Mercurial > dylan
view sicm/utils.org @ 3:44d3dc936f6a
moved backup files
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Fri, 28 Oct 2011 00:06:37 -0700 |
parents | b4de894a1e2e |
children |
line wrap: on
line source
1 #+TITLE: Building a Classical Mechanics Library in Clojure2 #+author: Dylan Holmes3 #+EMAIL: rlm@mit.edu4 #+MATHJAX: align:"left" mathml:t path:"../MathJax/MathJax.js"5 #+STYLE: <link rel="stylesheet" type="text/css" href="../css/aurellem.css" />6 #+OPTIONS: H:3 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t7 #+SETUPFILE: ../templates/level-0.org8 #+INCLUDE: ../templates/level-0.org9 #+BABEL: :noweb yes :results silent11 * Useful data types13 ** Complex numbers15 ** Power series17 ** Tuples and tensors19 *** Tuples are \ldquo{}sequences with spin\rdquo{}21 #+srcname: tuples22 #+begin_src clojure23 (in-ns 'sicm.utils)25 ;; Let some objects have spin27 (defprotocol Spinning28 (up? [this])29 (down? [this]))31 (defn spin32 "Returns the spin of the Spinning s, either :up or :down"33 [#^Spinning s]34 (cond (up? s) :up (down? s) :down))37 ;; DEFINITION: A tuple is a sequence with spin39 (deftype Tuple40 [spin coll]42 clojure.lang.Seqable43 (seq [this] (seq (.coll this)))45 clojure.lang.Counted46 (count [this] (count (.coll this)))48 Spinning49 (up? [this] (= ::up (.spin this)))50 (down? [this] (= ::down (.spin this))))52 (defmethod print-method Tuple53 [o w]54 (print-simple55 (if (up? o)56 (str "u" (.coll o))57 (str "d" (vec(.coll o))))58 w))60 (def tuple? #(= (type %) Tuple))62 ;; CONSTRUCTORS64 (defn up65 "Create a new up-tuple containing the contents of coll."66 [coll]67 (Tuple. ::up coll))69 (defn down70 "Create a new down-tuple containing the contents of coll."71 [coll]72 (Tuple. ::down coll))74 (defn same-spin75 "Creates a tuple which has the same spin as tuple and which contains76 the contents of coll."77 [tuple coll]78 (if (up? tuple)79 (up coll)80 (down coll)))82 (defn opposite-spin83 "Create a tuple which has opposite spin to tuple and which contains84 the contents of coll."85 [tuple coll]86 (if (up? tuple)87 (down coll)88 (up coll)))89 #+end_src93 *** Matrices94 #+srcname:matrices95 #+begin_src clojure96 (in-ns 'sicm.utils)97 (require 'incanter.core) ;; use incanter's fast matrices100 (defn all-equal? [coll]101 (if (empty? (rest coll)) true102 (and (= (first coll) (second coll))103 (recur (rest coll)))))106 (defprotocol Matrix107 (rows [matrix])108 (cols [matrix])109 (diagonal [matrix])110 (trace [matrix])111 (determinant [matrix])112 (transpose [matrix])113 (conjugate [matrix])114 )116 (extend-protocol Matrix incanter.Matrix117 (rows [rs] (map down (apply map vector (apply map vector rs))))118 (cols [rs] (map up (apply map vector rs)))119 (diagonal [matrix] (incanter.core/diag matrix) )120 (determinant [matrix] (incanter.core/det matrix))121 (trace [matrix] (incanter.core/trace matrix))122 (transpose [matrix] (incanter.core/trans matrix)))124 (defn count-rows [matrix]125 ((comp count rows) matrix))127 (defn count-cols [matrix]128 ((comp count cols) matrix))130 (defn square? [matrix]131 (= (count-rows matrix) (count-cols matrix)))133 (defn identity-matrix134 "Define a square matrix of size n-by-n with 1s along the diagonal and135 0s everywhere else."136 [n]137 (incanter.core/identity-matrix n))140 (defn matrix-by-rows141 "Define a matrix by giving its rows."142 [& rows]143 (if144 (not (all-equal? (map count rows)))145 (throw (Exception. "All rows in a matrix must have the same number of elements."))146 (incanter.core/matrix (vec rows))))148 (defn matrix-by-cols149 "Define a matrix by giving its columns"150 [& cols]151 (if (not (all-equal? (map count cols)))152 (throw (Exception. "All columns in a matrix must have the same number of elements."))153 (incanter.core/matrix (vec (apply map vector cols)))))155 (defn identity-matrix156 "Define a square matrix of size n-by-n with 1s along the diagonal and157 0s everywhere else."158 [n]159 (incanter.core/identity-matrix n))161 #+end_src163 ** Generic Operations164 #+srcname:arith-tuple165 #+begin_src clojure166 (in-ns 'sicm.utils)167 (use 'clojure.contrib.generic.arithmetic168 'clojure.contrib.generic.collection169 'clojure.contrib.generic.functor170 'clojure.contrib.generic.math-functions)172 (defn numbers?173 "Returns true if all arguments are numbers, else false."174 [& xs]175 (every? number? xs))177 (defn tuple-surgery178 "Applies the function f to the items of tuple and the additional179 arguments, if any. Returns a Tuple of the same type as tuple."180 [tuple f & xs]181 ((if (up? tuple) up down)182 (apply f (seq tuple) xs)))186 ;;; CONTRACTION collapses two compatible tuples into a number.188 (defn contractible?189 "Returns true if the tuples a and b are compatible for contraction,190 else false. Tuples are compatible if they have the same number of191 components, they have opposite spins, and their elements are192 pairwise-compatible."193 [a b]194 (and195 (isa? (type a) Tuple)196 (isa? (type b) Tuple)197 (= (count a) (count b))198 (not= (spin a) (spin b))200 (not-any? false?201 (map #(or202 (numbers? %1 %2)203 (contractible? %1 %2))204 a b))))206 (defn contract207 "Contracts two tuples, returning the sum of the208 products of the corresponding items. Contraction is recursive on209 nested tuples."210 [a b]211 (if (not (contractible? a b))212 (throw213 (Exception. "Not compatible for contraction."))214 (reduce +215 (map216 (fn [x y]217 (if (numbers? x y)218 (* x y)219 (contract x y)))220 a b))))226 (defmethod conj Tuple227 [tuple & xs]228 (tuple-surgery tuple #(apply conj % xs)))230 (defmethod fmap Tuple231 [f tuple]232 (tuple-surgery tuple (partial map f)))236 ;; TODO: define Scalar, and add it to the hierarchy above Number and Complex239 (defmethod * [Tuple Tuple] ; tuple*tuple240 [a b]241 (if (contractible? a b)242 (contract a b)243 (map (partial * a) b)))246 (defmethod * [java.lang.Number Tuple] ;; scalar * tuple247 [a x] (fmap (partial * a) x))249 (defmethod * [Tuple java.lang.Number]250 [x a] (* a x))252 (defmethod * [java.lang.Number incanter.Matrix] ;; scalar * matrix253 [x M] (incanter.core/mult x M))255 (defmethod * [incanter.Matrix java.lang.Number]256 [M x] (* x M))258 (defmethod * [incanter.Matrix incanter.Matrix] ;; matrix * matrix259 [M1 M2]260 (incanter.core/mmult M1 M2))262 (defmethod * [incanter.Matrix Tuple] ;; matrix * tuple263 [M v]264 (if (and (apply numbers? v) (up? v))265 (* M (matrix-by-cols v))266 (throw (Exception. "Currently, you can only multiply a matrix by a tuple of *numbers*"))267 ))269 (defmethod * [Tuple incanter.Matrix] ;; tuple * Matrix270 [v M]271 (if (and (apply numbers? v) (down? v))272 (* (matrix-by-rows v) M)273 (throw (Exception. "Currently, you can only multiply a matrix by a tuple of *numbers*"))274 ))277 (defmethod exp incanter.Matrix278 [M]279 (incanter.core/exp M))281 #+end_src283 * Operators and Differentiation284 ** Operators285 #+scrname: operators286 #+begin_src clojure287 (in-ns 'sicm.utils)288 (use 'clojure.contrib.seq289 'clojure.contrib.generic.arithmetic290 'clojure.contrib.generic.collection291 'clojure.contrib.generic.math-functions)293 (defmethod + [clojure.lang.IFn clojure.lang.IFn]294 [f g]295 (fn [& args]296 (+ (apply f args) (apply g args))))298 (defmethod * [clojure.lang.IFn clojure.lang.IFn]299 [f g]300 (fn [& args]301 (* (apply f args) (apply g args))))303 (defmethod / [clojure.lang.IFn java.lang.Number]304 [f x]305 (fn [& args]306 (/ (apply f args) x)))309 (defmethod - [clojure.lang.IFn]310 [f]311 (fn [& args]312 (- (apply f args))))314 (defmethod - [clojure.lang.IFn clojure.lang.IFn]315 [f g]316 (fn [& args]317 (- (apply f args) (apply g args))))319 (defmethod pow [clojure.lang.IFn java.lang.Number]320 [f x]321 (fn [& args]322 (pow (apply f args) x)))325 (defmethod + [java.lang.Number clojure.lang.IFn]326 [x f]327 (fn [& args]328 (+ x (apply f args))))330 (defmethod * [java.lang.Number clojure.lang.IFn]331 [x f]332 (fn [& args]333 (* x (apply f args))))335 (defmethod * [clojure.lang.IFn java.lang.Number]336 [f x]337 (* x f))338 (defmethod + [clojure.lang.IFn java.lang.Number]339 [f x]340 (+ x f))342 #+end_src344 ** Differential Terms and Sequences345 #+srcname: differential346 #+begin_src clojure347 (in-ns 'sicm.utils)348 (use 'clojure.contrib.seq349 'clojure.contrib.generic.arithmetic350 'clojure.contrib.generic.collection351 'clojure.contrib.generic.math-functions)353 ;;∂355 ;; DEFINITION : Differential Term357 ;; A quantity with infinitesimal components, e.g. x, dxdy, 4dydz. The358 ;; coefficient of the quantity is returned by the 'coefficient' method,359 ;; while the sequence of differential parameters is returned by the360 ;; method 'partials'.362 ;; Instead of using (potentially ambiguous) letters to denote363 ;; differential parameters (dx,dy,dz), we use integers. So, dxdz becomes [0 2].365 ;; The coefficient can be any arithmetic object; the366 ;; partials must be a nonrepeating sorted sequence of nonnegative367 ;; integers.369 ;; (deftype DifferentialTerm [coefficient partials])371 ;; (defn differential-term372 ;; "Make a differential term from a coefficient and list of partials."373 ;; [coefficient partials]374 ;; (if (and (coll? partials) (every? #(and (integer? %) (not(neg? %))) partials))375 ;; (DifferentialTerm. coefficient (set partials))376 ;; (throw (java.lang.IllegalArgumentException. "Partials must be a collection of integers."))))379 ;; DEFINITION : Differential Sequence380 ;; A differential sequence is a sequence of differential terms, all with different partials.381 ;; Internally, it is a map from the partials of each term to their coefficients.383 (deftype DifferentialSeq384 [terms]385 ;;clojure.lang.IPersistentMap386 clojure.lang.Associative387 (assoc [this key val]388 (DifferentialSeq.389 (cons (differential-term val key) terms)))390 (cons [this x]391 (DifferentialSeq. (cons x terms)))392 (containsKey [this key]393 (not(nil? (find-first #(= (.partials %) key) terms))))394 (count [this] (count (.terms this)))395 (empty [this] (DifferentialSeq. []))396 (entryAt [this key]397 ((juxt #(.partials %) #(.coefficient %))398 (find-first #(= (.partials %) key) terms)))399 (seq [this] (seq (.terms this))))401 (def differential? #(= (type %) DifferentialSeq))403 (defn zeroth-order?404 "Returns true if the differential sequence has at most a constant term."405 [dseq]406 (and407 (differential? dseq)408 (every?409 #(= #{} %)410 (keys (.terms dseq)))))412 (defmethod fmap DifferentialSeq413 [f dseq]414 (DifferentialSeq.415 (fmap f (.terms dseq))))420 ;; BUILDING DIFFERENTIAL OBJECTS422 (defn differential-seq423 "Define a differential sequence by specifying an alternating424 sequence of coefficients and lists of partials."425 ([coefficient partials]426 (DifferentialSeq. {(set partials) coefficient}))427 ([coefficient partials & cps]428 (if (odd? (count cps))429 (throw (Exception. "differential-seq requires an even number of terms."))430 (DifferentialSeq.431 (reduce432 #(assoc %1 (set (second %2)) (first %2))433 {(set partials) coefficient}434 (partition 2 cps))))))438 (defn big-part439 "Returns the part of the differential sequence that is finite,440 i.e. not infinitely small. If the sequence is zeroth-order, returns441 the coefficient of the zeroth-order term instead. "442 [dseq]443 (if (zeroth-order? dseq) (get (.terms dseq) #{})444 (let [m (.terms dseq)445 keys (sort-by count (keys m))446 smallest-var (last (last keys))]447 (DifferentialSeq.448 (reduce449 #(assoc %1 (first %2) (second %2))450 {}451 (remove #((first %) smallest-var) m))))))454 (defn small-part455 "Returns the part of the differential sequence that infinitely456 small. If the sequence is zeroth-order, returns zero."457 [dseq]458 (if (zeroth-order? dseq) 0459 (let [m (.terms dseq)460 keys (sort-by count (keys m))461 smallest-var (last (last keys))]462 (DifferentialSeq.463 (reduce464 #(assoc %1 (first %2) (second %2)) {}465 (filter #((first %) smallest-var) m))))))469 (defn cartesian-product [set1 set2]470 (reduce concat471 (for [x set1]472 (for [y set2]473 [x y]))))475 (defn nth-subset [n]476 (if (zero? n) []477 (let [lg2 #(/ (log %) (log 2))478 k (int(java.lang.Math/floor (lg2 n)))479 ]480 (cons k481 (nth-subset (- n (pow 2 k)))))))483 (def all-partials484 (lazy-seq (map nth-subset (range))))487 (defn differential-multiply488 "Multiply two differential sequences. The square of any differential489 variable is zero since differential variables are infinitesimally490 small."491 [dseq1 dseq2]492 (DifferentialSeq.493 (reduce494 (fn [m [[vars1 coeff1] [vars2 coeff2]]]495 (if (not (empty? (clojure.set/intersection vars1 vars2)))496 m497 (assoc m (clojure.set/union vars1 vars2) (* coeff1 coeff2))))498 {}499 (cartesian-product (.terms dseq1) (.terms dseq2)))))503 (defmethod * [DifferentialSeq DifferentialSeq]504 [dseq1 dseq2]505 (differential-multiply dseq1 dseq2))507 (defmethod + [DifferentialSeq DifferentialSeq]508 [dseq1 dseq2]509 (DifferentialSeq.510 (merge-with + (.terms dseq1) (.terms dseq2))))512 (defmethod * [java.lang.Number DifferentialSeq]513 [x dseq]514 (fmap (partial * x) dseq))516 (defmethod * [DifferentialSeq java.lang.Number]517 [dseq x]518 (fmap (partial * x) dseq))520 (defmethod + [java.lang.Number DifferentialSeq]521 [x dseq]522 (+ (differential-seq x []) dseq))523 (defmethod + [DifferentialSeq java.lang.Number]524 [dseq x]525 (+ dseq (differential-seq x [])))527 (defmethod - DifferentialSeq528 [x]529 (fmap - x))532 ;; DERIVATIVES536 (defn linear-approximator537 "Returns an operator that linearly approximates the given function."538 ([f df|dx]539 (fn [x]540 (let [big-part (big-part x)541 small-part (small-part x)]542 ;; f(x+dx) ~= f(x) + f'(x)dx543 (+ (f big-part)544 (* (df|dx big-part) small-part)545 ))))547 ([f df|dx df|dy]548 (fn [x y]549 (let [X (big-part x)550 Y (big-part y)551 DX (small-part x)552 DY (small-part y)]553 (+ (f X Y)554 (* DX (f df|dx X Y))555 (* DY (f df|dy X Y)))))))561 (defn D[f]562 (fn[x] (f (+ x (differential-seq 1 [0] 1 [1] 1 [2])))))564 (defn d[partials f]565 (fn [x]566 (get567 (.terms ((D f)x))568 (set partials)569 0570 )))572 (defmethod exp DifferentialSeq [x]573 ((linear-approximator exp exp) x))575 (defmethod sin DifferentialSeq576 [x]577 ((linear-approximator sin cos) x))579 (defmethod cos DifferentialSeq580 [x]581 ((linear-approximator cos #(- (sin %))) x))583 (defmethod log DifferentialSeq584 [x]585 ((linear-approximator log (fn [x] (/ x)) ) x))587 (defmethod / [DifferentialSeq DifferentialSeq]588 [x y]589 ((linear-approximator /590 (fn [x y] (/ 1 y))591 (fn [x y] (- (/ x (* y y)))))592 x y))594 #+end_src598 * Derivatives Revisited599 #+begin_src clojure600 (in-ns 'sicm.utils)601 (use 'clojure.contrib.seq602 'clojure.contrib.generic.arithmetic603 'clojure.contrib.generic.collection604 'clojure.contrib.generic.math-functions)606 (defn replace-in607 "Replaces the nth item in coll with the given item. If n is larger608 than the size of coll, adds n to the end of the collection."609 [coll n item]610 (concat611 (take n coll)612 [item]613 (drop (inc n) coll)))615 (defn euclidean-structure [f partials]616 (fn sd[g v]617 (cond618 (tuple? v)619 (opposite-spin620 v621 (map622 (fn [n]623 (sd (fn [xn]624 (g625 (same-spin v626 (replace-in v n xn))))627 (nth v n)))628 (range (count v)))))))633 #+end_src636 * Symbolic Quantities638 #+srcname: symbolic639 #+begin_src clojure640 (in-ns 'sicm.utils)641 (use 'clojure.contrib.generic.arithmetic642 'clojure.contrib.generic.math-functions)644 (deftype Symbolic645 [type646 expression])648 (defn print-expression [s]649 (print (.expression s)))651 (defn symbolic-number652 [symbol]653 (Symbolic. java.lang.Number symbol))655 (defn simplify-expression [s]656 (let [e (.expression s)]657 (cond658 (not(list? e)) e659 (= (first e) '+)660 )664 (defmethod + [Symbolic Symbolic]665 [x y]666 (Symbolic. (.type x) (list '+ (.expression x) (.expression y))))668 (defmethod + [Symbolic java.lang.Number]669 [s x]670 (if (zero? x)671 s672 (Symbolic. (.type s) (list '+ (.expression s) x))))674 (defmethod sin Symbolic675 [s]676 (Symbolic. (.type s) (list 'sin (.expression s))))678 #+end_src680 * COMMENT To-be-tangled Source681 #+begin_src clojure :tangle utils.clj682 (ns sicm.utils)684 <<tuples>>685 <<matrices>>686 <<arith-tuple>>688 <<differential>>689 #+end_src