Mercurial > dylan
view categorical/plausible.html @ 10:543b1dbf821d
New article: Inductive lattices
author | Dylan Holmes <ocsenave@gmail.com> |
---|---|
date | Tue, 01 Nov 2011 01:55:26 -0500 |
parents | b4de894a1e2e |
children |
line wrap: on
line source
1 <?xml version="1.0" encoding="iso-8859-1"?>2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">4 <html xmlns="http://www.w3.org/1999/xhtml"5 lang="en" xml:lang="en">6 <head>7 <title>Categorification of Plausible Reasoning</title>8 <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"/>9 <meta name="generator" content="Org-mode"/>10 <meta name="generated" content="2011-07-09 14:19:42 EDT"/>11 <meta name="author" content="Dylan Holmes"/>12 <meta name="description" content=""/>13 <meta name="keywords" content=""/>14 <style type="text/css">15 <!--/*--><![CDATA[/*><!--*/16 html { font-family: Times, serif; font-size: 12pt; }17 .title { text-align: center; }18 .todo { color: red; }19 .done { color: green; }20 .tag { background-color: #add8e6; font-weight:normal }21 .target { }22 .timestamp { color: #bebebe; }23 .timestamp-kwd { color: #5f9ea0; }24 .right {margin-left:auto; margin-right:0px; text-align:right;}25 .left {margin-left:0px; margin-right:auto; text-align:left;}26 .center {margin-left:auto; margin-right:auto; text-align:center;}27 p.verse { margin-left: 3% }28 pre {29 border: 1pt solid #AEBDCC;30 background-color: #F3F5F7;31 padding: 5pt;32 font-family: courier, monospace;33 font-size: 90%;34 overflow:auto;35 }36 table { border-collapse: collapse; }37 td, th { vertical-align: top; }38 th.right { text-align:center; }39 th.left { text-align:center; }40 th.center { text-align:center; }41 td.right { text-align:right; }42 td.left { text-align:left; }43 td.center { text-align:center; }44 dt { font-weight: bold; }45 div.figure { padding: 0.5em; }46 div.figure p { text-align: center; }47 textarea { overflow-x: auto; }48 .linenr { font-size:smaller }49 .code-highlighted {background-color:#ffff00;}50 .org-info-js_info-navigation { border-style:none; }51 #org-info-js_console-label { font-size:10px; font-weight:bold;52 white-space:nowrap; }53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000;54 font-weight:bold; }55 /*]]>*/-->56 </style>57 <script type="text/javascript">58 <!--/*--><![CDATA[/*><!--*/59 function CodeHighlightOn(elem, id)60 {61 var target = document.getElementById(id);62 if(null != target) {63 elem.cacheClassElem = elem.className;64 elem.cacheClassTarget = target.className;65 target.className = "code-highlighted";66 elem.className = "code-highlighted";67 }68 }69 function CodeHighlightOff(elem, id)70 {71 var target = document.getElementById(id);72 if(elem.cacheClassElem)73 elem.className = elem.cacheClassElem;74 if(elem.cacheClassTarget)75 target.className = elem.cacheClassTarget;76 }77 /*]]>*///-->78 </script>79 <script type="text/javascript" src="../MathJax/MathJax.js">80 <!--/*--><![CDATA[/*><!--*/81 MathJax.Hub.Config({82 // Only one of the two following lines, depending on user settings83 // First allows browser-native MathML display, second forces HTML/CSS84 config: ["MMLorHTML.js"], jax: ["input/TeX"],85 // jax: ["input/TeX", "output/HTML-CSS"],86 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",87 "TeX/noUndefined.js"],88 tex2jax: {89 inlineMath: [ ["\\(","\\)"] ],90 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],91 skipTags: ["script","noscript","style","textarea","pre","code"],92 ignoreClass: "tex2jax_ignore",93 processEscapes: false,94 processEnvironments: true,95 preview: "TeX"96 },97 showProcessingMessages: true,98 displayAlign: "left",99 displayIndent: "2em",101 "HTML-CSS": {102 scale: 100,103 availableFonts: ["STIX","TeX"],104 preferredFont: "TeX",105 webFont: "TeX",106 imageFont: "TeX",107 showMathMenu: true,108 },109 MMLorHTML: {110 prefer: {111 MSIE: "MML",112 Firefox: "MML",113 Opera: "HTML",114 other: "HTML"115 }116 }117 });118 /*]]>*///-->119 </script>120 </head>121 <body>122 <div id="content">127 <div id="table-of-contents">128 <h2>Table of Contents</h2>129 <div id="text-table-of-contents">130 <ul>131 <li><a href="#sec-1">1 Deductive and inductive posets </a>132 <ul>133 <li><a href="#sec-1-1">1.1 Definition </a></li>134 <li><a href="#sec-1-2">1.2 A canonical map from deductive posets to inductive posets </a></li>135 </ul>136 </li>137 <li><a href="#sec-2">2 Assigning plausibilities to inductive posets </a>138 <ul>139 <li><a href="#sec-2-1">2.1 Consistent reasoning as a commutative diagram </a></li>140 <li><a href="#sec-2-2">2.2 ``Multiplicity'' is reciprocal probability </a></li>141 <li><a href="#sec-2-3">2.3 Laws for multiplicity </a></li>142 </ul>143 </li>144 </ul>145 </div>146 </div>148 <div id="outline-container-1" class="outline-2">149 <h2 id="sec-1"><span class="section-number-2">1</span> Deductive and inductive posets </h2>150 <div class="outline-text-2" id="text-1">154 </div>156 <div id="outline-container-1-1" class="outline-3">157 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> Definition </h3>158 <div class="outline-text-3" id="text-1-1">160 <p>If you have a collection \(P\) of logical propositions, you can order them by161 implication: \(a\) precedes \(b\) if and only if \(a\) implies162 \(b\). This makes \(P\) into a poset. Since the ordering arose from163 deductive implication, we'll call this a <i>deductive poset</i>.164 </p>165 <p>166 If you have a deductive poset \(P\), you can create a related poset \(P^*\)167 as follows: the underlying set is the same, and for any two168 propositions \(a\) and \(b\) in \(P\), \(a\) precedes169 \(ab\) in \(P^*\). We'll call this an <i>inductive poset</i>.170 </p>171 </div>173 </div>175 <div id="outline-container-1-2" class="outline-3">176 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> A canonical map from deductive posets to inductive posets </h3>177 <div class="outline-text-3" id="text-1-2">179 <p>Each poset corresponds with a poset-category, that is a category with180 at most one arrow between any two objects. Considered as categories,181 inductive and deuctive posets are related as follows: there is a map182 \(\mathscr{F}\) which sends each arrow \(a\rightarrow b\) in \(P\) to183 the arrow \(a\rightarrow ab\) in \(P^*\). In fact, since \(a\) implies184 \(b\) if and only if \(a = ab\), \(\mathscr{F}\) sends each arrow in \(P\) to185 an identity arrow in \(P^*\) (specifically, it sends the arrow186 \(a\rightarrow b\) to the identity arrow \(a\rightarrow a\)).187 </p>189 </div>190 </div>192 </div>194 <div id="outline-container-2" class="outline-2">195 <h2 id="sec-2"><span class="section-number-2">2</span> Assigning plausibilities to inductive posets </h2>196 <div class="outline-text-2" id="text-2">199 <p>200 Inductive posets encode the relative (<i>qualitative</i>) plausibilities of its201 propositions: there exists an arrow \(x\rightarrow y\) only if \(x\)202 is at least as plausible as \(y\).203 </p>205 </div>207 <div id="outline-container-2-1" class="outline-3">208 <h3 id="sec-2-1"><span class="section-number-3">2.1</span> Consistent reasoning as a commutative diagram </h3>209 <div class="outline-text-3" id="text-2-1">211 <p>Inductive categories enable the following neat trick: we can interpret212 the objects of \(P^*\) as states of given information and interpret213 each arrow \(a\rightarrow ab\) in \(P^*\) as an inductive inference: the arrow214 \(a\rightarrow ab\) represents an inferential leap from the state of215 knowledge where only \(a\) is given to the state of knowledge where216 both \(a\) and \(b\) are given— in this way, it represents217 the process of inferring \(b\) when given \(a\), and we label the218 arrow with \((b|a)\).219 </p>220 <p>221 This trick has several important features that suggest its usefulness,222 namely223 </p><ul>224 <li>Composition of arrows corresponds to compound inference.225 </li>226 <li>In the special case of deductive inference, the inferential arrow is an227 identity; the source and destination states of knowledge are the same.228 </li>229 <li>One aspect of the consistency requirement of Jaynes<sup><a class="footref" name="fnr.1" href="#fn.1">1</a></sup> takes the form of a230 commutative square: \(x\rightarrow ax \rightarrow abx\) =231 \(x\rightarrow bx \rightarrow abx\) is the categorified version of232 \((AB|X)=(A|X)\cdot(B|AX)=(B|X)\cdot(A|BX)\).233 </li>234 <li>We can make plausibility assignments by enriching the inductive235 category \(P^*\) over some monoidal category, e.g. the set of real numbers236 (considered as a category) with its usual multiplication. <i>When we do</i>,237 the identity arrows of \(P^*\) —corresponding to238 deductive inferences— are assigned a value of certainty automatically.239 </li>240 </ul>243 </div>245 </div>247 <div id="outline-container-2-2" class="outline-3">248 <h3 id="sec-2-2"><span class="section-number-3">2.2</span> ``Multiplicity'' is reciprocal probability </h3>249 <div class="outline-text-3" id="text-2-2">251 <p>The natural numbers have a comparatively concrete origin: they are the252 result of decategorifying the category of finite sets<sup><a class="footref" name="fnr.2" href="#fn.2">2</a></sup>, or the253 coequalizer of the arrows from a one-object category to a two-object254 category with a single nonidentity arrow. Extensions of the set of255 natural numbers— such as256 the set of integers or rational numbers or real numbers— strike257 me as being somewhat more abstract (however, see the Eudoxus258 construction of the real numbers).259 </p>260 <p>261 Jaynes points out that our existing choice of scale for probabilities262 (i.e., the scale from 0 for impossibility to 1 for263 certainty) has a degree of freedom: any monotonic function of264 probability encodes the same information that probability does. Though265 the resulting laws for compound probability and so on change in form266 when probabilities are changed, they do not change in content.267 </p>268 <p>269 With this in mind, it seems natural and permissible to use not <i>probability</i> but270 <i>reciprocal probability</i> instead. This scale, which we might271 call <i>multiplicity</i>, ranges from 1 (certainty) to272 positive infinity (impossibility); higher numbers are ascribed to273 less-plausible events.274 </p>275 <p>276 In this way, the ``probability''277 associated with choosing one out of \(n\) indistinguishable choices278 becomes identified with \(n\).279 </p>280 </div>282 </div>284 <div id="outline-container-2-3" class="outline-3">285 <h3 id="sec-2-3"><span class="section-number-3">2.3</span> Laws for multiplicity </h3>286 <div class="outline-text-3" id="text-2-3">288 <p>Jaynes derives laws of probability; either his method or his results289 can be used to obtain laws for multiplicities.290 </p>291 <dl>292 <dt>product rule</dt><dd>The product rule is unchanged: \(\xi(AB|X)=\xi(A|X)\cdot293 \xi(B|AX) = \xi(B|X)\cdot \xi(A|BX)\)294 </dd>295 <dt>certainty</dt><dd>States of absolute certainty are assigned a multiplicity296 of 1. States of absolute impossibility are assigned a297 multiplicity of positive infinity.298 </dd>299 <dt>entropy</dt><dd>In terms of probability, entropy has the form \(S=-\sum_i300 p_i \ln{p_i} = \sum_i p_i (-\ln{p_i}) = \sum_i p_i \ln{(1/p_i)}301 \). Hence, in terms of multiplicity, entropy302 has the form \(S = \sum_i \frac{\ln{\xi_i}}{\xi_i} \).304 <p>305 Another interesting quantity is \(\exp{S}\), which behaves306 multiplicitively rather than additively. \(\exp{S} =307 \prod_i \exp{\frac{\ln{\xi_i}}{\xi_i}} =308 \left(\exp{\ln{\xi_i}}\right)^{1/\xi_i} = \prod_i \xi_i^{1/\xi_i} \)309 </p></dd>310 </dl>314 <div id="footnotes">315 <h2 class="footnotes">Footnotes: </h2>316 <div id="text-footnotes">317 <p class="footnote"><sup><a class="footnum" name="fn.1" href="#fnr.1">1</a></sup> <i>(IIIa) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.</i>318 </p>320 <p class="footnote"><sup><a class="footnum" name="fn.2" href="#fnr.2">2</a></sup> As Baez explains.321 </p>322 </div>323 </div>324 </div>326 </div>327 </div>328 <div id="postamble">329 <p class="date">Date: 2011-07-09 14:19:42 EDT</p>330 <p class="author">Author: Dylan Holmes</p>331 <p class="creator">Org version 7.6 with Emacs version 23</p>332 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>333 </div>334 </div>335 </body>336 </html>