view sicm/deriv.html @ 10:543b1dbf821d

New article: Inductive lattices
author Dylan Holmes <ocsenave@gmail.com>
date Tue, 01 Nov 2011 01:55:26 -0500
parents b4de894a1e2e
children
line wrap: on
line source
1 <?xml version="1.0" encoding="utf-8"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml"
5 lang="en" xml:lang="en">
6 <head>
7 <title>An Unambiguous Notation for Derivatives</title>
8 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
9 <meta name="generator" content="Org-mode"/>
10 <meta name="generated" content="2011-08-08 02:49:24 EDT"/>
11 <meta name="author" content="Dylan Holmes"/>
12 <meta name="description" content=""/>
13 <meta name="keywords" content=""/>
14 <style type="text/css">
15 <!--/*--><![CDATA[/*><!--*/
16 html { font-family: Times, serif; font-size: 12pt; }
17 .title { text-align: center; }
18 .todo { color: red; }
19 .done { color: green; }
20 .tag { background-color: #add8e6; font-weight:normal }
21 .target { }
22 .timestamp { color: #bebebe; }
23 .timestamp-kwd { color: #5f9ea0; }
24 .right {margin-left:auto; margin-right:0px; text-align:right;}
25 .left {margin-left:0px; margin-right:auto; text-align:left;}
26 .center {margin-left:auto; margin-right:auto; text-align:center;}
27 p.verse { margin-left: 3% }
28 pre {
29 border: 1pt solid #AEBDCC;
30 background-color: #F3F5F7;
31 padding: 5pt;
32 font-family: courier, monospace;
33 font-size: 90%;
34 overflow:auto;
35 }
36 table { border-collapse: collapse; }
37 td, th { vertical-align: top; }
38 th.right { text-align:center; }
39 th.left { text-align:center; }
40 th.center { text-align:center; }
41 td.right { text-align:right; }
42 td.left { text-align:left; }
43 td.center { text-align:center; }
44 dt { font-weight: bold; }
45 div.figure { padding: 0.5em; }
46 div.figure p { text-align: center; }
47 textarea { overflow-x: auto; }
48 .linenr { font-size:smaller }
49 .code-highlighted {background-color:#ffff00;}
50 .org-info-js_info-navigation { border-style:none; }
51 #org-info-js_console-label { font-size:10px; font-weight:bold;
52 white-space:nowrap; }
53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000;
54 font-weight:bold; }
55 /*]]>*/-->
56 </style>
57 <link rel="stylesheet" type="text/css" href="../css/aurellem.css" />
58 <script type="text/javascript">
59 <!--/*--><![CDATA[/*><!--*/
60 function CodeHighlightOn(elem, id)
61 {
62 var target = document.getElementById(id);
63 if(null != target) {
64 elem.cacheClassElem = elem.className;
65 elem.cacheClassTarget = target.className;
66 target.className = "code-highlighted";
67 elem.className = "code-highlighted";
68 }
69 }
70 function CodeHighlightOff(elem, id)
71 {
72 var target = document.getElementById(id);
73 if(elem.cacheClassElem)
74 elem.className = elem.cacheClassElem;
75 if(elem.cacheClassTarget)
76 target.className = elem.cacheClassTarget;
77 }
78 /*]]>*///-->
79 </script>
80 <script type="text/javascript" src="../MathJax/MathJax.js">
81 <!--/*--><![CDATA[/*><!--*/
82 MathJax.Hub.Config({
83 // Only one of the two following lines, depending on user settings
84 // First allows browser-native MathML display, second forces HTML/CSS
85 config: ["MMLorHTML.js"], jax: ["input/TeX"],
86 // jax: ["input/TeX", "output/HTML-CSS"],
87 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
88 "TeX/noUndefined.js"],
89 tex2jax: {
90 inlineMath: [ ["\\(","\\)"] ],
91 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
92 skipTags: ["script","noscript","style","textarea","pre","code"],
93 ignoreClass: "tex2jax_ignore",
94 processEscapes: false,
95 processEnvironments: true,
96 preview: "TeX"
97 },
98 showProcessingMessages: true,
99 displayAlign: "left",
100 displayIndent: "2em",
102 "HTML-CSS": {
103 scale: 100,
104 availableFonts: ["STIX","TeX"],
105 preferredFont: "TeX",
106 webFont: "TeX",
107 imageFont: "TeX",
108 showMathMenu: true,
109 },
110 MMLorHTML: {
111 prefer: {
112 MSIE: "MML",
113 Firefox: "MML",
114 Opera: "HTML",
115 other: "HTML"
116 }
117 }
118 });
119 /*]]>*///-->
120 </script>
121 </head>
122 <body>
124 <div id="content">
128 <div class="header">
129 <div class="float-right">
130 <!--
131 <form>
132 <input type="text"/><input type="submit" value="search the blog &raquo;"/>
133 </form>
134 -->
135 </div>
137 <h1>aurellem <em>&#x2609;</em></h1>
138 <ul class="nav">
139 <li><a href="/">read the blog &raquo;</a></li>
140 <!-- li><a href="#">learn about us &raquo;</a></li-->
141 </ul>
142 </div>
144 <h1 class="title">An Unambiguous Notation for Derivatives</h1>
152 <div id="table-of-contents">
153 <h2>Table of Contents</h2>
154 <div id="text-table-of-contents">
155 <ul>
156 <li><a href="#sec-1">1 Calculus of Infinitesimals </a>
157 <ul>
158 <li><a href="#sec-1-1">1.1 Differential Objects </a></li>
159 <li><a href="#sec-1-2">1.2 Interactions obey the chain rule </a></li>
160 </ul>
161 </li>
162 </ul>
163 </div>
164 </div>
166 <div id="outline-container-1" class="outline-2">
167 <h2 id="sec-1"><span class="section-number-2">1</span> Calculus of Infinitesimals </h2>
168 <div class="outline-text-2" id="text-1">
171 </div>
173 <div id="outline-container-1-1" class="outline-3">
174 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> Differential Objects </h3>
175 <div class="outline-text-3" id="text-1-1">
178 <p>
179 A <b>differential object</b> is a pair \([x,\,dx]\) consisting of a variable
180 and an infinitely small increment of it. Differential objects can
181 interact with functions, producing a new differential object as a
182 result; this interaction is for calculating derivatives of functions.
183 </p>
184 <p>
185 Differential objects are for
186 calculating derivatives of functions: the derivative of \(f\) with
187 respect to \(x\)
188 </p>
189 <p>
190 You can &ldquo;apply&rdquo;
191 functions to differential objects; the result is:
192 </p>
195 \([x,dx]\xrightarrow{\quad f \quad}[f(x), Df(x)\cdot dx].\)
197 <p>
198 Loosely speaking, the interaction of \(f\) and a differential object
199 of \(x\) is a differential object of \(f\).
200 </p>
202 </div>
204 </div>
206 <div id="outline-container-1-2" class="outline-3">
207 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> Interactions obey the chain rule </h3>
208 <div class="outline-text-3" id="text-1-2">
211 <p>
212 The interaction of \(f\) and the differential object \([x, dx]\) is
213 a differential object \([f(x), Df(x)\cdot dx]\). Because of the rule for
214 interactions, if you apply another function \(g\), you get the
215 chain-rule answer you expect:
216 </p>
219 \([f(x), Df(x)\cdot dx]\xrightarrow{\quad g\quad}\left[g(f(x)),\,
220 Dg(f(x))\cdot Df(x)\cdot dx\right]\)
229 </div>
230 </div>
231 </div>
232 <div id="postamble">
233 <p class="date">Date: 2011-08-08 02:49:24 EDT</p>
234 <p class="author">Author: Dylan Holmes</p>
235 <p class="creator">Org version 7.6 with Emacs version 23</p>
236 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
237 </div>
238 </div>
239 </body>
240 </html>