — jo dv -\- yi/„ dm,, + //,, dmi, -f- etc. (467)

It should be remembered that the equation cited occurs in a discus-

sion which relates only to bodies of hydrostatic stress, so that the

varied state as well as the initial is there regarded as one of hydro-

static stress. But a comparison of the two last equations shows that

the last will hold true without any such limitation, and moreover,

that the quantities i„, X^, etc., when determined for a state of hydro-

static stress, are equal to the potentials //„, //,,, etc.

Since we have hitherto used the term potential solely with refer-

ence to bodies of hydrostatic stress, we may apply this term as we
choose with regard to other bodies. We may therefore call the quanti-

ties X„, Z,,, etc., the potentials for the several fliiid components in the

body considered, whether the state of the body is one of hydrostatic

stress or not, since this use of the term involves only an extension of

its former definition. It will also be convenient to use our ordinary

symbol for a potential to represent these quantities. Equation (462)

may then be written

f?fv» = t dih, + '^ 2' (x^, d^-^\ + pi„ drj + /x,, dl\' + etc. (468)

This equation holds true of solids having fluid components without

any limitation with respect to the initial state or to the vaiiations,

except that the solid matter to which the symbols relate shall remain

the same.

In regard to the conditions of equilibrium for a body of this kind,

it is evident in the first place that if we make FJ, /V, etc., constant,

we shall obtain from the general criterion of equilibrium all the con-

ditions which wo have obtained for ordinary solids, and which are

expressed by the formulae (364), (374), (380), (382)-(384). The
quantities /',', F^, ^tc, in the last two formulae include of course
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those which have just been represented by /"„', jTj', etc., and which

relate to the fluid components of the body, as well as the correspond-

ing quantities relating to its solid components. Again, if we sup-

pose the solid matter of the body to remain without variation in

quantity or position, it will easily appear that the potentials for the

substances which form the fluid components of the solid body must

satisfy the same conditions in the solid body and in the fluids in con-

tact with it, as in the case of entirely fluid masses. See eqs. (22).

The above conditions must however be slightly modified in order

to make them sufticient for equilibrium. It is evident that if the

solid is dissolved at its surface, the fluid components which are set

free may be absorbed by the solid as well as by the fluid mass, and

in like manner if the quantity of the solid is increased, the fluid com-

ponents of the ncAV portion may be taken from the previously exist-

ing solid mass. Hence, whenever the solid components of the solid

body are actual components of the fluid mass, (whether the case is

the same with the ftdd components of the solid body or not,) an

equation of the form (383) must be satisfied, in which the potentials

/7,„ /^;„ etc., contained implicitly in the second member of the equa-

tion are determined from the solid l)ody. Also if the solid compon-

ents of the solid body are all jjossible but not all actual components

of the fluid mass, a condition of the form (384) must be satisfied, the

values of the potentials in the second member being determined as in

the preceding case.

The quantities

t, X^,, . . . Z^,, /<„, /<,„ etc., (409)

being difierential coeflacients of ^y. with respect to the variables

^^-' £"•••!" ^- ^^^'' ^''•' ('^'^

will of course satisfy the necessary relations

= -^— , etc. (-471)

dx'

This i-esult may be generalized as follows. Not only is the second

member of equation (468) a couiplete differential in its present form,

but it will remain such if we transfer the sign of differentiation {d)

from one factor to the other of any term (the sum indicated by the

symbol '2 '2' is here supposed to be expanded into nine terms), and

at the same time change the sign of the term from + to —
. For to
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substitute — ^]^i,(Jt for tdtfy,, for example, is equiA'alent to subtract-

iug tlie complete cUfFereutial d{t >/y,). Therefore, if we consider the

<puintities in (409) and (470) which occur in any same term in equa-

tion (468) as forming a pair, we may choose as independent variables

either quantity of each pair, and the differential coefficient of the

remaining quantity of any pair with respect to the independent

variable of another pair will be equal to the differential coefficient of

the remaining quantity of the second pair with respect to the inde-

pendent variable of the first, taken positively, if the independent

variables of these pairs are both affected by the sign d in equation

(468), or are neither thus affected, but otherwise taken negatively.

Thus

dx' ^\lx'

WJx„ - [dxj,,: \di ;;|rx,
- ~ \dx;Jr.: '

^^'^'

where in addition to the quantities indicated by the suffixes, the

following are to be considered as constant: either t or //y, , either

\- (^*' . , ry dz . . ^,,
Ay, or -—

,
, . - . either Zj,, or y-;, eitiier //^ or / ,/, etc.

It will be observed that when the tempei-ature is constant the con-

ditions //., = const., //,, = const, represent the physical condition of a

body in contact with a fluid of which the phase does not vary, and
which contains the components to which the potentials relate. Also

that when FJ, Ff,', etc., are constant, the heat absorbed by the body
in any infinitesimal change of condition per unit of volume measured

in the state of reference is represented by tdi]^,-,. If we denote this

quantity by dQy,, and use the suffix q to denote the condition of no
transmission of heat, we may write

/^og_A _((IX^\ /^oi_«\ _ ('1^\
\ d^ )q~ UQv.)':^.' \ dX^, }q - \dQjxJ ^^^^^

\dxJt-vi\ogt)x.: \/±lt- \d\o^t)%,^
^^^'')

^'dx'

where ZV, F/, etc., must be regarded as constant in all the equations,

and either X^, or -^,, . . . either Z^, or -—
,

, in each equation.
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Influence of sukfaces of discontinuity upon the equilibrium

OF heterogeneous masses.—Theory of capillauity. .

We have hitherto supposed, in treatiiig of lieterogeneous masses in

contact, that tliey might be considered as separated by mathematical

surfaces, each mass being uuaifected by the vicinity of the others, so

that it might be homogeneous quite up to tlie separating surfaces

both with respect to the density of each of its various components

and also with resjject to the densities of energy and entropy. That

such is not rigorously the case is evident from the consideration that

if it were so with respect to the densities of the components it could

not be so in general Avith respect to the density of energy, as the

sphere of molecular action is not infinitely small. But we know from

observation that it is only within very small distances of such a sur-

face that any mass is sensibly affected by its vicinity,—a natural

consequence of the exceedingly small sphere of sensible molecular

action,—and this fact renders possible a simple method of taking

account of the variations in the densities of the component substances

and of energy and entropy, which occur in the vicinity of surfaces of

discontinuity. We may use this term, for the sake of brevity, with-

out implying that the discontinuitj' is absolute, or that the term

distinguishes any surface with mathematical precision. It may be

taken to denote the non-homogeneous film which separates homo-

geneous or nearly homogeneous masses.

Let us consider such a surface of discontinuity in a fluid mass

which is in equilibrium and uninfluenced by gravity. For the pre-

crise measurement of the quantities with which we have to do, it will

be convenient to be able to refer to a geometrical surface, which

shall be sensibly coincident with the physical surface of discontinuity,

but shall have a precisely determined position. For this end, let us

take some point in or very near to the physical surface of discon-

tinuity, and imagine a geometrical surface to pass through this point

and all other points which are similarly situated with respect to the

condition of the adjacent matter. Let this geometrical surface be

called the dividing surface, and designated by the symbol S. It

will be observed that the position of this surface is as yet to a certain

extent arbitrary, but that the directions of its normals are already

everywhere determined, since all the surfaces which can be formed in

the maimer described are evidently parallel to one another. Let us

also imagine a closed surface cutting the surface S and including a

part of the homogeneous mass on each side. We will so far limit the
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form of tliis closed surface as to suppose that on each side of S, as far

as there is any want of perfect homogeneity in the fluid masses, the

closed surface is such as may be generated by a moving normal to S.

Let the portion of vS which is included by the closed surface be

denoted by s, and the area of this portion by s. Moreover, let the

mass contained within the closed surface be divided into three parts

by two surfaces, one on each side of S, and very near to that surface,

although at such distance as to lie entirely beyond the infliience of

the discontinuity in its vicinity. Let us call the j)art which contains

the surface s (with the physical surface of discontinuity) M, and the

homogeneous parts M' and M", and distinguish by f, i', t\ if, //', 7/',

m,, m^\ *'*/, *'*2? ^25 ^"2'? ^^c--, the energies and entropies of these

masses, and the quantities which they contain of their various com-

ponents.

It is necessary, however, to define more precisely what is to be

understood in cases like the present by the energy of masses which

are only se])arated from other masses by imaginary surfaces. A part

of the total energy which belongs to the matter in the vicinity of the

separating surface, relates to pairs of particles which are on different

sides of the surfjice, and such energy is not in the nature of things

referable to either mass by itself. Yet, to avoid the necessity of

taking separate account of such energy, it will often be convenient to

include it in the energies which we refer to the separate masses.

When there is no break in the homogeneity at the surface, it is

natural to treat the energy as distributed with a imiform density.

This is essentially the case with the initial state of the system which

we are considering, for it has been divided by surfaces passing in

general tlu'ough homogeneous masses. The only exception—that of

the surface which cuts at right angles the non-homogeneous film

—

(apart from the consideration that without any important loss of

generality we may regard the part of this surf^ice within the film as

very small compared with the other surfaces) is rather apparent than

real, as there is no change in the state of the matter in the direction

perpendicular to this surface. But in the variations to be considered

in the state of the system, it will not be convenient to limit ourselves

to such as do not create any discontinuity at the surfaces bounding

the masses M, M', M" : we must therefore determine how we will

estimate the energies of the masses in case of such infinitesimal

discontinuities as may be supposed to arise. Now the energy of

each mass will be most easily estimated by neglecting the discon-

tinuity, i. e., if we estimate the energy on the supposition that
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beyond the bounding surface the phase is identical with that within

the surface. This will evidently be allowable, if it does not affect

the total amount of energy. To show that it does not atfect this

(juantity, we have only to observe that, if the energy of the mass on

one side of a surface where there is an infinitesimal discontinuity of

phase is greater as determined by this rule tlian if determined by

any other (suitable) rule, the energy of the mass on the other side

must be less by the same amount when determiued by the first rule

than when determined by the second, since the discontinuity relative

to the second mass is equal but opposite in character to the discon-

tinuity relative to the first.

If the entropy of the mass which occupies any one of the spaces

considered is not in the nature of things determined without refer-

ence to the surrounding masses, we may suppose a similar method to

be applied to the estimation of entropy.

With this understanding, let us retxirn to the consideration of the

equilibrium of the three masses M, M', and JNI". We shall suppose

that there are no limitations to the possible variations of the system

due to any want of perfect mobility of the components by means of

which we express the composition of the masses, and that these com-

ponents are independent, i. e., that no one of them can be formed out

of the others.

With regard to the mass M, Avhich includes the sui"fixce of discon-

tinuity, it is necessary for its internal equilibrium that when its

boundaries are considered constant, and when we consider only

reversible variations (i. e., those of which the opposite are also

possible), the variation of its energy should vanish with the varia-

tions of its entropy and of the quantities of its various components.

For changes within this mass will not affect the energy or the entropy

of the surrounding masses (when these quantities are estimated on

the princi]>le which we have adopted), and it may therefore be

treated as an isolated system. For fixed boundaries of the mass ]\r,

and for reversible variations, we may therefore write

6£= A^dii+ A^ 6m^ + A^ dm^ + etc., (470)

where ^If,, A^, A2, etc., are quantities determined by the initial

(unvaried) condition of the system. It is evident that A^ is the

temperature of the lamelliform mass to which the equation relates,

or the temperature at the surface of discontinuity. IJy com])arison

of this equation with (12) it will be seen that the definition of yl ,,

^4 2, etc., is entirely analogous to that of the potentials in homo-
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geneous masses, although the mass to which the former quantities

relate is not homogeneous, while in our ])revious definition of poten-

tials, only homogeneous masses were considered. By a natural ex-

tension of the term potential., we may call the quantities .Ij, .ig,

etc., x.\\Q potentials at the surface of discontinuity. This designation

will be farther justified by the fact, which will appear hereafter, that

the value of these quantities is independent of the thickness of the

lamina (M) to which they i-elate. If we employ our ordinary sym-

bols for temperature and potentials, we may write

de =zt6f^-\- jii^ dm , -f- ;/. (Jw, + etc. (477)

If we substitue ^ for = in this equation, the formula will hold

true of all variations whether reversible or not ;* for if the variation of

energy could have a value less than that of the second member of

the equation, there niAst be variation in the condition of M in which

its energy is diminished without change of its entropy or of the

quantities of its various components.

It is important, however, to observe that for any given values of

rf//, 6m ^, 6m2, etc., while there )naij be possible variations of the

nature and state of M for which the value of Se is greater than that

of the second member of (477), there niust always be possible varia-

tions for Avhich the value of 6e is equal to that of the second member.

* To illustrate the difference between variations which are reversible, and those

which are not, we may conceive of two entirely different substances meeting in equilib-

rium at a mathematical surface without being at all mixed. We may also conceive of

them as mixed in a thin film about the surface where they meet, and then the amount

of mixture is capable of variation both by increase and by diminution. But when they

are absolutely unmixed, the amount of mixture can be increased, but is incapable of

diminution, and it is then consistent with equilibrium that the value of Se (for a varia-

tion of the system in which the substances commence to mix) should be greater than

the second member of (477). It is not necessary to determine whether precisely such

cases actually occur ; but it would not be legitimate to overlook the possible occur-

rence of cases in which variations may be possible while the opposite variations are

not.

It will be observed that the sense in which the term reversible is here used is en-

tirely different from that in which it is frequently used in treatises on thermody-

namics, where a process by which a system is brought from a state A to a state B is

called reversible, to signify that the system may also be brought from the state B to

the state A through the same series of intermediate states taken in the reverse order

by means of external agencies of the opposite character. The variation of a system

from a state A to a state B (supposed to differ infinitely little from the first) is here

called reversible when the system is capable of another state B' which bears the same

relation to the state A that A bears to B.

Te.\ns. Conn. Acad., Vol. III. 49 June, 1877.
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It will be convenient to have a notation which will enable us to ex-

press this by an equation. Let be denote the smallest value (i. e., the

value nearest to — oo) of de consistent with given values of the

other variations, then

bf = ^ Sj] -\- lA^ diti^ -\- /.(^ Sm.^ + etc. (478)

For the internal equilibrium of the whole mass which consists of

the parts M, M', M", it is necessary that

6e-\- St' + Se"^0 (479)

for all variations which do not affect the enclosing surface or the

total entropy or the total quantity of any of the various components.

If we also regard the surfaces separating M, M', and M" as invaria-

ble, we may derive from this condition, by equations (478) and (12),

the following as a necessary condition of equilibrium :

t 6?/ -\- /fj d7)i^ -\- J.I2 Sni^ + ^tc.

+ t' 61/ -\- //j' Sin^' + /'o' <Si>i2' + etc.

+ t" (h/" + /</' dill/' + /i/ ^"i/ + etc.^0, (480)

the variations being subject to the equations of conditions

dm^ -f dm/ + dm/ = 0, I

61^2 -\- 6111/ -J-
6)112" ^^ ^5

I

etc. J

It may also be the case that some of the quantities 6ni^\ 6m/',

(5^2 ', 6m2", etc., are incapable of negative values or can only have

the value zero. This will be the case when the substances to which

these quantities relate are not actual or possible components of M'

or M". (Seepage 117.) To satisfy the above condition it is neces-

sary and sufficient that

t = t' - t", (482)

jji/' 6m/^).i^6m/, 1.1/' 67n /'^ f.12 ^^^2% ^tc. (484)

It will be observed that, if the substance to which /(,, for instance,

relates is an actual component of each of the homogeneous masses,

we shall have //, = yu/ ^ ///'. If it is an actual component of the

first only of these masses, we shall have yu, = //,'. If it is also a

possible component of the second homogeneous mass, we shall also

have /A^=}.i/'. If this substance occurs only at the surface of dis-
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continuity, the value of the potential /<, will not be determined by

any equation, but cannot be greater than the potential for the same

substance in either of the homogeneous masses in which it may be a

possible component.

It appears, therefore, that the particular conditions of equilibrium

relatiiig to tem2)erature and the potentials which we have befoi-e

obtained by neglecting the influence of the surfaces of discontinuity

(pp. 119, 120, 128) are not invalidated by the influence of such dis-

continuity in their application to homogeneous parts of the system

bounded like M' and M" by imaginary surfaces lying within the

limits of homogeneity,— a condition which may be fulfilled by sur-

faces very near to the surfaces of discontinuity. It appears also that

similar conditions will apply to the non-homogeneoiis films like M',

which separate such homogeneous masses. The properties of such

films, which are of course different from those of homogeneous

masses, require our farther attention.

The volume occu|)ied by the mass M is divided by the surface §

into two parts, which we will call «'" and v"'\ v'" lying next to M',

and v"" to M". Let us imagine these volumes filled by masses hav-

ing throughout the same temperature, pressure and potentials, and

the same densities of energy and entropy, and of the various com-

ponents, as the masses M' and M" respectively. We shall then have,

by equation (12), if we regard the volumes as constant,

Se'" = t' ch/" + //,' (hn^'" + j.i^ dm^"' + etc., (485)

de"" = t" 6i/"' + ///' (h,i^"" + f.1^" Srn.J'" + etc.
;

(48G)

whence, by (482)-(484), we have for reversible variations

Si:"' = t dif" + //, dm,'" -f iA„ Sm.J" + etc., (48V)

(U"" = t6j/""-{- M,6m^"" -\- /.i^ 6m2'"' + etc. (488)

From these equations and (4V7), we have for reversible variations

S{e - t'" - 6"") ^ t rf(// - //'" - //'")

+ //, rf(w, - m,'" - m,"") -f /t2 S{m^ -m„"' - m.J'") + etc, (489)

Or, if we set*

£«= f - 6'" - f"", if= 7/ - //'" - ;/"", (490)

m\ =mj — Wj'" — w,"", m\=zm^ —rn^" - m^"", etc., (491)

* It will be understood that the ^ here used is not an algebraic exponent, but is

only intended as a distinguishing mark. The Roman letter S has not been used to

denote any quantity.
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we may write

St^ = t (h/^ + // , ih/f^ + //2 c^?"| + etc. (492)

This is true of reversible variations in which the surfaces whicli have

been considered are fixed. It will be observed that a^ denotes the

excess of the energy of the actual mass which occupies the total

volume which we have considered over that energy which it would

have, if on each side of the surface S the density of energy had the

same uniform value quite up to that surface which it has at a sensi-

ble distance from it; and that tf, m^, m|, etc., have analogous signi-

fications. It will be convenient, and need not be a source of any

misconception, to call 6* and ?f the energy and entropy of the surface

(or the siijierficial energy and entropy), — and — the superficial den-

in 171^

sities of energy and entrojiy, —-, —~, etc., the stqyerficinl densities of
s s

the several components.

Now these quantities [e^, if, m\, etc.) are determined partly by

the state of the physical system which we are considering, and partly

by the various imaginary surfaces by means of which these quanti-

ties have been defined. The position of these surfaces, it will be

remembered, has been regarded as fixed in the variation of the sys-

tem. It is evident, however, that the form of that portion of these

surfaces, which lies in the region of homogeneity on either side of the

surface of discontinuity cannot affect the values of these quantities.

To obtain the complete value of 6t^ for reversible variations, we have

therefore only to regard variations in the ]josition and form of the

limited surface s, as this determines all of the surfaces in question

lying within the region of non-homogeneity. Let us fii'st suppose

the form of s to remain unvaried and only its position in space to

vary, either by translation or rotation. No change in (492) will be

necessary to make it valid in this case. For the equation is valid if

S I'emains fixed and the material system is varied in position ; also, if

the material system and s are both varied in position, while their

relative position remains unchanged. Therefore, it will be valid if

the surface alone varies its position.

But if the form of s be varied, we must add to the second member

(492) terms which shall represent the value of

Sa^ — t dtp" ~~ jA
,
Srn^^ ~ f^» Sm% ~ ^^^c.

due to such variation in the form of s. If we su]»pose s to be suffi-
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ciently small to be considered uinfoi-m throughout in its curvatures

and in respect to the state of the surrounding matter, the value of the

above expression will be determined hy the variation of its area 6s

and the variations of its principal curvatures (Jc^ and (Jcg, and we
may write

St^ =. t Sif -f /<, 8tiii\ -\- //g dm\ + etc.

+ a 8s + 6\ 8c
^ + C'g (Jc2, (493)

or

8t^ = t 6ff + yUi Stn^^ 4-/^2 ^^"% + ^^^-

+ ff Ss -\-^{C, -^ C,) S{c, -^ c,) + i{C\ - C,)8{c,-c,),{494)

<j, C,, and 6*2 denoting quantities which are determined by the

initial state of the system and position and form of s. Tlie above is

the complete value of the variation of f** for reversible variations of

the system. But it is always possible to give such a position to the

surface s that 6\ + C.^ shall vanish.

To show this, it will l)e convenient to write the equation in tlie

longer form [see (490), (491)]

de ^ t 8?/ — /J ^ 8m^ — //g 8711 „ — etc.

— 8e"' + t 81/" + //, 8m ^"' + /z, 8711 ^" + etc.

_ Se"" + t 8?/"" + //, 8m ^"" + /1 2 8m.^ "" + etc.

= o-8s^i {C\ + C,) 8{c, + c,) + i{C\ - (J,) 8{c^~c,), (495)

i. e., by (482)-(484) and (12),

8e — t 87} — ^x^ 8m ^ — |<2 ^^2 — ^^c. +^>' 8v"' +^>" 8v""

= ff8s + ^{C\ + C,) 8{c, + r-^) + H (^\ - O2) ^(c, - c,). (496)

From this equation it appears in the first place that the j^ressure is

the same in the two homogeneous masses separated by a plane sur-

face of discontinuity. For let us imagine the material system to

remain unchanged, while the plane surface s without change of area

or of form moves in the direction of its normal. As this does not

affect the boundaries of the mass M,

8£ — t 87/ — //j 8m,^ — //g 8m2 — etc. =: 0.

Also 8s = 0, (J(e,+C2) = 0, 8{c,^C2) = 0, and 8v"' = - 8v"".

Hence j)' = p'\ when the surface of discontinuity is plane.

Let us now examine the effect of different positions of the surface !^

in the same material system upon the value of 6', -|- ('„, supposing at

first that in the initial state of the system the surface of discontinuity

is plane. Let us give the surface ^ some particular position. Tn the
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initial state of the system tliis surface will of course be plane like the

physical surface of discontinuity, to which it is parallel. In the

varied state of the system, let it become a portion of a spherical

surface having positive curvature ; and at sensible distances from

this surface let the matter be homogeneous and with the same phases

as in the initial state of the system; also at and about the surface let

the state of the matter so far as possible be the same as at and about

the plane surface in the initial state of the system. (Such a variation

in the system may evidently take place negatively as well as posi-

tively, as the surface may be curved toward either side. But

whether such a variation is consistent with the maintenance of equi-

librium is of no consequence, since in the preceding equations only

the initial state is supposed to be one of equilibrium.) Let the

surface s, placed as supposed, whether in the initial or the varied

state of the surface, be distinguished by the symbol s'. Without

changing either the initial or the varied state of the material system,

let us make another supposition with respect to the imaginary sur-

face s. In the imvaried system let it be parallel to its former posi-

tion but removed from it a distance A on the side on which lie the

centers of positive curvature. In the varied state of the system, let

it be spherical and concenti'ic with s', and sepai-ated from it by the

same distance A. It will of course lie on the same side of s' as in the

unvaried system. Let the surface s, placed in accordance with this

second supposition, be distinguished by the symbol s". Both in the

initial and the varied state, let the perimeters of §' and s" be traced

by a common normal. Now the vahie of

in equation (496) is not aifected by the position of s, being deter-

mined simply by the body M : the same is true p' 6v"' -^ p" 6v"" or

j)'6{v"' + v""), ^'"'+ v"" being the volume of M. Therefore the second

member of (496) will have the same value whether the expressions

relate to s' or s". Moreover, ^(Cj — Cg) = both for s' and s". If

we distinguish the quantities determined for s' and for s" by the

marks ' and ", we may therefore write

Now if we make Ss" z=z 0,

we shall have by geometrical necessity
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Hence

But tf(e,'+c'./)r=dXc/+C2").

Therefore, 6*/+ ^'3
'+ 2 tf'.s A = 6\ "+ C\ ".

This equation shows tliat we may give a positive or negative value

to G ^"+ G2" by placing s" a sufficient distance on one or on the

other side of s'. Since this is true when the (unvaried) surface is

plane, it must also be true when the surface is nearly plane. And for

this piirpose a surface may be regarded as nearly plane, when the

radii of curvature are very large in proportion to the thickness of the

non-homogeneous film. This is the case when the radii of curvature

have any sensible size. Tn general, therefoi'e, whether the surface of

discontinuity is plane or curved it is possible to place the surface s

so that Cj + G„ in equation (494) shall vanish.

Now we may easily convince ourselves by equation (498) that if s

is placed within the non-homogeneous film, and s=z 1, the quantity G

is of the same order of magnitude as the values of 6^, 7f, ni\, //<|, etc.,

while the values of C, and G2 ai"e of the same order of magnitude

as the changes in the values of the former quantities caused by

increasing the curvature of s by unity. Hence, on account of the

thinness of the non-homogeneous film, since it can be very little

affected by such a change of curvature in s, the values of C, and G^

must in general be very small relatively to o'. And hence, if s' be

placed within the non-homogeneous film, the value of A which Avill

make Cj" -f C\" vanish must be very small (of the same order of

magnitude as the thickness of the non-homogeneous film). The posi-

tion of s, therefore, which will make G ^ 4- G2 in (494) vanish, will

in general be sensibly coincident with the physical surface of

discontiniiity.

We shall hereafter suppose, when the contrary is not distinctly

indicated that the surface s, in the unvaried state of the system, has

such a position as to make C, + Cg 1= 0, It will be remembered that

the surface s is a part of a larger surface S, which we have called the

cUvidmg surface, and which is coextensive with the physical surface

of discontinuity. We may suppose that the position of the dividing

surface is everywhere determined by similar considerations. This

is evidently consistent with the suppositions made on page 380 with

reacard to this surface.
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We may therefore cancel the term

in (494). In regard to the following term, it will be observed that

Cj must necessarily be equal to t\^ when Cj = Cg, which is the case

when the surface of discontinuity is plane. Now on account of the

thinness of the non-homogeneous film, we may always regard it as

composed of parts which are a})proximately plane. Therefore, with-

out danger of sensible error, we may also cancel the term

Equation (494) is thus reduced to the form

6t^ = t S)f + o- 6s+ // , dm^^ + //g 6m\ -f etc. (497)

We may regard this as the complete value of 6t^, for all reversible

variations in the state of the system supposed initially in equilibrium,

when the dividing surface has its initial position determined in the

manner described.

The above equation is of fundamental importance in the theory

of capillarity. It expresses a relation with regard to surfaces of dis-

continuity analogous to that expressed by equation (12) with regard

to homogeneous masses. From the two equations may be directly

deduced the conditions of equilibrium of heterogeneous masses in con-

tact, subject or not to the action of gravity, without disregard of the

influence of the surfaces of discontinuity. The general problem, in-

cluding the action of gravity, we shall take up hereafter: at present

we shall only consider, as hitherto, a small part of a surface of dis-

continuity with a part of the homogeneous mass on either side, in

order to deduce the additional condition which may be found when

we take account of the motion of the dividing surface.

We sup})Ose as before that the mass especially considered is

bounded by a surface of which all that lies in the region of non-

homogeneity is such as may be traced by a moving normal to the

dividing surface. But instead of dividing the mass as before into

four parts, it will be suflicient to regard it as divided into two parts

by the dividing sui-face. The energy, entropy, etc., of these parts,

estimated on the supposition that its nature (including density of

energy, etc.) is uniform quite up to the dividing surface, will be

denoted by e\ rf, etc., £", ?/', etc. Then the total energy will be

£^ + £'-f f", and the general condition of internal equilibrium will be

that
d^iH(^i'+(5f"^0, (498)
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when the bounding surface is fixed, and the total entropy and total

quantities of the various components are constant. We may sup]»ose

V^ V'> V"-> '"n "*]'? '"i"> "4' '*^^2'i
'^^''2

1
^t'C-, to be all constant, Tlien

by (497) and (12) the condition reduces to

o- 6s - p Sv' - p" dv" = 0. (499)

(We may set =: for ^, since changes in the position of the dividing

surface can evidently take place in either of two opposite directions.)

This equation has evidently the same form as if a membrane without

rigidity and having a tension ff, uniform in all directions, existed

at the dividing surface. Hence, the ])articular position which we

have chosen for this surface may be called the surface of tension, and

ff the superficial tension. If all parts of the dividing surface move

a uniform normal distance SN, we shall have

Ss z= (c
, + C2 ) s dJV, 6v' = s SK Sv" = - .s 6JV;

whence a {c^ -\- c^) ^p' — Jo", (500)

the curvatures being positive when their centers lie on the side to

which jo' relates. This is the condition which takes the place of that

of equality of pressure (see p)». 119, 128) for heterogeneous flixid

masses in contact, vvlien we take accoimt of the influence of the sur-

faces of discontimiity. We have already seen that the conditions

relating to tem])erature and the potentials are not affected by these

surfaces.

Fundamental JEqnations for /Surfaces of Discontinuity.

In equation (497) the initial state of the system is sup[)osed to be

one of equilibrium. The only limitation with respect to the vaiied

state is that the variation shall be reversible, i. e., that an o])po8ite

variation shall be i)ossible. Let us now confine our attention to

variations in which the system remains in equilibrium. To distin-

guish this case, we may use the character d instead 6, and write

dt^ = t dif' -f (T ffe -f /^ , d7n\ + Mz ^''4 + ^'t<^'- (501)

Both the states considered being states of equilibrium, the limitation

with respect to the reversibility of the variations may be neglected,

since the variations will always be reversible in at least one of the

states considered.

If we integrate this equation, supposing the area s to increase

from zei'o to any finite value s, while the material system to a part

of which the equation relates remains without change, we obtain

f^ = f if^ -\- (7 s + n ^ m^, -J- //g n%\ -f etc., (502)

Trans. Conn. Acad., Vol. HI. 50 July, 1877.
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whicli may be applied to any portion of any surface of discontinuity

(in equilibrium) which is of the same nature throughout, or through-

out which the values of ^, o", //,, f^^i ^tc are constant.

If we diiFerentiate this equation, regarding all the quantities as

variable, and compare the result with (501), avc obtain

if (It -\- sdG -\- m\ f?//j + m\ diA^ + etc. = 0. (503)

If we denote the superficial densities of energy, of entropy, and

of the several component substances (see page 380) by fg? Vs? l\i ^2->

etc., we have

f^ jf , ,

s s

,s

r, == -1, i , = -^, etc., (505)

and the preceding equations may be reduced to the form :

—

de^= td?^^ + //, dl\ + Mo ^^^2 + ^^tc, (506)

8^ = t?/^+ G + Ml I\ + M2 ^2 + t^tc,
"

(507)

da = — 7/s dt — r^ f?yu,— 7^2 ^hh ~ ^tc. (508)

Now the contact of the two homogeneous masses does not impose

any restriction upon the variations of phase of either, excej^t that

the temperatx;re and the potentials for actual components shall have

the same value in both. [See (482)-(4S4) and (500).] For however

the values of the pressures in the homogeneous masses may vary (on

account of arbitrary variations of the temperature and potentials),

and however the superficial tension may vary, equation (500) may

always be satisfied by giving the proper curvature to the surface of

tension, so long, at least, as the difference of pressures is not great.

Moreover, if any of the potentials /.i^, /.i.^, etc. relate to substances

which are found only at the surface of discontinuity, their values

may be varied by varying the superficial densities of those sub-

stances. The values of t, f.i\-> /*3' ^^^- ^^'^ therefore independently

variable, and it appears from equation (508) that c is a function of

these quantities. If the form of this function is known, we may

derive from it by differentiation w-ff equations {n denoting the total

number of component substances) giving the values of 7/s, /'j, I\,

etc. in terms of the variables just mentioned. This will give us,

with (507),n-|-3 independent ecpxations between the 2n \- A quantities

which occur in that ecpiation. These .are all that exist, since ';/-f 1
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of these quantities are independently variable. Or, we may consider

that we have y/ + 3 independent equations between the 2^/, + 5 quan-

tities occurring in equation (5ti2), of which n-\-2 are independently

variable.

An equation, therefore, between

(T, ^, yUj, //g, etc., (509)

may be called a fundamental equation for the surface of discontinuity.

An equation between

f^ //, ft', )ii\ ))i\^ etc., (-510)

or between fs, 'h-> ^H ^s? ^^.c, ('51 1)

may also be called a fundamental e([uation in the same sense. For

it is evident from (501) that an equation may be regarded as subsist-

ing between the variables (510), and if this equation be known, since

n -{- 2 of the variables may be regarded as independent (viz., ii -|- 1

for the n. -f- 1 variations in the nature of the surface of discontinuity,

and one for the area of the surface considered), we may obtain by

differentiation and comparison with (501), m -}- 2 additional equations

between the 2;^ -}- 5 quantities occurring in (502). Equation (50(3)

shows that equivalent relations can be deduced from an equation

between the variables (511). It is moreover quite evident that an

equation between the variables (510) must be reducible to the form

of an equation between the ratios of these variables, and therefore to

an equation between the variables (511).

The same designation may be applied to any equation from which,

by differentiation and the aid only of general principles and relations,

n -\- 3 independent relations between the same 2n -|- 5 quantities

may be obtained.

If we set ij)^ = €^, —t rf, (512)

we obtain by differentiation and comparison with (501)

dtp^ =. — if' dt + a ds-\- jx^ d)n\ -\- pi^ dni,2 + etc. (513)

An equation, therefore, between ^^, t, s, m\, ni\, etc., is a fundamental

equation, and is to be regarded as entirely equivalent to either of the

other fundamental equations which have been mentioned.

The reader will not fail to notice the analogy between these funda-

mental equations, which relate to surfaces of discontinuity, and those

relating to homogeneous masses, which have been described on pages

140-144.
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On the Experimental Determination of Fundamental Equationsfor

Surfaces of Discontinuity.

When all the substances which are found at a surface of discon-

tinuity are components of one or the other of the homogeneous

masses, the potentials Wj, //g, ttc, as well as the temperature, may
be determined from these homogeneous masses,* The tension o' may
be determined by means of the relation (500). But our measure-

ments are practically confined to cases in which the difference of the

pressures in the homogeneous masses is small ; for with increasing

differences of pressure the radii of curvature soon become too small

for measurement. Therefore, although the equation jt>' =: ji>" (which

is equivalent to an equation between t, //j, //g, etc., since 2^' and p>"

are both functions of these variables) may not be exactly satisfied in

cases in which it is convenient to measure the tension, yet this equa-

tion is so nearly satisfied in all the measurements of tension which

we can make, that we must regard such measurements as simply

establishing the values of o" for values of t, /.i^, /.(2, etc., which satisfy

the equation // =z p", but not as sufficient to establish the rate of

change in the value of G for variations of t^ //,, /z,, etc., which are

inconsistent with the equation />' =:^>".

To show this more distinctly, let t, //g, m^, etc. remain constant,

then by (508) and (98)

da = — [\ d/^i^,

dp = Yi' d^i^,

dp" = y,"diA„

ni' ^ Wi," __

;// and ;// denotmg the densities —p and —— . Hence,

f?y -dp" — (;/,'- y^")dp^,

and r, r?(;y ~ p") = (;//'_;/,') da.

But by (50(»)

(c, -f ('2) da + a d{c^ + C2) = (Hp'- j>").

Therefore,

l\ {c, + C2) dff + r, a d{c, + C2) = ir," - ;/,') dff,

or Ir/' — r/ - ^1 («i + ^2)1 ^^= ^\ ^4^1 + Cg).

* It is here supposed that the thermodynamic properties of the liomogcneous

masses liave already been investigated, and that the fundamental equations of these

masses may be regarded as known.
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Now [\ (Cj + c^) will generally be very small compared with

Y i" — y i'.
Neglecting the former term, we have

To integrate this equation, we may regard F^, ;/,', y ^" as constant.

This will give, as an approximate value,

a' denoting the value of a when the surface is plane. From this it

appears that when the radii of curvature have any sensible magni-

tude, the value of o' will V)e sensibly the same as when the surface is

plane and the temperature and all the potentials excejjt one have

the same values, unless the component for which the potential has

not the same value has very nearly the same densitj'^ in the two

homogeneous masses, in which case, the condition under which the

variations take place is nearly equivalent to the condition that the

pressures shall remain equal.

Accordingly, we cannot in general expect to determine the superfi-

cial density l\ from its value — (^— ) by measurements of super-
\dj.ii/t,fi

ficial tensions. The case will be the same with I\,, F^, etc., and also

with //s, the superticial density of entropy.

The quantities fg, %, T\, /'a, etc. are evidently too small in general

to admit of direct measurement. When one of the components,

however, is found only at the sui-face of discontinuity, it may be

more easy to measure its superticial density than its potential. But

except in this case, which is of secondary interest, it will generally

be easy to determine ff in terms of t, //j, /.i„, etc., with considerable

accuracy for plane surfaces, and extremely difficult or impossible to

determine the fundamental equation more completely.

Fundamental Equations for Plane Surfaces of Discontinuity.

An equation giving a in terms of <, /<i, yWgi ^^c, which will hold

true only so long as the surface of discontinuity is plane, may be

called a fundamental equation for a plane surface of discontinuity.

It will be interesting to see precisely what results can be obtained from

such an equation, especially with respect to the energy and entropy

* The suffixed ft ia used to denote that all the poteutials except that occurring in

the denominator of the differential coefficient are to be regarded as constant.
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and tlie quantities of the conn)oneiit substances in the vicinity of the

siu'face of discontinuity.

These results can be exliibited in a more simple form, if we deviate

to a certain extent from the method which we have been following.

The particular position ado])ted for the dividing surface (which

determines the superficial densities) was chosen in order to make the

term i ( C'j-j- Cg) (^ (c^ + Cg) in (494) vanish. But when the curvature

of the surface is not supposed to vary, such a position of the divid-

ing surface is not necessary for the simjilification of the formula. It

is evident that equation (501) will hold true for plane surfaces (sup-

posed to remain such) without reference to the position of the divid-

ing surfaces, except that it shall be parallel to the surface of discon-

tinuity. We are therefore at liberty to choose such a position for

the dividing surface as may for any purpose be convenient.

None of the equations (502)-(513), which are either derived from

(501), or serve to define new symbols, will be affected by such a

change in the position of the dividing surface. But the expressions

£^, if, m\, m\, etc., as also fg, ?/s, F^, F^, etc. and y^^, will of course

have different values when the position of that surface is changed.

The quantity o", however, which we may regard as defined by equa-

tions (501), or, if we choose, by (502) or (507), will not be affected in

value by such a change. For if the dividing surface be moved a

distance A measured normally and toward the side to which v" relates,

the quantities

^s? Vsj ^15 ^25 etc.,

will evidently receive the respective increments

A(fv"-fv'), A (//v" ^ //v'), A(ri"-ri'), ^{y/-y2), etc.,

fv', fv", 'A'', i]\" denoting the densities of energy and entropy in the

two homogeneous masses. Hence, by equation (507), o" will receive

the increment

A(f/-fv')_a(//v"— //v')-/'i^(/i"—ri')-/^2'^(r3"-r2')-etc.

But by (93)

- p" — 6v"
- 1 vv" --

/'i ri" - /'2 r-z" - etc.,

- p' - ey - t //v' - /'i ri' - /'s V-2 - etc.

Therefore, since jt>' =i^", the increment in the value of o' is zero.

The value of o' is therefore independent of the position of the divid-

ing surface, when this surface is plane. But when we call this quan-

tity the superficial tension, we must remember that it will not have
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its chai'acteristic properties as a tension with reference to any arbi-

trary surface. C/Onsidered as a tension, its position is in the surface

which we have called the surface of tension, and, strictly speaking,

nowhere else. The positioire of the dividing surface, however, wliich

we shall consider, will not vary from the surface of tension sufficiently

to make this distinction of any practical importance.

It is generally possible to place the dividing surface so that tlie

total quantity of any desired component in the vicinity of the surface

of discontinuity shall be the same as if the density of that component

were uniform on each side quite xip to the dividing surface. In other

words, Ave may place the dividing surface so as to make any one of

the quantities /\, 7^2
5 etc., vanish. The only exception is with

regard to a component which has the same density in the two homo-

geneous masses. With regard to a component which has very nearly

the same density in the two masses such a location of the dividing-

surface might be objectionable, as the dividing surface might fail to

coincide sensibly with the physical siu-face of discontinuity. Let us

suppose that ;// is not equal (nor very nearly equal) to y^'\ and that

the dividing surface is so placed as to make F^ = 0. Then equation

(508) reduces to

dff = — //s( I) (?« - Ad) <^M2 - Tsd) f^/<3 — etc., (514)

where the symbols //scd? ^"y(i)i etc., are used for greater distinctness

to denote the values of ?/si ^o, etc., as determined by a dividing sur-

face placed so that 1\ = 0. Now we may consider all the differen-

tials in the second member of this equation as independent, without

violating the condition that the surface shall remain plane, i. e., that

dp' =. dp". This appears at once from the values of dj/ and dp"

given by equation (98). Moreover, as has already been observed,

when the fundamental equations of the two homogeneous masses are

known, the equation /)' =ji>" affords a relation between the quantities

t, yUj, yWgi etc. Hence, when the value of ff is also known for plane

surfaces in terms of ^, //j, /.I2, etc., we can eliminate yUj from this ex-

pression by means of the relation derived from the equality of pres-

sures, and obtain the value of a for plane surfiices in terms of

t, yUg, //3, etc. From this, by differentiation, we may obtain directly

the values of ?^s(i)» Acd? Ad)? etc., in terms of t, /n.^, //g, etc. This

would l)e a convenient form of the fundamental equation. But, if the

elimination oi p\ p>" , and /^j from the finite equations jiresents alge-

braic difficulties, we can in all cases easily eliminate dp\ dp/', d^.

from the corres])onding differential e([uations and thus ol)tain a
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differential equation from whicli the values of ?/s(i)> ^'2(1)5 ^3(1)5

etc. in terms of t, f4 ^, /^o, etc., may be at once obtained by comparison

with (514).*

* If liquid mercury meets the mixed vapors of water and mercury in a plane sur-

face, and we use //, and /i.^ to denote the potentials of mercury and water respec-

tively, and place the dividing surface so that F, =0, i. e., so that the total quantity of

mercury is the same as if the liquid mercury reached this surface on one side and the

mercury vapor on the other without change of density on either side, then r2(i) will

represent the amount of water in the vicinity of this surface, per unit of surface,

above that which there would be, if the water-vapor just reached the surface without

change of density, and this quantity (which we may call the quantity of water con-

densed upon the surface of the mercury) will be determined by the equation

da
^2(1)=-^-

(In this differential coefficient as well as the following, the temperature is supposed

to remain constant and the surface of discontinuity plane. Practically, the latter con-

dition may be regarded as fulfilled in the case of any ordinary curvatures.)

If the pressure in the mixed vapors conforms to the law of Daiton (see pp. 215, 218),

we shall have for constant temperature

dp-2 = 72 df^'i,

where 2^-2 denotes the part of the pressure in the vapor due to the water-vapor, and

yj the density of the water-vapor. Hence we obtain

da

For temperatures below 100° centigrade, this will certainly be accurate, since the pres-

sure due to the vapor of mercury may be neglected.

The value of a forp-^^O and the temperature of 20° centigrade must be nearly the

same as the superficial tension of mercury in contact with air, or 55.CS grammes per

linear metre according to Quincke (Pogg. Ann., Bd. 139, p. 27). The value of a at the

same temperature, when the condensed water begins to have the properties of water

in mass, will be equal to the sum of the superficial tensions of mercury in contact

with water and of water in contact with its own vapor. This will be, according to

the same authority, 42.58 + 8.25, or 50.8.{ grammes per metre, if we neglect the differ-

ence of the tensions of water with its vapor and water with air. As p.^, therefore,

increases from zero to 236400 grammes per square metre (when water begins to be

condensed in mass), a diminishes from about 55.03 to about 50.83 grammes per linear

metre. If the general course of the values of a for intermediate values of 2^2 were

determined by experiment, we could easily form an approximate estimate of the

values of the superficial density Fgd) for different pressures less than that of satu-

rated vapor. It will be observed that the determination of the superficial density

does not by any means depend upon inappreciable differences of superficial tension.

The greatest difficulty in the determination would doubtless be that of distinguishing

between the diminution of superficial tension due to the water and that due to other

substances which might accidentally be present. Such determinations are of con-

sideraVile practical importance on account of the use of mercury in measurements of

the specific gravity of vapors.
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The same physical relations may of course be deduced Avithout

giving up the use of the surface of tension as a dividing surface, hut

the formulae which express them will be less simple. If we make

^ /<3, /<4, etc. constant, we have by (98) and (508)

dp' = y^' df.1^ + ;/,' f^/'2?

dp" =y^" di^t^ 4- y^" di-t^,

da =. — I\ d/.t^ — 1\ f^yUg?

where we may suppose l\ and /"g to be determined with reference

to the surface of tension. Tlien, if dp =:dpj\

{¥,' -yr")<h', + {y2 -r,")<^M2 = ^.

and

That is,

da = r, —-, ~,, du^ — I\ du«.

vhh/ P'2/ i'J-i' ,<,/«;), /«4, etc. y ^ —Yi

The reader will observe that —7—

—

j. represents the distance be-
Yi -Yi _

tween the surface of tension and that dividing surface whicli would

make T^j zz ; the second number of the last equation is therefore

equivalent to — j'^^d)-

If any component substance has the same density in the two homo-

geneous masses separated by a plane surface of discontinuity, the

value of the superficial density for that component is inde})endent

of the position of the dividing surface. In this case alone we may
derive the value of the superficial density of a component with

reference to the surface of tension from the fundamental equation for

plane surfaces alone. Thus in tlie last equation, when y^' =z y^', the

second member will reduce to — /"g- It will be observed that to

make jo'— ji^", i(, /^3, /<^, etc. constant is in this case equivalent to

making t, /<j, /.<3, /.(^, etc. constant.

Substantially the same is true of the superficial density of entro})y

or of energy, wlien either of these has the same density in the two

homogeneous masses.*

* With respect to questions which concern only the form of surfaces of discontinuity,

such precision as we have employed in regard to the position of the dividing surface

is evidently quite unnecessary. This precision has not been used for the sake of the

mechanical part of the problem, which does not require the surface to be defined

with greater nicety than we can employ in our observations, but in order to give

Trans. Conn. Acad., Vol. III. 51 July, 1877.



400 J. W. Gibhs—Kqii'dibrlum of Heterogeneous Suhstcmces.

Concendng the Stability of Surfaces of Discontinuity.

We shall first consider the stability of a film separating homoge-

neous masses with respect to changes in its nature, while its position

and the nature of the homogeneous masses are not altered. For this

purpose, it will be convenient to suppose that the homogeneous

masses are very large, and thoroughly stable with respect to the

possible formation of any different homogeneous masses out of their

components, and that the surface of discontinuity is plane and

uniform.

Let us distinguish the quantities which relate to the actual com-

ponents of one or both of the homogeneous masses by the suffixes

„, J, etc., and those which relate to components which are found only

at the surface of discontinuity by the suffixes ,,,;,, etc., and consider

the variation of the energy of the whole system in consequence of a

given change in the nature of a small part of the surface of discon-

tinuity, while the entropy of the whole system and the total quan-

tities of the several components remain constant, as well as the

volume of each of the homogeneous masses, as determined by the

surface of tension. This small part of the surface of discontinviity in

its changed state is supposed to be still uniform in nature, and such

as may subsist in equilibrium between the given homogeneous

masses, which will evidently not be sensibly altered in nature or ther-

modynamic state. The remainder of the surface of discontinuity is

also supposed to remain uniform, and on accoxmt of its infinitely greater

size to be infinitely less altered in its nature than the first part. Let

As^ denote the increment of the superficial energy of this first part,

Arf^ Ami, ^^iif , ftc, Ainfj, Amf , etc., the increments of its superficial

determinate values to the superficial densities of energy, entropy, and the component

substances, which quantities, as has been seen, play an important part in the relations

between the tension of a surface of discontinuity, and the composition of the masses

which it separates.

The product cr s of the superficial tension and the area of the surface, may be

regarded as the available energy due to the surface in a system in which the tempera-

ture and the potentials //,, /i 2, etc.—or the differences of these potentials and the

gravitational potential (see page 208) when the system is subject to gravity— are

maintained sensibly constant. The value of a, as well as that of s, is sensibly inde-

pendent of the precise position which we may assign to the dividing surface (so long

as this is sensibly coincident witii the surface of discontinuity), but es , the suiwrficial

density of energy^ as the term is used in this paper, lilce the superficial densities of

entropy and of tlie component substances, requires a more precise localization of the

dividing surface.
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entropy and of the quantities of the components which we regard

as beh)nging- to the surface. The increments of entropy and of the

various components which tlie rest of the system receive will be

expressed by

^ /Itf, -^nr:, -Anvi,, etc., — Jw.!; , - ^«'* ,
etc.,

and the consequent increment of energy will be by (12) and (501)

- tAif" — //„ Anil - //,, Jnv), — etc. — //,, Ani\ — f-i,, Anif, — etc.

Hence the total increment of energy in the whole system will be

At^ — t Aif — ii„ Ami — /<!, Anv}, — etc. ,

[
(516)— //„ Anr; ^ ii/,Ani.l— etc. \

If the value of this ex])ression is necessarily positive, for finite

changes as well as infinitesimal in the nature of the |iart of the film

to which Aa^, etc. relate,* the increment of energy of the whole

system will be positive for any possible changes in the nature of the

film, and the film will be stable, at least with respect to changes in

its nature, as distinguished from its })ositi()n. For, if we write

De^, JJif^, Dntl, Bin^,, etc., i>m^ , Bn^, etc.

for the energy, etc. of any element of the surface of discontinuity, we
have from the supposition just made

ABe^ - t ADif -//„ A Due: - ,j, ADmf,— etc.

- //,, AJJnil — ;/;, ADmf — etc. > ; (51V)

and integrating for the whole surface, since

AflJm':,= 0, A/Dmt=0, etc.,

we have

z//7>6^ - t A/Bif- //„ A/Ihn^, - /,, A/Bml - etc. > 0. (518)

Now AfDif is the inci-ement of the entropy of the whole siirface,

and — AfDff is therefore the increment of the entropy of the two
homogeneous masses. Tn like manner, —AfDm\^ —AfDrnl, etc.

are the increments of the quantities of the components in these masses.

The expression

- t AfDif - //„ AfBml - ;/„ AfBml - etc.

* In the case of infinitesimal changes in the nature of the film, the sign A must be

interpreted, as elsewhere in this paper, without neglect of infinitesimals of the higher

orders. Otherwise, by equation (501), the above expression would have the value

zero.
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denotes tlierefore, according to equation (12), tlie increment of energy

of tlie two homogeneous masses, and since A/De'^ denotes the

increment of energy of the surface, the above condition expresses

that the increment of the total energy of tlie system is positive.

That we have only considei-ed the possible formation of such tilms as

are caj^able of existing in equilibrium between the given homogeneous

masses can not invalidate the conclusion in regard to the stability of

the film, for in considering whether any state of the system will have

less energy than the given state, we need only consider the state of

least energy, which is necessarily one of equilibrium.

If the expression (51G) is capable of a negative value for an infini-

tesimal change in the nature of the part of the film to which the

symbols relate, the film is obviously unstable.

If the expression is capable of a negative value, but only for finite

and not for infinitesimal changes in the nature of this part of the

film, the film is practically unstable* i, e., if such a change were

made in a small part of the film, the disturbance would tend to

increase. But it might be necessary that the initial disturbance

should also have a finite magnitude in respect to the extent of

surface in wliich it occurs ; for we cannot siippose that the thermo-

dynamic relations of an infinitesimal part of a surface of discontinuity

are independent of the adjacent parts. On the other hand, the

changes which we have been considering are such that every part

of the film remains in equilibrium with the homogeneous masses

on each side ; and if the energy of the system can be diminished by

a finite change satisfying this condition, it may perhaps be capable

of diminution by an infinitesimal change which does not satisfy the

same condition. We must therefore leave it undetermined whether

the film, which in this case is practically unstable, is or is not

unstable in the strict mathematical sense of the term.

Let us consider more particularly the condition of practical stabil-

ity, in which we need not distinguish between finite and infinitesimal

changes. To determine whether the expression (516) is capable of a

negative value, we need only consider the least value of which it is

capable. Let us write it in the fuller form

- /.; (mf - mf) - ,il {mr- mT] - etc., ^^^^

where the single and double accents distinguish the quantities which

* With respect to the sense in wliich this term is used, compare page 133.
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relate to the first and second states of the film, the letters without

accents denoting those quantities which have the same value in both

states. The differential of this expression when the quantities distin

guished by double accents are alone considered variable, and the area

of the surface is constant, will reduce by (501) to the form

(//;- ;<) <ln^" + (//r - i.i;) dmr + etc.

To make this incapable of a negative value, we must have

//''zr:yu', unless mf =1 0,

/j" =: //;' , unless wif" = 0.

In virtue of these relations and by equation (502), the expression

(519), i. e., (516), will reduce to

(}"s- ff's,

which will be positive or negative according as

a" — g' (520)

is positive or negative.

That is, if the tension of the film is less than that of any other film

which can exist between the same homogeneous masses (which has

therefore the same values of t, yu„
,

yu^ , etc.), and which moreover has

the same values of the potentials jj^ , /j,, , etc., so far as it contains the

substances to which these relate, then tlie first film will be stable.

But the film will be practically unstable, if any other such film has a

less tension. [Comj^are the expression (141), by which the practical

stability of homogeneous masses is tested.]

It is, however, evidently necessary for the stability of the surface

of discontinuity with respect to deformation, that the value of the

superficial tension should be positive. Moreover, since we have by
(502) for the surface of discontinuity

and by (93) for the two homogeneous masses

s' — t 7/' + pv' -^ /J„ mj — //,, m/' — etc. = 0,

e" - t if + p v" —/A„ nij' — /J I, m," — etc. =. 0,

if we denote by

f, ?/, V, m„, m^, etc., m, , m,,, etc.,

the total energy, etc. of a composite mass consisting of two such

homogeneous masses divided by such a surface of discontinuity we
shall have by addition of these equations
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s — 1 1/ -\- pv — //„ m„ — /<,, 7n,, — etc. — /j„ >//,, — jj,, mi — etc. =: <J s.

Now if the value of a is negative, the value of the first member of

this equation will decrease as s increases, and may therefore be

decreased by making the mass to consist of thin alternate strata of

the two kinds of homogeneous masses which we are considering.

There will be no limit to the decrease which is thus possible with a

given value of v, so long as the equation is applicable, i. e., so long

as the strata have the properties of similar bodies in mass. But it

may easily be shown (as in a similar case on pages 131, 132) that

when the values of

i, P, Ma, /'/,, etc., //„, //,, etc.

are regarded as fixed, being determined by the surface of discon-

tinuity ill question, and the values of

f, 7/, 1)1^,, r/i/,, etc., ?«^, «?/, , etc.

are variable and may be determined by any body having the given

volume ?', the first member of this equation cannot have an infinite

negative value, and must therefore have a least possible value, which

will be negative, if any value is negative, that is, if o" is negative.

The body determining f, ?/, etc. which will give this least value

to this expression will evidently be sensibly homogeneous. With

respect to the formation of such a body, the system consisting of the

two homogeneous masses and the surface of discontinuity with the

negative tension is by (53) (see also page 133) at least practically

unstable, if the surface of discontinuity is very large, so that it can

afford the requisite material without sensible alteration of the values

of the potentials. (This limitation disappears, if all the component

substances are found in the homogeneous masses.) Therefore, in a

system satisfying the conditions of practical stability with respect to

the possible formation of all kinds of homogeneous masses, negative

tensions of the surfaces of discontinuity are necessarily exchided.

Let us now consider the condition which we obtain by applying

(516) to infinitesimal changes. The expression may be expanded as

before to the form (519), and then reduced by equation (502) to the

form

s{G" - a') + «if {m/- ///) + »€ if-h" - /'//) + etc.

That the value of this expression shall be positive when the quanti-

ties are determined by two films which differ infinitely little is a

necessary condition of the stability of the film to which the single
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accents relate. But if one film is stable, the other will in general be

so too, and the distinction between the films with respect to stability

is of importance only at the limits of stability. If all films for all

values of ja^^ jj,,, etc. are stable, or all within certain limits, it is evident

that the value of the expression must be positive when the quantities

are determined by any two infinitesimally difierent films within the

same limits. For such collective determinations of stability the

condition may be written

—sJff-^mfj Aj.iy — nt^,zij.i,^ — etc. ^ 0,

or

z/ (7< — r; J j.i,j — r,, a jj,, - etc. (521)

On comparison of this formula with (508), it apj)ears that witliin the

limits of stability the second and higher difierential coeflicients of the

tension considered as a function of the potentials for the substances

which are found only at the surface of discontinuity (the potentials

for the substances found in the homogeneous masses and the tempera-

ture being regarded as constant) satisfy the conditions which would

make the tension a maximum if the necessary conditions relative to

the first difierential coefiicients were fulfilled.

In the foregoing discussion of stability, the surface of discontinuity

is supposed plane. In this case, as the tension is supposed })Ositive,

there can be no tendency to a change of form of the surface. We
now pass to the consideration of changes consisting in or connected

with motion and change of form of the surface of tension, which we
shall at first suppose to be and to remain sj)herica] and uniform

throughout.

In order that the equilibrium of a spherical mass entirely sur-

rounded by an indefinitely large mass of different nature shall be
neutral with respect to changes in the value of r, the radius of the

sphere, it is evidently necessary that equation (500), which in this

may be written

2G=r{2^'.-p"\ (522)

as well as the other conditions of equilibrium, shall continue to hold
true for varying values of r. Hence, for a state of equilibrium which
is on the limit between stability and instability, it is necessary that

the equation

2do-={p' -p")dr + rdp'

shall be satisfied, when the relations between da., dp\ and dr are
determined from the fundamental equations on the sup])osition that
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the conditions of equililnium relating to temperature and the poten-

tials remain satistied. (The ditferential coefficients in the equations

which follow are to be determined on this supposition.) Moreover, if

i. e., if the pressure of the interior mass increases less rapidly (or

decreases more rapidly) with increasing radius than is necessary to

preserve neutral equilibrium, the equilibrium is stable. But if

'%>'% -"'^^'^ <^^*)

the equilibrium ijs unstable. In the i-emaining case, when

dp do' , „ , ,

farther conditions are of course necessary to determine absolutely

whether the equilibrium is stable or unstable, but in general the

equilibrium will be stable in respect to change in one direction and

unstable in respect to change in the opposite direction, and is there-

fore to be considered unstable. In general, therefore, we may call

(523) the condition of stability.

When the interior mass and the surface of discontinuity are formed

entirely of substances which are components of the external mass, p'

and a cannot vary and condition (524) being satisfied the equili-

brium is unstable.

But if either the interior homogeneous mass or the surface of dis-

continuity contains substances which are not components of the

enveloping mass, the equilibrium may be stable. If there is but one

such substance, and we denote its densities and potential by y\^ 7",,

and yUj, the condition of stability (523) will reduce to the form

or, by (98) and (508),

(r;// + 2 r,)'^-' </'-/. (526)

In these equations and in all which follow in the discussion of this

case, the temperature and the potentials //g, /'s, etc. are to be

regarded as constant. But
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which represents the total quantity of the component specified by the

suffix, must be constant. It is evidently equal to

I nr^ y ^' + 4 7tr~ r^.

Dividing by 4;r and diiFerentiating, we obtain

(r2 y^' -f 2 r /',) dr-\-i r^ dy ^ + r^ dl\ = 0,

or, since y^' and P^ are functions of //,,

V2r?;// dl\
(.,V + 2r,,*+(^|^ + ,.|-.).,.=o. (627)

By means of this equation, the condition of stability is brought to

the form

If we eliminate r by equation (522), we have

\P'-P"^ ^) >i .529)

3 (
jo' -jt>") fZ//

J

"*"
2 o- djJ.

1

If /:>' and ff are known in terms of t, //j ,
yUg? ^^.c, we may express the first

member of this condition in terms of the same variables and p". This

will enable us to determine, for any given state of the external mass,

the values of //, which will make the equilibrium stable or unstable.

If the component to which y^' and F^ relate is found only at the

surface of discontinuity, the condition of stability reduces to

y ' 2 (I If I

-^ dT, > 2- (^^^)

Smce y 1
= 5—

,

we may also write

r. dff ^ I d log o" ^ 1

Vdr<--2' '•• m-o^r<-2- ("'')

Again, if r'j = and -—
* = 0, the condition of stability reduces to

3 y,'^ du, .

Since y' = ^—,
djji^

we may also write

_y,'_d£ 1 ^gjy_y') 1

p'-p" dy"^^?,' d\ogy^ ^3 ^^'^'^^

Trans. Conn. Acad., Vol. III. 52 Nov., 1877.
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When r is large, this will be a close approximation for any values of

Fj, unless ;Ki' is very small. The two special conditions (531) and

(533) might be derived from very elementary considerations.

Similar conditions of stability may be found when there are more

substances than one in the inner mass or the surface of discontin-

uity, which are not components of the enveloping mass. In this case,

we have instead of (526) a condition of the form

(*• r / + 2 I\
)
1^' + (r r, '+27 ,) '^£^ + etc. <y' -p\ (534)

from which -—
', -y-^, etc. may be eliminated by means of equations

derived from the conditions that

;//?;' + 1\ s, ra' ^' + ^2 ^S etc.

must be constant.

Nearly the same method may be applied to the following problem.

Two different homogeneous fluids are separated by a diaphragm hav-

ing a circular orifice, their volumes being invariable except by the

motion of the surface of discontinuity, which adheres to the edge of

the orifice :—to determine the stability or instability of this surface

when in equilibrium.

The condition of stability derived from (522) may in this case be

written
d(p'—;/) ^ da , , ,,.

dr /.„.\

where the quantities relating to the concave side of the surface of ten-

sion are distinguished by a single accent.

If both the masses are infinitely large, or if one which contains all

the components of the system is infinitely large, p'—jf and a will

be constant, and the condition reduces to

The equilibi-ium will therefore be stable or unstable according as the

surface of tension is less or greater than a hemisphere.

To return to the general problem:—if we denote by x the part of

the axis of the circular orifice intercepted between the center of the

orifice and the surface of tension, by B the radius of the orifice, and

by V the value of v' when the surface of tension is plane, we shall

have the geometrical relations

and v' = V' + i7rr- x — iTt E^ {r - x)

—zV+ 71 r x^ — \ 7t x"^.
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By diiierentiation we obtain

(r— x) clx -\- xdr =. 0,

and civ' z=. 71 x^ dr -\- {2 TT r X — n x~) dx
;

whence (r — x) dv' = — n r x^ dr. (536)

By means of this relation, the condition of stability may be reduced

to the form

dp' dp" 2da . , , „. r — x
, ^,

-J-'-^i-- ZT'< (P - P) i—2- (537)
dv dv r dv it r^ x? ^ '

liet us now suppose that the tempei'ature and all the potentials ex-

cept one, //,, are to be regarded as constant. This will be the case

when one of the homogeneous masses is very large and contains all

the components of the system except one, or when both these

masses are very large and there is a single substance at the surface

of discontinuity which is not a component of either; also when
the whole system contains but a single component, and is exposed

to a constant temperature at its surface. Condition (537) will re-

duce by (98) and (508) to the form

But y^'v' + y^" v" + I\s

(the total quantity of the component specified by the suffix) must be

constant ; therefore, since

2
dv" z=z — dv\ and ds = - dv',

By this equation, the condition of stability is brought to the form

dfx^ d}.i^ d}x^

When the substance specified by the sufiix is a component of either

of the homogeneous masses, the terms ——^ and s -j
—

' may generally

be neglected. When it is not a component of either, the terms ;//,

„ ,
dy

I
„ dy J

Ki , V -=— , V -z may of course be cancelled, but we must not

apply the formula to cases in which the substance spreads over the

diaphragm separating the homogeneous masses.
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In the cases just discussed, the problem of the stability of certain

surfaces of tension has been solved by considering the case of neutral

equilibrium,—a condition of neutral equilibrium aifoi'ding the equa-

tion of the limit of stability. This method probably leads as directly

as any to the result, when that consists in the determination of the

value of a certain quantity at the limit of stability, or of the relation

which exists at that limit between certain quantities specifying the

state of the system. But problems of a more general character may
require a more general treatment.

Let it be required to ascertain the stability or instability of a fluid

system in a given state of equilibrium with respect to motion of the

surfaces of tension and accompanying changes. It is supposed that

the conditions of internal stability for the separate homogeneous

masses are satisfied, as well as those conditions of stability for the

surfaces of discontinuity which relate to small portions of these

surfaces with the adjacent masses. (The conditions of stability

which are here supposed to be satisfied have been already discussed

in part and will be farther discussed hereafter.) The fundamental

equations for all the masses and surfaces occurring in the system are

supposed to be known. In applying the general criteria of stability

which are given on page 110, we encounter the following difficulty.

The question of the stability of the system is to be determined by
the consideration of states of the system which are slightly varied

from that of which the stability is in question. These varied states

of the system are not in general states of equilibrium, and the rela-

tions expressed by the fundamental equations may not hold true of

them. More than this,—if we attempt to describe a varied state of

the system by varied values of the quantities which describe the

initial state, if these varied values are such as are inconsistent with

equilibrium, they may fail to determine with precision any state of

the system. Thus, when the phases of two contiguous homogeneous

masses are specified, if these phases are such as satisfy all the condi-

tions of equilibrium, the nature of the surface of discontinuity (if with-

out additional components) is entirely determined ; but if the phases

do not satisfy all the conditions of equilibrium, the nature of the sur-

face of discontinuity is not only undetermined, but incapable of deter-

mination by specified values of such quantities as we have employed

to express the nature of surfaces of discontinuity in equilibrium. For

example, if the temj)eratu]"es in contiguous homogeneous masses are

different, we cannot specify the thermal state of the surface of discon-

tinuity by assigning to it any particular temperature. It would be
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necessary to give the law by which the temperature passes over from

one value to the other. And if this were given, we could make no

use of it in the determination of other quantities, unless tlie rate of

change of the temperature were so gradual, that at every point we

could regard the thermodynamic state as unaffected by the change

of temperature in its vicinity. It is true that we are also ignorant in

respect to surfaces of discontinuity in equilibrium of the law of

change of those quantities which are different in the two phases in

contact, such as the densities of the components, but this, although

unknown to us, is entirely determined by the nature of the phases in

contact, so that no vagueness is occasioned in the definition of any of

the quantities which we have occasion to use with reference to such

surfaces of discontinuity.

It may be obsei'ved that we have established certain differential

e(piations, especially (497), in which only tlie initial state is neces-

sarily one of equilibrium. Such equations may be regarded as estab-

lishing certain properties of states bordering upon those of equilib-

rium. JUit these are properties wdiich hold true only when we dis-

regard quantities })roportio)ial to the square of those which express

the degree of variation of the system from equilibrium. Such equa-

tions are therefore sufficient for the determination of the conditions of

equilibrium, but not sufficient for the determination of the conditions

of stability

We may, however, use the following method to decide the question

of stability in such a case as has been described.

Beside the real system of which the stability is in question, it will

be convenient to conceive of another system, to which we shall attri-

bute in its initial state the same homogeneous masses and surfaces of

discontinuity which belong to the real system. We shall also sup-

pose that the homogeneous masses and surfaces of discontinuity of

this system, which we may call the imaginary system, have the same

fundamental equations as those of the real system. But the imagin-

ary system is to differ from the real in that the variations of its state

are limited to such as do not violate the conditions of equilibrium

relating to temperature and the potentials, and that the fundamental

equations of the sui^faces of discontinuity hold true for these varied

states, although the condition of equilibrium expressed by equation

(500) may not be satisfied.

Before proceeding farther, we must decide whether we are to

examine the question of stability under the condition of a constant

external temperature, or under the condition of no transmission of
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heat to or from external bodies, and in general, to what external

inflnences we are to regard the system as subject. It will be con-

venient to suppose that the exterior of the system is fixed, and that

neither matter nor heat can be transmitted through it. Other cases

may easily be reduced to this, or treated in a manner entirely

analogous.

Now if the real system in the given state is unstable, there must be

some slightly varied state in which the energy is less, but the entropy

and the quantities of the components the same as in the given state,

and the exterior of the system unvaried. But it may easily be shown

that the given state of the system may be made stable by constrain-

ing the surfaces of discontinuity to pass through certain fixed lines

situated in the unvaried surfaces. Hence, if the surfaces of discon-

tinuity are constrained to pass through corresponding fixed lines in

the surfaces of discontinuity belonging to the vai'ied state just men-

tioned, there must be a state of stable equilibrium for the system

thus constrained which will differ infinitely little from the given state

of the system, the stability of which is in question, and will have the

same entropy, quantities of components and exterior, but less energy.

The imaginary system will have a similar state, since the real and

imaginary systems do not difter in respect to those states which

satisfy all the conditions of equilibrium for each surface of discontin-

uity. That is, the imaginary system has a state, differing infinitely

little from the given state, and with the same entropy, quantities of

components, and exterior, but with less energy.

Conversely, if the imaginary system has such a state as that just

described, the real system will also have such a state. This may be

shown by fixing certain lines in the surfaces of discontinuity of the

imaginary system in its state of less energy and then making the

energy a minimum under the conditions. The state thus determined

will satisfy all the conditions of equilibrium for each surface of dis-

continuity, and the real system will therefore have a corresponding

state, in which the entropy, quantities of components, and exterior

will be the same as in the given state, but the energy less.

We may therefore determine whether the given system is or is not

unstable, by applying the general criterion of instability (7) to the

imaginary system.

If the system is not unstable, the equilibrium is either neutral or

stable. Of course we can determine which of these is the case by

refei'ence to the imaginary system, since this determination depends

upon states of equilibrium, in regard to which the real and imaginary
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systems do not diifer. We may therefore determine wliether the

equilibrium of the given system is stable, neutral, or unstable, by

applying the criteria (3)-(7) to the imaginary system.

The result Avhich we have obtained may be expressed as follows:—
In applying to a fluid system which is in equilibrium, and of which

all the small parts taken separately are stable, the criteria of stable,

neutral, and unstable equilibrium, we may regard the system as

under constraint to satisfy the conditions of equilibrium relating to

temperature and the potentials, and as satisfying the relations ex-

pressed by the fundamental equations for masses and surfaces, even

when the condition of equilibrium relating to pressui'e [equation

.

(500)] is not satisfied.

It follows immediately from this principle, in connection with equa-

tions (501) and (86), that in a stable system each surface of tension'

must be a surface of minimum area for constant values of the volumes

which it divides, when the other surfaces bounding these volumes

and the perimeter of the surface of tension are regarded as fixed

;

that in a system in neutral equilibrium each surface of tension will

have as small an area as it can receive by any slight variations under

the same limitations ; and that in seeking the remaining conditions of

stable or neutral equilibrium, when these are satisfied, it is only

necessary to consider such varied surfaces of tension as have similar

properties with reference to the varied volumes and perimeters.

We may illustrate the method which has been desci'ibed by apply-

ing it to a problem but slightly different from one already (pp. 408,

409) discussed by a different method. It is required to determine the

conditions of stability for a system in equilibrium, consisting of two
diiferent homogeneous masses meeting at a surface of discontinuity,

the perimeter of which is invariable, as well as the exterior of the

whole system, which is also impermeable to heat.

To determine what is- necessary for stability in addition to the

condition of minimum area for the surface of tension, we need only

consider those varied surfaces of tension which satisfy the same con-

dition. We may therefore regard the surface of tension as deter-

mined by v', the volume of one of the homogeneous masses. But the

state of the system would evidently be completely determined by the

position of the surface of tension and the temperature and potentials,

if the entropy and the quantities of the components were variable-

and therefore, since the entropy and the quantities of the components

are constant, the state of the system must be completely determined

by the position of the surface of tension. We may therefore reo-ard
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all the quantities relating to the system as functions of v' , and the

condition of stability may be written

de ^ , 1 (Z2f
-j-,av 4- - TTo dv 2 + etc. > 0,
dv 2 dv^ * -^ '

where f denotes the total energy of the system. Now the conditions

of equilibrium require that

di

Hence, the general condition of stability is that

,,-^.>0. (541)

Now if we write f', f", f^ for the energies of the two masses and of

the surface, we have by (86) and (501), since the total entropy and

the total quantities of the several components are constant,

d^ = de' + dE" + ds^ = — jo' dv' —p" dv" + g ds,

or, since dv" = — dv',

de
, „ ds

, , \_,= _y+,/ + ^_ (542)

Hence,
d'^e _ _ dp' dp" da ds d^s

dv^^ ~~dv'^d^'^ dv' dv' + ^' ^2' v-5
'^)

and the condition of stability may be written

d^s dj)' dp" da ds

dv'^ dv' dv' dv' dv''
^

If we now simplify the problem by supposing, as in the similar case

on page 409, that we may disregard the variations of the tempera-

ture and of all the potentials except one, the condition will reduce to

d^s ^ / , „ . T^ ds \ du,

''•<r.->(''' ->-+'<??) sf- <"='

The total quantity of the substance indicated by the sufRx , is

y.'v' ^y."^" + r\s.

Making this constant, we have

(./ - r ." + r. |,)*/+(.g + »-|^ + /^)...=o.,«o)

The condition of equilibrium is thus reduced to the form

d^s ^
{y^'-^'^" + ^^%)'

. .

"^dv'^^ ,dr,' , „dr/' ,
dry ^^^'^

V -4^- + V -f-~ -+ s -^
ClfX^ ClfX^ (IfX^
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where ^=—, and ^—, are to be detertnined fioni tlie form of the surface
dv civ

of tension by purely geometrical considerations, and the other differ-

ential coefficients are to be determined from the fundamental equa-

tions of the homogeneous masses and the surface of discontinuity.

Condition (540) may be easily deduced from this as a particular case.

The condition of stability with reference to motion of surfaces of

discontinuity admits of a very simple expression when we can treat

the temperature and potentials as constant. This will be the case

Avhen one or more of the homogeneous masses, containing together

all the component substances, may be considered as indefinitely large,

the surfaces of discontinuity being finite. F'or if we write 2As for

the sum of the variations of the energies of the several liomogeneous

masses, and '2Ae^ for the sum of the variations of the energies of the

several surfaces of discontinuity, the condition of stability may be

written

2/le -f- :^At^ > 0, (548)

the total entropy and the total quantities of the several components

being constant. The variations to be considei*ed are infinitesimal,

but the character z/ signifies, as elsewhere in this paper, that the ex-

pression is to be interpreted without neglect of infinitesimals of the

higher orders. Since the temperature and potentials are sensibly con-

stant, the same will be true of the pressures and surface-tensions, and

by integration of (Sti) and (501) we may ol)tain for any homogeneous

mass
/ie = t J/; — p -iv + Hi Am I

-\- //g -^'i^i + etc.,

and for any surface of discontinuity

At^ = t Ajf + (7 As -{- //j A7n\ -f //| Am.^ -f etc.

These equations will hold true of finite differences, when <, ^, a, //,,

/ig, etc. are constant, and will therefore hold true of infinitesimal dif-

ferences, under the same limitations, without neglect of the infinitesi-

mals of the higher orders. By substitution of these values, the condi-

tion of stability will reduce to the form

— :^{pAv) + 2{(TAs) > 0,

or 2{2jAv) — 2{(tAs) < 0. (549)

That is, the sum of the products of the volumes of the masses by

their pressures diminished by the sum of the products of the areas of

the surfaces of discontinuity by their tensions must be a maximum.

This is a purely geometrical condition, since the pressures and ten-

Trans. Conn. Acad., Vol. III. 53 Nov., 1877.
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sioiis are constant. This condition is of interest, because it is always

sufficient for stability with reference to motion of surfaces of discon-

tinuity. For any system may be reduced to the kind described by

putting certain parts of the system in communication (by means of

line tubes if necessary) with large masses of the proper temperatures

and potentials. This may be done without introducing any new

movable surfaces of discontinuity. The condition (549) when

applied to the altered system is therefore the same as when applied

to the original system. But it is sufficient for the stability of the

altered system, and therefore sufficient for its stability if we diminish

its freedom by breaking the connection between the original system

and the additional parts, and therefore sufficient for the stability of

the original system.

On the PosslhlUty of the Formation of a Fluid of different Phase

within any Homogeneous Fluid.

The study of surfaces of discontinuity throws considerable light

upon the subject of the stability of such homogeneous fluid masses

as have a less pressure thau others formed of the same components

(or some of them) and having the same temperature and the same

potentials for their actual components.*

In considering this subject, we must first of all inquire how far our

method of treating surfaces of discontinuity is applicable to cases in

which the radii of curvature of the surfaces are of insensible magni-

tude. That it should not be applied to such cases without limitation

is evident from the consideration that we have neglected the term

i(Ci — C^8{c ^ — C2) i" equation (494) on account of the magnitude

of the radii of curvature compaied with the thickness of the non-

homogeneous film. (See page 390). When, however, only spherical

masses are considered, this term will always disappear, since Cj and

C2 will necessarily be equal.

Ao^ain, the surfaces of discontinuity have been regarded as separat-

ino- homogeneous masses. But we may easily conceive that a globu-

lar mass (surrounded by a large homogeneous mass of diflerent

nature) may be so small that no part of it will be homogeneous, and

that even at its center the matter cannot be regarded as having any

phase of matter in m-ass. This, however, will cause no difficulty, if

vve reoard the phase of the interior mass as determined by the same

* See page 161, where the term stable is used (as indicated on page 159) in a less

strict sense than in the discussion whicli liere follows.
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relations to the exterior mass as in other cases. Beside the pliase of

the exterior mass, there will always be another phase having the

same temj^eratui-e and potentials, but of the general nature of the

small globule which is surrounded by that mass and in equililjrium

with it. This phase is completely determined by the system con-

sidered, and in general entirely stable and perfectly capable of realiza-

tion in mass, although not such that the exterior mass could exist in

contact with it at a plane surface. This is the phase which we are to

attribute to the mass which we conceive as existing within the divid-

ing surface.*

With this understanding with regard to the phase of the fictitious

interior mass, there will be no ambiguity in the meaning of any of

the symbols which we have employed, when applied to cases in

which the surface of discontinuity is spherical, however small the

radius may be. Nor will the demonstration of the general theorems

require any material modification. The dividing surface, which

determines the value of £**, if, in\, m|, etc., is as in other cases to be

placed so as to make the term ^(C^ 4- 6\)^(Cj -f-Cg) in equation (494)

vanish, i. e., so as to make equation (497) valid. It has been shown

on pages 387-389 that when thus placed it will sensibly coincide

witl^ the physical sui-face of discontiiuiity, when this consists of a

non-homogeneous film separating homogeneous masses, and having

I'adii of curvature which are large compared with its thickness. But

in regard to globular masses too small for this theorem to have any

application, it will be worth while to examine how far we may be

certain that the radius of the dividing surface will have a real and

positive value, since it is only then that our method will have any

natural application.

The value of the radius of the dividing surface, supposed spherical,

of any globule in equilibrium with a surrounding homogeneous

fluid may be most easily obtained by eliminating G from equations

(500) and (502), which have been derived from (497), and contain

the radius implicitly. If we write r for this radius, equation (500)

may be written
2 0' = {p' -p")r, (550)

the single and double accents referring respectively to the interior

and exterior masses. If we write [f], [//], [m.^], [m^], etc. for the

* For example, in applying our formulae to a microscopic globule of water in

steam, by the density or pressure of the interior mass we should understand, not the

actual density or pressure at the center of the globule, but the density of liquid water

(in kirge quantities) which has tlie temperature and potential of the steam.
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excess of the total energy, entropy, etc. in and about the globuhir

mass above what would be in the same space if it were uniformly

filled with matter of the phase of the exterior mass, we shall have

necessarily with reference to the whole dividing surface

,s ^ ^,] _ „' (,^.' _ ,/),
,^s ^ [-,^j _ ^,

(,^^/ _ ,^^,.)^

^^1 = [''^il - ^'' iVi - Yi")^ "4 = D^s] - ^'' iVi — r/)^ etc.,

where fy', fy", //y', 7/y", y^', y y" , etc. denote, in accordance with our

usage elsewhere, the volume-densities of energy, of entropy, and of

the various components, in the two homogeneous masses. We may
thus obtain from equation (502)

a S = [e] - V' (fy'- 6y") - t [/;] + t V' (//y' - //y")

-^i,[m,'\-\-fi,v'{y,'-y,")-ti2[m^-]+^i.,v'{y.,--y.,")-^^tc. (551)

But by (93),

p' - — 6y'+n/v'+/^l ri'+/'2 7'2'+et<-'.,

p" = - ^x"+t ;/y"+ //j ri"+ /V2 ^2"+ etc.

Let us also write for brevity

W= [f] — t [;/] - //, [m,] — 1.1, [m.^ — etc. (552)

(It will be observed that the value of W is entirely determined by

the nature of the physical system considered, and that the notion of

the dividing surface does not in any way enter into its definition.)

We shall then have

a s — W+ v' ip' —2)"), (553)

or, substituting for s and v' their values in terms of r,

4 n r^ a z= W + irrr^ (^V - p"), (554)

and eliminating ff by (550),

^rrr^ {jy' -p") = W, (555)

If we eliminate r instead ff, we have

Now, if we first suppose the difference of the pressures in the homo-

geneous masses to be very small, so that the surface of discontin-

uity is nearly plane, since without any important loss of generality
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we may regard a as ])ositive (for if o' is not positive when p'-=.p", the

surface when phine would not be stable in regard to position, as

it certainly is, in every actual case, when the proper conditions are

fulfilled with respect to its perimeter), we see by (550) that the pres-

sure in the interior mass must be the greater; i. e., we may regard

o', }>'—p\ and r as all positive. By (555), the value of W will

also be positive. But it is evident from equation (552), which defines

TF. that the value of this quantity is necessarily real, in any possible

case of equilibrium, and can only become infinite when r becomes

infinite and p'^zp". Hence, by (556) and (558), as p' —p" increases

from very small values, W, r, and o' have single, real, and positive

values imtil they simultaneously reach the value zero. Within this

limit, our method is evidently applicable ; beyond this limit, if

such exist, it will hardly be profitable to seek to interpi-et the

equaiions. But it must be remembered that the vanishing of the

radius of the somewhat arbitrarily determined dioiding surface may
not necessarily involve the vanishing of the physical heterogeneity.

It is evident, however, (see pp. 387-389,) that the globule must be-

come insensible in magnitude before r can vanish.

It may easily be shown that the quantity denoted by W is the

work which w^ould be required to form (by a reversible process) the

heterogeneous globule in the interior of a very large mass having

initially the uniform phase of the exterior mass. For this work is

equal to the increment of energy of the system wlien the globule is

formed without change of the entropy or volume of the whole system

or of the quantities of the several components. Now [//], [^/^,], [^ig],

etc. denote the increments of entropy and of the components in the

space where the globule is formed. Hence these quantities witli the

negative sign will be equal to the increments of entropy and of the

components in the rest of the system. And hence, by equation (86),

will denote the increment of energy in all the system except where

the globule is formed. But [f] denotes the increment of energy in

that part of the system. Therefore, by (55-2), W denotes the total

increment of energy in the circumstances supposed, or the work re-

quired for the formation of the globule.

The conclusions which may be drawn from these considerations

with respect to the stability of the homogeneous mass of the pres-

sure p" (supposed less than ^>', the pressure belonging to a difi^erent

phase of the same temperature and jiotentials) are very obvious.
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Within those limits within which the method used has been justified,

the mass in question must be regarded as in strictness stable with

respect to the growth of a globule of the kind considered, since W,
the work required for the formation of such a globule of a certain

size (viz., that which would be in equilibrium with the surrounding

mass), will always be positive. Nor can smaller globules be formed,

ioY they can neither be in equilibrium with the surrounding mass,

being too small, nor grow to the size of that to which W relates.

If, however, by any external agency such a globular mass (of the size

necessar)'^ for equililtrium) were formed, the equilibrium has already

(page 406) been shown to be unstable, and with the least excess in

size, the interior mass would tend to increase without limit except

that depending on the magnitude of the exterior mass. We may
therefore regard the quantity W as affording a kind of measure of

the stability of the phase to which j»>" relates. In equation (557) the

value of W is given in terms of C and p' —p". If the three funda-

mental equations which give o', ^j*', and jt>" in terms of the tempera-

ture and the potentials were known, we might regard the stability

( TF) as known in terms of the same variables. It will be observed

that when p'=zp" the value of W is infinite. If p' —p" increases

without greater changes of the phases than are necessary for such

increase, W will vary at first very nearly inversely as the square of

p' —p\ \i p'^p" continues to increase, it may perhaps occur that

TFreachcs the value zero; but until this occurs the phase is certainly

stable with respect to the kind of change considered. Another kind

of change is conceivable, which initially is small in degree but may

be great in its extent in space. Stability in this respect or stability

in respect to continuous changes of phase has already been discussed

(see page 162), and its limits determined. These limits depend

entirely upon the fundamental equation of the homogeneous mass of

which the stability is in question. But with respect to the kind of

chano-es here considered, which are initially small in extent but great

in degree, it does not appear how we can fix the limits of stability

with the same precision. But it is safe to say that if there is such a

limit it must be at or beyond the limit at which o' vanishes. This

latter limit is determined entirely by the fundamental equation of the

surface of discontinuity between the phase of which the stability is

in question and that of which the possible formation is in question.

We have already seen that when o' vanishes, the radius of the divid-

ing surface and the work W vanish with it. If the fault in the

homogeneity of the mass vanishes at the same time, (it evidently
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cannot vanish sooner,) the phase becomes unstable at this limit.

But if the fault in the homogeneity of the physical mass does not

vanish with r, a and W,—and no sufficient reason appears why this

should not be considered as the general case,—although the amount

of work necessary to upset the equilibrium of the phase is infinitesi-

mal, this is not enough to make the phase vmstable. It appears

therefore that TF is a somewhat one-sided measure of stability.

It must be remembered in this connection that the fundamental

equation of a surface of discontinuity can hardly be regarded as

capable of experimental determination, except for plane surfaces, (see

l^p. 394, 395,) although the relation for spherical surfaces is in the

nature of things entirely determined, at least so far as the phases are

separately capable of existence. Yet the foregoing discussion yields

the following practical results. It has been shown that the real

stability of a phase extends in genei-al beyond that limit (discussed

on pages 160, 161), which may be called the limit of practical stabil-

ity, at which the phase can exist in contact with another at a plane

surface, and a formula has been deduced to express the degree of

stability in such cases as measured by the amount of work necessary

to upset the equilibrium of the phase when supposed to extend indefi-

nitely in space. It has also been shown to be entirely consistent

with the principles established that this stability should have limits,

and the manner in wdiich the general equations would accommodate
themselves to this case has been pointed out.

By equation (553), which may be written

Wz=z ffs - (y - p") v', (559)

we see that the work W consists of tw^o parts, of which one is always

positive, and is expressed by the product of the superficial tension

and the area of the surface of tension, and the other is always nega-

tive, and is numerically equal to the product of the diiFerence of pres-

sure by the volume of the interior mass. We may regard the first

part as expressing the work spent in forming the surface of tension,

and the second part the work gained in forming the interior mass.*

* To make the ph}'sical significance of the above more clear, we may suppose the

two processes to be performed separately in the following manner. We may sup-

pose a large mass of the same phase as that which has the volume v' to exist

initially in the interior of the other. Of course, it must be surrounded by a resistino-

envelop, on account of the difference of the pressures. We may, however, suppose

this envelop permeable to all the component substances, although not of such proper-

ties that a mass can form on the exterior like that within. We may allow the
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Moreover, the second of these quantities, if we neglect its sign, is

always equal to two-thirds of the first, as appears from equation (550)

and the geometrical relation v'^r^^'s. We may therefore write

W— ^as=h^ {p' - p") v'. (560)

On the Possible Formation at the Surface ii^here tv}0 different Homo-
geneous Fluids meet of a. Fluid of different Phase from either.

Let A, B, and C he three difl:erent fliiid phases of matter, which

satisfy all the conditions necessary for equilibrium when they meet

at plane surfaces. The components of A and B may be the same or

diffei'cnt, but C must have no comjionents except such as belong to A
or B. Let us su])pose masses of the phases A and B to be separated

by a very thin sheet of the phase C. This sheet will not necessarily

be plane, but the sum of its principal curvatures must be zero. We
may treat such a system as consisting simply of masses of the phases

A and B with a certain surface of discontinuitj^, for in our previous

discussion there lias been nothing to limit tlie thickness or the nature

of the film separating homogeneous masses, except that its thickness

has generally been supposed to be small in comparison with its radii

of curvature. The value of the superficial tension for such a fihn

will be Cac+o'bc, if wt" denote by these symbols tlie tensions of tlie

surfaces of contact of the phases A and C, and B and C, respectively.

This not only appears from evident mechanical considerations, but

may also be easily verified by equations (502) and (93), the first of

which may be regarded as defining the quantity a. This value will

not be affected by diminishing the thickness of the film, until the

envelop to yield to the internal pressure until its contents are increased by v' without

materially affecting its superficial area. If this be done sufficiently slowly, the phase

of the mass within will remain constant. (See page 139.) A homogeneous mass of

the volume v' and of the desired phase has thus been produced, and the work gained

is evidently {l^ —i>')v'.

Let us suppose that a small aperture is now opened and closed in the envelop so as

to let out exactly the volume // of the mass within, the envelop being pressed inwards

in another place so as to diminish its contents by this amount. During the extrusion

of the drop and until the orifice is entirely closed, the surface of the drop must adhere

to the edge of the orifice, but not elsewhere to the outside surface of the envelop.

The work done in forming the surface of the drop will evidently be as or ^{'p'—p")v'

.

Of this work, the amount {p'—j)")v' will be expended in pressing the envelop inward,

and the rest in opening and closing the orifice. Both the opening and the closing

will be resisted by the capillary tension. If tlie orifice is circular, it must have, when

widest open, the radius determined by equation (550).
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limit is reached at which the interior of the fihii ceases to have the

properties of matter in muss. Now if o'ac+ ^bc is greater than Cab?

the tension of the ordinary surface between A and B, such a film will

be at least practically unstable. (See page 408.) We cannot sup-

pose that 0'ab^<5'ac+ <^BCi for this would make the ordinary surface

between A and B unstable and difficult to realize. If o'ab=o"'ac+ Cbc,

we may assume, in general, that this relation is not accidental, and

that the ordinary surface of contact for A and B is of the kind which

we have described.

Let us now su|)pose the phases A and B to vary, so as still to

satisfy the conditions of equilibrium at plane contact, but so that the

pressure of the phase C determined by the temperature and poten-

tials ofA and B shall become less than the pressure of A and B. A
system consisting of the phases A and B will be entirely stable with

respect to the formation of any phase like C. (The case is not quite

identical with that considered on page 161, since the system in ques-

tion contains two different phases, but the principles involved are

entirely the same.)

With respect to variations of the phases A and B in the opposite

direction we must consider two cases separately. It will be conven-

ient to denote the pressures of the three phases by /j»a, Pk, Pc-, and to

regard these quantities as functions of the temperature and potentials.

If o'ab=<5'ac+<5'bc for values of the temperature and potentials which

make jii9A=Jt)B=^:>c5 it will not be possible to alter the temperature and

potentials at the surface of contact of the phases A and B so that

jOa=/*b, and Pc^pA, foi" the relation of the temperature and potentials

necessary for the equality of the three pressui-es will be preserved by

the increase of the mass of the phase C. Such variations of the phases

A and B might be brought about in separate masses, but if these

were brought into contact, there would be an immediate formation

of a mass of the phase C, with reduction of the phases of the adjacent

masses to such as satisfy the conditions of equilibrium with that

phase.

But if o'ab<^<5'ac+<5'bc5 we can vary the temperature and potentials

so that ^;<A=i^B5 and^c^i^A, and it will not be possible for a sheet of

the phase of C to form irnmediately, i. e., while the pressure of C is

sensibly equal to that of A and B ; for mechanical work equal to

<5'ac+<5'bc— o'ab per unit of surface might be obtained by bringing the

system into its original condition, and therefore produced without

any external expenditure, unless it be that of heat at the temperature

of the system, which is evidently incapable of producing the work.

Trans. Conn. Acad., Vol. III. 54 Nov., 1877.
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The stability of the system in respect to such a change must therefore

extend beyond the point where the presfuire af C commences to be

less than that of A and B. We arrive at the same result if we use

the expression (520) as a test of stability. Since this expression has

a finite positive value when the pressures of the phases are all equal,

the ordinary surface of discontinuity must be stable, and it must

require a finite change in the circumstances of the case to make it

become unstable,*

In the preceding paragraph it is shown that the surface of contact

of phases A and B is stable under certain circumstances, with respect

to the formation of a thin sheet of the phase C. To complete the

demonstration of the stability of the surface with respect to the for-

mation of the phase C, it is necessary to show that this phase cannot

be formed at the surface in lentiform masses. This is the more neces-

sary, since it is in this manner, if at all, that the phase is likely to be

formed, for an incipient sheet of phase C would evidently be unstable

when o'ab<^<3'ac+ o'bc, antl would immediately break up into lentiform

masses.

It will be convenient to consider first a lentiform mass of phase C
in equilibrium between masses of phases A and B which

meet in a plane surface. Let figiire 10 represent a section

of such a system through the centers of the spherical sur-

faces, the mass of phase A lying on the left ofD E H' F G,

and that of phase B on the right of D E H" F G. Let

Jjj* the line joining the centers cut the spherical surfaces in

H' and H", and the plane of the surface of contact of A
and B in L Let the radii of EH'F and E H" F be

denoted by r', r", and the segments I H', I H" by x\ x".

Also let I E, the radius of the circle in which the spher-

ical surfaces intersect, V)e denoted by K. By a suitable

Fig. 10. application of the general condition of equilibrium we

may easily obtain the equation

r' — x'
,

r" — x"
/ « -, \

Cac— -, h ffhc—-J— = Gak, (561)

* It is true that such a case as we are now considering is formally excluded in the

discussion referred to, which relates to a plane surface, and in which the system is

supposed thoroughly stable with respect to the possible formation of any different

homogeneous masses. Yet the reader will easily convince himself that the criterion

(520) is perfectly valid in this case with respect to the possible formation of a thin

sheet of the phase <
', which, as we have seen, may be treated simply as a different

kind of surface of di.^continuity.
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which signifies that the components parallel to EF of the tension

(Tac and <Tbc are together equal to (T^b- If we denote by W tlie

amount of work which must be expended in order to form such ;i

lentiform mass as we are considering between masses of indefinite

extent having the phases A and B, we may write

TF= J/ - iV, (562)

where M denotes the work expended in replacing the surface be-

tween A and B by the surfaces between A and C and B and C, and

A^ denotes the work gained in replacing the masses of phases A and

B by the mass of phase C. Then

31= (TAC Sac + 'S'bc^bc - ^-ab «ab, (568)

where 6'ac, -Sge, Sab denote the areas of the three surfaces concerned
;

and
]V= V ipc - lu) + V" ipc - Pn), (564)

where F' and V" denote the >'olumes of the masses of the phases

A and B which are replaced. Now by (500),

2 <5^AC -I
'^ ^BC

Pc-~Pa= ——, and pc-ps^——' (565)

(566)

We have also the geometrical relations

F' r= f ;r r'2 x' - ^ tt R'' (r' - x),

V" = %7i r"2 £c" - ^ TT 7^2 (r" - x!').

By substitution we obtain

N= I 7t o'ac r' x! — \7i R^ Oac-^—
r

+ t ;r o-Bc /•" ^" ^'inR^ ff^, ''~«^. (567)

and by (561),

N= I n O-Ac r' x' + | tt (Tbc r" x!' -%7T R^ (Tab. (568)

Since

2 7T r' X = Sac, '^ T?" r" x" = Ssc, TT R^ = Sab,

we may write

^= I (o'ac *^ac + O'bc 6'bc - O'ab Sab). (569)

(The reader will observe that the ratio of 3f and JV is the same as

that of the corresponding quantities in the case of the spherical mass

treated on pages 416-422.) We have therefore

W= ij (o-Ac Sac + O'bc ^bc - ^-ab 5ab). (570)

This value is positive so long as



42(3 J. ^V. Gihhs—E(j[vilihritim of Heterogeneous Substances.

since ^s^c > s^b, and 6^ > 6\vb.

But at the limit, when

G.KC + O'Br = Cab,

we see by (561) that

<*AC ^^^ ^ABj anCl Sbc = i'*AB?

and therefore TF= 0,

It should however be observed that in the immediate vicinity of the

circle in which the three surfaces of discontinuity intersect, the

physical state of each of these surfaces must be affected by the

vicinity of the others. We cannot, therefore, rely upon the formula

(570) except when the dimensions of the lentiform mass are of sensi-

ble magnitude.

We may conclude that after we pass the limit at which p^ becomes

greater thauj^A and jOr (supposed equal) lentiform masses of phase C
will not be formed until either o'ab=o'ac4-o'bc, or p^,—jOa becomes so

great that the lentiform mass which would be in equilibrium is one

of insensible magnitude. [The diminution of the radii with increas-

ing values of Pc—Ph is indicated by equation (565).] Hence, no

mass of phase C will be formed until one of these limits is reached.

Although the demonstration relates to a plane surface between A
and B, the result must be applicable whenever the radii of curvature

have a sensible magnitude, since the effect of such curvature may be

disregarded when the lentiform mass is of sufficiently small.

The equilibrium of the lentiform mass of phase C is easily proved

to be unstable, so that the quantity W affords a kind of measui-e of

the stability of plane surfaces of contact of the phases A and B.*

* If we represent phases by the position of points in such a manner that coexistent

phases (in the sense in which the term is used on pa^e 152) are represented by the

same point, and allow ourselves, for brevity, to speak of the phases as having the

positions of the points by which they are represented, we may say that three coex-

istent phases are situated where three series of pairs of coexistent phases meet or

intersect. If the three phases are all fluid, or when the eifects of solidity may be

disregarded, two cases are to be distinguished. Either the three series of coexistent

phases all intersect,—this is when each of the thi-ee surface-tensions is less than the

sum of the two others,—or one of the series terminates where the two others inter-

gect this is where one surface tension is equal to the sum of the others. The series

of coexistent phases will be represented by lines or surfaces, according as the phases

have one or two independently variable components. Similar relations exist when

the number of components is greater, except that they are not capable of geometrical

representation without some limitation, as that of constant temperature or pressure or

certain constant potentials.
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Essentially the same principles apply to the more general problem

in which the phases A and B have moderately different pressures, so

that their surfaces of contact must be curved, but the radii of curva-

ture have a sensible magnitude.

In order that a thin film of the phase C may be in equilibrium

between masses of the phases A and B, the following equations must

be satisfied

—

where Cj and C2 denote the principal curvatures of the film, the

centers of positive curvature lying in the mass having the phase A.

Eliminating c^-\-C2, we have

Cbc {Pk - Pc) = (Jkc {Pc - Pb\

It is evident that if pc has a value greater than that determined by
this equation, such a film will develop into a larger mass; if jt>c has a

less value, such a film will tend to diminish. Hence, when

Obc + (^ac

the phases A and B have a stable surface of contact.

Again, if more than one kind of surface of discontinuity is possible

between A and B, for any given values of the temperature and poten-

tials, it will be impossible for that having the greater tension to dis-

place the other, at the temperature and with the potentials con-

sidered. Hence, when pc has the value determined by equation

(571), and consequently o'ac+o'bc is one value of the tension for the

surface between A and B, it is impossible that the ordinary tension

of the surface o'ab should be greater than this. If (J'ab=<5'ac+0'bc5

when equation (571) is satisfied, we may presume that a thin film of

the phase C actually exists at the surface between A and B, and that

a variation of the phases such as would make p^ greater than the

second number of (571) cannot be brought about at that surface, as

it would be prevented by the formation of a larger mass of the phase

C. But if o'AB<C^Ac+crBc when equation (571) is satisfied, this equa-

tion does not mark the limit of the stability of the surface between

A and B, for the temperature or potentials must receive a finite
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change before the film of phase C, or (as we shall see in the following

paragraph) a lentiform mass of that phase, can be formed.

The work which must be expended in order to form on the surface

between indefinitely large masses of phases A and B a lentiform mass

of phase C in equilibrium, may evidently be represented by the

formula

TF= (Tac '*>ac + G^c >%c — Cab ^ab

- Pc Vc + Pa T^a + Pb Fb, (573)

where /Sac, i^bc denote the areas of the surfaces formed between A and

C, and B and C, S^n the diminution of the area of the surface between

A and B, F^ the volume formed of the phase C, and V^, Fg the

diminution of the volumes of the phases A and B. Let us now sup-

pose (Tac, O'bc, o'ab, Pa, Pb to remain constant and the external bound-

ary of the surface between A and B to remain fixed, while pc

increases and the surfaces of tension receive such alterations as are

necessary for equilibrium. It is not necessary that this should be

physically possible in the actual system ; we may suppose the changes

to take place, for the sake of argument, although involving changes

in the fundamental equations of the masses and surfaces considered.

Then, regarding TF simply as an abbreviation for the second member

of the preceding equation, we have

dW=z Cac diS^c + ^BC c^'S'bc — Cab f^'^^'AB

-PcdVc + pj,dVj,-\-p^dV^- Vcdpc. (574)

But the conditions of equilibrium requii'e that

Cac <^^ac + C'bc dS^c — Cab ^^'^ab

—pcdVc-^Pj,dVj,+pjidVB = 0. (575)

Hence,

dW= - Vcdpc. (576)

Now it is evident that Vq. will diminish as 2^c increases. Let us

integrate the last equation sup])osing pc to increase from its original

value until Vc vanishes. This will give

W" — W = a negative quantity, (577)

where W' and W" denote the initial and final values of W. But

1F"=0. Hence W is positive. But this is the value of W in the

original system containing the lentiform mass, and expresses the

work necessary to form the mass between the phases A and B. It is

therefore impossible that such a mass should form on a surface be-
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tween these phases. We must however observe the same limitation

as in the less general case already discussed,—that Pc — Phi Pc—P^
must not be so great that the dimensions of the lentiform mass are of

insensible magnitude. It may also be observed that the value of

these differences may be so small that there will not be room on the

surface between the masses of phases A and B for a mass of phase C
sufficiently large for equilibrium. In this case we may consider a

mass of phase C which is in equilibrium upon the surface between A
and B in virtue of a constraint applied to the line in which the three

surfaces of discontinuity intersect, which will not allow this line to

become longer, although not preventing it from becoming shorter.

We may prove that the value of W is positive by such an integra-

tion as we have used before.

Substitution of Pressures for Potent ials in Fundamental Equations

for Surfaces.

The fundamental equation of a surface which gives the value of

the tension in terms of the temperature and potentials seems best

adapted to the purposes of theoretical discussion, especially when the

number of components is large or undetermined. But the experi-

mental determination of the fundamental equations, or the application

of any result indicated by theory to actiial cases, will be flicilitated

by the use of other quantities in place of the potentials, which shall

be capable of more direct measurement, and of which the numerical

expression (Avhen the necessary measurements have been made) shall

depend upon less complex considerations. The numerical value of a

potential depends not oidy upon the system of units employed, but

also upon the arbitrary constants involved in the definition of the

energy and entroj^y of the substance to which the potential relates,

or, it may be, of the elementary substances of which that substance

is formed, (See page 152.) This fact and the want of means of

direct measurement may give a certain vagueness to the idea of the

potentials, and render the equations which involve them less fitted to

give a clear idea of physical relations.

Now the fundamental equation of each of the homogeneous masses

which are separated by any surface of discontinuity affords a relation

between the pressure in that mass and the temperature and potentials.

We ai-e therefore able to eliminate one or two potentials from the

fundamental equation of a surface by introducing the pressures in

the adjacent masses. Again, when one of these masses is a gas-
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mixture which satisfies Dalton's law as _2;iven on page 215, the

potential for each siniple gas may be expressed in terms of the tem-

perature and the partial pressure belonging to that gas. By the

introduction of these partial pressures we may eliminate as many
potentials from the fundamental equation of the surface as there are

simple gases in the gas-mixture.

An equation obtained by such substitutions may be regarded as a

fundamental equation for the surface of discontinuity to which it

relates, for when the fundamental equations of the adjacent masses

are known, the equation in question is evidently equivalent to an

equation between the tension, temperature, and potentials, and we
must regard the knowledge of the properties of the adjacent masses

as an indispensable preliminary, or an essential part, of a complete

knowledge of any surface of discontinuity. It is evident, however,

that from these fundamental equations involving pressures instead

of potentials we cannot obtain by difterentiation (without the use of

the fundamental equations of the homogeneous masses) precisely the

same relations as by the difterentiation of the equations between the

tensions, temperatures, and potentials. It will be interesting to

inquire, at least in the more important cases, what relations may be

obtained by difterentiation from the fundamental equations just

described alone.

If there is but one component, the fundamental equations of the

two homogeneous masses aftbrd one relation more than is necessary

for the elimination of the potential. It may be convenient to regard

the tension as a function of the temperature and the difi'erence of the

pressures. Now we have by (508) and (98)

(Iff =. — 7/s dt — Fd/u
J

,

d{p'-p") = (//v'-O <^f + (r'-r") d^,.

Hence we derive the equation

dff = - [iH - -y—p, ( Vv' - //v")) dt _ —-—,, d (2)' -p'% (5 V8)

which indicates the differential coetticients of ff with respect to t and

p' — p". For surfaces which may be regarded as nearly plane, it is

evident that —.
j. represents the distance from the surface of ten-

y -r
sion to a dividing surface located so as to make the superficial

density of the single ctmiponent vanish, (being positive, when the
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latter surface is on the side specified by the double accents,) and that

the coefficient o^ dt (without the negative sign) represents the super-

ficial density of entropy as determined by the latter dividing surface,

i. e., the quantity denoted by 7/^, ,
, on page 397.

When there are two components, neither of which is co))fined to

the surface of discontinuity, we may regard the. tension as a function

of the temperature and the pressures in the two homogeneous masses.

The values of the difterential coefficients of the tension with respect

to these variables may be represented in a simple form if we choose

such substances for the components that in the particular state con-

sidered each mass shall consist of a single component. This will

always be possible when the composition of the two masses is not

identical, and will evidently not affiect the values of the diffi?rential

coefficients. We then have

da =z — //s dt— F^ dfj^ — F^^ dfj.^, ,

d2)' = 7/v' dt -\- y' dfj.^ ,

dp" = Vv" dt + y" d/A^^
,

where the marks
^
and

^^
are used instead of the usual , and g to indi-

cate the identity of the component specified with the substance of

the homogeneous masses sjiecified by ' and ". Eliminating d/j and

dj-t^^ we obtain

dff= — (?k— -; 7v' —^ W) dt -^ dp' -^ djy". (5 7 9)
\ y y J y y

We may generally neglect the difference of p' and /)", and write

da = -
(//,

- ^' ;a'- j} Vv") dt -
(^^,

+ ^;^
dp. (580)

The equation thus modified is strictly to be regarded as the equation

for a plane surface. It is evident that —^ and —;' represent the dis-

y y
tances from the surface of tension of the two surfaces of which one

would make F^ vanish, and the other /"^^, that —7 + —f represents

the distance between these two surfaces, or the diminution of vol-

ume due to a unit of the surface of discontinuity, and that the coeffi-

cient of dt (without the negative sign) represents the excess of

entropy in a system consisting of a unit of the surface of discon-

tinuity with a part of each of the adjacent masses above that

which the same matter would have if it existed in two homogeneous
masses of the same phases but without any surface of discontinuity.

Trans. Conn. Acad., Vol. III. 5.5 Nov.. ISTI.
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IVen in

(A mass thus existingf without any surfjice of discontinuity must of

course he entirely surrounded hy matter of the same phase.)*

The form in which the values of (—r-) and |-t-I are ffi

\dtjp \dp/t ^

equation (580) is adapted to give a clear idea of the relations of

these quantities to the particular state of the system for which they

are to be determined, but not to show how they vary with the state

of the system. For this pixrpose it will be convenient to have the

values of these diiferential coefficients expressed with reference to

ordinary components. Let these be specified as usual by ^ and g-

If we eliminate df/^ and c^/Zg from the equations

— do' = //s df ~\- I\ d/.(
, + / '3 d/./^,

dp = r]y' dt + r/ fZ/'i + y2 ^^/'a?

dp — //v" dt + ;//' f//<i + 7/3", c?/<2,

* If we set

7 7 ^ '

and in like manner

)' 7
^'

we may easily obtain, by means of equations (93) and (507),

Es = )f Hs + (T - i9 F. (d)

Now equation (580) may be written

d(y= -K.di + Vdp. (e)

Differentiating {d\ and comparing the result with (e), we obtain

dE, = t dHs -i)d V.
, (/)

The quantities Ej and Hs might be called the superficial densities of energy and

entropy quite as properly as those which we denote by e^ and tj^. In fact, when the

composition of both of the homogeneous masses is invariable, the quantities Es and

H are much more simple in their definition than £s and ??s, and would probably be

more naturally suggested by the terms superficial density of energy and of entropy. It

would also be natural in this case to regard the quantities of the homogeneous masses

as determined by the total quantities of matter, and not by tlie surface of tension or

any other dividing surface. But such a nomenclature and method could not readily

be extended so as to treat cases of more than two components with entire generality.

In the treatment of surfaces of discontinuity in this paper, the definitions and

nomenclature which have been adopted will be strictly adhered to. The object of

this note is to suggest to the reader how a different method might be used in some

cases with advantage, and to show the precise relations between the quantities which

are used in this paper and others which might be confounded with them, and which

may be made more prominent when the subject is treated differently.
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we obtain

where

j^ (J
do' = — dt -{- -^ dp, (581)

Ji. .A.

-A = rt"r2'-ri'r2", (582)

B= ;/v' Ki' r^' , (583)

c= i\ ir," - r2') + ^^2 (ri'- ri")- (584)

It will be observed that A vanishes when the composition of the two

homogeneous masses is identical, while Ji and C do not, in general,

and that the value of ,i is negative or positive according as the mass

specified by ' contains the component specified by ^ in a greater or

less proportion than the other mass. Hence, the values both of

(-^-] and of (^— ) become infinite when the diiFerence in the com-
di/p V^pjt

position of the masses vanishes, and change sign when the greater

proportion of a component passes from one mass to the other. This

might be inferred from the statements on page 155 respecting coex-

istent phases which are identical in composition, from which it appears

that when two coexistent phases have nearly the same composition,

a small variation of the temperature or pressure of the coexistent

phases will cause a relatively very great variation in the composition

of the phases. The same relations are indicated by the graphical

method represented in figure 6 on page 184.

With regard to gas-mixtures which conform to Dalton's law, we

shall only consider the fundamental equation for plane surfaces, and

shall suppose that there is not more than one component in the liquid

which does not appear in the gas-mixture. We have already seen

that in limiting the fundamental equation to plane surfaces we can

get rid of one potential by choosing such a dividing surface that the

superficial density of one of the components vanishes. Let this be

done with respect to the component peculiar to the liquid, if such there

is ; if there is no such component, let it be done with respect to one

of the gaseous components. Let the remaining potentials be elim-

inated by means of the fundamental equations of the simple gases.

We may thus obtain an equation between the superficial tension, the

temperature, and the several pressures of the simple gases in the

gas-mixture or all but one of these pressures. Now, if we eliminate

(?/<25 ^A'sj ^^^' fi'oni the equations
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da = - ih^^.dt - r2, o f^/^2 + ^zi\^ ^^/^3 + «^tc.,

dp2 = ^V2 <^<^ + K2 ^t^2l

dp^ = 7/v3 ^^^ + Ks ^/^35

etc.,

where the suffix j relates to the component of which the surface-

density has been made to vanish, and y^, y<,, etc. denote the densities

of the gases specified in the gas mixture, and p^iPz-) ^^c, ?/v2) '/vs,

etc. the pressures and the densities of entropy due to these several

gases, we obtain

da = — (//sd)
?i'-'

/;v2 -~ '/V3 — etc. ) dt

-£AiA^dp,-^^-l-^dp,-etc. (585)
/ 2 / 3

This equation aftbi-ds values of the differential coefficients of ff wdth

respect to t, p„, p^, etc., which may be set equal to those obtained

by differentiating the equation between these variables.

Thermal and Mechanical lielations pertaining to the Extension of a

Surface of Discontinuity.

The fundamental equation of a surface of discontinuity with one

or two component substances, beside its statical applications, is of

use to determine the heat absorbed when the surface is extended

under certain conditions.

Let us first consider the case in which there is only a single com-

ponent substance. We may treat the surface as plane, and place

the dividing surface so that the surface density of the single com-

ponent vanishes. (See page 397.) If we suppose the area of the

surface to be increased by unity without change of temperatui'e or

of the quantities of liquid and vapor, the entropy of the whole will

be increased by //s(j). Therefore, if we denote by Q the quantity of

heat which must be added to satisfy the conditions, we shall have

<? = ^%(,,, (586)

and by (514),
„ d(J dff

, „^.
*^

dt d\ogt ^ ^

It will be observed that the condition of constant quantities of

liquid and vapor as determined by the dividing surface which we

have adopted is equivalent to the condition that ll;ie total volume

shall remain constant.
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Again, if the surface is extended Avithout application of heat, while

the pressure in the liquid and vapor remains constant, the tempera-

ture will evidently be maintained constant by condensation of the

vapor. If we denote by J/ the mass of vapor condensed per unit of

surface formed, and by a/m' and //m" the entropies of the liquid and

vapor per unit of mass, the condition of no addition of heat will

require that

^/('/m"-Vm') = %(,). (588)

The increase of the volume of liquid will be

%(i)
(589)

(590)

y' iVu" — ^mT
and the diminution of the volume of vapor

/(W-'/mT
Hence, for the work done (per unit of surface formed) by the exter-

nal bodies which maintain the pressure, we shall have

vm — '/u \/ y /

and, by (514) and (131),

da dt dG da
dt dp dp d log p' V ' /

The work expended directly in extending the film will of course be

equal to a.

Let us now consider the case in . which there are two component

substances, neither of which is confined to the surface. Since we can-

not make the superficial density of both these substances vanish by
any dividing surface, it will be best to regard the surface of tension

as the dividing surface. We may, however, simplify the formula by
choosing such substances for components that each homogeneous
mass shall consist of a single component. Quantities relating to

these components will be distinguished as on page 431. If the sur-

face is extended until its area is increased by unity, while heat is

added at the surface so as to keep the temperature constant, and the

pressure of the homogeneous masses is also kept constant, the phase

of these masses will necessarily remain unchanged, but the quantity

of one will be diminished by l\, and that of the other by /"
. Their

T' r
entropies will therefore be diminished by —

' ?/v' and —~ r/y", respect-



436 J. W. Gibbs—JEquilibrium of Heterdgeneous Substances.

ively. Hence, since the surface receives the increment of entropy 7j^,

the total quantity of entropy will be increased by

r r
'/s — p Vv - // '/v ,

which by equation (580) is equal to

Therefore, for the quantity of heat Q imparted to the surface, we

shall have

^ \dt/p \d\ogtJp ^ '

We must notice the difference between this formula and (587). In

(593) the quantity of heat Q is determined by the condition that the

temperature and pressures shall remain constant. In (587) these

conditions are equivalent and insufficient to determine the quantity

of heat. The additional condition by which Q is determined may be

most simply expressed by saying that the total volume must remain

constant. Again, the differential coefficient in (593) is defined by

considering ^9 as constant ; in the differential coefficient in (587) p
cannot be considered as constant, and no condition is necessary to

give the expression a definite value. Yet, notwithstanding the differ-

ence of the two cases, it is quite possible to give a single demonstra-

tion which shall be applicable to both. This may be done by con-

sidering a cycle of operations after the method employed by Sir

William Thomson, who first pointed out these relations.*

The diminution of volume (per unit of surface formed) will be

y^r. r. /do-

-'+7'=-(i). <^-';/' y" \dp

and the work done (per unit of surface formed) by the external

bodies which maintain the pressure constant will be

Compare equation (592).

The values of Q and W may also be expressed in terms of quanti-

ties relating to the oi'dinai*y components. By substitution in (593)

and (595) of the values of the differential coefficients which are given

by (581), we obtain

* See Proc. Boy. Soc, vol. ix, p. 255, (June, 1858) ; or Phil. Mag., Ser. 4, vol. xvii,

p. 61.
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Q=-tj^, W=-pj. (596)

where A, B^ and (J represent the expressions indicated by (582)-

(584). It will be observed that the values of Q and TTare in general

infinite for the surface of discontinuity between coexistent phases

which differ infiuitesimally in composition, and change sign with

the quantity A. When the phases are absolutely identical in

composition, it is not in general possible to counteract the effect of

extension of the surface of discontinuity by any supply of heat. For

the matter at the surface will not in general have the same composi-

tion as the homogeneous masses, and the matter required for the

increased surface cannot be obtained from these masses without

altering their phase. The infinite values of Q and W are explained

by the fact that when the phases are nearly identical in composition,

the extension of the surface of discontinuity is accompanied by the

vaporization or condensation of a very large mass, according as the

liquid or the vapor is the richer in that component which is necessary

for the formation of the surface of discontinuity.

If, instead of considering the amount of heat necessary to keep the

phases from altering while the surface of discontinuity is extended,

we consider the variation of temperatiire caused by the extension of

the surface while the pressures remain constant, it appears that this

variation of temperature changes sign with y ^"y2' '^Yi'y/ > ^^^

vanishes with this quantity, i. e., vanishes when the composition of

the phases becomes the same. This may be inferred from the state-

ments on page 155, or from a consideration of the figure on page 184.

When the composition of the homogeneous masses is initially abso-

lutely identical, the effect on the temperature of a finite extension or

contraction of the surface of discontinuity will be the same,—either

of the two will lower or raise the temperature according as the tem-

perature is a maximum or minimum for constant pressure.

The effect of the extension of a surface of discontinuity which is

most easily verified by experiment is the effect upon the tension

befoi-e complete equilibrium has been reestablished throughout the

adjacent masses. A fresh surface between coexistent phases may be
regarded in this connection as an extreme case of a recently extended

surface. When sufiicient time has elapsed after the extension of a

surface originally in equilibrium between coexistent phases, the

superficial tension will evidently have sensibly its original value,

unless there are substances at the surface which are either not found
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at all in the adjacent masses, or are found only in quantities com-

parable to those in which they exist at the surface. But a surface

newly formed or extended may have a very different tension.

This will not be the case, however, when there is only a single

component substance, since all the processes necessary for equilibrium

are confined to a film of insensible thickness, and will require no

appreciable time for their completion.

When there are two components, neither of which is confined to the

surface of discontinuity, the reestalilishment of equilibrium after the

extension of the surface does not necessitate any processes reaching

into tlie interior of the masses except the transmission of heat be-

tween the surface of discontinuity and the interior of the masses.

It appears from equation (593) that if the tension of the surface

diminishes with a rise of temperature, heat must be supplied to the

surface to maintain the temperature uniform when the surface is ex-

tended, i. e., the effect of extending the surface is to cool it; but if

the tension of any surface increases with the temperature, the effect

of extending the surface will be to raise its temperature. In either

case, it will be observed, the immediate effect of extending the sur-

face is to increase its tension. A contraction of the surface will of

course have the opposite effect. But the time necessary for the re-

establishment of sensible thermal equilibrium after extension or con-

traction of the surface must in most cases be very short.

In regard to the formation or extension of a surface between two

coexistent phases of more than two components, there are two ex-

treme cases which it is desirable to notice. When the superficial

density of each of the components is exceeding small compared with

its density in either of the homogeneous masses, the matter (as well

as the heat) necessary for the formation or extension of the normal

surface can be taken from the immediate vicinity of the surface with-

out sensibly changing the properties of the masses from which it is

taken. But if any one of these superficial densities has a considerable

value, while the density of the same component is very small in each

of the homogeneous masses, both absohxtely and relatively to the

densities of the other components, the matter necessary for the for-

mation or extension of the normal surface must come from a consider-

able distance. Especially if we consider that a small difference of

density of such a component in one of the homogeneous masses will

probably make a considerable difference in the value of the corres-

ponding potential [see eq. (217)], and that a small difference in the

value of the potential will make a considerable difference in the ten-
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sion [see eq, (508)], it will be evident that in this case a consider-

able time will bo necessary after the formation of a fresh surface or

the extension of an old one for the reestablishment of the normal

value of the superficial tension. In intermediate cases, the reestab-

lishment of the normal tension will take ])lace with different degrees

of raj)idity.

But whatever the number of component substances, provided that

it is greater than one, and whether the reestablishment of equilibrium

is slow or rapid, extension of the surface will generally produce

increase and contraction decrease of the tension. It would evidently

be inconsistent with stability that the opposite effects should be pro-

duced. In general, therefore, a fresh surface between coexistent

phases has a greater tension than an old one,* By the use of fresh

surfaces, in experiments in capillai'ity, we may sometimes avoid the

effect of minute quantities of foreign substances, which may be

present without our knowledge or desire, in the fluids which meet at

the surface investigated.

When the establishment of equilibrium is rapid, the variation of

the tension from its normal value will be ma.nifested especially during

the extension or contraction of the surface, the phenomenon resem-

bling that of viscosity, except that the variations of tension arising

from variations in the densities at and about the surface will be the

same in all directions, while the variations of tension due to any

property of the surface really analogous to viscosity would be great-

est in the direction of the most rapid extension.

We may here notice the different action of traces in the homogene-

ous masses of those substances which increase the tension and of

those which diminish it. When the volume-densities of a component

are very small, its surface-density may have a considerable positive

value, but caii only have a very minute negative one.f For the

value when negative cannot exceed (numerically) the product of the

greater volume-density by the thickness of the non-homogeneous

* When, however, homogeneous masses which have not coexistent phases are

brought into contact, the superficial tension may increase with the course of time.

The superficial tension of a drop of alcohol and water placed in a large room will

increase as the potential for alcohol is equaMzed throughout the room, and is dimin-

ished in the vicinity of the surface of discontinuity.

\ It is here supposed that we have chosen for components such substances as are

incapable of resolution into other components which are independentlj' variable in the

homogeneous masses. In a mixture of alcohol and water, for example, the compo-

nents must be pure alcohol and pure water.

Trans. Conn. Acad., Vol. III. 56 Jan., 1878.



440 J. W. Gihhs—Eqxdlihrium oj Heterogeneous Substances.

film. Each of these quantities is exceedingly small. The surface-

density when positive is of the same order of magnitude as the thick-

ness of the non-homogeneous film, but is not necessarily small com-

pared with other surface-densities because the volume-densities of

the same substance in the adjacent masses are small. Now the

potential of a substance which forms a very small part of a homo-

geneous mass certainly increases, and probably very rapidly, as the

proportion of that component is increased. [See (IVI) and (21*7).]

The pressure, temperature, and the other potentials, will not be

sensibly afiected. [See (98).] But the efi:ect on the tension of this

increase of the potential will be proportional to the surface-density,

and will be to diminish the tension when the surface-density is

positive. [See (508).] It is therefore quite possible that a very

small trace of a substance in the homogeneous masses should greatly

diminish the tension, but not possible that such a trace should greatly

increase it.*

Impermeahle Vilms.

We have so far supposed, in treating of suriaces of discontinuity,

that they afibrd no obstacle to the passage of any of the component

substances from either of the homogeneous masses to the other. The

case, however, must be considered, in which there is a film of matter

at the surface of discontinuity which is impermeable to some or all of

* From the experiments of M. E. Duclaux, {Annales de Ghimie et de Physique, Ser. 4,

vol. xxi, p. 383,) it appears that one per cent, of alcohol in water will diminish the

superficial tension to .933, the value for pure water being unity. The experiments do

not extend to pure alcohol, but the difference of the tensions for mixtures of alcohol

and water containing 1 and 20 per cent, water is comparatively small, the tensions

being .322 and .336 respectively.

According to the same authority (page 427 of the volume cited), one 3200th part of

Castile soap will reduce the superficial tension of water by one-fourth ; one 800th part

of soap by one-half. These determinations, as well as those relating to alcohol and

water, are made by the method of drops, the weight of the drops of different liquids

(from the same pipette) bemg regarded as proportional to their superficial tensions.

M. Athanase Dupre has determined the superficial tensions of solutions of soap by

different methods. A statical method gives for one part of common soap in 5000 of

water a superficial tension about one-half as great as for pui'e water, but if the tension

be measured on a jet close to the orifice, the value (for the same solution) is sensibly

identical with that of pure water. He explains these diflierent values of the super-

ficial tension of the same solution as well as tlie great effect on the superficial tension

which a very small quantity of soap or other trifling impurity may produce, by the

tendency of the soap or other substance to form a film on the surface of the liquid.

(See Annales de Chiinie et de Physiiiup, Ser. 4, vol. vii, p. 409, and vol. ix, ]). .'i79.)
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the components of the contiguous masses. Such may be the case,

for example, when a film of oil is spread on a surface of water, even

when the film is too thin to exhibit the properties of the oil in mass.

In such cases, if there is communication between the contiguous

masses through other parts of the system to which they belong, such

that the components in question can pass freely from one mass to the

other, the impossibility of a direct passage through the film may be

regarded as an immaterial circumstance, so far as states of equilib-

rium are concerned, and our formula^ will require no change. But

when there is no such indirect communication, the potential for any

component for which the film is impermeable may have entirely

difterent values on opposite sides of the film, and the case evidently

requires a modification of our usual method.

A single consideration Avill suggest the proper treatment of such

cases. If a certain component which is found on both sides of a film

cannot pass from either side to the other, the fact that the part of the

component which is on one side is the same kind of matter with the

part on the other side may be disregarded. All the general relations

must hold true, which would hold if they were really different sub-

stances. We may therefore write //j for the potential of the com-

ponent on one side of the film, and j-i^ for the potential of the same

substance (to be treated as if it were a different substance) on the

other side ; ni\ for the excess of the quantity of the substance on the

first side of the film above the quantity which would be on that side

of the dividing surface (whether this is determined by the surface of

tension or otherwise) if the density of the substance were the same

near the dividing surface as at a distance, and m% for a similar quan-

tity relating to the other side of the film and dividing sm-face. On
the same principle, we may use 1\ and I^ to denote tlie values of

wi^j and m% per unit of siirface, and ??ii', m/, y ^^ y^' to denote the

(juantities of the substance and its densities in the two homogeneous

masses.

With such a notation, which may be extended to cases in which

the film is impermeable to any number of components, the equations

relating to the surface and the contiguous masses will evidently have

the same form as if the siibstances specified by the different suffixes

were all really different. The superficial tension will be a function

of //j and //g, with the temperature and the jiotentials for the other

components, and — /',, — i 2 ^^'il^ ^^^ equal to its differential coeffi-

cients with respect to /^j and //g. In a word, all the general rela-

tions which have been demonstrated may be applied to this case, if
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we remember always to treat the component as a different substance

according as it is found on one side or the other of the impermeable

film.

When there is free passage for the component specified by the suf-

fixes 1 and 2 throiigh other parts of the system, (or through any flaws

in the film,) we shall have in case of equilibrium //^m/Zg. If we wish

to obtain the fundamental equation for the surface wlien satisfying

this condition, without reference to other possible states of the sur-

face, we may set a.single symbol for /<i and //g in the more general

form of the fundamental equation. Cases may occur of an impermea-

bility which is not absolute, but which renders the transmission of

some of the components exceedingly slow. In such cases, it may be

necessary to distinguish at least two different fundamental equations,

one relating to a state of approximate equilibrium which may be

quickly established, and another relating to the ultimate state of

complete equilibrium. The former may be derived from the latter by

such substitutions as that just indicated.

T7ie Conditions of Internal Equilibrium for a System of Hetero-

geneous Fluid Classes without neglect of the Influence of the

Surfaces of Discontinuity or of Gravity.

Let us now seek the complete value of the variation of the energy

of a system of heterogeneous fluid masses, in which the influence of

gravity and of the surfaces of discontinuity shall be included, and

deduce from it the conditions of internal equilibrium for such a sys-

tem. In accordance with the method which has been developed, the

intrinsic energy, (/. e., the part of the energy which is independent of

of gravity,) the entrojDy, and the quantities of the several compon-

ents must each be divided into two parts, one of which we regard as

belonging to the surfaces which divide approximately homogeneous

masses, and the other as belonging to these masses. The elements

of intrinsic energy, entropy, etc., relating to an element of surface

Ds will be denoted by De^, Drf, Dm\, Dm%, etc., and those relating

to an element of volume Dv, by -Z^f^, D'f, Dm\, Dml, etc. We
shall also use Dm^ or FDs and Diti'^ or ;/_/>y to denote the total

quantities of matter relating to the elements Ds and Dv resjiectively.

That is,

Dm^ = rDs = Dm\ + Z>m| -f etc., (597)

Din'' — yDv — Din\ + Duil + etc. (598)

The part of the energy which is due to gravity must also be divided
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into two parts, one of which rehites to the elements Dm^, and|the

other to the elements Urn". The complete value of the variation of

the energy of the system will he represented by the expression

d/Be" + 6/ Dt^ + 6fg z Dm" + dfg z Dm^, (599)

in which g denotes the force of gravity, and z tlie height of the ele-

ment above a fixed horizontal plane.

It will be convenient to limit ourselves at first to the consideration

of reversible variations. This will exclude the formation of new

masses or surfaces. We may therefore regard any infinitesimal

variation in the state of the system as consisting of infinitesimal

variations of the quantities relating to its several elements, and

bring the sign of variation in the preceding formula after the sign

of integration. If we then substitute for f5Z>£% dJJt^, SDni", 6Din^,

the values given by equations (i;5), (497), (597), (598), we shall have

for the condition of eciuilibrium with respect to reversible variations

of the internal state of the system

ft dBif -fp 6Bv +fl.ii 6Dm\ +./"//2 f^Uml + etc.

+ /7 SBif +/(J (SlJs+fji^ (UJm\ +.//' o SBml + etc.

4- fg 6z Bm"+fg z dBm\ + /// z 8Bm\ + etc.

+yV ^^ Dm^ +fg z dBni\ -^fg z 6Bra\ -\- etc. = 0, (600)

Since equation (497) relates to surfaces of discontinuity which are

initially in equilibrium, it might seem that this condition, although

always necessary for equilibrium, may not always be sufticient. It is

evident, however, from the form of the condition, that it includes the

particular conditions of equilibrium relating to every possible deforma-

tion of the system, or reversil)le variation in the distribution of

entropy or of the several components. It therefore includes all the

relations between the difl:erent parts of the system which are neces-

sary for equilibrium, so far as reversible variations are concerned,

(The necessary relations between the various quantities relating to

each element of the masses and surfaces are expressed by the funda-

mental equation of the mass or surface concerned, or may be imme-

diately derived from it. See pp. 140-144 and 391-393.)

The variations in (600) are subject to the conditions which arise

from the nature of the system and from the supposition that the

changes in the system are not such as to affect external bodies. This

supposition is necessary, unless we are to consider the variations in

the state of the external bodies, and is evidently allowable in seeking

the conditions of equilibrium which relate to the interior of the sys-
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tern.* But before we consider the equations of condition in detail,

we may divide the condition of equilibrium (600) into the three condi-

tions

ft diJt,'' +ft dlJif = 0, (601)

- fjy SDv +f o- SlJs + fg 6z Bni'-^fg 6z Bnv^ — 0, (602)

//^i rfl>m\ +//', 6Dm\ -\-fgz6I)rn^\ +fgz6Dm\

+ //73 dDm\+fi.(2 6I))n%-\-fgz6Dml^fgzdI>m%

+ etc. = 0. (603)

For the variations which occur in any one of the three are evidently

independent of those which occur in the other two, and the equations

of condition will relate to one or another of these conditions sepa-

rately.

The variations in condition (601) are subject to the condition that

the entropy of the whole system shall remain constant. This maybe
expressed by the equation

fdJJif -i-fSBtf = 0. (604)

To satisfy the condition thus limited it is necessary and sufficient that

t = const. (605)

throughout the whole system, which is the condition of thermal

equilibrium.

The conditions of mechanical equilibrium, or those that relate to

the possible deformation of the system, are contained in (602), which

may also be written

—y> SIJv -{-fff dJ)s+fg y 6z I)v -\-fg FSz Ih — 0. (606)

It will be observt>d that this condition has the same form as if the

difterent fluids wei-e separated by heavy and elastic membranes with-

out rigidity and having at every point a tension uniform in all direc-

tions in the plane of the surface. The variations in this formula.

* We have sometimes given a physical expression to a supposition of this kind, in

problems in which the peculiar condition of matter in the vicinity of surfaces of dis-

continuity was to be neglected, by regarding the system as surrounded by a rigid and

impermeable envelop. But the more exact treatment which we are now to give the

problem of equilibrium would require us to take accoimt of tlie influence of the

envelop on the immediately adjacent matter. Since this involves the consideration of

surfaces of discontinuity between-solids and fluids, and we wish to limit ourselves at

present to the consideration of the equilibrium of fluid masses, we shall give up the

conception of an impermeable envelop, and regard the system as bounded simply by a

imaginary surface, which is not a surface of discontinuity. The variations of the

system must be such as do not deform the surface, nor affect the matter external to it.
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beside their necessary geometrical relations, are siil)ject to the condi-

tions that tlie external snrface of the system, and the lines in which

the surfaces of discontinuity meet it, are fixed. The formula may be

reduced by any of the usual methods, so as to give the particular

conditions of mechanical equilibrium. Perhaps the following method

will lead as directly as any to the desired result.

It Avill be observe<l the quantities aftected by 6 in (606) relate

exclusively to the position and size of the elements of volume and

surface into which the system is divided, and that the variations 6p
and 6a do not enter into the formula either explicitly or implicitly.

The equations of condition which concern this formula also relate

exclusively to the variations of the system of geometrical elements,

and do not contain either 6p or Sff. Hence, in determining whether
the first member of the formula has the value zero for every possible

variation of the system of geometrical elements, we may assign to

6p and 6a any values whatever, which may simplify the solution of

the problem, without inquiring wdiether such values are physically

possible.

NoAV when the system is in its initial state, the pressure jo, in each
of the parts into Avhich the system is divided by the surfaces of ten-

sion, is a function of the co-ordinates which determine the position of

the element Dv, to which the pressure relates. In the varied state

of the system, the element I)v will in general have a diflferent position.

Let the variation 6}) be determined solely by the change in position

of the element Dv. This may be expressed by the equation

in which J-
,

i:
, ^? are determined by the function mentionedax ay dz '

and f^a', ^y, 6z by the variation of the position of the element Dv.
Again, in the initial state of the system the tension o", in each of

the different surfaces of discontinuity, is a function of two co-ordinates

a?,, GJ.^, which determine the' position of the element Ds. In the
varied state of the system, this element will in general have a diffei--

ent position. The change of position may be resolved into a com-
ponent lying in the surface and another normal to it. Let the varia-

tion 6a be determined solely by the first of these components of the
motion of Ds. This may be expressed by the equation

r>^ da P. , da ^
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in wliieli , are determined by the function mentioned, and
doo^ doo„

(5^Cc5j, 6 00^, by the component of the motion of J)s which lies in the

plane of the surface.

With this understanding, which is also to apply to Sp and 6

a

when contained implicitly in any expression, w^e shall proceed to the

reduction of the condition (606).

With respect to any one of the volumes into which the system is

divided by the surfaces of discontinuity, we may write

/"p 6I)v = Sfp Dv — f dp Dv.

But it is evident that

6j'pI)v=fp6NDs,

where the second integral relates to the surfaces of discontinuity

bounding the volume considered, and 6]Sf denotes the normal com-

ponent of the motion of an element of the surface, measured outward.

Hence,

fp 6Dv =fp dNiJs ~ fd'p iJv.

Since this equation is true of each separate volume into Avhich the

system is divided, we may write for the whole system

fp dJDv =f{p'^2^") dNI)s - fS2} Dv, (609)

where j)' and p" denote the pressures on opposite sides of the element

Ds, and <^iV^is measured toward the side specified by double accents.

Again, for each of the surfaces of discontinuity, taken separately,

/ (J dDs= Sfo'Bs —fSff Ds,

and
dfaJJs — /o- (c, + Cg) SNDs +fG 6TDI,

where c^ and c^ denote the principal curvatures of the surface,

(positive, when the centers are on the side opposite to that toward

which (JiVis measured,) Dlaw element of the perimeter of the surface,

and (5^ 7' the component of the motion of this element which lies in the

plane of tlie surface and is perpendicular to the perimeter, (positive,

when it extends the surface). Hence we have for the whole system

fG6nsz=fa{c^ -f-Cg) SNDsi-f2{(rST)Dl-fd(rDs, (6 JO)

where the integration of the elements Dl extends to all the lines in

which the surfaces of discontinuity meet, and the symbol 2 denotes

a summation with respect to the several surfaces which meet in such

a line.

By equations (609) and (610), the general condition of mechanical

equilibrium is i-educed to the form
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-Ap' -p") SNDs ^fdpDv +fG (c, +C2) 6NIJS

-VJ'2{ff ST) Dl -^/SffBs+fg y dzDv +fg rSzUs — 0.

Arranging and combining terms, we have

J'{g y 6z -\- d])) Dv

+/[{p"-p')SJV+0 {€,+€,) SJ^+gr6z^6ff]Us

+/:^{ffST)Diz=o. (611)

To satisfy this condition, it is evidently necessary that the coefficients

of Dv, Ds, and Dl shall vanish throughout the system.

In order that the coefficient of Dv shall vanish, it is necessary and

sufficient that, in each of the masses into which the system is divided

by the surfaces of tension, p shall be a function of z alone, such that

'-t=-gy. (612)
dz

In oi-der that the coefficient of Ds shall vanish in all cases, it is

necessary and sufficient that it shall vanish for normal and for tan-

gential movements of the surface. P^'or normal movements we may
write

6(1=0, and 6z =z cos 3 dN,

where 3 denotes the angle which the normal makes with a vertical

line. The first condition therefore gives the equation

y_y' = (T(.-.-f.',)+^rcos5, (613)

which must hold true at every point in every surface of discontinuity.

The condition with respect to tangential movements shows that in

each surface of tension o is a function of z alone, such that

-^ = .,1. (614)

In order that the coefficient of Dl in (611) shall vanish, we
must have, for every point in every line in which surfaces of discon-

tinuity meet, and for any infinitesimal displacement of the line,

:^{g6T)=0. (615)

This condition evidently expresses the same relations between the ten-

sions of the surfaces meeting in the line and the directions of per-

pendiculars to the line drawn in the planes of the various surfaces,

which hold for the magnitudes and directions of foi-ces in equilibrium

in a plane.

In condition (603), the variations which relate to any component are

to be regarded as having the value zero in any part of the system in

Trans. Conn. Acad., "Vol. III. 57 Jan., IS'ZS.
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which that substance is not an actual component.* The same is true

with respect to the equations of condition, wliich are of the form

f6I>ml-J^fdDm\=0, ^

fdDml^fSI)ml = 0, t (616)

etc. )

(It is here supposed that the various components are independent, i. e.,

that none can be formed out of others, and that the parts of the sys-

tem in which any component actually occurs are not entirely sepa-

]-ated by parts in which it does not occur.) To satisfy the condition

(603), subject to these . equations of condition, it is necessary and

sufficient that the conditions

fx^-\-gz=z3I^, \ (617)

etc., )

(71/ J, J/gj 6tc. denoting- constants,) shall each hold true in those parts

of the system in which the substance specified is an actual component.

We may here add the condition of equilibrium relative to the possible

absorption of any substance (to be specified by the suffix „) by parts

of the system of which it is not an actual component, viz., that the

expression jA„^gz must not have a less value in such parts of the

system than in a contiguous part in which the substance is an actual

component.

From equation (613) with (605) and (617) we may easily obtain

the differential equation of a surface of tension (in the geometrical

sense of the term), when p\ p" , and ff are known in terms of the

temperature and potentials. For Cj + Cg and S may be expressed in

terms of the first and second differential coefficients of z with respect

to the horizontal co-ordinates, and p\ p'\ <J, and F in terms of the

temperature and potentials. But the temperature is constant, and for

each of the potentials we may substitute—gz increased by a constant.

We thus obtain an equation in which the only A'^ariables are z and its

first and second differential coefficients with respect to the horizontal

co-ordinates. But it will rai-ely be necessary to use so exact a method.

Within moderate differences of level, we may regard ;/', y" , and a as

constant. We may then integrate the equation [derived from (612)]

d{p'-.p") = g{y"^y')dz,

* Tbe term actual component has been defined for homogeneous masses on page 117,

and the definition may be extended to surfaces of discontinuity. It will be observed

that if a substance is an actual component of either of the masses separated by a sur-

face of discontinuity, it must be regarded as an actual component for that surface, as

well as when it occurs at the surface but not in either of the contiguous masses.
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whicli will give

j/^p" = c/{y"-/)z, (018)

where z is to be measured from the horizontal plane for which p'=p".

Substituting this value in (<>i:^), and neglecting the term containing

/ \ we have

c,+c,=^iz'---Zl)., (619)

where the coefficient of 2 is to be regarded as constant. Now the value

of z caimot be very large, in any surface of sensible dimensions, unless

y"~}/' is very small. We may therefore consider this equation as

practically exact, unless the densities of the contiguous masses are

very nearly equal. If we substitute for the sum of the curvatures

its value in terms of the differential coefficients of z with resi)eot to

the horizontal rectangular co-ordinates, x and y, we have

,
., dz'^\ d'^z _ .,

dz dz d'z
, A ,

dz'^\ d'z

\ dy^jdx'- dxdydxdy \ dx'^ ) dy''-

\ dx^ dy'^ I

(/(y"—7')— —z. (G20)

dy'

With regard to the sign of the root in the denominator of the

fraction, it is to be observed that, if we always take the positive

value of the root, the value of the whole fraction will be positive or

negative according as the greater concavity is turned upward or

downward. But we wish the value of the fraction to be positive

when the greater concavity is turned toward the mass specified by a

single accent. We should therefore take the positive or negative

value of the root according as this mass is above or below the surface.

The particular conditions of equilibrium which are given in the

last paragraph but one may be regarded in general as the conditions

of chemical equilibrium between the different parts of the system,

since they relate to the separate components.* But such a designa-

tion is not entirely appropriate unless the number of comisonents is

greater than one. In no case are the conditions of mechanical equi-

librium entirely independent of those which relate to temperature

and the potentials. For the conditions (612) and (614) may be re-

garded as consequences of (605) and (617) in virtue of the necessary

relations (98) and (508).

f

* Concerning another kind of conditions of chemical equilibrium, which relate to

the molecular arrangement of the components, and not to their sensible distribution in

space, see pages 197-203.

f Compare page 206, where a similar problem is treated without regard to the infiu-

ence of the surfaces of discontinuit_y.
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The mechanical conditions of equilibrium, however, have an espe-

cial importance, since we may always regard them as satisfied in any

liquid (and not decidedly viscous) mass in which no sensible motions

are observable. In such a mass, when isolated, the attainment of

mechanical equilibrium will take place very soon; thermal and chem-

ical equilibrium will follow more slowly. The thermal equilibrium

will generally require less time for its approximate attainment than

the chemical ; but the processes by which the latter is produced will

generally cause certain inequalities of temperature until a state of

complete equilibrium is. reached.

When a surface of discontinuity has more components than one

which do not occur in the contiguous masses, the adjustment of the

potentials for these components in accordance with equations (617)

may take place vei-y slowly, or not at all, for want of sufficient

mobility in the components of the surface. But when this surface

has only one component which does not occur in the contiguous

masses, and the temperature and potentials in these masses satisfy

the conditions of equilibrium, the potential for the component pecu-

liar to the surface will very quickly conform to the law expressed in

(617), since this is a necessary consequence of the condition of

mechanical equilibrium (614) in connection with the conditions

relating to temperature and the potentials which we have supposed

to be satisfied. The necessary distribution of the substance peculiar

to the surflice will be brought about by ex])ansions and contractions

of the surface. If the surface meets a third mass containing this

component and no other which is foreign to the masses divided by

the surface, the potential for this component in the surface will of

course be determined by tliat in the mass which it meets.

The particular conditions of mechanical equilibrium (6I2)-(615),

which may be regarded as expressing the relations 'which must sub-

sist between contiguous portions of a fluid system in a state of

mechanical equilibrium, are serviceable in determining whether a

given system is or is not in such a state. But the mechanical theo-

rems which relate to finite parts of the system, although they may
be deduced from these conditions by integration, may generally be

more easily obtained by a suitable application of the general condi-

tion of mechanical equilibrium (606), or by the application of ordi-

nary mechanical principles to the system regarded as subject to the

forces indicated by this equation.

It will be observed that the conditions of equilibrium relating to

temperature and tlic iiotciitials arc not affecteil by tlie surfaces of
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discontinuity. [Compare (228) and (2:U).] * Since a phase cannot

vary continuously without variations of the temperature or the

potentials, it follows from these conditions that the phase at any

point in a fluid system which has the same independently variable

components throughout, and is in equilibrium under the influence of

gravity, must be one of a certain number of phases which are com-

pletely determined by the phase at any given point and the dirt'erence

of level of the two points considered. If the phases thi'oughout the

fluid system satisfy the general condition of practical stability for

phases existing in large masses (viz., that the pressure shall be the least

consistent with the temperature and potentials), they will be entirely

determined by the phase at any given point and the differences of

level. (Compare page 210, whei'e the subject is treated without

regard to the influence of the surfaces of discontinuity.)

Conditions of equilihriuni rdati^uj to irreversible changes.—The
conditions of equilibrium relating to the absorption by any part of

the system of substances which are not actual components of that part

have been given on page 448. Those relating to the formation of new
masses and surfaces are inchided in the conditions of stability relat-

ing to such changes, and are not always distinguishable from them.

They are evidently independent of the action of gravity. We have

already discussed the conditions of stability with respect to the for-

mation of new fluid masses within a homogeneous fluid and at the

surface when two such masses meet (see pages 416-429), as well as

the condition relating to the ])ossibility of a change in the nature of

a surface of discontinuity. (See pages 400-403, where the surface

considered is plane, but the result may easily be extended to curved

surfaces.) We shall hereafter consider, in some of the more import-

ant cases, the conditions of stability with respect to the formation of

new masses and surfaces which are peculiar to lines in which several

surfaces of discontinuity meet, and ])oints in which several such lines

meet.

Conditions of stabiUty relating to the whole system.—Beside the

conditions of stability relating to very small parts of a system, which

are substantially independent of the action of gravity, and are dis-

cussed elsewhere, there are other conditions, which relate to the

* If the fluid system is divided into separate masses by solid diaphragms which are

permeable to all the components of the fluids independently, the conditions of equi-

librium of the fluids relating to temperature and the potentials wUl not be affected.

(Compare page 139.) The propositions which follow in the above paragraph may be

extended to this case.
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whole system or to considerable parts of it. To determine the ques-

tion of the stability of a giA^en fluid system under the influence of

gravity, when all the conditions of equilibrium are satis6ed as well

as those conditions of stability which relate to small parts of the sys-

tem taken separately, we may use the method desci'ibed on page

413, the demonstration of which (pages 411, 412) will not require

any essential modification on account of gravity.

When the variations of temperature and of the quantities 3/j, M„,

etc. [see (617)] involved in the changes considered are so small that

they may be neglected, the condition of stability takes a very simple

form, as we have already seen to be the case with respect to a sys-

tem uninfluenced by gravity. (See page 415.)

We have to consider a varied state of the system in which the

total entropy and the total quantities of the various components are

unchanged, and all variations vanish at the exterior of the system,

—

in which, moreover, the conditions of equilibrium relating to tem-

perature and the potentials are satisfied, and the relations expi-essed

by the fundamental equations of the masses and surfaces are to be

regarded as satisfied, although the state of the system is not one of

complete equilibrium. Let us imagine the slate of the system to vary

continuously in the coui'se of time in accordance with these condi-

tions and use the symbol d to denote the simultaneous changes which

take place at any instant. If we denote the total energy of the

system by E^ the value of clE may be expanded like that of 6E in

(699) and (600), and then reduced (since the values of t, /.t^+gz,

h2~\'U '^1 ^t^'- ^^'^ uniform throughout the system, and the total entropy

and total quantities of the several comjjonents are constant) to the

form

dE=i -y> dl)v ^fg dz Bm^+fo' dDs -{-fg dz Dm^
— —fp dDv +fg y dz Dv -\- f a dDs ^fg T dz Ds, (62

1

)

where the integrations relate to the elements expressed by the symbol

D. The value of p at any point in any of the various masses, and

that of o' at any point in any of the various surfaces of discontinuity

are entirely determined by the temperature and potentials at the

point considered. If the variations of t and J/,, il/g, etc. are to be

neglected, the variations of p and a will be determined solely by the

change in position of the point considered. Therefore, by (612) and

(614),
dp-=. — g y dz., da = g Fdz ;

and
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dE= -^fp cWv -/dp Dv-\-f(3 dDs +fda Ds
= - dfp I)v + d/G Ds. (622)

If we now integrate with respect to f/, commencing at the given

state of the system, we obtain

AE= - Afp JJv { AJ'G Ds, (623)

where A denotes the vahxe of a quantity in a varied state of the sys-

tem diminished by its value in the given state. This is true for finite

variations, and is therefore true for infinitesimal variations without

neglect of the infinitesimals of the higher oi'ders. The condition of

stability is therefore that

Afp Dv— Afff Ds <0, (6 24)

or that the quantity

fpDv-^j'ffDs (625)

has a maximum value, the values of p and o', for each different mass

or surface, being regarded as determined functions of z. (In ordin-

ary cases 0" may be regarded as constant in each surface of discon-

tinuity, and jt? as a linear function of z in each different mass.) It

may easily be shown (compare page 416) that this condition is always

sufficient for stability with reference to motion of surfiices of discon-

tinuity, even when the variations of t, M^, M2, etc. cannot be neg-

lected in the determination of the necessuri/ condition of stability

with respect to such changes.

0)1 the Possibility of the Forination of a Heic Surface of Discon-

tinuity where several Surfaces of Discontinuity meet.

When more than three surfaces of discontinuity between homo-

geneous masses meet along a line, Ave may conceive of a new surface

being formed between any two of the masses which do not meet in a

sui'face in the original state of the system. The condition of stability

with respect to the formation of such a surface maj^ be easily obtained

by the consideration of the limit between stability and instability, as

exemplified by a system which is in equilibrium when a very small

surface of the kind is formed.

To fix our ideas, let us suppose that there are four homogeneous
masses A, B, C, and D, which meet one another in four surfaces,

which we may call A-B, B-C, C-D, and D-A, these surfaces all meeting

along a line L. This is indicated in figure 11 by a section of the sur-
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faces cutting the line L at right angles at a point O. In an infini-

tesimal variation of the state of the system, we may conceive of a

small surface being formed between A and C (to be called A-C),

so that the section of the surfaces of discontimiity by the same
plane takes the form indicated in figure 12. Let us suppose that

Fig. U. Fig. 12.

the condition of equilibrium (615) is satisfied both for the line L in

which the surfaces of discontinuity meet in the original state of the

system, and for the two such lines (which we may call L' and L") in the

varied state of the system, at least at the points O' and O" where they

are cut by the plane of section. We may therefore form a quadri-

lateral of which the sides af5, f:iy, yd, 6(x are equal in numerical

value to the tensions of the several surfaces A-B, B-C, CD, D-A,

and are parallel to the normals to these surfaces at the point O
in the original state of the system. In like manner, for the varied

state of the system we can construct two triangles having similar

relations to the surfaces of discontinuity meeting at O' and O".

But the directions of the normals to the surfaces A-B and B-C

at O' and to C-D and D-A at O" in the varied state of the system

diifer infinitely little from the directions of the corresponding nor-

mals at O in the initial state. We may therefore regard afi, f3y

as two sides of the triangle representing the surfaces meeting at O',

and yd^ da as two sides of the triangle representing the surfaces

meeting at O". Therefore, if we join ay, this line will represent the

direction of the normal to the surface A-C, and the value of its ten-

sion. If the tension of a surface between such masses as A and C had

been greater than that represented by ay, it is evident that the initial

state of the system of surfaces (represent ed in figure 11) would have

been stable with respect to the possible formation of any such sur-

face. If the tension had been less, the state of the system would

have been at least practically unstable. To determine whether it is

unstable ill the strict sense of the term, or whether or not it is prop-
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erly to be regarded as in equilibrium, would require a more refined

analysis than we have used.*

The result which we have obtained may be generalized as follows.

When more than three surfaces of discontinuity in a fluid system meet

in equilibrium along a line, with respect to the surfaces and masses

immediately adjacent to any point of this line we may form a polygon

of which the angular points shall correspond in order to the different

masses separated by the surfaces of discontinuity, and the sides to

these surfaces, each side being perpendicular to the corresponding

surface, and equal to its tension. With respect to the formation of

new surfaces of discontinuity in the vicinity of the point especially

considered, the system is stable, if every diagonal of the polygon is

less, and practically unstable, if any diagonal is greater, than the

tension which woidd belong to the surface of discontinuity between
the corresponding masses. In the limiting case, when the diagonal

is exactly equal to the tension of the corresponding surface, the sys-

tem may often be determined to be unstable by the application of

the principle enunciated to an adjacent point of the line in which the

surfaces of discontinuity meet. But when, in the polygons con-

structed for all points of the line, no diagonal is in any case greater

* We may here remark that a nearer approximation in the theory of equihbrium and

stability might be attained, by taking special account, in our general equations, of the

lines in which surfaces of discontinuity meet. These lines might be treated in a

manner entirely analogous to that in which we have treated surfaces of discontinuity.

We might recognize linear densities of energy, of entropy, and of the several sub-

stances which occur about the line, also a certain linear tension. With respect to

these quantities and the temperature and potentials, relations would hold analogous to

those which have been demonstrated for surfaces of discontinuity. (See pp. 391-393.)

If the sum of the tensions of the lines L' and L", mentioned above, is greater than the

tension of the line L, this line will be in strictness stable (although practically unstable)

with respect to the formation of a surface between A and C, when the tension of such

a surface is a little less than that represented by the diagonal ay.

The different use of the term practically unstable in different parts of this paper need

not create confusion, since the general meaning of the term is in all cases the same.

A system is caUed practically unstable when a very small (not necessarily indefinitely

small) disturbance or variation in its condition will produce a considerable change.

In the former part of this paper, in which the influence of surfaces of discontinuity

was neglected, a system was regarded as practically unstable when such a result

would be produced by a disturbance of the same order of magnitude as the quantities

relating to surfaces of discontinuity which were neglected. But where surfaces of

discontinuity are considered, a system is not regarded as practically unstable, unless

the disturbance which will produce such a result is very small compared with the

quantities relating to surfaces of discontinuity of any appreciable magnitude.

Trans. Conn. Acad., Vol. III. 58 March, 1878.
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than the tension of the corresponding siirface, biit a certain diagonal

is equal to the tension in the polygons constructed for a finite portion

of the line, farther investigations are necessary to determine the

stability of the system. For this pui-pose, the method described on

page 413 is evidently applicable.

A similar proposition may be enunciated in many cases with re-

spect to a point about which the angular space is divided into solid

angles by surfaces of discontinuity. If these surfaces are in equilib-

rium, we can always form a closed solid figure without re-entrant

angles of which the angular points shall correspond to the several

masses, the edges to the surfaces of discontinuity, and the sides to

the lines in which these edges meet, the edges being perpendicular

to the corresponding surfaces, and equal to their tensions, and the

sides being perpendicular to the corresponding lines. Now if the

solid angles in the physical system are such as may be subtended by

the sides and bases of a triangular prism enclosing the vertical point,

or can be derived from such by deformation, the figure representing

the tensions will have the form of two triangular pyramids on oppo-

site sides of the same base, and the system will be stable or practic-

ally unstable with respect to the formation of a surface between the

masses which only meet in a point, according as the tension of a sur-

face between such masses is greater or less than the diagonal joining

the corresponding angular points of the solid representing the ten-

sions. This will easily appear on consideration of the case in which

a very small surface between the masses would be in equilibrium.

The Conditions of Stability for Fluids relating to the Formation

of a New Phase at a Litie in which Tliree Surfaces of
Discontinuity meet.

With regard to the formation of new phases there are particular

conditions of stability which relate to lines in which several surfaces

of discontinuity meet. We may limit ourselves to the case in which

there are three such surfaces, this being the only one of frequent occur-

rence, and may treat them as meeting in a straight line. It will be

convenient to commence by considering the equilibrium of a system

in which such a line is replaced by a filament of a difterent phase.

Let us suppose that three homogeneous fluid masses, A, B, and C,

are separated by cylindrical {or plane) surfaces, A-B, B-C, C-A, which

at first meet in a straight line, each of the surface-tensions Cab? ^bcj <^ca

being less than the sum of the other two. Let us suppose that the
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system is then modified by the introduction of a fourth fluid mass D,

which is placed between A, B, and C, and is separated from them by

cylindrical surfaces D-A, D-B, D-C meeting A-B, B-C, and C-A in

straiglit lines. The general form of the surfaces is shown by figure

14, in which the full lines represent a section perpendicular to all the

surfaces. The system thus modified is to be in equilibrium, as well

as the original system, the position of the surfaces A-B, B-C, C-A

being unchanged. That the last condition is consistent with equili-

brium will appear from the following mechanical considerations.

Fig. 14. Fig. 15. Fig. 16.

Let Vd denote the volume of the mass D per unit of length or the area

of the curvilinear triangle ab c. Equilibrium is evidently possible for

any values of the surface-tensions (if only Cab, o'bc? ^ca satisfy the con-

dition mentioned above, and the tensions of the three surfaces meet-

ing at each of the edges of D satisfy a similar condition) with any

value (not too large) of Vp, if the edges of D are constrained to remain

in the original surfaces A-B, B-C, and C-A, or these surfaces extended,

if necessary, without change of curvature. (In certain cases one of

the surfaces D-A, D-B, D-C may disappear and D will be bounded

by only two cylindrical surfaces.) We may therefore regard the

system as maintained in equilibrium by forces applied to the edges

of D and acting at right angles to A-B, B-C, C-A. The same forces

would keep the system in equilibrium if D were rigid. They must

therefore have a zero resultant, since the nature of the mass D is im-

material when it is rigid, and no forces external to the system Avould

be required to keep a corresponding part of the original system in

equilibrium. But it is evident from the points of application and

directions of these forces that they cannot have a zero i-esultant unless

each force is zero. We may therefore introduce a fourth mass D
without disturbing the parts which remain of the surfaces A-B, B-C,

C-D.

It will be observed that all the angles at «, b, c, and d in figure 14

are entirely determined by the six surface-tensions Cak, Cbc, o'ca, (5'da,

<?'db5 O'dc- [See (615).] The angles may be derived from the tensions
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by the following construction, which will also indicate sorae important

properties. If we form a triangle a ft y (figure 15 or 16) having sides

equal to (Tab, o^bc? ^ca, the angles of the triangle will be supplements

of the angles at d. To fix our ideas, we may suppose the sides of the

triangle to be perpendicular to the surfaces at d. Upon p y we may
then construct (as in figure 16) a triangle ft y 6' having sides equal

to Cbc, ^dc? ^db, upon y a 2i triangle ;/ a 6" having sides equal to

^CA, oTda, Cdc, antl iipon <-!' /i a triangle ^^(y'" having sides equal to

<5'ab, <3'db5 cTda. These triangles are to be on the same sides of the lines

ft y, y a, a ft, respectively, as the triangle a ft y. The angles of

these triangles will be supj^lements of the angles of the surfaces of

discontinuity at a, b, and c. Thus ft y d'=.da b, and a y S"=zdb a.

Now if S' and d" fall together in a single point d within the triangle

a ft y,
6'" will fall in the same point, as in figure 15. In this

case we shall have ft y 6 -\-a y 6-=.a y ft, and the three angles of the

curvilinear triangle a db will be together equal to two right angles.

The same will be true of the three angles of each of the triangles

bdc, cda, and hence of the three angles of the triangle abc. But

if (3', 6", 6'" do not fall together in the same point within the triangle

a ft y, it is either possible to bring these points to coincide within

the triangle by increasing some or all of the tensions Cda, Cdb, <5'dcj

or to eflfect the same result by diminishing some or all of these ten-

sions. (This will easily appear when one of the points S', 6", 6'" falls

within the triangle, if we let the two tensions which determine this

point remain constant, and the third tension vary. When all the

points 6', S", 6'" fall without the triangle a ft y, we may suppose the

greatest of the tensions Cd^, Cdb, ^dc—the two greatest, when these

are equal, and all three when they all are equal—to diminish until

one of the points 6', S", 6'" is brought within the triangle a ft y.)

In the first case we may say that the tensions of the new surfaces are

too small to be represented by the distances of an internal point from

the vertices of the triangle representing the tensions of the original

surfaces (or, for brevity, that they are too small to be represented as

in figure 15) ; in the second case we may say that they are too great

to be thus represented. In the first case, the sum of the angles in

each of the triangles adb, bdc, cda is less than two right angles

(compare figures 14 and 16): in the second case, each pair of the

triangles a ft
6'",

ft yd", y a 6" will overlap, at least when the ten-

sions (Tda, Cdb, Cdc are only a little too great to be represented as in

figure 1 6, and the sum of the angles of each of the triangles adb,

bdc, cda will be greater than two right angles.
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Let us denote by Va, ^b? ^c the portions of v^y which were originally

occupied by the masses A, B, C, respectively, by Sj,a, ^db? «dc» the

areas of the surfaces specified per unit of length of the mass D, and

by Sab, *bc5 ^caj the areas of the surfaces specified which were replaced

by the mass D per unit of its length. In numerical value, v^^ Vb, Vq

will be equal to the areas of the ctirvilinear triangles h cd, cad^

ahd', and Sqa, ^db, ^dc? ^ab? «bc, ^ca to the lengths of the lines 6c, ca,

ah, c d, ad,b d. Also let

"'^S ^^^ <5da ^DA "T ^DB ^DB "T" '^'dC *DC — ^AB ^AB <5'bc S^q — Oqa ^Ca? (626)

and TFv =^^d ^d — i?A "a - IH "b —Pc ^c- (627)

The general condition of mechanical equilibrium for a system of

homogeneous masses not influenced by gravity, when the exterior of

the whole system is fixed, may be written

2{(}6s)-:S{pdv) = Q. (628)

[See (606).] If we apply tliis both to the original system consisting

of the masses A, B, and C, and to the system modified by the intro-

duction of the mass D, and take the difference of the results, suppos-

ing the deformation of the system to be the same in each case, we

shall have

^da (^«da + O-db (^Sdb+ Cdc <^«dc— (5'ab <^Sab -~ O'bc ^Hc

— (TcA ^ScK - Pt> ^Vj) + Pj, Svj, -f ps <Svb + Pc ^Vc= 0. (629)

In view of this relation, if we differentiate (626) and (627) regarding

all quantities except the pressures as variable, we obtain

dWs — dWv = SdA ^^O-da + Sdb f^O-DB + «DC ^ffj^c

- «AB C^O'aB — **BC t?0'BC — «CA f^^-cA- (630)

Let us now suppose the system to vary in size, remaining always

similar to itself in form, and that the tensions diminish in the same

ratio as lines, while the pressures remain constant. Such changes

will evidently not impair the equilibrium. Since all the quantities

«DA, <^DA» ^DB, <?'db? ©tc. Vary in the same ratio,

SDA<?<?'DA=if^(^DA*'DA), S^B (^^mi = ^ d{(^I,B Sdb), CtC. (631)

We have therefore by integration of (630)

TFs - TTv= i (0'da«da+ CdbSdb + Cdc^dc— O'abSab - O'bcSbc - C^ca^ca), (632)

whence, by (626),

TFs = 2 Wy, (633)

The condition of stability for the system when the pressures and

tensions are regarded as constant, and the position of the surfaces
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A-B, B-C, C-A as fixed, is that Wl^ — W^ shall he a minimum under

the same conditions. [See (549).] Now for any constant values of

the tensions and of pj^^ jOg, p^, we may make Wp so small that when it

varies, the system remaining in equilibrium, (which will in general

reqiiire a variation of p^,,) we may neglect the curvatures of the lines

d a, d b, d c, and regard the figure abed as remaining similar to

itself. For the total curvature (^. e., the curvatui*e measured in

degrees) of each of the lines a b, be, c a may be regarded as con-

stant, being equal to the constant difierence of the sum of the angles

of one of the curvilinear triangles adb,bdc,cda and two right

angles. Therefore, when Vi, is very small, and the system is so

deformed that equilibrium would be preserved if j^d had the proper

variation, but this pressure as well as the others and all the tensions

remain constant, Wg, will vary as the lines in the figure ab c d, and

Wy as the square of these lines. Therefore, for such deformations,

This shows that the system cannot be stable for constant pressures

and tensions when v^ is small and TFy is positive, since Ws — Wy
will not be a minimum. It also shows that the system is stable

when Wy is negative. For, to determine whether TP^— Wy is a

minimum for constant values of the pressures and tensions, it will

evidently be sufiicient to consider such varied forms of the system as

give the least value to W^— IVy for any value ot v-d in connection

with the constant pressures and tensions. And it may easily be

shown that such forms of the system are those which would pre-

serve equilibrium if j^d had the proper value.

These results will enable us to determine the most important ques-

tions relating to the stability of a line along which three homogene-

ous fluids A, B, C meet, with respect to the formation of a different

fluid D. The components of D must of course be such as are found

in the surrounding bodies. We shall regard p^ and o'da, Cdb, o'oq as

determined by tliat phase of D which satisfies the conditions of equi-

librium with the other bodies relating to temperature and the

potentials. These quantities are therefore determinable, by means

of the fundamental equations of the mass D and of the surfaces D-A,

D-B, D-C, from the temperature and potentials of the given system.

Let us first consider the case in which the tensions, thus deter-

mined, can be represented as in figure 15, and pj) has a value con-

sistent with the equilibrium of a small mass such as we have been

considering. It appears from the preceding discussion that when v^ is
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sufficiently small the figure ab c d may be regarded as rectilinear, and

that its angles are entirely determined by its tensions. Hence the

ratios of Wa? ^b, '^c, ^d, foi* sufficiently small values of Wp, are deter-

mined by the tensions alone, and for convenience in calculating these

ratios, we may suppose jOa? i>B5 Pc to be equal, which will make the

figure abed absolutely rectilinear, and make jOp equal to the other

pressures, since it is supposed that this quantity has the value neces-

sary for equilibrium. We may obtain a simple expression for the

ratios of y^, ^b, ^c, ^d in terms of the tensions in the following

manner. We shall write [D B C], [D C A], etc., to denote the areas

of triangles having sides equal to the tensions of the surfaces between

the masses specified.

Vf^ : ?'b : : triangle bdc. triangle udc

: : be sin bed : ac sin acd

: : sin bac sin bed : sin abc sin acd

: : sin y6/:l sin da/J : sin yda sin Spa

: : sin ySp Sfi : sin yda 6a

: : triangle y 6 fi : triangle y 6 a

: : [D B C] : [D C A].

Hence,

yA:yB:^^c:^D::[DBC]:[DCA]:[DAB]:[ABC], (634)

where

4V[(0'ab+<5'bc+0'ca)(0'ab+0'bc— 0'ca)(0'bc+0-ca~0-ab) (o'ca+O'ab- O'ec)]

may be written for [A B C], and analogous expressions for the other

symbols, the sign \/ denoting the positive root of the necessarily posi-

tive expression which follows. This proportion will hold true in any

case of equilibrium, when the tensions satisfy the condition mentioned

and v-D is sufficiently small. Now if pA=i-*B =/>c5 I^d will have the

same value, and we shall have by (627) Wy := 0, and by (633) Ws = 0.

But when Vq is very small, the value of TFg is entirely determined by
the tensions and Vo. Therefore, whenever the tensions satisfy the

condition supposed, and ?Jd is very small (whether pj^, p^, p^ are

equal or unequal,)

=: TFs = TFv =^D "d — i?A ?^a - IH Vb - Pc Vc, (635)

which with (634) gives

_ [DBC]^A+ [DCA]^3+[DAB]pe
^^ ""

[D B C] + [D C A] + [D A B]
'

^ ^
Since this is the only value ofp^ for which equilibrium is possible when
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the tensions satisfy the condition supposed and v^ is small, it follows

that when jy^ has a less value, the line where the fluids A, B, C meet

is stable with respect to the formation of the fluid D. When p^ has

a greater value, if such a line can exist at all, it must be at least

practically unstable, /. e., if only a very small mass of the fluid D
should be formed it would tend to increase.

Let us next consider the case in which the tensions of the

new surfaces are too small to be represented as in figure 15. If

the pressures and tensions are consistent with equilibrium for any

very small value of v-q, the angles of each of the curvilinear tri-

angles adb, bdc, cda will be together less than two right angles,

and the lines a b,b c, c «, will be convex toward the mass D. For

given values of the pressures and tensions, it will be easy to deter-

mine the magnitude of v-^. For the tensions will give the total

curvatures (in degrees) of the lines ab, be, ca; and the pressures

will give the radii of curvature. These lines are thus completely

determined. In order that v-d shall be very small it is evidently

necessary that p-o shall be less than the other pressures. Yet if the

tensions of the new surfaces are only a very little too small to be

represented as in figure 15, Vp may be quite small when the value

of p-r, is only a little less than that given by equation (636). In any

case when the tensions of the new surfaces are too small to be repre-

sented as in figure 15, and v^ is small, W^ is negative, and the equi-

librium of the mass D is stable. Moreover, TFg— W^, which repre-

sents the work necessary to form the mass D with its surfaces in

place of the other masses and siu'faces, is negative.

With respect to the stability of a line in which the surfaces A-B,

B-C C-A meet, when the tensions of the new surfaces are too small to

be represented as in figure 15, we first observe that when the pressures

and tensions are such as to make Wp moderately small but not so

small as to be neglected, [this will be when p-o is somewhat smaller

than the second member of (636),—more or less smaller according as

the tensions differ more or less from such as are represented in

figure 15,] the equilibrium of such a line as that supposed (if it is

capable of existing at all) is at least practically unstable. For greater

values of p^ (with the same values of the other pressures and the

tensions) the same will be true. For somewhat smaller values of pn,

the mass of the phase D which will be formed will be so small, that

we may neglect this mass and regard the surfiices A-B, B-C, C-A as

meeting in a line in stable equilibi'ium. For still smaller values of

/)o, we may likewise regard the surfaces A-B, B-C, C-A as capable
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of meeting in stable equilibrium. It may be observed that when

?'d, as determined by our equations, becomes quite insensible,

the conception of a small mass D having the properties deducible

from our equations ceases to be accurate, since the matter in the

vicinity of a line where these surfaces of discontinuity meet must

be in a peculiar state of equilibrium not recognized by our equations.*

But this cannot affect the validity of our conclusion with respect to

the stability of the line in question.

The case remains to be considered in which the tensions of the new

surfaces are too great to be represented as in figure 15. Let us sup-

pose that they are not very much too great to be thus represented.

When the pressures are such as to make Vq moderately small (in case

of equilibrium) but not so small that the mass D to which it relates

ceases to have the properties of matter in mass, [this will be when

Pj) is somewhat greater than the second member of (636),—more or

less greater according as the tensions differ more or less from such as

are represented in figure 15,] the line where the surfaces A-B, B-C,

C-A meet will be in stable equilibrium with respect to the formation

of such a mass as we have considered, since W^— Wy will be posi-

tive. The same will be true for less values of jOr,. For greater values

of jOp, the value of TFg - TFy, which measures the stability with respect

to the kind of change considered, diminishes. It does not vanish,

according to our equations, for finite values of p-^. But these equa-

tions ai*e not to be trusted beyond the limit at which the mass D
ceases to be of sensible magnitude.

But when the tensions are such as we now suppose, we must also

consider the possible formation of a mass D within a closed figure in

which the surfaces D-A, D-B, D-C meet together (with the surfaces

A-B, B-C, C-A) in two opposite points. If such a figure is to be in

equilibrium, the six tensions must be such as can be represented by

* See note on page 455. We may here add that the linear tension there mentioned

may have a negative value. This would be the case with respect to a line in which

three surfaces of discontinuity are regarded as meeting, but where nevertheless there

reaUy exists in stable equilibrium a filament of different phase from the three sur-

rounding masses. The value of the linear tension for the supposed line, would be

nearly equal to the value of W^ — W^. for the actually existing filament. (For the

exact value of the linear tension it would be necessary to add the sum of the linear

tensions of the three edges of the filament.) We may regard two soap-bubbles

adhering together as an example of this case. The reader will easily convince himself

that in an exact treatment of the equilibrium of such a double bubble we must recog-

nize a certain negative tension in the line of intersection of the three surfaces of

discontinuity.

Teans. Conn. Acad., Vol. III. 59 March, 1878.
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the six distances of four points in sjjace (see page 455),—a condition

which evidently agrees with the supposition which we have made. If

we denote by mv the work gained in forming the mass D (of such size

and form as to be in equilibrium) in place of the other masses, and by

?0s the work expended in forming the new surfaces in place of the old,

it may easily be shown by a method similar to that used on page 459

that wJs=f^v- From this we obtain ^«s~^v=i^'v• This is evidently

positive when p-^ is greater than the other pressures. But it diminishes

with increase of jf^, as easily appears from the equivalent expression

^s- Hence the line of intersection of the surfaces of discontinuity A-B,

B-C, C-A is stable for values of pj^ greater than the other pressures

(and therefore for all values of px)) so long as our method is to be re-

garded as accurate, which will be so long as the mass D which would

be in equilibrium has a sensible size.

In certain cases in which the tensions of the new surfaces are much

too large to be represented as in figure 15, the reasoning of the two

last paragraphs will cease to be applicable. These are cases in which

the six tensions cannot be represented by the sides of a teti*ahedron.

It is not necessary to discuss these cases, which are distinguished by
the different shape which the mass D would take if it should be

formed, since it is evident that they can constitute no exception to

the results which we have obtained. For an increase of the values of

(J'da, (^TiYit Cdc cannot favor the formation of D, and hence cannot im-

pair the stability of the line considered, as deditced from our equa-

tions. Nor can an increase of these tensioris essentially affect the

fact that the stability thus demonstrated may fail to be realized when

jt>D is considerably greater than the other pressures, since the a priori

demonstration of the stability of any one of the surfaces A-B, B-C,

C-A, taken singly, is subject to the limitation mentioned. (See page

426.)

The Condition of Stability for Fluids relating to the Formation

of a New Phase at a Point lohere the Vertices of

Four Different Masses meet.

Let four different fluid masses A, B, C, D meet about a point, so as

to form the six surfaces of discontinuity A-B, B-C, C-A, D-A, D-B,

D-C, which meet in the four lines A-B-C, B-C-D, C-D-A, D-A-B, these

lines meeting in the vertical point. Let us suppose the system stable

in other respects, and consider the conditions of stability for the ver-

tical point with respect to the possible formation of a different fluid

mass E.
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If the system can be in equilibrium when the vertical point has

been replaced by a mass E against which the four masses A, B, C, D
abut, being truncated at their vertices, it is evident that E will have

four vertices, at each of Avhich six surfaces of discontinuity meet.

(Thus at one vertex there will be the surfaces formed by A, B, C,

and E.) The tensions of each set of six surfaces (like those of the

six surfaces formed by A, B, C, and D) must therefore be such that

they can be represented by the six edges of a tetrahedron. When

the tensions do not satisfy these relations, there will be no particular

condition of stability for the point about which A, B, C, and D meet,

since if a mass E should be formed, it would distribute itself along

some of the lines or surfaces which meet at the vertical point, and it

is therefore sufficient to consider the stability of these lines and sur-

faces. We shall suppose that the relations mentioned are satisfied.

If we denote by TP^^ the work gained in forming the mass E (of

such size and form as to l)e in equilibrium) in place of the portions

of the other masses which are suppressed, and by W^ the work ex-

pended in forming the new surfaces in place of the old, it may easily

be shown by a method similar to that used on page 459 that

TTgrrfTTv, (637)

whence W^,- Wy=^W.,; (638)

also, that when the volume E is small, the equilibrium of E will be

stable or unstable according as W^ and W^ are negative or positive.

A critical relation for the tensions is that which makes equilibrium

possible for the system of the five masses A, B, C, D, E, when all

the surfaces are plane. The ten tensions may then be represented in

magnitude and direction by the ten distances of five points in space

a, /?, y, 6, €, viz., the tension of A-B and the direction of its normal

by the line a /5, etc. The point f will lie within the tetrahedron

formed by the other points. If we write i'e for the volume of E, and

^A? Vb, Vc, Vj) for the volumes of the parts of the other masses which

are suppressed to make room for E, we have evidently

Wy =Pe v^-2)j, Wa— ^b '-'B-i^c'-'c- ;>d Vj). (639)

Hence, when all the surfiices are plane, Wy=zO, und Wg,= 0. Now
equilibrium is always possible for a given small value of v^ with any

given values of the tensions and oi'p^, j^^-, 2^c, Pt>- When the tensions

satisfy the critical relation, W^= 0, if p^ =Pb =Pc =Pd- But when

v^ is small and constant, the value of TP^ must be independent of jo^,

Pb, Pc Pt>i since the angles of the surfaces are determined by the

tensions and their curvatures may be neglected. Hence, TT>;=:0, and
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TFv=:0, when the critical relation is satisfied and v^. small. This

gives

P^.
—

. (640)

In calculating the ratios of ?.>a, v^, Vc, ^d, ^e? we may suppose all the

surfaces to be plane. Then E will have the form of a tetrahedron,

the vertices of which may be called a, b, c, d, (each vertex being

named after the mass which is not found there,) and v^, ^^b, ^c? ^d will

be the volumes of the tetrahedra into which it may be divided

by planes passing through its edges and an interior point e. The
volumes of these tetrahedra ai'e proportional to those of the five

tetrahedra of the figure a fd y S e, as will easily appear if we recollect

that the line a b is common to the surfaces C-D, D-E, E-C, and there-

fore perpendicular to the surface common to the lines y6.,6s,ey,

i.e., to the surface y S ^, and so in other cases, (it will be observed

that y, 6, and £ are the letters which do not correspond to a or b)

;

also that the surface abc is the surface D-E and therefore perpendic-

ular to 6 f, etc. Let tetr abed, trian abc, etc. denote the volume of

the tetrahedron or the area of the triangle specified, sin (ab, be),

ein (abc, dbc), sin (abc, ad), etc. the sines of the angles made by the

lines and surfaces specified, and [B CD E], [C D E A], etc., the vol-

umes of tetrahedra having edges equal to the tensions of the surfaces

between the masses specified. Then, since we may express the

volume of a tetrahedron either by ^ of the product of one side, an edge

leading to the opposite vertex, and the sine of the angle w^hich these

make, or by f of the product of two sides divided by the common
edge and multiplied by the sine of the included angle,

v^ : t'B : : tetr bcde : tetr acde

: : be sin (be, cde) : ac sin (ac, cde)

: : sin (ba, ac) sin (be, cde) : sin (ab, be) sin (ac, cde)

: : sin {ySe, (56s) sin [aSe, a/J) : sin {ySs, aSs) sin (/i^^f, (i^f:i)

tetr y/3de tetr pade tetr yaSs tetr a/iSe

trian fids trian aSe ' trian ade trian fJSe

: : tetr yfide : tetr yade

: : [B C D E] : [C D E A].

Hence,

^-'a:Wb:^>c:'-'d::[BCDE]:[CDEA]:[DEAB]:EABC],(641)

and (640) may be written

_ [BCDE];>^+[CDEA]/>B+[DE AB]pc+[EABClgg ,^^^.
^'^ [BCDE]-f[CDEAJ+ [DEAB] + [EABC]
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If the value of/>£ is less than this, when the tensions satisfy the critical

relation, the point where vertices of the masses A, B, C, D meet is

stable with respect to the formation of any mass of the nature of E.

But if the value of p-^, is greater, either the masses A, B, C, I) cannot

meet at a point in equilibrium, or the equilibrium will be at least

practically unstable.

When the tensions of the new surfaces are too small to satisfy the

critical relation with the other tensions, these surfaces will be con-

vex toward E ; when their tensions are too great for that relation,

the surfaces will be concave toward E. In the first case, 71 y is

negative, and the equilibrium of the five masses A, B, C, D, E
is stable, but the equilibrium of the four masses A, B, C, D meeting

at a point is impossible or at least practically unstable. This is sub-

ject to the limitation that when />e is sufficiently small the mass E
which will form Avill be so small that it may be neglected. This will

only be the case when p-^ is smaller—in general considerably smaller

—

than the second number of (642). In the second case, the equilibrium

of tlie five masses A, B, C, D, E will be unstable, but the equilibrium

of the four masses A, B, C, D will be stable unless v^ (calculated for

the case of the five masses) is of insensible magnitude. This will

only be the case when jt>E is greater—in general considerably greater

—

than the second member of (642).

JAquid Films.

When a fluid exists in the form of a thin film between other fluids,

the great inequality of its extension in different directions Avill give

rise to certain peculiar properties, even when its thickness is sufficient

for its interior to have the properties of matter in mass. The fre-

quent occurrence of such films, and the remarkable properties which

they exhibit, entitle them to particular consideration. To fix our

ideas, we shall suppose that the film is liquid and that the contiguous

fluids are gaseous. The reader will observe our results are not

dependent, so far as their general character is concerned, upon this

supposition.

Let us imagine the film to be divided by surfaces perpendicular to

its sides into small portions of which all the dimensions are of the

same order of magnitude as the thickness of the film,—such portions

to be called elements of the film..,—\t is evident that far less time will

in general be required for the attainment of approximate equilibrium

between the difierent parts of any such element and the other fluids

which are immediately contiguous, than for the attainment of equi-
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librium between all the diiFerent elements of the film. There will

accordingly he a time, commencing shortly after the formation of the

film, in Avhich its separate elements may be regarded as satisfying the

conditions of internal equilibrium, and of equilibrium with the con-

tigiaous gases, while they may not satisfy all the conditions of equi-

librium with each other. It is M^ien the changes due to this want oi

complete equilibrium take place so slowly that the film appears to be

at rest, except so far as it accommodates itself to any change in the

external conditions to which it is subjected, that the characteristic

properties of the film are most striking and most sharply defined.

Let us tlierefore consider the properties which will belong to a film

sufticiently thick for its interior to have the properties of matter in

mass, in virtue of the approximate equilibrium of all its elements

taken separately, when the matter contained in each element is

regarded as invariable, with the exception of certain substances

which are components of the contiguous gas-masses and have their

potentials thereby determined. The occurrence of a film which pre-

cisely satisfies these conditions may be exceptional, but the discus-

sion of this somewhat ideal case will enable us to understand the

principal laws which determine the behavior of liquid films in

general.

Let us first consider the properties which will belong to each ele-

ment of the film under the conditions mentioned. Let us suppose

the element extended, while the temperature and the potentials

which are determined by the contiguous gas-masses are unchanged.

If the film has no components except those of which the potentials

are maintained constant, there will be no variation of tension in its

surfaces. The same will be true when the film has only one com-

ponent of which the potential is not maintained constant, provided

that this is a component of the interior of the film and not of its sur-

face alone. If we regard the thickness of the film as determined by

dividing surfaces which make the surface-density of this compo-

nent vanish, the thickness will vary inversely as the area of the ele-

ment of the film, but no change will be produced in the nature or

the tension of its surfaces. If, however, the single component of

which the potential is not maintained constant is confined to the sur-

faces of the film, an extension of the element will generally produce

a decrease in the potential of this component, and an increase of ten-

sion. This will certainly be true in those cases in which the compo-

nent shows a tendency to distribl^te itself with a uniform superficial

density.
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When the film has two or more components of which the potentials

are not maintained constant by the contiguous gas masses, they will

not in general exist in the same proportion in the interior of the film as

on its sui-faces, but those components which diminish the tensions will

be found in greater proi>ortion on the surfaces. When the film is ex-

tended, there will therefore not be enough of these substances to keep

up the same volume- and surface-densities as before, and the deficiency

will cause a certain increase of tension. The value of the elasticity of

the film., {i. e., the infinitesimal increase of the united tensions of its

surfaces divided by the infinitesimal increase of area in a unit of sur-

face), may be calculated from the quantities which specify the nature

of the film, when the fundamental equations of the interior mass, of

the contiguoixs gas-masses, and of the two surfaces of discontinuity

are known. We may illustrate this by a simple example.

Let us suppose that the two surfaces of a plane film are entirely

alike, that the contiguous gas-masses are identical in phase, and that

they determine the potentials of all the components of the film

except two. Let us call these components S^ and S2, the latter

denoting that which occurs in greater proportion on the surface than

in the interior of the film. Let us denote by y ^ and j/g ^^he densities

of these components in the interior of the film, by A the thickness of

the film determined by such dividing surfaces as make the surface-

density of S^ vanish (see page 397), by I^^n) ^^^ surface-density of

the other component as determined by the same surfaces, by ff and s

the tension and area of one of these sui'faces, and by ^the elasticity

of the film when extended under the supposition that the total quan-

tities of /Nj and So in the part of the film extended are invariable, as

also the temperature and the potentials of the other components.

From the definition of JS we have

2dff = B-, (643)
s

and from the conditions of the extension of the film

ds d{X )/j) d{X y^ + 2 -^2(1))

Hence we obtain

^ri ^X3+2/'2(i)

\ y^ — =. — y ^ d\— A dy^.,

(644)

ds
(^ r2 + 2 ^2( 1))—=

—

72 <^^ — '^
(h'2

—

2 f?^2(i)

;

and eliminating dX,
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^rJ^2^v-=-^ri(b'2-\-^r-i^b'i -^Vi'^^^^d- (645)
s

If we set r= ll, ' (646)

we have .j, ^ y^dy^nXldy,
y.'

(647)

ds
and 2 I\^^^—= — \ y^dr — 2d^2^^,. -(648)

With tliis equation we may eliminate ds from (643). We may also

eliminate dcf by the necessary relation [see (514)]

dff =^ ^2(1)^^2-

This Avill give

4 / 2^„2 ^^,^ ^ £ (A ^^ dr-^2 dP^,,,), (649)

or

^^4^= A y, ~ + 2 -%^\ (650)

where the differential coefficients are to he determined on the condi-

tions that the temperature and all the potentials except /u^ and //g

are constant, and that the pressure in the interior of the film shall

remain equal to that in the cootiguous gas-masses. The latter con-

dition may he expressed by the equation

ir i-Vi') '^Mi -f- (r2 -rs') ^hh = o, (65i)

in which y^' and y2' denote the densities of /S^ and S^ in the con-

tiguous gas-masses. [See (98).] When the tension of the surfaces

of the film and the pressures in its interior and in the contiguous gas-

masses are known in terms of the temperature and potentials, equa-

tion (650) will give the value of E in terms of the same variables

together with A.

If we write G^ and G^ for the total quantities of S^ and S.^ per

unit of area of the film, we have

G,=:ly„ (652)

G,=Ay,-\-2r,,,,^, (653)

Therefore,

G^=G,r+2l\^,„

(±p) =A;.,i^+2^i^lll, (654)

where the difierential coefficients in the second member are to be

determined as in (650), and that in the first member with the addi-

tional condition that G ^ is constant. Therefore,



J. W. Gibbs—Equilibrmim of Heterogeneous Substances. 471

2(1) —
E \ dfi^ k-

the last differential coefficient being determined by the same condi-

tions as that in the preceding equation. It will be observed that the

value of ^ will be positive in any ordinary case.

These equations give the elasticity of any element of the film when

the temperature and the potentials for the substances which are found

in the contiguous gas-masses are regarded as constant, and the poten-

tials for the other components, yu, and ju.^, have had time to equalize

themselves throughout the element considered. The increase of

tension immediately after a rapid extension will be greater than that

given by these equations.

The existence of this elasticity, which has thus been established

from a priori considerations, is clearly indicated by the phenomena

which liquid films present. Yet it is not to be demonstrated simply

by comparing the tensions of films of different thickness, even when

they are made from the same liquid, for difference of thickness does

not necessarily involve any difference of tension. When the phases

within the films as well as without are the same, and the surfaces of

the films are also the same, there will be no difference of tension.

Nor will the tension of the same film be altered, if a part of the inte-

rior drains away in the course of time, without affecting the surfaces.

In case the thickness of the film is reduced by evaporation, the tension

may be either increased or diminished. (The evaporation of the sub-

stance /S'j, in the case we have just considered, would diminish the

tension.) Yet it may easily be shown that extension increases the

tension of a film and contraction diminishes it. When a plane film

is held vertically, the tension of the upper portions must evidently

be greater than that of the lower. The tensions in every part of the

film may be reduced to equality by turning it into a horizontal posi-

tion. By restoring the original position we may restore the original

tensions, or nearly so. It is evident that the same element of the

film is capable of supporting very unequal tensions. Nor can this be

always attributed to viscosity of the film. For in many cases, if we

hold the film nearly horizontal, and elevate first one side and then an

other, the lighter portions of the film will dart from one side to the

other, so as to show a very striking mobility in the film. The differ-

ences of tension which cause these rapid movements are only a very

Trans. Conn. Acad., Vol. III. 60 March, 1818.
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small fraction of the difference of tension in the upper and lower

portions of the film when held vertically.

If we account for the power of an element of the film to support an

increase of tension by viscosity, it will be necessary to suppose that

the viscosity offers a resistance to a deformation of the film in which

its surface is enlarged and its thickness diminished, which is enor-

mously great in comparison with the resistance to a deformation in

which the film is extended in the direction of one tangent and con-

tracted in the direction of another, while its thickness and the areas

of its surfaces remain constant. This is not to be readily admitted

as a physical explanation, although to a certain extent the phenomena

resemble those which would be caused by such a singular viscosity.

(See page 439.) The only natural explanation of the phenomena is

that the extension of an element of the film, which is the immediate

result of an increase of external force applied to its perimeter, causes

an increase of its tension, by which it is brought into true equilibrium

Avith the external forces.

The phenomena to which we have referred are such as are apparent

to a very cursory observation. In the following experiment, which

is described by M. Plateau,* an increased tension is manifested in a

film while contracting after a previous extension. The warmth of a

finger brought near to a bubble of soap-water with glycerine, which

is thin enough to show colors, causes a spot to appear indicating

a diminution of thickness. When the finger is removed, the spot

returns to its original color. This indicates a contraction, which

would be resisted by any viscosity of the film, and can only be due

to an excess of tension in the portion stretched on the return of its

original temperature.

We have so far supposed that the film is thick enough for its inte-

rior to have the properties of matter in mass. Its properties are then

entirely determined by those of the three phases and the two surfaces

of discontinuity. From these we can also determine, in part at least,

the properties of a film at the limit at which the interior ceases to

have the properties of matter in mass. The elasticity of the film,

which increases with its thinness, cannot of course vanish at that

limit, so that the film cannot become unstable with respect to exten-

sion and contraction of its elements immediately after passing that

limit.

Yet a certain kind of instability will probably arise, which we may

* " Statique experimentale et theorique des liquides soumis aux seules forces mole-

culaires," vol. i, p. 294.
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here notice, although it relates to changes in which the condition of

the invariability of the quantities of certain components in an element

of the film is not satisfied. With respect to variations in the distri-

bution of its components, a film will in general be stable, when its

interior has the properties of matter in mass, with the single exception

of variations afiecting its thickness without any change of phase or of

the nature of the surfaces. With respect to this kind of change, which

may be brought about by a current in the interior of the film, the

equilibrium is neutral. But when the interior ceases to have the pro-

perties of matter in mass, it is to be supposed that the equilibrium

will generally become unstable in this respect. For it is not likely

that the neutral equilibrium will be unaffected by such a change of

circumstances, and since the fihn certainly becomes unstable when it

is sufficiently reduced in tliickness, it is most natural to suppose that

the first effect of diminishing the thickness will be in the direction of

instability rather tlian in that of stability. (We are here considering

liquid films between gaseous masses. In certain other cases, the

opposite supposition might be more natural, as in respect to a film of

water between mercury and air, which would certainly become stable

when sufficiently reduced in thickness.)

Let us now return to our former suppositions—that the film is thick

enough for the interior to have the properties of matter in mass, and

that the matter in each element is invariable, except with respect to

those substances which have their potentials determined by the con-

tiguous gas-masses—and consider what conditions are necessary for

equilibrium in such a case.

In consequence of the supposed equilibrium of its several elements,

such a film may be treated as a simple surface of discontinuity

between the contiguous gas-masses (which may be similar or different),

whenever its radius of curvature is very large in comparison with its

thickness,—a condition which we shall always suppose to be fulfilled.

With respect to the film considered in this light, the mechanical

conditions of equilibrium will always be satisfied, or very nearly so,

as soon as a state of approximate rest is attained, except in those

cases in which the film exhibits a decided viscosity. That is, the

relations (613), (614), (615) will hold true, when by a we understand

the tension of the film regarded as a simple surface of discontinuity

(this is equivalent to the sum of the tensions of the two surfaces of

the film), and by /" its mass per unit of area diminished by the mass

of gas which would occupy the same space if the film should be sup-

pressed and the gases should meet at its surface of tension. This
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surface of tension of the flni will evidently divide the distance

between the surfaces of tension for the two surfaces of the film taken

separately, in the inverse ratio of their tensions. For practical pur-

poses, we may regard F simply as the mass of the film per unit of

area. It will be observed that the terms containing Fin (613) and

(614) are not to be neglected in our present application of these

equations.

But the mechanical conditions of equilibrium for the film regarded

as an approximately homogeneous mass in the form of a thin sheet

bounded by two surfaces of discontinuity are not necessarily satisfied

when the film is in a state of apparent rest. In fact, these conditions

cannot be satisfied (in any place where the force of gravity has an

appreciable intensity) unless the film is horizontal. For the pressure

in the interior of the film cannot satisfy simultaneously condition

(612), which requires it to vary rapidly "wdth the height z, and condi-

tion (613) applied separately to the difierent surfaces, which makes it

a certain mean between the pressures in the adjacent gas-masses.

Nor can these conditions be deduced from the general condition

of mechanical equilibrium (606) or (611), without supposing that the

interior of the film is free to move independently of the surfaces,

which is contrary to what we have supposed.

Moreover, the potentials of the various components of the film will

not in general satisfy conditions (617), and cannot (when the tem-

perature is uniform) unless the film is horizontal. For if these condi-

tions were satisfied, equation (612) would follow as a consequence.

(See page 449.)

We may here remark that such a film as we are considering cannot

form any exception to the principle indicated on page 450,—that

when a surface of discontinuity which satisfies the conditions of

mechanical equilibrium has only one component which is not found

in the contiguous masses, and these masses satisfy all the conditions

of equilibrium, the j^otential for the component mentioned must satisfy

the law expressed in (617), as a consequence of the condition of

mechanical equilibrium (614). Therefore, as we have just seen that

it is impossible that all the potentials in a liquid film which is not hori-

zontal should conform to (617) when the temperature is uniform, it

follows that if a liquid film exhibits any persistence which is not due

to viscosity, or to a horizontal position, or to diiferences of tempera-

ture, it must have nioi-e than one component of which the potential

is not determined by the contiguous gas-masses in accordance with

(617).
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The difficulties of the quantitative experimental verification of the

properties which have been described would be very great, even in

cases in which the conditions we have imagined were entirely ful-

filled. Yet the general effect of any divergence from these condi-

tions will be easily perceived, and when allowance is made for such

divergence, the general behavior of liquid films will be seen to agree

with the requirements of theory.

The formation of a liquid film takes place most symmetrically

when a bubble of air rises to the top of a mass of the liquid. The

motion of the liquid, as it is displaced by the bubble, is evidently

such as to stretch the two surfaces in which the liquid meets the air,

where these surfaces approach one another. This will cause an

increase of tension, which will tend to restrain the extension of the

surfaces. The extent to which this effect is produced will vary with

the nature of the liquid. Let us suppose that the case is one in

which the liquid contains one or more components which, although

constituting but a very small part of its mass, greatly reduce its ten-

sion. Such components will exist in excess on the surfaces of the

liquid. In this case the restraint upon the extension of the surfaces

will be considerable, and as the bubble of air rises above the general

level of the liquid, the motion of the latter will consist largely of a

running out from between the two surfaces. But this running out of

the liquid will be greatly retarded by its viscosity as soon as it is

reduced to the thickness of a film, and the effect of the extension of

the surfaces in increasing their tension will become greater and

more permanent as the quantity of liquid diminishes which is avail-

able for supplying the substances which go to form the increased sur-

faces.

We may form a rough estimate of the amount of motion which is

possible for the interior of a liquid film, relatively to its exterior, by

calculating the descent of water between parallel vertical planes at

which the motion of the water is reduced to zero. If we use the

coefficient of viscosity as determined by Helmholtz and Piotrowski,*

we obtain

V= 581 Z)3, (656)

where V denotes the mean velocity of the water [i. e., that velocity

* Sitzungstaerichte der Wiener Akademie, (mathemat.-natiirwiss. Classe), B. xl, S.

607. The calculation of formula (656) and that of the factor (5) applied to the formula

of Poiseuille, to adapt it to a current between plane surfaces, have been made by

means of the general equations of the motion of a viscous liquid as given in the

memoir referred to.
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which, if it Avere uniform throiighout the whole space between the

fixed planes, would give the same discharge of water as the actual

variable velocity) expressed in millimetres per second, and D denotes

the distance in millimetres between the fixed planes, which is sup-

posed to be very small in proportion to their other dimensions. This

is for the temperature of 24.5° C. For the same temperature, the

experiments of Poiseuille * give

V- 337 Z>3

for the descent of water in long capillary tubes, which is equivalent to

F=r 899 Z>2 (657)

for descent between parallel planes. The numerical coeflicient in this

equation difi^ers considerably from that in (656), which is derived from

exj^eriments of an entirely different nature, but we may at least con-

clude that in a film of a liquid which has a viscosity and specific

gravity not very ditferent from those of water at the temperature

mentioned the mean velocity of the interior relatively to the surfaces

will not probably exceed 1000 D^. This is a velocity of .1""" per

second for a thickness of .01""", ,06"'™ per minute for a thickness of

.001 (which corresponds to the red of the fifth order in a film of

water), and .036'"™ per Jiour for a thickness of .0001™"' (which corre-

sponds to the white of the first order). Such an internal current is

evidently consistent with great persistence of the film, especially in

those cases in which tlie film can exist in a state of the greatest

tenuity. On the other hand, the aljove equations give so large a

value of T^for thicknesses of 1"'"' or .1™"\ tliat the film can evidently

be formed without carrying up any great weight of liquid, and any

such thicknesses as these can have only a momentary existence.

A little consideration will show that the phenomenon is essentially

of the same nature when films are formed in any other way, as by

dipping a ring or the mouth of a cup in the liquid and then with-

drawing it. When the film is formed in the mouth of a pipe, it may

sometimes be extended so as to form a large bubble. Since the elas-

ticity {i. e., the increase of the tension with extension) is greater in

the thinner parts, the thicker parts will be most extended, and the

effect of this process (so far as it is not modified by gravity) will be

to diminish the ratio of the gre'atest to the least thickness of the film.

During this extension, as well as at other times, the increased elas-

ticity due to imperfect communication of heat, etc., will serve to pro-

tect the bubble from fracture by shocks received from the air or the

* Ibid., p. 653 ; or Memoires des Savants Strangers, vol. ix, p. 5.32.
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pipe. If the bubble is noAv laid upon a suitable support, the condi-

tion (613) will be realized almost instantly. The bubble will then

tend toward conformity Avith condition (6l4j, the lighter portions ris-

ing to the top, more or less slowly, according to the viscosity of the

film. The resulting diflterence of thickness between the upper and

the lower parts of the bubble is due partly to the greater tension to

which the upper parts are subject, and partly to a diflerence in the

matter of which they are composed. When the film has only two

components of which the potentials are not determined by the con-

tiguous atmosphere, the laws which govern the arrangement of the

elements of the film may be very simply expressed. If Ave call these

components S^ and S.^, the latter denoting (as on page 469) that

which exists in excess at the surface, one element of the film will

tend toward the same level with another, or a higher, or a lower

level, according as the quantity of S^ bears the same ratio to the

quantity of aSj in the first element as in the second, or a gi*eater, or a

less ratio.

When a film, however formed, satisfies both the conditions (613)

and (614), its thickness being sufficient for its interior to have the

properties of matter in mass, the interior will still be subject to the

slow current which we have already described, if it is truly fluid, how-

ever great its viscosity may be. It seems probable, however, that

this process is often totally arrested l)y a certain gelatinous consist-

ency of the mass in question, in virtue of which, although practically

fluid in its beha\nor with reference to ordinary stresses, it may have

the properties of a solid with respect to such very small stresses as

those which are caused by gravity in the interior of a vejy thin film

which satisfies the conditions (613) and (614).

However this may be, there is another cause which is often more
potent in producing changes in a film, when the conditions just men-
tioned are approximately satisfied, than the action of gravity on its

interior. This will be seen if we turn our attention to the edge
where the film is terminated. At such an edge we generally find a

liquid mass, continuous in phase with the interior of the film, which

is bounded by concave surfaces, and in which the pressure is therefore

less than in the interior of the film. This liquid mass therefore

exerts a strong suction upon the interior of the film, by which its

thickness is rapidly reduced. This efiect is best seen when a film

which has been formed in a ring is held in a vertical position. Unless

the film is very viscous, its diminished thickness near the edge causes

a rapid upwai'd current on each side, Avhile the central portion slowly
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descends. Also at the bottom of the film, where the edge is nearly-

horizontal, portions which have become thinned escape from their

position of unstable equilibrimn beneath heavier portions, and pass

upwards, traversing the central portion of the film until they find a

position of stable equilibrium. By these processes, the whole film is

rapidly reduced in thickness.

The energy of the suction which produces these effects may be

inferred from the following considerations. The pressure in the

slender liquid rnass which encircles the film is of course variable,

being greater in the lower portions than in the upper, but it is every-

where less than the pressure of the atmosphere. Let us take a point

where the pressure is less than that of the atmosphere by an amount

represented by a column of the liquid one centimetre in height. (It

is probable that much greater diflerences of pressure occur.) At a

point near by in the interior of the film the pressure is that of the

atmosphere. Now if the difference of pressure of these two points

were distributed uniformly through the space of one centimetre, the

intensity of its action would be exactly equal to that of gravity.

But since the change of pressure must take place very suddenly (in

a small fraction of a millimetre), its effect in producing a current in a

limited space must be enormously great compared with that of

gravity.

Since the process just described is connected with the descent of

the liquid in the mass encircling the film, we may regard it as

another example of the downward tendency of the interior of the

film. There is a third way in which this descent may take place,

when the principal component of the interior is volatile, viz.,

through the air. Thus, in the case of a film of soap-water, if we
suppose the atmosphere to be of such humidity that the potential for

water at a level mid-way between the top and bottom of the film has

the same value in the atmosphere as in the film, it may easily be

shown that evaporation will take place in the U])per portions and

condensation in the lower. These processes, if the atmosphere were

otherwise undisturbed, would occasion currents of diffusion and other

currents, the general effect of which would be to carry the moisture

downward. Such a precise adjustment would be hardly attainable,

and the processes described would not be so rapid as to have a prac-

tical importance.

But when the potential for water in the atmosphere differs con-

siderably from that in the film, as in the case of a film of soap-water

in a dry atmosphere, or a film of soap-water with glycerine in a moist
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atmospliere, tlie cftfct of evaporation or condensation is not to be

neglected. In the tirst case, the diminution of the thickness of the

film will be accelerated, in the second, retarded. In the case of the

film containing glycerine, it should be observed that the water con-

densed cannot in all respects replace the fiuid carried down by the

internal current but that the two processes together will tend , to

wash oiit the glycerine from the film.

But when a com])onent which greatly diminishes the tension of the

film, although forming but a small fraction of its mass, (therefore

existing in excess at the surface,) is volatile, the effect of evaporation

and condensation may be considerable, even when the mean value of

the potential for that component is the same in the film as in the sui--

rounding atmosphere. To illustrate this, let us take the simple case

of two components /S'j and xS'^, as before. (See page 469.) It appears

from equation (508) that the potentials must vary in the film with

the height 3, since the tension does, and from (98) that these varia-

tions must (very nearly) satisfy the relation

;/j and y^ denoting the densities of S^ and S.^ in the interior of the

film. The variation of the potential of S2 as we pass from one level

to another is therefore as much more rapid than that of aS'j, as its

density in the interior of the film is less. If then the resistances

restraining the evaporation, transmission through the atmosphere,

and condensation of the two substances are the same, these processes

will go on much more rapidly with respect to S^. It will be

observed that the values of -^ and —^ will have opposite sigiis,
dz dz

the tendency of S^ being to pass down through the atmosphere, and

that of S„ to pass up. Moreover, it may easily be shown that the

evaporation or condensation of So, will produce a very much greater

effect than the evapcu-ation or condensation of the same quantity of

S^. These efi'ects are really of the same kind. For if condensation

of S^ takes place at the top of the film, it will cause a diminution of

tension, and thus occasion an extension of this part of the film, by

which its thickness will be reduced, as it would be by evaporation of

/Sj. We may infer that it is a general condition of the persistence of

liquid films, that the substance which causes the diminution of tension

in the upper parts of the film must not be volatile.

But apart from- any action of the atmosphere, we have seen that a

Trans. Conn. Acad., Vol. III. 61 April, 1878.
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filiii which is truly fluid in its interior is in general subject to a con-

tinual diminution of thickness by the internal currents due to gravity

and the suction at its edge. Sooner or, later, the interior wall some-

where cease to have the properties of matter in mass. The film will

then probably become unstable with respect to a flux of the interior

(see page 473), the thinnest parts tending to become still more thin

(apart from any external cause) very much as if there were an

attraction between the surfaces of the film, insensible at greater dis-

tances, but becoming sensible when the thickness of the film is suffi-

ciently reduced. We should expect this to determine the rupture of

the film, and such is doubtless the case with most liquids. In a film

of soap-water, however, the rupture does not take place, and the

processes which go on can be watched. It is apparent even to a very

superficial observation that a film of which the tint is approaching

the black exhibits a remarkable instability. The continuous change

of tint is interrupted by the breaking out and rapid extension of

black spots. That in the formation of these bright spots a separa-

tion of different substances takes place, and not simply an extension

of a part of the film, is shown by the fact that the film is made
thicker at the edge of these spots.

This is very distinctly seen in a plane vertical film, when a single

black spot breaks out and spreads rapidly over a considerable area

Avhich was before of a nearly uniform tint approaching the black.

The edge of the black spot as it sj^reads is marked as it were by a

string of bright beads, which unite together on touching, and thrus

becoming larger, glide down across the bands of color below. Under

favorable circumstances, there is often quite a shower of these bright

spots. They are evidently small spots very much thicker—appar-

ently many times thicker—than the part of the film out of which

they are formed. Now if the formation of the black spots were due

to a simple extension of the film, it is evident that no such appear-

ance would be presented. The thickening of the edge of the film

cannot be accounted for by contraction. For an extension of the

upper portion of the film and contraction of the lower and thicker

portion, with descent of the intervening portions, would be far less

resisted by viscosity, and far more favored by gravity than such

extensions and contractions as would produce the appearances

described. But the rapid formation of a thin spot by an internal

current would cause an accumidation at the edge of the spot of the

material forming the interior of the film, and necessitate a thickening

of the film in that place.
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That which is most difficult to account for iu the fonuatiou of the

black spots is tlie arrest of the process by wliich the fihn grows thin-

ner. It seems most natural to account for this, ifpossible., by passive

resistance to motion due to a very viscous or gelatinous condition of

the film. For it does not seem likely that the film, after becoming

unstable by the flux of matter from its interioi-, would become stable

(without the support of such resistance) l)y a continuance of the

same process. On the other hand, gelatinous properties are very

marked in soap-water which contains somewhat more soap than is

best for the formation of films, and it is entirely natural that, even

when such properties are wanting in the interior of a mass or thick

film of a liquid, they may still exist in the immediate vicinity of the

surface (wdiere we know that the soap or some of its conii)onents

exists in excess), or throughout a film which is so thin that the

interior has ceased to have the })roperties of matter in mass.* But

these considerations do not amount to any a priori probability of an

arrest of the tendency toward an internal current between adjacent

elements of a black spot which may differ slightly in thickness, in

time to prevent rupture of the film. For, in a thick film, the increase

of the tension Avith the extension, which is necessary for its stability

with respect to extension, is connected with an excess of the

soap (or of some of its components) at the surface as compared with

the interior of the film. With respect to the black spots, although

the interior has ceased to have the properties of matter in mass, and

any quantitative determinations derived from the surfaces of a mass

of the liquid Avill not be applicable, it is natural to account for the

stability with reference to extension by supposing that the same

general difterence of composition still exists. If therefore we account

for the arrest of internal currents by the increasing density of

soap or some of its components in the interior of the film, we must

still suppose that the characteristic diftei-ence of composition in the

interior and surface of the film has not been obliterated.

The preceding discussion relates to liquid films between masses of

gas. Similar considerations will apply to liquid films between other

liquids or between a liquid and a gas, and to films of gas between

* The experiments of M. Plateau (chapter VII of the work already cited) show that

this is the case to a very remarkable degree with respect to a solution of saponine.

With respect to soap-water, however, they do not indicate anj^ greater superficial

viscosity than belongs to pure water. But the resistance to an internal current, such as

we are considering, is not necessarily measured by the resistance to such motions

as those of the experiments referred to.
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masses of liquid. The latter may be formed by gently depositing a

liquid drop upon the surface of a mass of the same or a different

liquid. This may be done (with suitable liquids) so that the con-

tinuity of the air sepai'ating the liquid drop and mass is not broken,

but a film of air is formed, which, if the liquids are similar, is a

counterpart of the liquid film which is formed by a bubble of air ris-

ing to the top of a mass of the liquid. (If the hul)ble has the same

volume as the drop, the films will have precisely the same form, as

well as the rest of the surfaces which bound the l)ubl)le and the

drop.) Sometimes, when the weight and momentum of the drop

carry it through the surface of the mass on which it falls, it appears

surrounded by a comj^lete spherical film of air, which is the counter-

part on a small scale of a soap-bubble hovering in air.* Since, how-

ever, the substance to which the necessary differences of tension in

the film are mainly due is a component of tlie liquid masses on each

side of the air film, the necessary differences of the potential of this

substance cannot be permanently maintained, and these films have

little persistence compared with films of soap-water in air. In this

respect, the case of these air-films is analogous to that of liquid films

in an atmosphere containing siibstances by which their tension is

greatly reduced. Compare page 479.

Surfaces of Discontinuity between Solids and Fluids.

We have hitherto treated of surfaces of discontinuity on the sup-

position that the contiguous masses are fluid. This is by far the

most simple case for any rigorous treatment, since the masses are

necessarily isotropic both in nature and in their state of strain. In

this case, moreover, the mobility of the masses allows a satisfactory

experimental verification of the mechanical conditions of equilibrium.

On the other hand, the rigidity of solids is in general so great, that

any tendency of the surfaces of discontinuity to variation in area or

form may be neglected in comparison with the forces which are pi"o-

duced in the interior of the solids by any sensible strains, so that it

is not generally necessary to take account of the surfaces of discon-

tinuity in determining the state of strain of solid masses. But we

must take account of the nature of the surfaces of discontinuity

* These spherical air-films are easily formed in soap-water. They are distinguish-

able from ordinary air-bubbles by their general behavior and by their appearance.

The two concentric spherical surfaces are distinctly seen, the diameter of one appear-

ing to be about three-quarters as large as that of the other. Tliis is of course an

optical illusion, depending upon the index of refraction of tlie li(j\iid.
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between solids and fluids with reference to the tendency toward

solidification or dissolution at such surfaces, and also with reference to

the tendencies of different fluids to spread over the surfaces of solids.

Let us therefore consider a surface of discontinuity between a fluid

and a solid, the latter being either isotropic or of a continuous crystal-

line structure, and subject to any kind of stress compatible with a

state of mechanical equilibrium with the fluid. We shall not exclude

the case in which substances foreign to the contiguous masses are

present in small quantities at the surface of discontinuity, but we
shall suppose that the natiire of this surface {i. e.^ of the non-hoiiio-

geneous film between the approximately homogeneous masses), is

entirely determined by the nature and state of the masses wliich it

separates, and the quantities of the foreign substances which may be

])resent. The notions of the divkUng surface^ and of the superficial

densities of energy, entropy, and the several components, which we
have used with respect to surfaces of discontinuity between fluids

(see pages 380 and 386), will evidently ^pply without modification to

the present case. We shall use the suffix
, with reference to the

substance of the solid, and shall suppose the dividing surface to be

determined so as to make the superficial density of this substance

vanish. The suj)erficial densities of energy, of entropy, and of the

other com})onent siibstanees may then be denoted by our usual sym-

bols (see page 397),

^S(l)5 VhDI ^ 2(1)J ^ 3(1)5 6tc.

Let the quantity ff be defined by the equation

^=^S(i)-^Vs(i,-/^2 ^2U)-/^3^^3(l)-etC., (659)

in which t denotes the temperature, and yUg? /^s? ^^c. the potentials

for the substances specified at the surface of discontinuity.

As in the case of two fluid masses, (see page 421,) we may regard

0' as expressing the work spent in forming a unit of the surfiice

of discontinuity—under certain conditions, which we need not here

specify—but it cannot properly be regarded as expressing the tension

of the surface. The latter quantity depends upon the work spent in

stretching the surface, while the quantity G depends upon the work

spent m forming the surface. With respect to perfectly fluid masses,

these processes are not distinguishable, unless the surface of discon-

tinuity has com2:)onents which are not found in the contiguous masses,

and even in this case, (since the surface must be supposed to be formed

out of matter supplied at the same potentials which belong to the mat-

ter in the surface,) the work S]ient in increasing the surfiice infinitesi-
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nially by stretching is identical with that which must be spent in

forming an equal infinitesimal amount of new surface. But when one

of the masses is solid, and its states of strain are to be distinguished,

there is no such equivalence between the stretching of tlie surface

and the forming of new surface.*

With these preliminary notions, we now proceed to discuss the

condition of equilibrium which relates to the dissolving of a sf>lid at

the surface where it meets a fluid, when the thermal and mechanical

conditions of equilibiinm are satisfied. It will be necessary for us to

consider the case of isotropic and of crystallized bodies separately,

since in the former the value of a is independent of the direction of

the surface, excei)t so far as it may be influenced by the state of strain

of the solid, while in the latter the value of G varies greatly with the

direction of tlie surface with respect to the axes of crystallization, and

in such a manner as to have a large number of sharply defined

minima.f This may be inferred from the phenomena which crystal-

line bodies present, as will appear more distinctly in the following

discussion. Accordingly, while a variation in the direction of an

* This will appear more distinctly if we consider a particular case. Let us consider

a thin plane sheet of a crystal in a vacuum (which may be regarded as a limiting case

of a very attenuated fluid), and let us suppose that the two surfaces of the sheet are

alike. By applying the proper forces to the edges of the sheet, we can make all stress

vanish in its interior. The tensions of the two surfaces, are in equilibrium with these

forces, and are measured by them. But the tensions of the surfaces, thus determined,

may evidently have different values in different directions, and are entirely different

from the quantity which we denote by a, which represents the work required to form

a unit of the surface by any reversible process, and is not connected with any idea of

direction.

In certain cases, however, it appears probable that the values of c and of the

superficial tension will not greatly differ. This is especially true of the numerous

bodies which, although generally (and for many purposes properly) regarded as solids,

are really very viscous fluids. Even when a body exhibits no fluid properties at its

actual temperature, if its surface has been formed at a higher temperature, at which

the body was fluid, and the change from the fluid to the solid state has been by

insensible gradations, we may suppose that the value of a coincided with the super-

ficial tension until the body was decidedly solid, and that they will only differ so far

as they may be differently affected by subsequent variations of temperature and of tlie

stresses applied to the solid. Moreover, when an amorphous solid is in a state of

equilibrium with a solvent, although it may have no fluid properties in its interior, it

seems not improbable that the particles at its surface, which have a greater degree of

mobility, may so arrange themselves that the value of a will coincide with the super-

ficial tension, as in the case of fluids.

+ The differential coefficients of a with respect to the direction-cosines of the surface

appear to be discontinuous functions of the latter quantities.
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element of the surface may be neglected (with respect to its effect on

the value of g) in the case of isotropic solids, it is quite otherwise

with crystals. Also, Avdiile the surfaces of equilibrium between fluids

and soluble isotropic solids are without discontinuities of direction,

being in general curved, a crystal in a state of equilibrium with a

fluid in which it can dissolve is bounded in general by a broken sur-

face consisting of sensibly plane portions.

For isotropic solids, the conditions of equilibrium may be deduced

as follows. If we suppose that the solid is unchanged, except that an

infinitesimal portion is dissolved at the surface where it meets the

fluid, and that the fluid is considerable in quantity and remains

homogeneous, the increment of energy in the vicinity of the siirface

will be represented by the expression

where Ds denotes an element of the surface, dJSf the variation in its

])Osition (measured normally, and regai'ded as negative when the solid

is dissolved), e^ and Cg its principal curvatures (positive when

their centers lie on the same side as the solid), %!, the surface-

density of energy, e^' and £y" the volume-densities of energy in the

solid and fluid respectively, and the sign of integration relates to the

elements Ds. In like manner, the inci-ements of entropy and of the

quantities of the several components in the vicinity of the surface

will be

.fVh'-Vv" + (<''l4-''3) '/SU)] S^^J^S,

etc.

The entropy and the matter of different kinds represented by these

expressions we may suppose to be derived from the fluid mass.

These expressions, therefore, with a change of sign, will represent

the increments of entropy and of the quantities of the components

in the wdiole space occupied by the fluid except that which

is immediately contiguous to the solid. Since this space may be

regarded as constant, the increment of energy in this space may be

obtained [according to equation (12)] by multiplying the above

expression relating to entropy by —t, and those relating to the

components by — yw^", - |^2^ ©tc.,* and taking the sum. If to this

* The potential //

,

" is marked by double accents in order to indicate that its value

is to be determined in the fluid mass, and to distinguish it from the potential fi ,

'
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we add the above expression for tlie increment of energy near the

surface, Ave obtain the increment of energy for the whole system.

Now by (93) we have

//' r= - f," + t ,1," + ///' ;//' + //^ y/ + etc.

By this equation and (659), our expression for the total increment of

energy in the system may be reduced to the form

/[fv' — ^//v'— /^"rl' +K + (Cl+c3)ff]fJ.YX»s. (660)

In order that this shall vanish for any values of 6N^ it is necessary

that tlie coefHcient of dJSfDs shall vanish. This gives for the condi-

tion of equilibrium

^,,^eV-tv.J+if + i^e,+e.^a^
(061)

y \

This equation is identical Avith (387), with the exception of the term

containing (7, which vanishes when the surface is plane.*

We may also observe that when tlie solid has no sti'esses except an

isotropic pressure, if the quantity represented by ff is equal to the true

tension of the surface, p" + (<^'i
-|- c^) ^ ^^'^^^ represent the pressure in

the interior of the solid, and the second member of the equation will

represent [see equation (93)] the A'alue of the potential in the solid

for the substance of which it consists. In this case, therefore, the

equation reduces to

that is, it expresses the equality of the potentials for the substance of

the solid in the two masses—the same condition which would subsist

if both masses were fluid.

Moreover, the compressibility of all solids is so small that, although

o" may not represent the true tension of the surface, woy p"-\- (Cj -\-<-2) o"

the true pressure in the solid when its stresses are isotropic, the quan-

tities £v' a"tl V\' if calculated for the pressure jo" + (c^ +^2) ^ with

the actual temperature will have sensibly the same values as if calcu-

lated for the true pressure of the solid. Hence, the second member

relatina; to tlie solid mass (when this is in a state of isotropic stress), which, as we

shall see, may not always liave the same value. The other potentials fi^, etc., have

the same values as in (659), and consist of two classes, one of which relates to sub-

stances which are components of the fluid mass, (these might be marked by the double

accents.) and the other relates to substances found only at the surface of discontinuity.

The expressions to be multiplied by the potentials of this latter class all have the

value zero.

* In equation (387), the density of the solid is denoted by T, which is therefore

equivalent to 7/ in (661).
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of eciuatioii (661), when the stresses of the solid are sensibly iso-

tropic, is sensibly eqiial to the potential of the same body at the

same temperature but with the pressure p" -\- {ci -{• Co) ff, and the

condition of equilibrium with respect to dissolving for a solid of

isotropic stresses may be exi)i-essed with sufficient accuracy by saying

that the potential for the substance of the solid in the fluid must

have this value. In like manner, when the solid is not in a state of

isotropic stress, the difterence of the two pressures in question will

not sensibly affect the values of £v' aud ?/v', and the value of the

second member of the ecpiation may be calculated as iip"-{- (c, + c^) ff

represented the true pressure in the solid in the direction of the nor-

mal to the surface. Therefore, if we had taken for granted that the

quantity ff represents the tension of a surface between a solid and a

fluid, as it does when both luasses are fluid, this assumption would

not have led us into any })ractical error in determining the value of

the potential /<," which is necessary for equilibrium. On the other

hand, if in the case of any amorphous body the value of a differs

notably from the true surface-tension, the latter quantity substituted

for 0' in (661) will make the second member of the equation equal to

the true value of yu/, when the stresses are isotropic, but this will not

be equal to the value of /./
," in case of eqixilibrium, unless Cj -\- c^ = 0.

When the stresses in the solid are not isotropic, equation (661)

may be regarded as exi)ressing the condition of equilibrium with

respect to the dissolving of the solid, and is to be distinguished from

the condition of equilibrium with respect to an increase of solid

matter, since the new matter would doubtless be deposited in a state

of isotropic stress. (The case would of course be different with

crystalline bodies, which are not considered here.) The value of

jj^" necessary for equilibrium with respect to the formation of new

matter is a little less than that necessary for equilibrium with respect

to the dissolving of the solid. In regard to the actual behavior of

the solid and fluid, all that the theory enables us to predict with

certainty is that the solid will not dissolve if the value of the poten-

tial yu/' is greater than that given by the equation for the solid with

its distorting stresses, and that new matter will not be formed if the

value of /<i" is less than the same equation would give for the case of

the solid with isotropic stresses.* It seems probable, however, that

* The possibility that the new solid matter might differ in composition from the

original solid is here left out of account. This point has been discussed on pages

134-137, but without reference to the state of strain of the solid or the influence of

the curvature of the surface of discontinuity. The statement made above may be

Trans. Conn. Acad., Vol. III. 62 April, 1878.
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if the fluid in contact with the solid is not renewed, the system will

generally find a state of equilibrium in which the outermost portion

of the solid will be in a state of isotropic stress. If at first the solid

should dissolve, this would supersaturate the fluid, perhaps until a state

is reached satisfying the condition of equilibrium with the stressed

solid, and then, if not before, a deposition of solid matter in a state of

isotropic stress would be likely to commence and go on until the fluid

is reduced to a state of equilibrium with this new solid matter.

The action of gravity will not affect the nature of the condition of

equilibrium for any single point at which the fluid meets the solid,

but it will cause the values oi p" and yu/' in (661) to vary according

to the laws expressed by (612) and (6] 7). If we suppose that the

oiiter part of the solid is in a state of isotropic stress, which is the

most important case, since it is the only one in which the equilibrium

is in every sense stable, we have seen that the condition (661) is at

least sensibly equivalent to this :—that the potential for the sub-

stance of the solid which would belong to the solid mass at the

temperature t and the pressure ^^"+ {Ci-^-c.^) G must be equal to ///'.

Or, if we denote by {p'^ the pressiire belonging to solid with the

temperature t and the potential equal to /ij", the condition may be

expressed in the form

(y)z=y'+(c,+ C2)(7. (662)

Now if Ave write ;/" for the total density of the fluid, we have by (612)

dp)"=-gy"dz.

By (98) d{p')^y^di.i^\

and by (617) d^i^' =z — </ dz ;

whence d {p') =1 — </ K
1

' ^^^•

Accordingly we have

d{p')^dp"= g{y"~.y,')dz,
and

z being measured from the horizontal plane for which {p')=p".

Substituting this value in (662), we obtain

c,+c^= ^^^'"~^''h
, (663)

generalized so as to hold true of the formation of new solid matter of any kind on

the surface as follows :—that new solid matter of any kind will not be formed upon

the surface (with more than insensible thickness), if the second member of (661) cal-

culated for such new matter is greater than the potential in the fluid for such matter.
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precisely as if both musses were fluid, and G denoted the tension of

their common surface, and {p) the true pressure in the mass specified,

[Compare (6 19).

J

The obstacles to an exact experimental realization of these rela-

tions are very great, principally from the M'ant of absolute uniformity

in the internal structure of amorphous solids, and on account of the

passive resistances to the processes which are necessary to bring

about a state satisfying the conditions of theoretical equilibrium,

but it may be easy to verify the general tendency toward diminution

of surface, which is implied in the foregoing equations.*

Let us apply the same method to the case in which the solid is

a crystal. The surface between the solid and fluid will now consist

of plane portions, the directions of which may be regarded as invari-

* It seems probable that a tendency of this kind plays an important part in some

of the phenomena which have been observed w^ith respect to the freezing together

of pieces of ice. (See especially Professor Faraday's " Note on Regelation" in the

Proceedings of tlie Royal Society, vol. x, p. 440 ; or in the Fhilosojjhical Magazine, 4th ser.,

vol. xxi, p. 146.) Although this is a body of crystalline structure, and the action

vi'hich takes place is doubtless influenced to a certain extent by the directions of

the axes of crystallization, yet, since the phenomena have not been observed to

depend upon the orientation of the pieces of ice, v?e may conclude that the effect, so

far as its general character is concerned, is such as might take place vsfith an isotropic

body. In other words, for the purposes of a general explanation of the phenomena

we may neglect the differences in the values of ciw (the suffixes are used to indicate

that the symbol relates to the surface between ice and water) for different orientations

of the axes of crystallization, and also neglect the influence of the surface of discon-

tinuity with respect to crystalline structure, which must be formed by the freezing

together of the two masses of ice when the axes of crystallization in the two masses

are not similarly directed. In reality, this surface—or the necessity of the formation

of such a surface if the pieces of ice freeze together—must exert an influence adverse

to their union, measured by a quantity ctu, which is determined for this surface by

the same principles as when one of two contiguous masses is fluid, and varies with

the orientations of the two systems of crystallographic axes relatively to each other

and to the surface. But under the circumstances of the experiment, since we may

neglect the possibility of the two systems of axes having precisely the same directions,

this influence is probably of a tolerably constant character, and is evidently not suffi-

cient to alter the general nature of the result. In order wholly to prevent the

tendency of pieces of ice to freeze together, when meeting in water with curved sur-

faces and without pressure, it would be necessary that ffn— 2(Tiw, except so far as the

case is modified by passive resistances to change, and by the inequality in the values

of ffn and (Tjw for different directions of the axes of crystallization.

It vdll be observed that this view of the phenomena is in harmony with the

opinion of Professor Faraday, With respect to the union of pieces of ice as an

indirect consequence of pressure, see page 198 of volume xi of the Proceedingn of the

Royal Society ; or the Philosophical Magazine, 4th ser., vol. xxiii, p. 407.
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able. If the crystal grows on one side a distance SN', without other

change, the increment of energy in the vicinity of the surface will be

{e^'— £y") s 6N'+ ^''(fs(j/ V cosee 6j'— %!) I' cot oo') SJST,

where fy' and fy" denote the volume-densities of energy in the crystal

and fluid respectively, s the area of the side on which the crystal

grows, £§(1) the surface-density of energy on that side, £s(i) the surface-

density of energy on an adjacent side, go' the external angle of these

two sides, I' their common edge, and the symbol 2' a summation

with respect to the different sides adjacent to the first. The incre-

ments of entropy and of tbe quantities of the several components will

be represented by analogous formulas, and if we deduce as on pages 485,

486 the expression for the increase of energy in the whole system due

to the growth of the crystal without change of the total entropy or

volume, and set this expression equal to zero, we shall obtain for the

condition of equilibrium

{es'-tn.'-li,"y,'+p")s6N

+ :^"
(

0-' /' cosec Gj'—(f I' cot go') 6N= 0, (G64)

where G and g' relate respectively to the same sides as fg.^, and fsd)' i"

the preceding formula. This gives

fy'— t 7k' { p" '2'i a' I' cosec go —gV cot go'\

/'.
=

—

vr^^- jy-' (««')

It will be observed that unless the side especially considered is

small or narrow, we may neglect the second fraction in this equation,

which will then give the same value of //," as equation (387), or as

equation (661) applied to a plane surface.

Since a similar equation must hold true with respect to every other

side of the crystal of which the equililirium is not affected by meet-

ing some other body, the condition of equilibrium for the crystalline

foi-m (when unaffected by gravity) is that the expression

^'(o"'/' cosec &9'—o'^' cot gl)')
/rfifi^

s

shall have the same value for each side of the crystal. (By the value

of this expression for any side of the crystal is meant its value when

G and s ai-e determined by that side and the other quantities by the

surrounding sides in succession in connection with the first side.)

This condition will not be affected by a change in the size of a crys-

tal while its projjortions remain the same. Bvit the tendencies of

similar crystals toward the form required by this condition, as mea-

sured by the inequalities in the composition or the temperature of
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the surrounding fluid whicli would counterbalance them, will be

inversely as the linear dimensions of the crystals, as ap})ears from the

preceding equation.

If we write v for the volume of a crystal, and 2{ff s) for the sum

of the areas of all its sides multiplied each by the corresponding

value of c, the numerator and denominator of the fraction (666),

multiplied each by 6N, may be represented by 6^{gs) and (3v

respectively. The value of the fraction is therefore equal to that of

the differential coeflicient

d2{o' s)

dv

as determined by the displacement of a particular side while the other

sides ai-e fixed. The condition of equilibrium for the form of a crys-

tal (when the influence of gravity may be neglected) is that the

value of this differential coeflicient must be independent of the partic-

ular side which is supposed to be displaced. Foi- a constant volume

of the crystal, ^^((T s) has therefore a minimum value when the

condition of equilibrium is satisfied, as may easily be proved more

directly.

When there are no foreign substances at the surfaces of the crystal,

and the surrounding fluid is indefinitely extended, the quantity

^{o's) represents the work required to form the surfaces of the

crystal, and the coeflicient of s dJSfm (664) with its sign reversed rep-

resents the work gained in forming a mass of volume unity like the

crystal but regarded as without surfaces. We may denote the work

required to form the crystal by

W^ denoting the work required to form the surfaces \J.e., ^'((Ts)],

and Wy the work gained in forming the mass as distinguished from

the surfaces. Equation (664) may then be written

— 6Wy+l:{0 6s)z::zO. (667)

Now (664) would evidently continue to hold true if the crystal were

diminished in size, remaining similar to itself in form and in nature,

if the values of o' in all the sides were supposed to diminish in the

same ratio as the linear dimensions of the crystal. The variation of

W^s, would then be determined by the relation

d TFs= d:^{ff s) = I 2{0 ds),

and that of Wy by (667). Hence,

dW^=^dWy,



492 J. W. Gibhs—EquiUbrimn of Heterogeneous Substances.

and, since TT^ and Wy vanish together,

TTs- TFv= iWs==iTFv, (668)

—the same relation which we have before seen to snbsist with respect

to a spherical mass of fluid as well as in other cases. (See pages 421,

425, 465.)

The equilibiium of the crystal is unstable with respect to variations

in size when the surrounding fluid is indefinitely extended, but it

may be made stable by limiting the quantity of the fluid.

To take account of the influence of gravity, we must give to yUj"

and p" in (665) their average values in the side considered. These

coincide (when the fluid is in a state of internal equilibrium) with

their values at the center of gravity of the side. The values of

Yx'i ^y'l Vv' w^^y ^^ regarded as constant, so far as the influence of

gravity is concerned. Now since by (612) and (617)

dp"= -gr"dz,
and

d/.i^" =. — g dz,

we have

d{r,'M^"-2n = ^{r"~ri')(^^'

Comparing (664), we see that the upper or the lower faces of the

crystal will have the greater tendency to grow, (other things l)eing

equal,) according as the crystal is lighter or heavier than the fluid.

When the densities of the two masses are equal, the effect of gravity

on the form of the crystal may be neglected.

In the preceding paragraph the fluid is regarded as in a state of

internal equilibrium. If we sujipose the composition and tempera-

ture of the fluid to be uniform, the condition which will make the

effiect of gravity vanish will be that

d(r,'^i,"-p")_
Q^

dz

wlien the value of the differential coefficient is determined in accord-

ance with this supposition. This condition i-educes to

dp))t,m }//'

which, by equation (92), is equivalent to

(^

{±X =J_. (669)
\drn^Jt,p,m y^'

* A suffixed m is used to represent all the symbols m,, m^, etc., except such as

may occur in the differential coefficient.
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The tendency of a crystal to grow will be greater^in the upijei* or

lower parts of the fluid, according as the growth of a crystal at con-

stant temperature and pressure will produce expansion or contraction.

Again, we may suppose the composition of the fluid and its

entropy per unit of mass to be uniform. The temperature will then

vary with the pressure, that is, with z. We may also suppose the

temperature of different crystals or different parts of the same crystal

to be determined by the fluid in contact with them. These condi-

tions express a state which may perhaps be realized when the fluid is

gently stirred. Owing to the differences of temperature we cannot

regard fy' and ?/v' in (664) as constant, but we may regard their

variations as subject to the relation di^;' =. t dti^'. Therefore, if we
make ?;v' = foi' the mean temperature of the fluid, (which involves

no real loss of generality,) Ave may treat e^' -t t/y' as constant. We
shall then have for the condition that the effect of gravity shall

vanish

—

dz

which signifies in the present case that

\ dp Jii,m~ ^i"
or, by (90),

i^)' =^. (670)

Since the entropy of the crystal is zero, this equation ex[)resses that

the dissolving of a small crystal in a considerable quantity of the

fluid will produce neither expansion nor contraction, when the pres-

sure is maintained constant and no heat is supplied or taken away.

The manner in which crystals actually grow or dissolve is often

principally determined by other differences of phase in the surround-

ing fluid than those which have been considered in the preceding

paragraph. This is especially the case when the crystal is growing

or dissolving rapidly. When the great mass of the fluid is consider-

ably supersaturated, the action of the crystal keeps the part immedi-

ately contiguous to it nearer the state of exact saturation. The

farthest projecting parts of the crystal will therefore be most exposed

to the action of the supersaturated flixid, and will grow most rapidly.

The same parts of a crystal will dissolve most rapidly in a fluid con-

siderably below saturation.*

* See 0. Lehmami "Debar das Wachsthum der Krystalle," Zeitschrift. fllr Krystai-

lographie unci Mineralogie, Bd. i, S. 453 ; or the review of the paper in Wiedemann's
Beibldtter, Bd. ii, S. 1.
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But even when the fluid is supersaturated only so much as is

necessary in order that the crystal shall grow at all, it is not to be

expected that the form in which 2{o' s) has a minimum value (or

such a modification of that form as may be diie to gravity or to the

influence of the body supporting the crystal) will always be the

iiltimate result. For we cannot imagine a body of the internal

structure and external form of a crystal to grow or dissolve by an

entirely continuous process, or by a process in the same sense continu-

ous as condensation or evaporation between a liquid and gas, or the

corresponding processes betw^eeu an amorphous solid and a fluid.

Tlie process is rather to be regarded as periodic, and the formula

(664) cannot properly represent the true value of the quantities

intended unless 6N is equal to the distance between two successive

layers of molecules in the crystal, or a multiple of that distance.

Since this can hardly be treated as an infinitesimal, we can only con-

clude with certainty that sensible changes cannot take place for

which the expression (664) would have a positive value.*

* That it is Becessary that certain relations shall be precisely satisfied in order that

equilibrium may subsist between a liquid and gas with respect to evaporation, is

explained (see Clausius " Ueber die Art der Bewegung, welche wir Warme nennen,"

Fogg. Ann., Bd. c, S. 353 ; or Abhancl. ilher die mech. Wdrmetheorie, XIV,) by suppos-

ing that a passage of individual molecules from the one mass to the other is continually

taking place, so that the slightest circumstance may give the preponderance to the

passage of matter in either direction. The same supposition may be applied, at least

in many cases, to the equilibrium between amorphous solids and fluids. Also in the

case of crystals in equilibrium with fluids, there may be a passage of individual mole-

cules from one mass to the other, so as to cause insensible fluctuations in the mass of

the solid. If these fluctuations are such as to cause the occasional deposit or removal

of a whole layer of particles, the least cause would be sufficient to make the probability

of one kind of change prevail over that of the other, and it would be necessary for

equilibrium that the theoretical conditions deduced above should be precisely satisfied.

But this supposition seems quite improbable, except with respect to a very small side.

The following view of the molecular state of a crystal when in equilibrium with

respect to growth or dissolution appears as probable as any. Since the molecules at

the corners and edges of a perfect crystal would be less firmly held in their places

than those in the middle of a side, we may suppose that when the condition of

theoretical equilibrium (6G5) is satisfied several of the outermost layers of molecules

on each side of the crystal are incomplete toward the edges. The boundaries of these

imperfect layers probably fluctuate, as individual molecules attach themselves to the

crystal or detach themselves, but not so that a layer is entirely removed (on any side

of considerable size), to be restored again simply b}- the irregularities of the motions

of the individual molecules. Single molecules or small groups of molecules may

indeed attach themselves to the side of the crystal but they will speedily be dislodged,

and if any molecules are thrown out from the middle of a surface, these deficiencies
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Let us now examine the special condition of equilibrium which

relates to a line at which three diiferent masses meet, when one or

more of these masses is solid. If we apply the method of page 685

to a system containing such a line, it is evident that we shall obtain

in the expression corresponding to (660), beside the integral relating

to the surfaces, a term of the form

f^{GST)Dl
to be interpreted as the similar term in (611), except so far as the

definition of ff has been modified in its extension to solid masses. In

order that this term shall be incapable of a negative value it is neces-

will also soon be made good ; nor will the frequency of these occurrences be such as

greatly to affect the general smoothness of the surfaces, except near the edges where

the surfaces fall off somewhat, as before described. Now a continued growth on any

side of a crystal is impossible unless new layers can be formed. This will require a

value of /i
I
" which may exceed that given by equation (665) by a finite quantity.

Since the difficulty in the formation of a new layer is at or near the commencement

of the formation, the necessary value of ^
,

" may be independent of the area of the

side, except when the side is very small. The value of /^

,

" which is necessary for the

growth of the crystal will however be different for different kinds of surfaces, and

probably will generally be greatest for the surfaces for which a is least.

On the whole, it seems not improbable that the form of very minute crystals in

equilibrium with solvents is principally determined by equation (665), [i. e., by the

condition that 2((7 s) shall be a minimxim for the volume of the crystal except so far as

the case is modified by gravity or the contact of other bodies,) but as they grow

larger (in a solvent no more sujjersaturated than is necessary to make them grow at

all), the deposition of new matter on the different surfaces will be determined more Vjy

the nature (orientation) of the surfaces and less by their size and relations to the

surrounding surfaces. As a final result, a large crystal, thus formed, will generally

be bounded by those surfaces alone on which the deposit of new matter takes place

least readily, with small, perhaps insensible truncations. If one kind of surfaces

satisfying this condition cannot form a closed figure, the crystal will be bounded by

two or three kinds of surfaces determined by the same condition. The kinds of

surface thus determined will probably generally be those for v/hich g has the least

values. But the relative development of the different kinds of sides, even if unmodi-

fied by gravity or the contact of other bodies, will not be such as to make 2(cts) a

minimum. The growth of the crystal wiU finally be confined to sides of a single kind.

It does not appear that any part of the operation of removing a layer of molecules

presents any especial difficulty so marked as that of commencing a new layer
;
yet

the values of ^
,

" which wiU just allow the different stages of the process to go on

must be slightly different, and therefore, for the continued dissolving of the crystal

the value of //

,

" must be less (by a finite quantity) than that given by equation (665).

It seems probable that this would be especially true of those sides for which a has

the least values. The effect of dissolving a crystal (even when it is done as slowly

as possible) is therefore to produce a form which probably differs from that of

theoretical equilibrium in a direction opposite to that of a growing crystal.

Trans. Conn. Acad., Vol. III. ca June, 1878.
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sary that at every point of the line

2(o-fJr)^0 (671)

for any iwssible displacement of the line. Those displacements are to

be regarded as possible which are not prevented by the solidity of

the masses, when the interior of every solid mass is regarded as

incapable of motion. At the surfaces between solid and fluid masses,

the processes of solidification and dissolution will be possible in some

cases, and impossible in others.

The simplest case is when two masses are fluid and the third is

solid and insoluble. Let us denote the solid by S, the fluids by

A and B, and the angles filled by these fluids by a and /5 respec-

tively. If the surface of the solid is continuous at the line where it

meets the two fluids, the condition of equilibrium reduces to

Cab cos a= (Tbs - Gk^. (672)

If the line where these masses meet is at an edge of the solid, the

condition of equilibrium is that

Cab cos ^V ^ Cbs — O'as, \ ((573)

and Cab cos /i ^ Cas— O'bs ; ^

which reduces to the preceding when a-\-fi=z7t. Since the dis-

placement of the line can take place by a purely mechanical process,

this condition is capable of a more satisfactory experimental verifica-

tion than those conditions which relate to processes of solidification

and dissolution. Yet the frictional resistance to a displacement of

the line is enormously greater than in the case of three fluids,

since the relative displacements of contiguous portions of matter are

enormously greater. Moreover, foreign substances adhering to the

solid are not easily displaced, and cannot be distributed by extensions

and contractions of the surface of discontinuity, as in the case of

fluid masses. Hence, the distribution of such substances is arbitrary

to a greater extent than in the case of fluid masses, (in which a single

foreign substance in any surface of discontinuity is uniformly distri-

buted, and a greater number are at least so distributed as to make the

tension of the surface uniform,) and the presence of these substances

will modify the conditions of equilibrium in a more irregular manner.

If one or more of three surfaces of discontinuity which meet in a

line divides an amorphous solid from a fluid in which it is soluble,

such a surface is to be regarded as movable, and the particular condi-

tions involved in (671) will be accordingly modified. If the soluble

solid is a crystal, the case wnll properly be treated by the method

used on page 490. The condition of equilibrium relating to the line
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will not in this case be entirely separable from those relating to the

adjacent surfaces, since a displacement of the line will involve a dis-

placement of the whole side of the crystal which is terminated at this

line. But the expression for the total increment of energy in the

system due to any internal changes not involving any variation in

the total entropy or volume will consist of two parts, of which one

relates to the properties of the masses of the system, and the other

may be expressed in the form

8:2{(js),

the summation relating to all the surfaces of discontinuity. This

indicates the same tendency toward changes diminishing the value of

^((Ts), which appears in other cases.*

General Relations.—For any constant state of strain of the surface

of the solid, we may write

f?fs(,)=:«d^/;s(,)H-/'2^^^^2Ci) + A<3f^^'3(i)+ etc., (674)

since tliis relation is implied in the definition of the quantities

involved. From this and (659) we obtain

do-= -7h(^)dt- l\(^)d^i^- l\(^)dH^— eic, (675)

which is subject, in strictness, to the same limitation—that the state

of strain of the surface of the solid remains the same. But this

limitation may in most cases be neglected. (If the quantity <J repre-

sented the true tension of the surface, as in the case of a surface

between fluids, the limitation would be wholly unnecessary.)

Another method and notation.—We have so far supposed that we
have to do with a non-homogeneous film of matter between two

homogeneous (or very nearly homogeneous) masses, and that the

nature and state of this film is in all respects determined by the

* The freezing together of wool and ice may be mentioned here. The fact that

a fiber of wool which remains in contact with a block of ice under water will become

attached to it seems to be strictly analogous to the fact that if a solid body be brought

into such a position that it just touches the free surface of water, the water will

generally rise up about the point of contact so as to touch the solid over a surface of

some extent. The condition of the latter plienomenon is

"S A + (TwA^ Csw

,

where the suffixes s, a, and w refer to the solid, to air, and to water, respectively. In

like manner, the condition for the freezing of the ice to the wool, if we neglect

the seolotropic properties of the ice, is

<Jsw +ffiw ]> Csi,

where the suffixes p, w; and i relate to wool, to water, and to ice, respectively. See

Proc. Roy. Soc, vol. x, p. 447 ; or Phil. Mag., 4th ser., vol. xxi. p. 151.
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nature and state of these masses together with the quantities of the

foreign substances which may be present in the fihu. (See page 483.)

Problems relating to processes of solidification and dissolution seem

hardly capable of a satisfactory solution, except on this supposition,

which appears in general allowable with respect to the surfaces pro-

duced by these processes. But in considering the equilibrium of

fluids at the surface of an unchangeable solid, such a limitation is

neither necessary nor convenient. The following method of treating

the subject will be found more simple and at the same time more

general.

Let us suppose the superficial density of energy to be determined

by the excess of energy in the vicinity of the surface over that which

would belong to the solid, if (with the same temperature and state

of strain) it were bounded by a vacuum in place of the fluid, and to

the fluid, if it extended with a uniform volume-density of enei*gy just

up to the surface of the solid, or, if in any case this does not suffi-

ciently define a surface, to a surface determined in some definite way
by the exterior particles of the solid. Let us use the symbol (fg) to

denote the superficial energy tJtus defined. Let us suppose a superficial

density of entropy to be determined in a manner entirely analogous,

and be denoted by (?/§). In like manner also, for all the components

of the fluid, and for all foreign fluid substances which may be present

at the surface, let the su2:)erficial densities be determined, and denoted

by {l\), {l\), t'tc. These superficial densities of thefluid components

relate solely to the matter which is fluid or movable. All matter

which is immovably attached to the solid mass is to be regarded as a

part of the same. Moreover, let ? be defined by the equation

?=(fs)-^(A;s)-/<o(ro)~/^3(r3)-etc. (676)

These quantities will satisfy the following general relations

—

d{e^) = t d{t/s) +yM3 (7(i 2) + Ms (Kf\) + etc-, (Qll)

d?=z- (7s) dt-{l\) d;j2—U\) (^M3- etc. (678)

In strictness, these relations are subject to the same limitation as

(674) and (675). But this limitation may generally be neglected.

In fact, the values of ?, (fg), etc. must in general be much less

affected by variations in the state of strain of the surface of the solid

than those of (7, fg^,, etc.

The quantity ? evidently represents the tendency to contraction in

that portion of the surface of the fluid which is in contact with the

solid. It may be called the superficial tension of the fluid in contact

vnth the solid. Its value may be either positive or negative.
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It will be observed that for the same solid surface and for the same

temperature but for different fluids the values of G (in all cases to

which the definition of this quantity is applicable) will differ from

those of ? by a constant, viz., the value of a for the solid surface in

a vacuum.

For the condition of equilibrium of two difiei'cnt fluids at a line on

the surface of the solid, we may easily obtain

O-AB cos « = ?BS - ^AS, (679)

the suffixes, etc., being used as in (672), and the condition being

subject to the same modification when the fluids meet at an edge of

the solid.

It must also be regarded as a condition of theoretical equilibrium

at the line considered, [subject, like (679), to limitation on account

of passive resistances to motion,] that if there are any foreign sub-

stances in the surfaces A-S and B-S, the potentials for these sub-

stances shall have the same value on both sides of the line ; or, if

any such substance is found only on one side of the line, that the

potential for that substance must not have a less value on the other

side ; and that the potentials for the components of the mass A, for

example, must have the same values in the surface B-C as in the

mass A, or, if they are not actual components of the surface B-C, a

value not less than in A. Hence, we cannot determine the difterence

of the surface-tensions of two fluids in contact with the same solid, by

bringing them together upon the surface of the solid, unless these

conditions are satisfied, as well as those which art; necessary to pre-

vent the mixing of the fluid masses.

The investigation on pages 442-448 of the conditions of equilibrium

for a fluid system under the influence of gravity may easily be

extended to the case in which the system is bounded by or includes

solid masses, when these can be treated as rigid and incapable of

dissolution. The general condition of mechanical equilibrium would

be of the form

—y> 6Dv -I- fg y6zDv+fG SI)s -^fg F Sz Ds

+ /g SzDm + /iSDs+/g{r) 6zJJs=0, (680)

where the first four integrals relate to the fluid masses and the sur-

faces which divide them, and have the same signification as in

equation (606), the fifth integral relates to the movable solid masses,

and the sixth and seventh to the surfaces between the solids and

fluids, (r) denoting the sum of the quantities (i^g), (^3), etc. It

should be observed that at the surfiice where a fluid meets a solid
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dz and 6z, which indicate respectively the displacements of the solid

and the fluid, may have different values, but the components of

these displacements which are normal to the surface must be equal.

From this equation, among other particular conditions of equilib-

rium, we may derive the following

—

cU= g{r)dz, (681)

[compare (614),] which expresses the law governing the distribu-

tion of a thin fluid film on the surface of a solid, when there are no

passive resistances to its motion.

By applying equation (680) to the case of a vertical cylindrical tube

containing two different fluids, we may easily obtain the well-known

theorem that the product of the perimeter of the internal surface by

the difference 5'— ?" of the superficial tensions of the upper and lower

fluids in contact with the tube is equal to the excess of weight of the

matter in the tube above that which would be there, if the boundary

between the fluids were in the horizontal plane at which their pres-

sures would be equal. In this theorem, we may either include or

exclude the weight of a film of fluid matter adhering to the tube.

The proposition is usually applied to the column of fluid in mass

between the horizontal plane for which p':^p" and the actual

boundary between the two fluids. The superficial tensions 5' and s"

are then to be measured in the vicinity of this column. But Ave may

also include the weight of a film adhering to the internal surface of

the tube. For example, in the case of water in equilibrium with its

own vapor in a tube, the weight of all the water-substance in the

tube above the plane p'=/)", diminished by that of the water-vapor

which would fill the same space, is equal to the perimeter multiplied

by the difference in the values of ? at the top of the tube and at the

plane p'=: p". If the height of the tube is infinite, the value of ? at

the top vanishes, and the w^eight of the film of water adhering to the

tube and of the mass of liquid water above the plane p'=.2')" dimin-

ished by the weight of vapor which would fill the same space is

equal in numerical value but of opposite sign to the product of the

perimeter of the internal surface of the tube multiplied by ?", the

superficial tension of liquid water in contact with the tube at the

pressure at which the water and its vapor would be in equilibrium at

a plane surface. In this sense, the total weight of water which can

be supported by the tube per unit of the perimeter of its surface is

directly measured by the value of — ? for water in contact with the

tube.
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Modification of the conditions of equilibrium by ei-ectro-

MOTivE force.—Theory of a perfect electro-chemical

APPARATUS.

We know by experience that in certain fluids (electrolytic con-

ductors) there is a coiniection between the fluxes of the component

substances and that of electricity. The quantitative relation between

these fluxes may be expressed by an equation of the form

Dm^ Dm^, Dm„ Dm,.
De— H + etc. - etc., ((,82)

where De, Dtn^, etc. denote the infinitesimal quantities of electricity

and of the components of the fluid which pass simultaneously through

any same surface, which may be either at rest or in motion, and

a^, o-i,, etc., rt-g, o-h, etc. denote positive constants. We may evidently

regard Dm^, JDrn^,, etc., Dm^, Dm^,, etc., as independent of one

another. For, if they were not so, one or more could be expressed

in terms of the others, and we could reduce the equation to a shorter

foi-m in which all the terms of this kind would be independent.

Since tlie motion of the fluid as a whole will not involve any elec-

trical current, the densities of the components specified by the suf-

fixes must satisfy the relation

Yi Vh y„ Vh~+ — + etc. =^ + ^ + etc. (683)

These densities, therefore, are not independently variable, like the

densities of the components which we have employed in other cases.

We may account for the relation (682) by supposing that electric-

ity (positive or negative) is inseparably attached to the diflerent

kinds of molecules, so long as they remain in the interior of the fluid,

in such a way that the quantities a^, 0-5, etc. of the substances speci-

fied are each charged with a unit of positive electricity, and the quan-

tities a^, ix^, etc. of the substances specified by these suflixes are each

charged with a unit of negative electricity. The relation (683) is

accounted for by the fact that the constants cr^, o-^, etc. are so small

that the electrical charge of any sensible portion of the fluid varying

sensibly from the law expressed in (683) would be enormously great,

so that the formation of such a mass would be resisted by a very

great force.

It will be observed that the choice of the substances which we
regard as the components of the fluid is to some extent arbitrary, and
that the same physical relations may be expressed by different equa-
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tions of the form (682), in which the fluxes are expressed with refer-

ence to diflerent sets of components. If the components chosen are

such as represent what we believe to be the actual molecular consti-

tution of the fluid, those of which the fluxes appear in the equation of

the form (682) are called the lons^ and the constants of the equation

are called their electro-cheynical equivalents. For our present pur-

pose, which has nothing to do with any theories of molecular consti-

tution, we may choose such a set of components as may be conven-

ient, and call those ions, of which the fluxes appear in the equation of

the form (682), without farther limitation.

Now, since the fluxes of the independently variable components of

an electrolytic fluid do not necessitate any electrical currents, all the

conditions of equilibrium which relate to the movements of these

components will be the same as if the fluid were incapable of the

electrolytic process. Therefore all the conditions of equilibrium which

we have found without reference to electrical considerations, will

apply to an electrolytic fluid and its independently variable compo-

nents. But we have still to seek the remaining conditions of equili-

brium, which relate to the possibility of electrolytic conduction.

For simplicity, we shall suppose that the fluid is without internal

surfaces of discontinuity (and therefore homogeneous except so far as

it may be slightly aftected by gravity), and that it meets metallic

conductors {electrodes) in diflTerent parts of its surface, being other-

wise l)ounded by non-conductors. Tlie only electrical currents which

it is necessary to consider are those which enter the electrolyte at

one electrode and leave it at another.

If all the conditions of equilibrium are fulfilled in a given state of

the system, except those which relate to changes involving a flux of

electricity, and we imagine the state of the system to be varied by

the passage from one electrode to another of the quantity of electric-

ity de accompanied by the quantity d^a^ of tlie component specified,

without any flux of the other components or any variation in the

total entropy, the total vaiiation of energy in the system will be rep-

resented by the expression

( V" - V) 6e + (//," - IJ,!) Sm^ + (2"- T") dm,,

in which V, V" denote the electrical potentials in pieces of the same

kind of metal connected with the two electrodes, T', T", the gravita-

tional potentials at the two electrodes, and /y/, ///', the intrinsic

potentials for the substance specified. The first tei*m represents the

incremen*; of the ))otential energy of electricity, the second the incre-
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ment of tlie intrinsic energy of the ponderable matter, and the third

the increment of the energy due to gravitation,* But by (682)

6771^ =z a^ 6e

It is therefore necessary for equilibrium that

V" -V' + a^ (//." - ^^: - T" + ^") = 0- (684)

To extend this relation to all the electrodes we may write

V' + cx^ (//,' - T') = V" + a^ {ia:' - T")

— V'" + a, (//,'" — F'") — etc. (685)

For each of the other cations (specified by b etc.) there will be a sim-

ilar condition, and for each of the anions a condition of the form

V - a^ (/.; - T') = V" - a, (/.," - T")

— V'" — a^ (Ms" - r") = etc. (686)

When the eiFect of gravity may be neglected, and there are but

two electrodes, as in a galvanic or electrolytic cell, we have for any

cation

V" - V = a, {/J.J - /<;'), (687)

and for any anion

V" - V' = a^ (/V - mA (688)

where V" — V denotes the electi'omotive force of the combination.

That is:—
Whe7i all the conditio7is of equilibrium, ai-e fulfilled i7i a galvanic

or electrolytic cell, the electro77iotive force is equal to the differe7ice i7%

the values of the potentialfor any ion or apparent ion at the surfaces

of the electrodes 7mdtiplied by the electro-cheniiecd eqmvale7it of that

ion, the greater 2)otential of a7i anion being at the sa)7ie electrode as

the g7'eater electrical pote^itial, and the reverse being true of a catio7i.

Let us apply this principle to different cases.

(I.) If the ion is an independently variable component of an elec-

trode, or by itself constitutes an electrode, the potential for the ion

(in any case of equilibrium which does not depend upon passive resist-

ances to change) will have the same value within the electrode as on

its surface, and will be determined by the composition of the elec-

trode with its temperature and pressure. This might be illustrated

by a cell with electrodes of mercury containing certain quantities of

zinc in solution (or with one such electrode and the other of pure

* It is here supposed that the gravitational potential may be regarded as constant

for each electrode. When this is not the case, the expression may be applied to small

parts of the electrodes taken separately.

TRA.NS. Conn. Acad., Vol. III. 64 June, 1878.
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zinc) aud an electrolytic fluid containing a salt of zinc, but not capa-

ble of dissolving the mercury.* We may regard a cell in which

hydrogen acts as an ion between electrodes of palladium charged with

hydrogen as another illustration of the same principle, but the solid-

ity of the electrodes and the consequent resistance to the diffusion

of the hydrogen Avithin them (a process which cannot be assisted by

Qonvective currents as in a liquid mass) present considerable obstacles

to the experimental verification of the relation.

(II.) Sometimes the ion is soluble (as an independently variable

component) in the electrolytic fluid. Of course its condition in the

fluid when thus dissolved must be entirely diflierent from its condi-

tion when acting on an ion, in which case its quantity is not inde-

pendently variable, as we have already seen. Its difiusion in the

fluid in this state of solution is not necessarily connected with any

electrical current, and in other relations its properties may be entirely

changed. In any discussion of the internal properties of the fluid

(witli respect to its fundamental equation, for example,) it would be

necessary to treat it as a different substance. (See page 117.) But

if the process by which the charge of electricity passes into the

electrode, and the ion is dissolved in the electrolyte is reversible, we

may evidently regard the potentials for the substance of the ion in

(687) or (688) as relating to the substance thus dissolved in the

electrolyte. In case of absolute equilibrium, the density of the sub-

stance thus dissolved would of course be uniform throughout the

fluid, (since it can move independently of any electrical current,) so

that by the strict application of our principle we only obtain the

somewhat barren result, that if any of the ions are soluble in the fluid

without their electrical charges, the electromotive force must vanish

in any case of absolute equilibrium not dependent upon passive resist-

ances. Nevertheless, cases in which the ion is thus dissolved in the

electrolytic fluid only to a very small extent, and its passage from

one electrode to the other 1iy ordinary diffusion is extremely slow,

may be regarded as approximating to the case in which it is incapable

of diffusion. In such cases, we may regard the relations (687),

(688) as approximately valid, although the condition of equilibrium

* Tf the electrolytic fluid dissolved the mercury as well as the zinc, equilibrium

could only subsist when the electromotive force is zero, and the composition of the

electrodes identical. For when the electrodes are formed of the two metals in differ-

ent proportions, that which has the greater potential for zinc will have the less poten-

tial for mercury. [See equation (98).] This is inconsistent with equilibrium, accord-

ing to the principle mentioned above, if both metals can act as cations.
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relating to the diffusion of the dissolved ion is not satisfied. This

may be the case with hydrogen and oxygen as ions (or apparent ions)

between electrodes of platinum in some of its foi-ms.

(III.) The ion may appear in mass at the electrode. If it be a

conductor of electricity, it may be regarded as forming an electrode,

as soon as the deposit has become thick enough to have the proper-

ties of matter in mass. The case therefore will not be different from

that first considered. When the ion is a non-conductor, a continuous

thick deposit on the electrode would of course prevent the possibility

of an electrical current. But the case in which the ion being a non-

conductor is disengaged in masses contiguous to the electrode but

not entirely covering it, is an important one. It may be illustrated

by hydrogen appearing in bubbles at a cathode. In case of perfect

equilibrium, independent of passive resistances, the potential of the

ion in (687) or (688) may be determined in such a mass. Yet the

circumstances are quite unfavorable for the establishment of pei'fect

equilibrium, unless the ion is to some extent absorbed by the electrode

or electrolytic fluid, or the electrode is fluid. For if the ion must pass

immediately into the non-conducting mass, w^hile the electricity passes

into the electrode, it is evident that the only possible terminus of an

electrolytic current is at the line where the electrode, the non-f!onduct-

ing mass, and the electrolytic fluid meet, so that the electrolytic pro-

cess is necessarily greatly retarded, and an approximate ceasing of the

current cannot be regarded as evidence that a state of approximate

equilibrium has been reached. But even a slight degree of solubility

of the ion in the electrolytic fluid or in the electrode may greatly

diminish the resistance to the electrolytic process, and help toward

producing that state of complete equilibrium which is supposed in the

theorem we are discussing. And the mobility of the surface of a

liquid electrode may act in the same way. When the ion is absorbed

by the electrode, or by the electrolytic fluid, the case of course comes

under the heads which we have already considered, yet the fact that

the ion is set free in mass is important, since it is in such a mass that

the determination of the value of the potential will generally be

most easily made.

(IV.) When the ion is not absorbed either by the electrode or by

the electrolytic fluid, and is not set free in mass, it may still be

deposited on the surface of the electrode. Although this can take

place only to a limited extent (without forming a body having the

properties of matter in mass), yet the electro-chemical equivalents of

all substances are so small that a very considerable flux of electricity
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may take place before the deposit will have the properties of matter

in mass. Even when the ion appears in mass, or is absorbed by the

electrode or electrolytic fluid, the non-homogeneous film between the

electrolytic fluid and the electrode may contain an additional portion

of it. Whether the ion is confined to the surface of the electrode

or not, we may regard this as one of the cases in which we have to

recognize a certain superficial density of substances at surfaces of

discontinuity, the general theory of which we have already considered.

The deposit of the ion will afl^ect the superficial tension of the

electrode if it is liquid, or the closely related quantity which we have

denoted by the same symbol o' (see pages 482-500) if the electrode

is solid. The effect can of course be best observed in the case of a

liquid electrode. But whether the electrodes are liquid or solid, if

the external electromotive force V— V" applied to an electrolytic

combination is varied, when it is too weak to produce a lasting current,

and the electrodes are thereby brought into a new state of polariza-

tion, in which they make eqiiilibrium with the altered value of the

electromotive force, without change in the nature of the electrodes or

of the electrolytic fluid, then by (508) or (675)

d(j'— - r; d^l,

do" = - r: dj.ll' ;

and by (687),

,/(
F' - V") =-a^ {dfx: - dij:').

Hence

d{V— V") = ^,dff'- ^„ da". (689)

If we suppose that the state of polarization of only one of the elec-

trodes is aflfected (as will be the case when its surface is very small

compared with that of the other), we have

d(y'=^d{V'—V"). (690)

The superficial tension of one of the electrodes is then a function of

the electromotive force.

This principle has been applied by M. Lippmann to the construc-

tion of the electrometer which bears his name.* In applying equa-

tions (689) and (690) to dilute sulphuric acid between electrodes of

mercury, as in a Lippmann's electrometer, we may suppose that the

* See his memoir : " Relations entre les phenom^nes electriques et capillaires,"

Annates de Chimie etde Physique, 5e serie, t. v, p. 494.
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suffix refers to hydrogen. It will be most convenient to suppose the

dividing surface to be so placed as to make the surface-density of

mercury zero. (See page 397.) The matter which exists in excess or

deficiency at the surface may then be expi-essed by the surface-densi-

ties of sulphuric acid, of water, and of hydrogen. The value of the

last may be determined from equation (690). According to M. Lipp-

mann's determinations, it is negative when the surface is in its natural

state (i. e., the state to which it tends when no external electromo-

tive force is applied), since a' increases with V" — V. When
V" — V is equal to nine-tenths of the electromotive force of a Dan-

iell's cell, the electrode to which V" relates remaining in its natural

state, the tension a' of the surface of the other electrode has a maxi-

mum value, and there is no excess or deficiency of hydrogen at that

surface. This is the condition toward which a surface tends when it

is extended while no flux of electricity takes place. The flux of elec-

tricity per unit of new surface formed, which will maintain a surface

in a constant condition while it is extended, is represented by —

^

in numerical value, and its direction, when F^' is negative, is from

the mercury into the acid.

We have so far supposed, in the main, that there are no passive

resistances to change, except such as vanish with the rapidity of the

processes which they resist. The actual condition of things with

respect to passive resistances appears to be nearly as follows. There

does not appear to be any passive resistance to the electrolytic pro-

cess by which an ion is transferred from one electrode to another,

except such as vanishes with the rapidity of the process. For, in any

case of equilibrium, the smallest variation of the externally applied

electromotive force appears to be sufficient to cause a (temporary)

electrolytic current. But the case is not the same with respect to

the molecular changes by which the ion passes into new combinations

or relations, as when it enters into the mass of the electrodes, or sep-

arates itself in mass, or is dissolved (no longer with the properties of

an ion) in the electrolytic fluid. In virtue of the passive resistance to

these processes, the external electromotive force may often vary

within wide limits, without creating any current by which the ion is

transferred from one of the masses considered to the other. In other

words, the value of V — V" may often difier greatly from that

obtained from (687) or (688) when we determine the values of the

potentials for the ion as in cases I, II, and III. We may, however,

regard these equations as entirely valid, when the potentials for the
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ions are determined at the surface of the electrodes with reference to

the ion in the condition in which it is brought there or taken away

by an electrolytic current, without any attendant irreversible pro-

cesses. But in a complete discussion of the properties of the surface

of an electrode it may be necessary to distinguish (both in respect to

surface-densities and to potentials) between the substance of the ion

in this condition and the same substance in other conditions into

which it cannot pass (directly) without irreversible processes. No
such distinction, however, is necessary when the substance of the ion

can pass at the surface of the electrode by reversible processes from

any one of the conditions in which it appears to any other.

The formulae (687), (688) aiford as many equations as there are

ions. These, however, amount to only one independent equation

additional to those which relate to the independently variable com-

ponents of the electrolytic fluid. This appears from the considera-

tion that a flux of any cation may be combined with a flux of any

anion in the same direction so as to involve no electrical current, and

that this may be regarded as the flux of an independently variable

component of the electrolytic fluid.

General Properties of a Perfect Electro-chemical Apparatus.

When an electrical current passes through a galvanic or electro-

lytic cell, the state of the cell is altered. If no changes take place in

the cell except during the passage of the current, and all changes

which accompany the current can be reversed by reversing the cur-

rent, the cell may be called a perfect electro-chemical apparatus.

The electromotive force of the cell may be determined by the equa-

tions Avhich have just been given. But some of the general relations

to which such an apparatus is subject may be conveniently stated in

a form in which the ions are not explicitly mentioned.

In the most general case, we may regard the cell as subject to

external action of four different kinds. (1) The supply of electricity

at one electrode and the Avithdrawal of the same quantity at the

other. (2) The supply or withdrawal of a certain quantity of heat.

(3) The action of gravity. (4) The motion of the surfaces enclosing

the apparatus, as when its volume is increased by the liberation of

gases.

The increase of the energy in the cell is necessarily equal to that

which it receives from external sources. We may express this by the

equation

dE = {V'- V") de ^dQ + dW^ + d TTp, (691)
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ill which de denotes the increment of the intrinsic energy of the cell,

de the quantity of electricity which passes through it, V and V"
the electrical potentials in masses of the same kind of metal con-

nected with the anode and cathode respectively, dQ the heat received

from external bodies, dWa the work done by gravity, and dW^ the

work done by the pressures which act on the external surface of the

apparatus.

The conditions under which we suppose the processes to take place

are such that the increase of the entropy of the apparatus is equal to

the entropy which it receives from external sources. The only exter-

nal source of entropy is the heat which is communicated to the cell

by the surrounding bodies. If we write drj for the increment of

entropy in the cell, and t for the temperature, we have

dii — -^. (692)

Eliminating c?§, we obtain

c?£ = ( F' - F") de + t d,i ^dW^ + d TFp, (693)

or

It is worth while to notice that if we give up the condition of the

reversibility of the processes, so that the cell is no longer supposed

to be a perfect electro-chemical apparatus, the relation (691) will still

subsist. But, if we still suppose, for simplicity, that all parts of the

cell have the same temperature, which is necessarily the case with a

perfect electro-chemical apparatus, we shall have, instead of (692),

di]^ j^, (695)

and instead of (693), (694)

( V" - V) de-^— ds + t dr/ + d Wo + d TFp. (696)

The values of the several terms of the second member of (694), for

a given cell, will vary with the external influences to which the cell

is subjected. If the^cell is enclosed (with the products of electrolysis)

in a rigid envelop, the last term will vanish. The term relating to

gravity is generally to be neglected. If no heat is supplied or with-

drawn, the term containing d?/ will vanish. But in the calculation of

the electromotive force, which is the most important application of

the equation, it is generally more convenient to suppose that the tera-

pei'ature remains constant.
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The quantities expressed by the terms containing d Q and di] in

(691), (693), (694), and (696) are frequently neglected in the consid-

eration of cells of which the temperature is supposed to remain con-

stant. In other words, it is frequently assumed that neither heat nor

cold is produced by the passage of an electrical current through a

perfect electro-chemical combination (except that heat which may be

indefinitely diminished by increasing the time in which a given quan-

tity of electricity passes), and that only heat can be produced in any

cell, unless it be by processes of a secondary natui-e, which are not

immediately or necessa,rily connected with the process of electrolysis.

It does not appear that this assumption is justified by any sufficient

reason. In fact, it is easy to find a case in which the electromotive

dii ^

force is determined entirely by the term ^-^ in (694), all the other

terms in the second member of the equation vanishing. This is true

of a Grove's gas battery charged with hydrogen and nitrogen. In

this case, the hydrogen passes over to the nitrogen,—a process which

does not alter the energy of the cell, when maintained at a constant

temperature. The work done by external pressures is evidently

nothing, and that done by gravity is (or may be) nothing. Yet an

electrical current is produced. The work done (or which may be

done) by the current outside of the cell is the equivalent of the work

(or of a part of the work) which might be gained by allowing the

gases to mix in other ways. This is equal, as has been shown by

Lord Rayleigh,* to the work which may be gained by allowing each

gas separately to expand at constant temperature from its initial

volume to the volume occupied by the two gases together. The same

work is equal, as appears from equations (278), (279) on page 217,

(see also page 220,) to the increase of the entropy of the system

multiplied by the temperature.

It is possible to vary the construction of the cell in such a way
that nitrogen or other neutral gas will not be necessary. Let the cell

consist of a U-shaped tube of sufficient height, and have pure hydro-

gen at each pole under very unequal pressures (as of one and two

atmospheres respectively) which are maintained constant by properly

weighted pistons, sliding in the arms of the tube. The difference of

the pressures in the gas-masses at the two electrodes must of course

be balanced by the diff*erence in the height of the two columns of

acidulated water. It will hardly be doubted that such an apparatus

* Philosophical Magazine, vol. xlix, p. 311.
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would have an electromotive force acting in the direction of a current

which would carry the hydrogen from the denser to the rarer mass.

Certainly the gas could not be carried in the opposite direction by

an external electromotive force without the expenditure of as much

(electromotive) work as is equal to the mechanical Avork necessary to

pump the gas from the one arm of the tulie to the other. And if by any

modification of the metallic electrodes (which remain unchanged by

the passage of electricity) we could reduce the passive resistances to

zero, so that the hydrogen could be carried reversibly from one mass

to the other without finite variation of the electromotive force, the only

j)Ossible value of the electromotive force would be represented by the

expression ^^— , as a very close a])proximation. It will be observed

that, although gravity plays an essential part in a cell of this kind

by maintaining the difference of pressure in the masses of hydrogen,

the electromotive force cannot possibly be ascribed to gravity, since

the work done by gravity, when hydrogen passes from the denser to

the rarer mass, is negative.

Again, it is entirely improbable that the electrical currents caused

by diiierences in the concentration of solutions of salts, (as in a cell

containing sulphate of zinc between zinc electrodes, or sulphate of

coj)per between copper electrodes, the solution of the salt being of

unequal strength at the two electrodes,) which have recently been

investigated theoretically and experimentally by MM. Helmholtz and

Moser,* are confined to cases in which the mixture of solutions of

different degrees of concentration will produce heat. Yet in cases in

which the mixture of more and less concentrated solutions is not

attended with evolution or al)Sorption of heat, the electromotive force

must vanish in a cell of the kind considered, if it is determined

simplj^ by the diminution of energy in the cell. And when the mix-

ture produces cold, the same rule wouhl make any electromotive force

impossible except in the direction which would tend to increase the

difference of concentration. Such conclusions as would be quite

irreconcilable with the theory of the phenomena given by Professor

Helmholtz.

A more striking example of the necessity of taking account of the

variations of entroj^y in the cell in a priori determinations of electro-

motive force is afforded by electrodes of zinc and mercury in a solu-

tion of sulphate of zinc. Since heat is absorbed when zinc is dissolved

* Awnalen der Physik und Chemie, Neue Folge, Band iii, February, 1878.

Trans. Coxn. Acad.. Yol. III. 65 June, 1878.
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in mercury,* the energy of the cell is increased by a transfer of zinc

to the mercury, when the temperature is maintained constant. Yet

in this coml)ination, the electromotive force acts in the direction of

the current producing such a transfer.f The couple presents certain

anomalies when a considerable quantity of zinc is united with the

mercury. The electromotive force changes its direction, so that this

case is lasually cited as an illustration of the principle that the electro-

motive force is in the direction of the current which diminishes the

energy of the cell, i. e., which produces or allows those changes which

are accompanied by evolution of heat when they take place directly.

Biit whatever may be the cause of the electromotive force which has

been observed acting in the direction from the amalgam through the

electi'olyte to the zinc (a force which according to the determinations

of M. Gaugain is only one twenty-fifth part of that which acts in the

reverse direction when pure mercury takes the place of the amalgam),

these anomalies can hardly affect the general conclusions with which

alone we are here concerned. If the electrodes of a cell are pure

zinc and an amalgam containing zinc not in excess of the amount

which the mercury will dissolve at the temperature of the experiment

without losing its fliiidity, and if the only change (other than thermal)

accompanying a current is a transfer of zinc from one electrode to

the other,—conditions which may not have been satisfied in all the

experiments recorded, but which it is allowable to suppose in a

theoretical discussion, and which certainly will not be regarded as

inconsistent with the fact that heat is absorbed when zinc is dissolved

in mercury,—it is impossible that the electromotive force should be

in the direction of a current transferring zinc from the amalgam to

the electrode of pure zinc. For, since the zinc eliminated from the

amalgam by the electrolytic process might be re-dissolved directly,

such a dii-ection of the electromotive force would involve the pos-

sibility of obtaining an indefinite amount of electromotive work, and

therefore of mechanical work, without other expenditure than that of

heat at the constant temperature of the cell.

None of the cases which we have been considering involve com-

binations by definite proportions, and, except in the case of the cell

with electrodes of mercury and zinc, the electromotive forces are

quite small. It may perhaps be thought that with respect to those

cells in which combinations take place by definite proportions the

electromotive force may be calculated with substantial accuracy from

* J. Regnaiild, Compks Eendus, t. li, p. 778.

•j- Gaugain, Comptes Eendus, t. xlii, p. 430.
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the diminution of the energy, witliout regarding the variation of

entropy, liut the plienoniena of chemical comljination do not in

general seem to indicate any possihility of obtaining from the com-

bination of snlistances by any process whatever an amount of mechani-

cal work which is equivalent to the heat produced Ijy the direct union

of the substances.

A kilogramme of hydrogen, for example, combining by combustion

under the pressure of the atmosphere with eight kilogrammes of oxygen

to form liquid water, yields an amount of heat which may be repre-

sented ill round numbers by 84000 calories.* We may suppose that

the gases are taken at the temperature of 0° C, and that the water is

reduced to the same temperature. Jiut this heat cannot be obtained

at any temperature desired. A very high temperature has the effect

of pi'eventing to a greater or less extent, the combination of the

elements. Thus, according to M. Sainte-Claire Deville,f the tempera-

ture obtained by the combustion of hydrogen and oxygen cannot

much if at all exceed 2500° C, which im])lies that less than one-half

of the hydrogen and oxygen present combine at that temperature.

This relates to combustion undei- the pressure of the atmosphere.

According to the determinations of Professor Bunsen]}; in regard

to combustion in a confined space, only one-third of a mixture of

hydrogen and oxygen will form a chemical compound at the tem-

perature of 2850° C. and a pressure of ten atmospheres, and only a

little more than one-half when the temperature is reduced by the

addition of nitrogen to 2024° C, and the pressure to about three

atmosijheres exclusive of the part due to the nitrogen.

Now 10 calories at 2500° C. are to be regarded as reversibly con-

vertible into one calorie at 4° C. together with the mechanical work
x-epresenting the energy of 9 calories. If, therefore, all the 34000 cal-

ories obtainable from the union of hydrogen and oxygen under atmos-

pheric pressure could be obtained at the temperature of 2500° C, and

no higher, we should estimate the electromotive work performed in a

perfect electro-chemical apparatus in which these elements are com-

bined or separated at ordinary temperatures and under atmospheric

pressure as representing nine-tenths of the 34000 calories, and the

heat evolved or absorbed in the apparatus as representing one-tenth

of the 34000 calories.§ This, of course, would give an electromotive

* See RiiUmann's Handhuch der mechanischen Wurmetheo, ie, Bd. ii, p. 290.

f Comptes Rendus, t. Ivi, p. 199; and t. Ixiv, 67.

X Pogg. Ann., Bd. cxxxi (1867), p. 161.

§ These numbers are not subject to correction for the pressure of the atmosphere,

since the 34000 calories relate to combustion under the same pressure.
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force exactly nine-tenths as great as is obtained on the supposition

that all the 34000 calories are convertible into electromotive or

mechanical work. But, according to all indications, the estimate

2500° C. (for the temperature at which we may regard all the heat of

combustion as obtainable) is far too high,* and we must regard the

theoretical value of the electromotive force necessary to electrolyze

water as considerably less than nine-tenths of the value obtained on

the supposition that it is necessary for the electromotive agent to

supply all the energy necessary for the process.

The case is essentially the same with respect to the electrolysis of

hydrochloric acid, which is probably a more typical example of the

process than the electrolysis of water. The phenomenon of dissocia-

tion is equally marked, and occurs at a much lower temperature, more

than half of the gas being dissociated at 1400° C.f And the heat

which is obtained by the combination of hydrochloric acid gas with

water, especially with water which already contains a considerable

quantity of the acid, is probably only to be obtained at temperatures

comparatively low. This indicates that the theoretical value of the

electromotive force necessary to electrolyze this acid (/. e.. the elec-

ti'omotive force which woiild be necessary in a reversible electro-

chemical ajjparatus), must be very much less than that which could

perform in electromotive work the equivalent of all the heat evolved

in the combination of hj^drogen, chlorine and water to form the liquid

submitted to electrolysis. This presumption, based u^^on the phenom-

ena exhibited in the direct combination of the substances, is corrobo-

rated by the experiments of M. Favre, who has observed an absorp-

tion of heat in the cell in which this acid was electrolyzed.J The

* Unless the received ideas concerning the behavior of gases at high temperatures

are quite erroneous, it is possible to indicate the general character of a process

(involving at most only such difficulties as are neglected in theoretical discussions) by

which water may be converted into separate masses of hydrogen and oxygen without

other expenditure than that of an amount of heat equal to the difference of energy of

the matter in the two states and supplied at a temperature far below 2500° C. The

essential parts of the process would be (1) vaporizing the water and heating it to a

temperature at which a considerable part will be dissociated, (2) the partial separation

of the hydrogen and oxygen by filtration, and (3) the coohng of both gaseous masses

until the vapor they contain is condensed. A little calculation will show that in a

continuous process all the heat ol^tained in the operation of coohng tlie products of

filtration could be utiUzed in heating fresh water.

f Sainte-Claire Deville, Comptes Bendus, t. Ixiv, p. G7.

:j: See Memoires des Savants Strangers, Ser. 2, t. xxv, No. 1, p. 1 42 ; or Comptes Bendus,

t. Ixxiii, p. 97.3. The figures obtained by M. Favre will be given hereafter, in connec-

tion with others of the same nature.
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electromotive work expended must therefore have been less than the

increase of energj'^ in the cell.

In both cases of composition in definite proportions which we have

considered, the compound has more entropy than its elements, and
the difl'erence is by no means inconsiderable. This appears to be the

rule rather than the exception with respect to compounds which have

less energy than their elements. Yet it would be rash to assert that

it is an invai-iable rule. And when one substance is substituted for

another in a compound, we may expect great diversity in the rela-

tions of energy and entropy.

In some cases, there is a striking correspondence between the elec-

tromotive force of a cell and the rate of diminution of its energy per

unit of electricity transmitted, the temperature remaining constant.

A Daniel I's cell is a notable example of this correspondence. It may
perhaps be regarded as a very significant case, since of all cells in

common use, it has the most constant electromotive force, and most

nearly approaches the condition of reversibility. If we apply our

previous notation [compare (691)] with the substitution of finite for

infinitesimal diiferences to the determinations of M. Favre,* estimat-

ing energy in calories, we have for each equivalent (32.6 kilogrammes)

of zinc dissolved

( V" - V) Ae — 24327"''-, Ae = - 25394"-''-, JQ= - lOoV""'-.

It will be observed that the electromotive Avork performed by the cell

is about four per cent, less than the diminution of energy in the cell.f

The value of A Q, which, when negative, represents the heat evolved

in the cell when the external resistance of the circuit is very great,

was determined by direct measurement, and does not appear to have

been corrected for the resistance of the cell. This correction would

diminish the value of—A ^, and increase that of ( V" — V) Ae, which

was obtained 'by subtracting —AQ from —As.

It appears that under certain conditions neither heat nor cold is

produced in a Grove's cell. For M. Favre has found that with dif-

ferent degrees of concentration of the nitric acid sometimes heat and

sometimes cold is produced.^ When neither is produced, of course

* See Mem. Savants Strang., loc. cit., p. 90 ; or Comptes Rendus, vol. Ixix, p. 35, where

the numbers are slightly different.

|- A comparison of the experiments of different physicists has in some cases given

a much closer correspondence. See Wiedemann's Galvanismus, etc., 2''^ Auflage, Bd.

ii, §§ 1117, 1118.

\ Mem. Sa rants Etrang., loc. cit., p. 9.^ ; or Comptes Rendus, t. Ixix, p. 37, and t.

Ixxiii, p. 893.
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the electromotive force of the cell is exactly equal to its dimiinition

of energy per unit of electricity transmitted. But such a coincidence

is far less significant than the fact that an absorption of heat has been

observed. With acid containing about seven equivalents of water

(HNOg+mO), M. Favre has found

(J^"_ F') Z/e= 46V81''"-, Z/£= -41824^^'-, J^= 4957^"'-;

and with acid containing about one equivalent of water (HNOg+HO),

( X^"— F')Z/e= 49847 ••"', Jf=: —52714 ^"'•, z/ ^= -2867'^''^

In the first example, it will be observed that the quantity of heat

absorbed in the cell is not small, and that the electromotive force is

nearly one-eighth greater than can be accounted for by the diminu-

tion of energy in the cell.

This absorption of heat in the cell he has observed in other cases,

in which the chemical processes are much more simple.

For electrodes of cadmium and platinum in hydrochloric acid his

experiments give*

(
-p"_ V') Ae — 9256 '-•''', Z/6 z= — 8258^"'-,

A TFp = — 290™'-, AQz=^ 1288^'"-.

In this case the electromotive force is nearly one-sixth greater than

can be accounted for by the diminution of energy in the cell with the

Avork done against the pressure of the atmosphere.

For electrodes of zinc and platinum in the same acid one sei'ies of

experiments givesf

(F"— V) Ae=: 16950'^'-, A£= - 16189 '^^'•,

AWp= -290'^\ J^z=1051™'-;

and a later series,J

(V"- V) Ae=16738''''; Ae=i — 17702'^'"-,

J Wp= -290™'-, J^ = -674''''-.

In the electrolysis of hydrochloric acid in a cell with a porous par-

tition, he has found§

* Comptes Bendus, t. Ixviii, p. 1305. The total heat obtained in the whole circuit

(inchidiug the cell) when all the electromotive work is turned into heat, was ascer-

tained by direct experiment. This quantity, 79G8 calories, is evidently represented by

( V''— V) Ae— AQ, also by — Ae + A Wp. [See (691).] The value of ( F" — F' ) Ae

is obtained by adding AQ, and that of — Ae by adding — A Wp, which is easily esti-

mated, being determined by the evolution of one kilogramme of hydrogen,

f Ibid.

X Mem. Savants Etrang.. loc. cit., p. 145.

§ Ibid, p. 142.
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(V— V") Ae— 34825 ™'- AQ—IW?, "'',

whence

Z/f-JTFp= 36938.

We cannot assign a precise value to A W^, since the quantity of chlo-

rine which was evolved in the form of gas is not stated. Hut the

value of — zJ TFp must lie between 290*"'- and 580™'-, probably nearer

to the former.

The great difference in the results of the two series of experiments

relating to electrodes of zinc and platinum in hydrochloric acid is

most naturally explained by supposing some difference in the condi-

tions of the experiment, as in the concentration of the acid, or in the

extent to which the substitution of zinc for hydrogen took place.*

That which it is important for us to observe in all these cases is that

there are conditions under which heat is absorbed in a galvanic or

electrolytic cell, so that the galvanic cell has a greater electromotive

force than can be accounted for by the diminution of its energy, and

the operation of electrolysis requii'es a less electromotive force than

would be calculated from the increase of energy in the cell,—espe-

cially when the work done against the pressure of the atmosphei'e is

taken into account.

It should be noticed that in all these experiments the quantity rep-

resented by A Q (which is the critical quantity with respect to the

point at issue) was determined by direct measurement of the heat

absorbed or evolved by the cell when placed alone in a calorimeter.

The resistance of the circuit was made so great by a rheostat placed

outside of the calorimeter that the resistance of the cell was regarded

as insignificant in comparison, and no correction appears to have been

made in any case for this resistance. With exception of the error

due to this circumstance, which would in all cases diminish the heat

absorbed in the cell (or increase the heat evolved), the probable error

oi A Q must be very small in comparison with that of ( F''— V") Ae,

or with that of As, which were in general determined by the compar-

* It should perhaps be stated that in his extended memoir published in 1877 in the

Memoires des Savants Strangers, in which he has presumably collected those results

of his experiments which he regards as most important and most accurate, M. Favre

does not mention the absorption of heat in a cell of this kind, or iu the similar cell in

which cadmium takes the place of zinc. This may be taken to indicate a decided

preference for the later experiments which showed an evolution of heat. Whatever

the ground of this preference may have been, it can hardly destroy the significance

of the absorption of heat, which was a matter of direct observation in repeated experi-

ments. See Comptes Rendus, t. Ixviii, p. ISO.'S.
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ison of difFereut calorimetrical measurements, involving very miicli

greater quantities of heat.

In considering the numbers which liave been cited, we should,

remember that when hydrogen is evolved as gas the process is in

general very lar from reversible. In a perfect electrochemical appara-

tus, the same changes in the cell would yield a much greater amount

of electromotive work, or absorb a much less amount. In either case,

the value oi A Q would be much greater than in the imperfect appara-

tus, the diiference being measured perhaps by thousands of calories.*

It often occurs in a galvanic or electrolytic cell that an ion which

is set free at one of the electrodes appears in pai't as gas, and is in

part absorbed by the electrolytic fluid, and in part absorbed by the

electrode. In such cases, a slight variation in the circumstances,

which would not sensibly affect the electromotive force, would cause

all of the ion to be disposed of in one of the three ways mentioned, if

the current were sufficiently weak. This would make a considerable

* Except in the case of the Grove's cell, in which the reactions are quite complicated,

the absorption of heat is nfost marked in the electrolysis of hydrochloric acid. The

latter case is interesting, since the experiments confirm the presumption afforded by

the behavior of the substances in other circumstances. (See page 514.) In addition

to the circumstances mentioned above tending to diminish the observed absorption of

heat, the following, which are peculiar to this case, should be noticed.

The electrolysis was performed in a cell with a porous partition, in order to prevent

tlie chlorine and hydrogen dissolved in the liquid from coming in contact with each

other. It had appeared in a previous series of experiments {Mem. Sarants Mrang.,

loc. cit., p. 1.31 ; or Comptes Eendus, t. Ixvi, p. 1231,) that a very considerable amount of

heat might be produced by the chemical union of the gases in solution. In a cell

without partition, instead of an absorption, an evolution of heat took place, which

sometimes exceeded 5000 calories. If, therefore, the partition did not perfectly per-

form its office, this could only cause a diminution in the value of A Q.

A. large part at least of the chlorine appears to have been absorbed by the electro-

lytic fluid. It is probable that a slight difference in the circumstances of the experi-

ment—a diminution of pressure, for example,—might have caused the greater part of

the chlorine to be evolved as gas, without essentially affecting the electromotive force.

The solution of chlorine in water presents some anomalies, and may be attended with

complex reactions, but it appears to be always attended with a very considerable evolu-

tion of heat. (See Berthelot, Comptes Rendus, t. Ixxvi, p. 1514.) If we regard the evolu-

tion of the chlorine in the form of gas as the normal process, we may suppose that the

absorption of heat in the cell was greatly dimini.shed by the retention of the chlorine

in solution.

Under certain circumstances, oxygen is evolved in the electrolysis of dilute hydro-

chloric acid. It does not appear that this took place to any considerable extent in the

experiments which we are considering. But so far as it may have occurred, we may

regard it as a case of the electrolysis of water. Tlie significance of the fact of the

absorption of heat is not thereby affected.
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difference in the variation of energy in the cell, and the electromotive

force cannot certainly be calculated from the variation of enei'gy

alone in all these cases. The correction due to the work performed

against the pressure of the atmosphere Avhen the ion is set free as gas

will not help us in reconciling these differences. It will appear on

consideration that this correction will in general increase the discord-

ance in the values of the electromotive force. Nor does it distinctly

appear which of these cases is to be regarded as normal and which

are to be rejected as involving secondary processes.*

If in any case secondary processes are excluded, we should expect

it to be when the ion is identical in substance with the electrode upon

which it is deposited, or from which it passes into the electrolyte.

But even in this case we do not escape the difficulty of the different

forms in which the substance may appear. If the temperature of the

experiment is at the melting point of a metal which forms the ion

and the electrode, a slight variation of temperature will cause the

ion to be deposited in the solid or in the liquid state, or, if the current

is in the opposite direction, to be taken up from a solid or from a

liquid body. Since this will make a considerable difference in the

variation of energy, we obtain different values for the electromotive

force above and below the melting point of the metal, unless we
also take account of the variations of entropy. Experiment does

not indicate the existence of any such difference,! and when we take

account of variations of entropy, as in equation (694), it is apparent

that there ought not to be any, the terms -j and t— being both

* It will be observed that in using the formulae (694) and (696) we do not have to

make any disthiction between primary and secondary processes. The only limitation

to the generality of these formulae depends upon the recersibilUy of the processes,

and this limitation does not apply to (696).

\ M. Raoult has experimented with a galvanic element having an electrode of bis-

muth in contact with phosphoric acid containing phosphate of bismuth in solution.

(See Comptes Rendus, t. Ixviii, p. 643.) Since this metal absorbs in melting 12.64

calories per kilogramme or 885 calories per equivalent (TO''''), while a Daniell's cell

yields about 24000 calories of electromotive work per equivalent of metal, the solid or

liquid state of the bismuth ought to make a difference of electromotive force repre-

sented by .037 of a Daniell's cell, if the electromotive force depended simply upon the

energy of the cell. But in M. Raoult's experiments no sudden change of electromotive

force was manifested at the moment when the bismuth changed its state of aggrega-

tion. In fact, a change of temperature in the electrode from about fifteen degrees

above to about fifteen degrees below the temperature of fusion only occasioned a

variation of electromotive force equal to .002 of a Daniell's cell.

Experiments upon lead and tin gave similar results.

Tbans. Conn. Acad., Vol. III. 66 July, 1878.
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affected by the same difference, viz., the heat of fusion of an electro-

chemical equivalent of the metal. In fact, if such a difference existed,

it would be easy to devise arrangements by which the heat yielded

by a metal in passing from the liquid to the solid state could be

transformed into electromotive work (and therefore into mechanical

work) without other expenditure.

The foregoing examples will be sufficient, it is believed, to show

the necessity of regarding other considerations in determining the

electromotive force of a galvanic or electrolytic cell than the variation

of its energy alone (when its temperature is supposed to remain con-

stant), or corrected only for the work which may be done by external

pressures or by gravity. But the relations expressed l)y (693), (694),

and (696) may be put in a briefer form.

If we set, as on page 144,

i/^= s — t //,

we have, for any constant temperature,

df =. de — td i}\

and for any perfect electrochemical apparatus, the temperature of

which is maintained constant,

y„_y,^_d^ dW^ dW^
de de de

and for any cell whatever, when the temperature is maintained uni-

form and constant,

( V" — V) de^— dip + tZ TTg + f? TFp

.

(698)

In a cell of any ordinary dimensions, the work done by gravity, as

well as the inequalities of pressure in different parts of the cell may
be neglected. If the pressure as well as the temperature is main-

tained uniform and constant, and we set, as on page 147,

C= f - if // + jo w,

where p denotes the pressure in the cell, and y its total volume (in-

cluding the products of electrolysis), we have

d'Q^:^ de ~ t dif -\- p dv,

and for a perfect electro-chemical apparatus,

F'-F'=-f, (699)

or for any cell,

( V" — V) de ^ - dl. (700)
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